Defense Advanced Research Projects AgencyTagged Content List

Electronics and Microchips

Technologies based on the manipulation of electrons and, increasingly, photons

Showing 53 results for Electronics RSS
Since its inception in 1992, DARPA’s Microsystems Technology Office (MTO) has helped create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, Microelectromechanical systems (MEMS), and photonic devices. MTO’s revolutionary work applying advanced capabilities in areas such as wide-band gap materials, phased array radars, high-energy lasers and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/18/2015
Since its inception in 1992, DARPA’S Microsystems Technology Office (MTO) has helped create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO’s revolutionary work applying advanced capabilities in areas such as wide-band gap materials, phased array radars, high-energy lasers and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/06/2015
Early GPS receivers were bulky, heavy devices. In 1983, DARPA set out to miniaturize them, leading to a much broader adoption of GPS capability.
01/28/2013
The sophisticated electronics used by warfighters in everything from radios, remote sensors and even phones can now be made at such a low cost that they are pervasive throughout the battlefield. These electronics have become necessary for operations, but it is almost impossible to track and recover every device. At the end of operations, these electronics are often found scattered across the battlefield and might be captured by the enemy and repurposed or studied to compromise DoD’s strategic technological advantage.
03/26/2013
Two teams of DARPA performers have achieved world record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for reliable transmission of signals over the distance required by the given application. These breakthroughs were achieved under the Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program. Further integration efforts may unlock applications in low-cost satellite communications and millimeter-wave sensing.