
1

SGI UV (Predator)

User Guide

Air Force Research Laboratory (AFRL)

DoD Supercomputing Resource Center (DSRC)

2

Contents
1 Introduction .. 4

1.1 Document Scope & Assumptions .. 4

1.2 Policies to Review .. 4
1.3 Obtaining Accounts .. 4
1.4 Requesting Assistance .. 4

2 System Configuration .. 5
2.1 Processors ... 6

2.2 Memory .. 6
2.3 Operating System .. 6
2.4 File Systems .. 7

3 Accessing the System ... 7
3.1 Kerberos .. 7

3.2 Logging In .. 7
3.3 File Transfers ... 7

4 User Environment .. 8

4.1 User Directories ... 8
4.1.1 Home Directory ... 8

4.1.2 Work Directory .. 8

4.2 Shells ... 9

4.3 Environment Variables ... 9
4.3.1 Login Environment Variables .. 9

4.3.2 Batch-Only Environment Variables.. 11

4.4 Modules ... 12

4.5 Archive Usage ... 12
4.5.1 Archival Command Synopsis .. 12

5 Program Development ... 13

5.1 Programming Models ... 13
5.1.1 Message Passing Interface (MPI) ... 13

5.1.2 Shared Memory ... 15

5.1.3 Open Multi-Processing (OpenMP) .. 16

5.1.4 Hybrid MPI/OpenMP ... 17

5.2 Available Compilers ... 17
5.2.1 GCC Compiler Programming Environment 17

5.2.2 Intel Compiler Programming Environment 18

5.3 Libraries ... 18
5.3.1 Intel Math Kernel Libraries (Intel MKL) .. 18

5.3.2 Additional Math Libraries ... 18

5.4 Debuggers ... 19
5.4.1 gdb .. 19

5.4.2 TotalView .. 19

3

5.5 Code Profiling and Optimization .. 19
5.5.1 SGI perfcatch .. 19

5.5.2 Additional Profiling Tools ... 20

5.5.3 Performance Optimization Methods .. 20

6 Batch Scheduling ... 21
6.1 Scheduler ... 21
6.2 Queue Information ... 21

6.3 Interactive Logins ... 22
6.4 Interactive Batch Sessions ... 22
6.5 Batch Request Submission .. 23
6.6 Batch Resource Directives... 23
6.7 Sample Scripts ... 24

6.8 PBS Commands .. 26
6.9 Advance Reservations ... 26

7 Software Resources .. 26
7.1 Application Software .. 26

7.2 Useful Utilities .. 27
7.3 Sample Code Repository ... 27

8 Links to Vendor Documentation ... 27

8.1 SGI Links ... 27
8.2 Red Hat Links .. 27

8.3 GNU, Intel Links ... 27

4

1 Introduction

1.1 Document Scope & Assumptions

This document provides an overview and introduction to the use of the SGI UV
(Predator) located at the AFRL DSRC and a description of the specific computing
environment on Predator. The intent of this guide is to provide information to
enable the average user to perform computational tasks on the system. To
receive the most benefit from the information provided here, you should be
proficient in the following areas:

 Use of the LINUX operating system

 Use of an editor (e.g. vi or emacs)

 Remote usage of computer systems via network or modem access

 A selected programming language and its related tools and libraries

1.2 Policies to Review

All policies are discussed in the Policies and Procedures section on the AFRL
DSRC User Documentation page. All users running at the AFRL DSRC are
expected to know, understand, and follow the policies discussed. If you have any
questions about AFRL DSRC’s policies, please contact the CCAC.

1.3 Obtaining Accounts

Authorized DOD and Contractor personnel may request an account on Predator
through their Service Agency Approval Authority (S/AAA) and Principle
Investigator (PI). Your S/AAA and PI will assign you an HPMCP project that
allows you to have allocations on the HPC systems at the DSRC. As you go
through the process, you may want to refer to our step-by-step guide. More
information can be found through the HPCMP Portal to Information Environment
(pIE) or through the Consolidated Customer Assistance Center (CCAC).

