Defense Advanced Research Projects AgencyTagged Content List

Transformative Materials

Relating to new or improved properties in materials

Showing 4 results for Materials + SWAP RSS
12/05/2013
The capability of orbital telescopes to see wide swaths of the earth at a time has made them indispensable for key national security responsibilities such as weather forecasting, reconnaissance and disaster response. Even as telescope design has advanced, however, one aspect has remained constant since Galileo: using glass for lenses and mirrors, also known as optics. High-resolution imagery traditionally has required large-diameter glass mirrors, which are thick, heavy, difficult to make and expensive. As the need for higher-resolution orbital imagery expands, glass mirrors are fast approaching the point where they will be too large, heavy and costly for even the largest of today’s rockets to carry to orbit.
| ISR | Materials | Space | SWAP |
06/16/2016
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems. The Magnetic, Miniaturized, and Monolithically Integrated Components (M3IC), program will orchestrate research into miniaturized magnetic components with a goal of catalyzing chip-based innovations in radar and other radio frequency (RF) systems—and satisfying growing military and civilian demands for new ways to maneuver within the increasingly crowded electromagnetic spectrum.
The Magnetic Miniaturized and Monolithically Integrated Components (M3IC) program aims to integrate magnetic components onto semiconductor materials, improving the size and functionality of electromagnetic (EM) systems for communications, radar, and electronic warfare (EW). Current EM systems use magnetic components such as circulators, inductors, and isolators, but these are bulky and cannot be integrated with miniaturized electronic circuitry.
Transductional materials convert energy between different forms or domains, such as thermal to electrical energy, or electric field to magnetic field.