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Abstract. We describe a straightforward methodology for determining the location and other 

gross properties of CMEs within the coronagraph field of view in the upcoming STEREO 

mission observations. We use geometric triangulation upon a series of lines-of-sight taken from 

two spacecraft views that are locally tangent to the apparent edges of a CME. From the 

intersections of these lines-of-sight, we construct a set of stacked quadrilaterals that fully bound 

the structure and convey something of its location, shape, and size; a time sequence of such 

determinations can be used to determine the velocity. The technique is relatively robust and 

promises a substantial improvement in our capability to locate and characterize CMEs for 

research as well as forecasting purposes. 
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1. Introduction 

White light imagery from the upcoming STEREO mission presents a unique opportunity to 

obtain reliable estimates of CME location, shape, and velocity. In addition to the obvious space 

weather forecast applications, accurate knowledge of these gross CME properties is certain to 

open up entire new vistas of understanding in terms of associations among solar surface, coronal, 

and interplanetary structures and disturbances. 

Realizing the full promise of the twin stereo views will not be a simple task. A variety of 

methods are being explored to exploit STEREO image data, including tomographic 

deconvolution (eg., Davila, 1994; Zidowitz et al., 1996; Newmark et al., 2003; Hick and Jackson, 

2003), tie-point analysis (P. Liewer et al., private communication), and, most recently, 

polarization studies (Moran and Davila, 2004). 

Whatever the ultimate potential of these methods, there is a need within the space weather 

community for a means to determine quickly and accurately the gross properties of Earth-

directed CMEs. Moreover, there is specific need for a near-real-time forecasting tool that can 

routinely and confidently be applied to the real-time, low-resolution “beacon” data stream. 

Ideally, such a tool would work with either the coronagraph or the heliospheric imager beacon 

data. Simplicity, robustness, and ease of use would be an issue, since the CME locator algorithm 

would have to run in automated or nearly automated mode within a forecast center. As a 

dividend, the resultant archive of CME properties would have clear and immediate relevance to 

broader research investigations. 

We describe a straightforward methodology that meets the above requirements. Although it 

does not yield the structural details that other methods may potentially deliver, it nonetheless 

constitutes an enormous improvement over current capabilities, on both forecasting and research-



oriented fronts. Most importantly, it is a method that can unquestionably be made fully ready for 

operation before launch. While its utility is lessened at very small and very large angular 

separations of the twin STEREO spacecraft, it can be applied successfully over most of the core 

mission. 

We focus upon CMEs in the corona, where they are most compact and where there exists 

lengthy experience in analyzing and interpreting transient disturbances. We describe here the 

results of a proof-of-concept study based upon geometric triangulation. Specifically, by 

determining from two spacecraft views a series of lines-of-sight that are locally tangent to the 

apparent edges of a CME it is possible to construct a set of stacked quadrilaterals that bound the 

structure. The assemblage of quadrilaterals can be used to estimate the geometric centroid of the 

disturbance and also to convey something of its shape and orientation. Among the strengths of 

the method is the fact that it is contingent only upon discerning the outlines of the configuration, 

ensuring robustness in the face of coarse, noisy images and making it amenable to automation 

via standard edge-detection techniques. 

2. Forward Modeling 

A forward modeling environment is used to develop, test, and illustrate the geometric 

localization technique. The modeling employs several key elements to support the simulation 

and analysis of white light observations in the corona. 

2.1. Simplified Sun-Earth coordinate system.  

The coordinate system we use for development is illustrated in Figure 1, which shows a 

heliocentric Cartesian system (“HC”) linked to a geocentric Cartesian system (“E”). Here, we 

neglect the relative tilts of the solar and ecliptic polar axes; thus, ZHC is parallel to ZE. As 

needed, points defining CME, spacecraft, or other locations are expressed in either heliocentric 



or geocentric systems, in either Cartesian or spherical coordinates. Thus, points along the lines of 

sight from either spacecraft [e.g., (ηA1,λA1)] may be readily transformed from one system to 

another to facilitate line-of-sight (LOS) evaluations. 

2.2. Parameterized representations of ambient and transient coronal density structures. 

The coronal density, including both ambient and CME components, is discretized in a 

regularly gridded spherical shell running between 1 RS and a specified outer boundary, lying 

typically at 10-20 RS. The Guhathakurta et al. (1996) tilted-dipole model provides the 

background coronal density distribution. The tilt and orientation of the model current sheet 

structure are adjustable via parameters. 