1.4 Requesting Assistance

The Consolidated Customer Assistance Center (CCAC) is available to help users
with any problems, questions, or training requirements for our HPC systems.
Analysts are on duty Monday - Friday, 8:00 a.m. to 11:00 p.m. Eastern Time.

Web: http://centers.hpc.mil/
Email: help@ccac.hpc.mil
Phone: 1-877-CCAC-039 (1-877-222-2039) or 937-255-0679
Fax: 937-656-9538

http://www.afrl.hpc.mil/docs/policyUserGuide.html
http://centers.hpc.mil/users/index.html#accounts
https://ieapp.erdc.hpc.mil/
https://ieapp.erdc.hpc.mil/
http://centers.hpc.mil/users/index.html#accounts
http://centers.hpc.mil/
mailto:help@ccac.hpc.mil

5

2 System Configuration
Predator is an SGI UV System. The login and compute nodes populated with

2.7‑GHz Intel E5 Sandy Bridge 64‑bit, 8‑core processors. Predator uses a

dedicated Numalink v6 communications network for MPI messages and IO
traffic, a direct-attached XFS file system, and has 1004 compute cores that can
share memory with every other core in a cpuset.

Each compute node has two 8-core processors (16 cores) with its own Redhat
Enterprise Linux (RHEL) operating system and 32 GBytes of DDR3 memory, with
no user-accessible swap space. Predator has 2.7 PBytes (formatted) of disk
storage.

Predator's intended use is as a batch-scheduled HPC system and, as such, its
login nodes are not to be used for large computational (e.g. memory, IO, long
executions) work. All executions that require large amounts of system resources
must be sent to the compute nodes by batch job submission.

Node Configuration

 Login Nodes Compute Nodes

Total Nodes 1 1

Operating System Redhat Enterprise Linux
(RHEL)

Redhat Enterprise Linux
(RHEL)

Cores/Node 8 1016

Core Type Intel E5 Sandy Bridge Intel E5 Sandy Bridge

Core Speed 2.7 GHz 2.7 GHz

Memory/core 4 GBytes 4 GBytes

User Accessible
Memory/core

3.5 GBytes 3.5 GBytes

Memory Model Shared Shared

Interconnect Type Numalink v6 Numalink v6

File Systems

File System File System Type Formatted Capacity

/workspace XFS 88 TBytes

6

($WORKDIR file
system)

/home ($HOME file
system)

XFS 88 TBytes

Figure 1: Configuration and File System Types

2.1 Processors

Predators uses the same Intel Sandy Bridge E5-4650 64-bit processors on its
login and compute nodes and are clocked at 2.7 GHz and has a total of 1004
compute cores available for batch processing.

Each processor has 8x32 KBytes of L1 instruction cache, 8x32 KBytes of L1 data
cache, 8x256 KBytes of L2 cache, and access to a 20 MByte L3 cache that is
shared among all 8 cores of the processor.

2.2 Memory

Predator uses a shared memory model, with memory being shared among all the
cores across the cluster.

The login node contains 128 GBytes of main memory. All memory and cores on
the node are shared among all users who are logged in. Therefore, users should
not use more than 8 GBytes of memory at any one time.

Each compute core contains 3.5 GBytes of user accessible shared memory for a
cluster total of 3.5 TBytes of shared memory.

2.3 Operating System

Predator’s Operating system is SGI’s Performance Suite, which is a combination
of then Red Hat Enterprise Linux (RHEL) Operating System and SGI-specific
optimizations, utilities, and tools. More information on SGI Performance Suite can
be found at the following URL:

 http://www.sgi.com/products/software/sps.html

The compute nodes can provide access to dynamically shared objects, most
typical Linux commands and basic functionality, either by compiling your
application (in the case of shared objects) or by including the command in the
PBS batch submission script.

http://www.sgi.com/products/software/sps.html

7

2.4 File Systems

Predator has the following file systems available for user storage, however,
please note that these file systems are part of the same direct-attached XFS file
system. As such, they share the same available space of 88 TBytes.

