Defense Advanced Research Projects AgencyTagged Content List

Manufacturing

Manufacturing

Showing 17 results for Manufacturing + Programs RSS

Adaptive Vehicle Make (AVM) is a portfolio of programs that address revolutionary approaches to the design, verification and manufacturing of complex defense systems and vehicles. The portfolio consists of three primary programs: META, Instant Foundry Adaptive through Bits (iFAB) and Fast Adaptable Next-Generation Ground Vehicle (FANG).

Following the announcement of a winner of the first FANG Challenge in April 2013, the winning design was built and tested. The test data has verified the new design paradigm, and as a result, DARPA is pursuing an opportunity for an early transition of the program to industry in 2014.

The goal of the Atoms to Product (A2P) program is to develop the technologies and processes required to assemble nanometer-scale pieces, whose dimensions are near the size of atoms, into systems, components, or materials that are at least millimeter-scale in size. Many common materials exhibit unique and very uncommon physical characteristics when fabricated at nanometer-scale. These “atomic-scale” behaviors have potentially important defense applications, including quantized current-voltage behavior, dramatically lower melting points and significantly higher specific heats, for example. The challenge is how to retain the characteristics of materials at the atomic scale in much larger “product-scale” (typically a few centimeters) devices and systems.
Materials with superior strength, density and resiliency properties are important for the harsh environments in which Department of Defense platforms, weapons and their components operate. Recent scientific advances have opened up new possibilities for material design in the ultrahigh pressure regime (up to three million times higher than atmospheric pressure). Materials formed under ultrahigh pressure, known as extended solids, exhibit dramatic changes in physical, mechanical and functional properties and may offer significant improvements to armor, electronics, propulsion and munitions systems in any aerospace, ground or naval platform.
The integrated circuit (IC) is a core component of many electronic systems developed for the Department of Defense. However, the DoD consumes a very small percentage of the total IC production in the world. As a result of the globalization of the IC marketplace, much of the advanced IC production has moved to offshore foundries, and these parts make up the majority of ICs used in today’s military systems.
Living Foundries seeks to transform biology into an engineering practice by developing the tools, technologies, methodologies, and infrastructure to increase the speed of the biological design-build-test-learn cycle while significantly decreasing the cost and expanding the complexity of systems that can be engineered. The technologies and infrastructure developed as part of this program are expected to enable the rapid and scalable development of transformative products and systems that are currently inaccessible. Examples include novel materials, industrial chemicals, pharmaceuticals, and improved agricultural products.