CMEs are modeled as simple, ad hoc, teardrop-shaped density configurations derived from 

cosine-based expressions. Density distributions for the CME are specified in terms of a 

streamline function ψ, which is a function of distance from the origin, ρ, the angle from the 

model CME axis, ζ, and a factor controlling the CME shape, p: 

 )2(cos)/1(),( )2/( ζρζρψ p×=  (1)  

The spatial configurations of surfaces of constantψ for several (p, ρ) combinations are shown 

in Figure 2. The values of ψ are inversely related to the maximum axial extension of the CME 

configuration, whereas the angular width is a function of p. Hence it is possible to define a dense 

shell CME by specifying p, identifying ψouter=1/ρ outer and ψinner=1/ρ inner, and then setting all 

points lying within the shell (ψouter< ψ  < ψinner) to some specified density. All points interior to 

ψinner are set to some low value to simulate the CME cavity. In this implementation, the CME 

density is fixed by specifying at each included grid point the ratio to a reference density profile, 

which is given as a function of ψ and heliocentric distance. Also, by specifying p as a function of 



angle about the CME axis, the CME cross-section can be elongated in some chosen direction 

relative to the solar equator.  

Finally, the model CME configuration is embedded into the gridded coronal density structure 

by replacing all local ambient values with the model CME values. Dynamical interactions 

between the CME and the ambient corona are thus explicitly neglected. 

2.3. Synthetic white light imagery. 

We have set up an LOS integration based upon the Billings (1966) formulation for coronal 

scattering, as articulated by Hundhausen (1993). The coronal density at each discrete point along 

an LOS is linearly interpolated (in the log) from the gridded density distribution. The limb-

darkening function u is assumed to be 0.5. Adequate spatial resolution along each LOS is 

verified to assure accurate calculation of both tangential and radial polarization components. 

3. Geometric Localization 

The geometric localization technique as described below currently requires manual 

operation, but the possibilities for automation should be self-evident. The basic idea is to obtain 

four LOS’s – two from each spacecraft – each being tangent to a perceived edge of the CME in 

the two white light images and, importantly, all lying within a common plane. Figure 1 shows 

the LOS’s needed to bound a slice through a generic CME structure, with the quadrilateral 

formed by their mutual intersections being depicted by the heavy lines. 

Figure 3 shows a synthetic white light image pair simulating a STEREO-like coronagraph 

observation of a model CME. It is centered 15° to the west of the Sun-Earth line, and 15° north 

of the heliocentric equator. It is also elongated (oblate cross-section) in a direction that is 

inclined some 30° to a north-south line, with the northernmost portions of the structure lying to 

the west of the southern part of the structure. The local density enhancement within the CME 



shell is arbitrarily concentrated toward the leading edge of the overall disturbance. The two 

simulated spacecraft views assume the spacecraft are in 1 AU orbit, with Figure 3 (left) showing 

the apparition from a position leading Earth by 35°, the other (right) from a 35° trailing location. 

Thus the net spacecraft separation is 70°. 

 The steps in the implementation are as follows: 

1. On the image from spacecraft A (leading), mark a point along the western edge of the 

CME. Together with a line connecting the two spacecraft, this LOS (LA1) defines a plane 

in three-space. To obtain the 3D equation of the LA1, we posit a ghost point q lying 1 AU 

from spacecraft A along the direction given by the longitudinal and latitudinal elongation 

angles η A1 and λ A1. From the known heliocentric locations of the spacecraft and the point 

q, we evaluate the constants {A, B, C} in the 3D line equation 
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2. On this same image, display the intersection of the plane containing the two spacecraft 

and LA1, as viewed from the spacecraft A. This is accomplished by using Eq. (2) to define 

a line running from q over to the heliocentric location of spacecraft B (lagging). A 

sufficient span of the plane is drawn across the field of view that it includes the first 

point and cuts completely across the CME through its eastern edge. 

3. Define a second LOS (LA2) tangent to the eastern limb of the CME, also lying in the 

common plane. 

4. On the view from spacecraft B, draw the plane including LA1 and LA2, such that it cuts 

completely across the CME. Identify two new LOS’s (LB1, tangent to the western edge, 

and LB2, tangent to the eastern edge) lying in this plane, and obtain the 3D line constants. 



5. From the four LOS's, determine by triangulation the four intersection points. These 

define a quadrilateral bounding a thin slice through the CME. 

6. Repeat steps 2-5 above for a succession of thin slices through the CME.  

In this process, the order of the LOS’s is immaterial, and one would generally choose for the first 

LOS the spacecraft view and CME limb offering the most distinct edge. The number of slices 

taken should be commensurate with the inherent north-south spatial resolution. The slices are 

nearly horizontal because both spacecraft lie in the ecliptic and are relatively far from the Sun. It 

should also be noted that geometric localization differs from the tie-point approach in that while 

the tangent direction is determined observationally, the actual tangent point to the CME along an 

LOS is irrelevant: all that matters are the intersections of the LOS’s that define the four corners 

of the quadrilateral. 