$HOME

On the compute nodes, $HOME is a locally mounted XFS file system with a

formatted capacity of 88 TBytes. This file system is mounted to the interactive
node via NFS. All users have a home directory located on this file system which

can be referenced by the environment variable $HOME.

$WOKRDIR

On the compute nodes, $WORKDIR is a locally mounted XFS file system with a

formatted capacity of 88 TBytes. This file system is mounted to the interactive
node via NFS. All users have a home directory located on this file system which

can be referenced by the environment variable $WORKDIR.

3 Accessing the System

3.1 Kerberos

A Kerberos client kit must be installed on your desktop to enable Kerberos
authentication. Kerberos is a network authentication tool that provides secure
communication by using secret cryptographic keys. Only users with a valid
HPCMP Kerberos authentication can gain access to Predator. More information
about installing Kerberos clients on your desktop can be found at the CCAC
Support page .

3.2 Logging In

The system host name for the Predator cluster is predator.afrl.hpc.mil.

The IP address to this node is available upon request from CCAC.

The preferred login to Predator is ssh via the following command:

% ssh predator.afrl.hpc.mil

Kerberized telnet and rlogin are also allowed.

3.3 File Transfers

File transfers to DSRC systems must be performed using Kerberized versions of

the following tools: scp, ftp, sftp, and mpscp, except file transfers to the local

archive system.

http://centers.hpc.mil/users/index.html#kerberos
http://centers.hpc.mil/users/index.html#kerberos

8

4 User Environment

4.1 User Directories

4.1.1 Home Directory

Each user is allocated a home directory (the current working directory
immediately after login) of permanent storage that is backed up. The home

directory can be referenced locally with the $HOME environment variable from all

nodes in the system.

Due to the configuration of the direct-attached XFS file system that $HOME and

$WORKDIR share, there is currently no technical way to enforce a quota system

on the $HOME file system. Since $HOME and $WORKDIR share the same file

system, space consumed by one directory structure will affect the other.

4.1.2 Work Directory

Predator has one large file system ($WORKDIR) for the temporary storage of data

files needed for executing programs. You may access your personal working

directory by using the $WORKDIR environment variable, which is set for you upon

login. Your $WORKDIR directory has no disk quotas, and files stored there do not

affect your permanent file quota usage. Because of high usage, the $WORKDIR

file system tends to fill up frequently. Please review the Workspace Policy and
be mindful of your disk usage.

REMEMBER: $WORKDIR is a "scratch" file system and is not backed up. You

are responsible for managing files in your $WORKDIR by backing up files to the

MSAS and deleting unneeded files when your jobs end.

All of your jobs should execute from your $WORKDIR directory, not $HOME. While

not technically forbidden, jobs that are run from $HOME are subject to disk space

quotas and have a much greater chance of failing if problems occur with that

resource. Jobs that are run entirely from your $WORKDIR directory are more

likely to complete, even if all other resources are temporarily unavailable.

If you use $WORKDIR in your batch scripts, you must be careful to avoid having

one job accidentally contaminate the files of another job. One way to avoid this is

to use the $JOBDIR (or $WORK_DIR) directory which is unique to each job on the

system. The $JOBDIR directory is not subject to the Workspace Policy until the

job exits the workload management system.

REMEMBER: Since $HOME and $WORKDIR share the same file system, space

consumed by one directory structure will affect the other.

http://www.afrl.hpc.mil/docs/policyUserGuide.html#workspace
http://www.afrl.hpc.mil/docs/policyUserGuide.html#workspace

9

4.2 Shells

The following shells are available on Predator: csh, bash, ksh, tcsh, and sh.

