Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 9 results for Materials + Chemistry RSS
08/14/2015
For millennia, materials have mattered—so much so that entire eras have been named for them. From the Stone Age to the Bronze Age to the Iron Age and beyond, breakthroughs in materials have defined what was technologically possible and fueled revolutions in fields as diverse as electronics, construction and medicine. Today, DARPA is pursuing the next big advances in this fundamentally important domain.
12/09/2015
DARPA’s Agnostic Compact Demilitarization of Chemical Agents (ACDC) program recently awarded two contracts to develop prototypes of a transportable disposal system able to convert dangerous chemicals into safe output, such as harmless soil, using minimal consumables and creating no hazardous waste. If successful, the system could be used to safely destroy chemical warfare agent stockpiles on site without having to transport the highly toxic chemicals to a remote location for processing. The approaches could also ultimately find application in a variety of industrial chemical neutralization and clean-up efforts. The awardees are Southwest Research Institute (SwRI), San Antonio, Texas, and SRI International, Menlo Park, California.
06/21/2016
Soldiers often operate in extreme environments, where they may be exposed to the elements for long periods of time. Standard equipment such as electronics and armor are designed to withstand such stresses, but that is not true for the contents of a medic’s bag. Most medicines, including essential biotherapeutics such as insulin, degrade rapidly when stored outside of specified temperature, humidity, and light conditions. DARPA’s Fold F(x) program aims to develop new classes of rugged, shelf-stable medicines based on non-natural, synthetic polymers that can better withstand extreme conditions in the field. The Agency will hold a workshop next week to describe recent successes and discuss applications with potential collaborators.
08/31/2016
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 °C or more. The advance opens a path to creating a host of previously unattainable thin-film microelectronics, whose production by conventional methods has been impossible because many components lose their critical functions when subjected to high temperatures.
Destroying bulk stores of chemical warfare agents (CWAs) and organic precursors is a significant challenge for the international community. Today, for example, there are no approaches that exploit chemistries that are truly agnostic in terms of the agents that can be processed. In addition, current approaches require transport of agents from the storage site to a neutralization site. Ensuring safe transport of the agent can add significant cost and time to the process.