The amalgam of all these slices defines a volume – which we refer to as a “bounding box” – 

that encases the CME, as depicted in Figure 4. This volume can be analyzed in various ways to 

obtain an estimate of the CME location and its gross geometric properties. For example, it is 

straightforward to obtain the centroid of the bounding box, and the relative proportions of the 

structure, including the north-south oblateness and tilt and the radial elongation, are all evident in 

the shape and distribution of the bounding box lattice. The CME velocity, direction, and spatial 

evolution can be assessed from a time series of geometric localizations. 

4. Uncertainties 

      A useful estimate of the systematic uncertainty in the geometric localization can be obtained 

by comparing for a simple model CME the area of the bounding quadrilateral with the actual 

area of the CME within a plane. Consider a planar slice through a spherical model CME of 

radius 1 RS lying at a distance of 1 AU from two spacecraft separated by a Sun-centered angle χ. 



Figure 5 shows the ratio of the quadrilateral area to the actual area. It can be seen that the 

bounding box places resonably tight restrictions on the CME locale over a broad range of angles, 

in particular those spanning the STEREO prime mission phase. 

 Since the accuracy of the geometric localization technique depends upon the ability to 

discern a well-defined edge to the structure, the subtle boundaries associated with CMEs 

observed very far out of the plane (i.e., an “halo” CME as seen from one STEREO spacecraft) 

may increase the error in the localization somewhat, even at ideal spacecraft separation angles. 

However, any loss of accuracy is mitigated by the fact that the geometric slices are taken in 

many layers spanning the entire structure. Quantification of this effect and other potential 

limitations associated with more complex and irregular CMEs awaits further analysis. 

5. Discussion 

We have developed an important tool in the arsenal for 3D analyses of upcoming STEREO 

data. Although it has limitations, the method described here promises a substantial improvement 

in our capability to locate and characterize CMEs for research as well as forecasting purposes. 

The method is by its geometric nature inherently robust. It can be applied to either total intensity 

or polarized images, perhaps without background subtraction, so long as there is sufficient 

contrast to define the periphery of the structure from both spacecraft. Moreover, it can be applied 

where other techniques, such as tomography, are impossible. For example, when part of a CME 

projects inside the occulting disk, one can still obtain the requisite LOS’s by visual extension of 

the edge of the CME, provided the underlying structure is distinct and regular enough. (This was 

done for the two lower slices of the example in Figures 3 and 4.) The method is thus ideal for 

low resolution, low cadence, near-real-time applications typifying the STEREO beacon data 

stream. 



 Because it defines reliably the overall extent and shape of a CME structure, the geometric 

localization technique is seen as complementary to inferences gained from the other STEREO 

imagery methods mentioned in the Introduction. For example, geometric localization may prove 

beneficial as a preliminary stage in a tomographic inversion, since it provides constraints upon 

the spatial domain actually occupied by the CME. In addition, it should afford useful cross-

calibration of impressions of 3D CME structure gained through polarization analysis. 

Finally, the technique may be applied to specific parts of a CME (e.g., the leading-edge shell, 

prominence material in the CME cavity, etc.), so long as the substructure has distinct boundaries.  
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7. Figure Captions 

Fig 1. Schematic of the linked Sun (“HC”)- and Earth (“E”)-centered coordinate systems used in the analysis. 

Relative tilts of the solar and ecliptic polar axes are neglected. The lines-of-sight (LA1, etc.) are tangent to the 

respective edges of the CME, as seen by each spacecraft, and all four in each set lie in a common plane. 

Fig 2. Illustration of model CME configurations, for various values of the parameters p and ρ  in Eq. (1). 

Surfaces of constant ψ  are shown for several (p, ρ ) combinations, including [(3., 2.5), dotted]; [(1., 2.5), light 

solid]; [(1., 3.0), dark solid]; and [(5., 3.0), dashed]. For p = const, the shape is rotationally symmetric about 

the x-axis.  Solar disk is indicated at left. The density enhancement (or decrement) in the CME is defined in 

terms of ψ  and heliocentric distance. For example, the heavy solid line in the Figure can be taken to 

correspond to ψψψψouter in the text, and the thin solid line to ψψψψinner; by enhancing the density between these two 

surfaces, a compressive CME shell structure can be simulated. 

Fig 3. Synthetic white light images showing points (asterisks) tangent to the edges of the CME and lying in a 

common plane (indicated by the yellow line). The CME is centered 15° north and 15° west of the Sun-Earth 

line. The two views are from spacecraft in 1 AU orbit leading Earth by 35° (left) and lagging by 35° (right). 

Fig 4. Three views of an Earth-directed CME (green lattice) localized by five quadrilateral slices (yellow) 

according to the method described in the text. The radial extension of the structure, its inclined north-south 

elongation, and the direction of the centerline are all accurately captured by the analysis. 

Fig 5. An area-based measure of uncertainty in the geometric localization technique, as a function of 

spacecraft separation angle. Because the triangulation object is so distant from the spacecraft, this error 

estimate should be meaningful for CMEs lying within ~10 RS.  
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