To change your default shell, please modify your preferred shell entry in pIE
(https://ieapp.erdc.hpc.mil). Once changed in pIE, your preferred shell will
become your default shell on the spirit cluster within 48 hours.

4.3 Environment Variables

A number of environment variables are provided by default on all HPCMP high
performance computing (HPC) systems. We encourage you to use these
variables in your scripts where possible. Doing so will help to simplify your
scripts and reduce portability issues if you ever need to run those scripts on other
systems.

4.3.1 Login Environment Variables

The following environment variables are common to both the login and batch
environments:

Common Environment Variables

Option Purpose

$ARCHIVE_HOME Your directory on the archive server.

$ARCHIVE_HOST The host name of the archive server.

$BC_HOST The generic (not node specific) name of the
system.

$CC The currently selected C compiler. This
variable is automatically updated when a new
compiler environment is loaded.

$CENTER Your directory on the Center-Wide File
System (CWFS).

$CSI_HOME The path to the directory for the following list
of heavily used application packages:
ABAQUS, Accelrys, ANSYS, CFD++, Cobalt,
EnSight, Fluent, GASP, Gaussian, LS-DYNA,
MATLAB, and TotalView, formerly known as
the Consolidated Software Initiative (CSI) list.
Other application software may also be
installed here by our staff.

$CXX The currently selected C++ compiler. This

https://ieapp.erdc.hpc.mil/

10

variable is automatically updated when a new
compiler environment is loaded.

$DAAC_HOME The path to the directory containing the ezVIZ
visualization software.

$F77 The currently selected Fortran F77 compiler.
This variable is automatically updated when a
new compiler environment is loaded.

$F90 The currently selected Fortran 90 compiler.
This variable is automatically updated when a
new compiler environment is loaded.

$HOME Your home directory on the system.

$JAVA_HOME The path to the directory containing the
default installation of JAVA

$KRB5_HOME The directory containing the Kerberos
utilities.

$PET_HOME The path to the directory containing the tools
installed by the PET CE staff. The supported
software includes a variety of open-source
math libraries (see
BC policy Policy FY06-01) and open-source
performance and profiling tools (see BC
policy Policy FY07-02).

$PROJECTS_HOME A common directory where group-owned and
supported applications and codes may be
maintained for use by members of a group.
Any project may request a group directory
under $PROJECTS_HOME.

$SAMPLES_HOME The path to the Sample Code Repository.
This is a collection of sample scripts and
codes is provided and maintained by our staff
to help users learn to write their own scripts.
There are a number of ready-to-use scripts
for a variety of applications.

$WORKDIR Your work directory on the local temporary
file system (i.e., local high-speed disk).

http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=math
http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=performance
http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=performance
http://www.ccac.hpc.mil/consolidated/bc/policies.php?choice=repository

11

4.3.2 Batch-Only Environment Variables

In addition to the variables listed above, the following variables are automatically
set only in your batch environment. That is, your batch scripts will be able to see
them when they run. These variables are supplied for your convenience and are
intended for use inside your batch scripts.

Batch-Only Environment Variables

Option Purpose

$BC_CORES_PER_NODE The number of cores per node for the compute
node on which a job is running.

$BC_MEM_PER_NODE The approximate maximum user-accessible
memory per node (in integer MBytes) for the
compute node on which a job is running.

$BC_MPI_TASKS_ALLOC The number of MPI tasks allocated for a job.

$BC_NODE_ALLOC The number of nodes allocated for a job.

12

4.4 Modules

Software modules are a very convenient way to set needed environment
variables and include necessary directories in your path so that commands for
particular applications can be found. Predator uses "modules" to initialize your
environment with system commands and libraries and compiler suites,

A number of modules are loaded automatically as soon as you log in. To see the

modules which are currently loaded, run "module list". To see the entire list

of available modules, run "module avail". You can modify the configuration of

your environment by loading and unloading modules.

4.5 Archive Usage

All of our HPC systems share an on-line Mass Storage Archival system (MSAS)
that currently has more than 43 TBytes of Tier 1 archival storage (disk cache)
and 6 PBytes of Tier 2 high speed archival storage utilizing a robotic tape library.
Every user is given an account on the MSAS.

Kerberized login and ftp are allowed into the MSAS system. Locally developed
utilities may be used to transfer files to and from the MSAS as well as to create
and delete directories, rename files, and list directory contents. For convenience,

the environment variable $ARCHIVE_HOME can be used to reference your MSAS

archive directory when using archive commands. The command getarchome

can be used to display the value of $ARCHIVE_HOME for any user.

4.5.1 Archival Command Synopsis

A synopsis of the main archival utilities is listed below. For information on

additional capabilities, see the Archive User’s Guide or read the on‑line man

pages that are available on each system. These commands are non-Kerberized
and can be used in batch submission scripts if desired.

Copy one or more files from the MSAS:

List files and directory contents on the MSAS:

Create directories on the MSAS:

archive get [-C path] [-s] file1 [file2…]

archive ls [lsopts] [file/dir ...]

http://www.afrl.hpc.mil/docs/archiveUserGuide.html

13

Copy one or more files to the MSAS:

5 Program Development

5.1 Programming Models

Predator supports three base programming models: Message Passing Interface

(MPI), Shared‑Memory (SMP, SHMEM), and Open Multi‑Processing (OpenMP).

A Hybrid MPI/OpenMP programming model is also supported. MPI and SHMEM

are examples of the message- or data‑passing models, while OpenMP only uses

shared memory on a node by spawning threads.

5.1.1 Message Passing Interface (MPI)

Predator utilized SGI’s Message Passing Toolkit (MPT) by default, but also has
Intel’s Message Passing Interface (IntelMPI) available for those that require it.

Both MPI implementations support the MPI 2.2 standard, as documented by the
MPI Forum.

MPI establishes a practical, portable, efficient, and flexible standard for message
passing that makes use of the most attractive features of a number of existing
message-passing systems, rather than selecting one of them and adopting it as

the standard. See "man mpi" for additional information.

A copy of the MPI 2.2 Standard, in PDF format, can be found at the following
URL:

 http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

When creating an MPI program on Predator, ensure that the following actions are
taken:

 Make sure the Message Passing Toolkit (module mpt or module

intelmpi) is loaded.

To check this, run the "module list" command. If the mpt or intelmpi

module is not listed, use the command, "module load mpt" or "module

load intelmpi".

archive mkdir [-C path] [-m mode] [-p] [-s] dir1

[dir2 ...]

archive put [-C path] [-D] [-s] file1 [file ...]

http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

14

 Make sure the source code includes one of the following lines :

INCLUDE "mpif.h" //for Fortran, or

#include <mpi.h> //for C/C++

To compile an MPI program, use the following examples:

To run an MPI program within a batch script, use the following command:

The mpiexec_mpt command launches executables across a set of compute

cores allocated to your job. When each member of the parallel application has

exited, mpiexec_mpt exits.

A common concern for MPI users is the need for more memory for each process.
By default, one MPI process is started on each core of your cpu allocation. This
means that on Predator, the available memory on the node is split between the
total number of cores you request. To allow an individual process to use more of
the node's memory, you need to start fewer processes than your total core
allocation. To accomplish this, the user must request more cores from PBS, but
only run on a certain number of them. For example, the following select
statement requests 16 cores, but only uses 8 of those cores for MPI processes:

To tell the system to only start your job across those 8 cores, the following

mpiexec_mpt command can be used:

For more information about mpiexec_mpt, type “man mpiexec_mpt”.

mpif90 -o mpi_program mpi_program.f //for Fortran

mpicc -o mpi_program mpi_program.c //for C

mpicxx –o mpi_program mpi_program.c //for C++

mpiexec_mpt –np ${BC_NODE_ALLOC] ./mpi_program

[user_arguments]

mpiexec_mpt –np ${BC_NODE_ALLOC} ./mpi_program [user_arguments]

#PBS –l select=1:ncpus=16:mpiprocs=8

15

5.1.2 Shared Memory

These logically shared, distributed-memory access routines provide
high‑ performance, high‑ bandwidth communication for use in highly parallelized
scalable programs. The SHARED MEMORY data‑ passing library routines are
similar to the MPI library routines: they pass data between cooperating parallel
processes. The SHMEM data‑ passing routines can be used in programs that
perform computations in separate address spaces and that explicitly pass data to
and from different processes in the program.

The SHMEM routines minimize the overhead associated with data‑ passing
requests, maximize bandwidth, and minimize data latency. Data latency is the
length of time between a process initiating a transfer of data and that data
becoming available for use at its destination.

SHMEM routines support remote data transfer through put operations that
transfer data to a different process and get operations that transfer data from a
different process. Other supported operations are work‑ shared broadcast and
reduction, barrier synchronization, and atomic memory updates. An atomic
memory operation is an atomic read and update operation, such as a fetch and
increment, on a remote or local data object. The value read is guaranteed to be

the value of the data object just prior to the update. See "man intro_shmem"

for details on the SHMEM library.

When creating a SHMEM program on Predator, ensure that the following actions
are taken:

 Make sure the Message Passing Toolkit (module mpt) is loaded.

To check this, run the "module list" command. If the mpt module is

not listed, use the command, "module load mpt" to load it.

 The source code includes one of the following lines:

INCLUDE 'mpp/shmem.fh' //for Fortran, or

#include <mpp/shmem.h> //for C

 The compile command includes an option to reference the SHMEM
library.

To compile a SHMEM program, use the following examples:

ifort -o shmem_program shmem_program.f90 –lsma -lmpi //for Fortran

icc -o shmem_program shmem_program.c –lsma -lmpi //for C

ipcp -o shmem_program shmem_program.c –lsma –lmpi++ //for C++

16

The program can then be launched using the mpiexec_mpt command as

follows:

mpiexec_mpt -np N ./shmem_program [user_arguments]

where N is the number of processes being started, with each process utilizing

one core. The mpiexec_mpt command launches executables across a set of

CNL compute nodes. When each member of the parallel application has exited,

mpiexec_mpt exits. For more information about mpiexec_mpt, type “man

mpiexec_mpt”.

5.1.3 Open Multi-Processing (OpenMP)

OpenMP is an application programming interface (API) that supports multi-
platform shared memory multiprocessing programming in C, C++ and Fortran. It
consists of a set of compiler directives, library routines, and environment
variables that influence run-time behavior. OpenMP is a portable, scalable model
that gives programmers a simple and flexible interface for developing parallel
applications.

When creating an OpenMP program on Predator, take the following actions:

 If using OpenMP functions (for example, omp_get_wtime), ensure that

the source code includes the line, “USE omp_lib”

Or, includes one of the following:

INCLUDE 'omp.h' //for Fortran, or

#include <omp.h> //for C

 The compile command includes an option to reference the OpenMP
library.

To compile an OpenMP program, use the following examples:

For C codes:

For Fortran codes:

ifort –openmp -o OpenMP_program OpenMP_program.f //Intel

gfortran -fopenmp -o OpenMP_program -fopenmp OpenMP_program.f //GNU

icc –openmp -o OpenMP_program OpenMP_program.c //Intel

cc -fopenmp -o OpenMP_program OpenMP_program.c //GNU

17

To run an OpenMP program within a batch script, you also need to set the

$OMP_NUM_THREADS environment variable to the number of threads in the team.

For example:

In the example above, the application starts OpenMP_program on 16 threads;
one thread per core.

5.1.4 Hybrid MPI/OpenMP

An application built with the hybrid model of parallel programming can run on
Predator using both OpenMP and Message Passing Interface (MPI).

When creating a hybrid (MPI/OpenMP) program on Predator, follow the
instructions in the MPI and OpenMP sections above for creating your program.
Then use the compilation instructions for OpenMP.

To run a hybrid program within a batch script, set $OMP_NUM_THREADS equal to

the number of threads in the team. Then launch your program using

mpiexec_mpt as follows:

Where N is the number of MPI tasks.

5.2 Available Compilers

The following compiler suites are available on Predator:

 GCC compiler programming environment

 Intel compiler programming environment

5.2.1 GCC Compiler Programming Environment

The GCC Compiler Programming Environment can be accessed by loading the
module *gnu-compilers/[version level]*.

setenv OMP_NUM_THREADS 16

omplace ./OpenMP_program [user_arguments]

setenv OMP_NUM_THREADS 16

mpiexec_mpt -np N omplace ./mpi_program [user_arguments]

module load gnu-compilers/[version level]

18

5.2.2 Intel Compiler Programming Environment

The Intel Compiler Programming Environment can be accessed by loading
the module *intel-compilers/[version level]*

5.3 Libraries

5.3.1 Intel Math Kernel Libraries (Intel MKL)

Predator provides the Intel Math Kernel Libraries (Intel MKL), a set of numerical
routines tuned specifically for Intel platform processors. The routines, which are
available via both FORTRAN and C interfaces, include:

 Basic Linear Algebra Subroutines (BLAS) - Levels 1, 2, and 3

 Linear Algebra Package (LAPACK)

 Fast Fourier Transform (FFT) routines for single-precision, double-
precision, single-precision complex, and double-precision complex data
types

 Random Number Generator

 Fast Math and Fast Vector Library

Linking to the Intel Math Kernel Libraries can be complex and is beyond the
scope of this introductory guide. Documentation explaining the full feature set
along with instructions for linking can be found at the following URLs:

 http://software.intel.com/en-us/articles/intel-math-kernel-library-
documentation

Intel also makes a link advisor available to assist users with selecting proper
linker and compiler options:

 http://software.intel.com/sites/products/mkl/

5.3.2 Additional Math Libraries

There is also an extensive set of Math libraries available in the

$PET_HOME/MATH directory on Predator. Information about these libraries may

be found on the Baseline Configuration Web site at BC policy FY06-01.

module load intel-compilers/[version level]

http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://software.intel.com/en-us/articles/intel-math-kernel-library-documentation
http://software.intel.com/sites/products/mkl/
http://centers.hpc.mil/consolidated/bc/policies.php?choice=math

19

5.4 Debuggers

5.4.1 gdb

The GNU Project Debugger (gdb) is a source level debugger that can be invoked
either with a program for execution or a running process id. To launch your

program under gdb for debugging, use:

To attach gdb to a program that is already executing on this node, use the
following command:

For more information, the GDB manual can be found at
http://www.gnu.org/software/gdb/ .

5.5 Code Profiling and Optimization

Profiling is the process of analyzing the execution flow and characteristics of your
program to identify sections of code that are likely candidates for optimization,
which increases the performance of a program by modifying certain aspects for
increased efficiency.

5.5.1 SGI perfcatch

SGI perfcatch will run an MPI or SHMEM program with a wrapper profiling library
that prints communication and synchronization call profiling information to a
summary file upon program completion.

To us perfcatch, insert the perfcatch command in front of the executable

name:

Where N is the number of MPI tasks.

Man pages are available for perfcatch. Additional information can be found in

Chapter 9 of SGI’s Message Passing Toolkit User Guide.

Additional profiling options are available. See "man perfcatch " for additional

instrumentation options.

gdb a.out pid

gdb a.out corefile

mpiexec_mpt –np N perfcatch ./mpi_program [user_arguments]

http://www.gnu.org/software/gdb/
http://techpubs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?coll=linux&db=bks&srch=message%20passing%20toolkit%20user%20guide&fname=/SGI_EndUser/MPT_UG/sgi_html/ch09.html

20

5.5.2 Additional Profiling Tools

There is also a set of profiling tools available in the $PET_HOME/pkgs directory

on Predator. Information about these tools may be found on the Baseline
Configuration Web site at BC policy FY07-02.

5.5.3 Performance Optimization Methods

Optimization generally increases compilation time and executable size, and may
make debugging difficult. However, it usually produces code that runs
significantly faster. The optimizations that you can use will vary depending on
your code and the system on which you are running.

Note: Before considering optimization, you should always ensure that your code
runs correctly and produces valid output.

In general, there are four main categories of optimization:

 Global Optimization

 Loop Optimization

 Inter-Procedural Analysis and Optimization(IPA)

 Function Inlining

5.5.3.1 Global Optimization

A technique that looks at the program as a whole and may perform any of the
following actions:

 Performed on code over all its basic blocks

 Performs control-flow and data-flow analysis for an entire program

 Detects all loops, including those formed by IF and GOTOs statements
and performs general optimization.

 Constant propagation

 Copy propagation

 Dead store elimination

 Global register allocation

 Invariant code motion

 Induction variable elimination

5.5.3.2 Loop Optimization

A technique that focuses on loops (for, while, etc.,) in your code and looks for
ways to reduce loop iterations or parallelize the loop operations. The following
types of actions may be performed:

http://centers.hpc.mil/consolidated/bc/policies.php?choice=performance

21

 Vectorization – rewrites loops to improve memory access performance.
Some compilers may also support automatic loop vectorization by
converting loops to utilize low-level hardware instructions and registers if
they meet certain criteria.

 Loop unrolling – (also known as "unwinding") replicates the body of loops
to reduce loop branching overhead and provide better opportunities for local
optimization.

 Parallelization – divides loop operations over multiple processors where
possible.

5.5.3.3 Inter-Procedural Analysis and Optimization (IPA)

A technique that allows the use of information across function call boundaries to
perform optimizations that would otherwise be unavailable.

5.5.3.4 Function Inlining

Function Inlining is a technique that seeks to reduce function call and return
overhead. It is:

 Used with functions that are called numerous times from relatively few
locations.

 Allows a function call to be replaced by a copy of the body of that function.

 May create opportunities for other types of optimization

 May not be beneficial.

 Improper use of this form of optimization may increase code size and actually
result in less efficient code.

6 Batch Scheduling

6.1 Scheduler

The Portable Batch System (PBS) is currently running on Predator. It schedules
jobs and manages resources and job queues, and can be accessed through the
interactive batch environment or by submitting a batch request. PBS is able to
manage both single and multiprocessor jobs.

6.2 Queue Information

The following table describes the PBS queues available on Predator:

Priority Queue Job Max Max Comments

22

Name Class Wall
Clock
Time

Cores
Per Job

Highest urgent Urgent 168
Hours

508 Jobs belonging to DoD
HPCMP Urgent Projects.

debug Debug 1 Hour 16 User testing;
In the debug queue, you
may use 736 cores for 1
hour or 1472 cores for ½
hour.

½ Hour 32

high High 168
Hours

508 Jobs belonging to DoD
HPCMP High Priority
Projects.

challenge Challenge 168
Hours

508 Jobs belonging to DoD
HPCMP Challenge
Projects.

standard Standard 168
Hours

508 Standard jobs

transfer N/A 12
Hours

1 Data transfer for user
jobs

Lowest background Background 120
Hours

32 Unrestricted Access – no
allocation charge

Figure 9: Queue Information

6.3 Interactive Logins

When you log in to Predator, you will be running in an interactive shell on a login
node. The login nodes provide login access for Predator and support such
activities as compiling, editing, and general interactive use by all users. Please
note the AFRL DSRC Use Policy. The preferred method to run resource
intensive executions is to use an interactive batch session.

6.4 Interactive Batch Sessions

To use the interactive batch environment, you must first acquire an interactive

batch shell. This is done by executing a qsub command with the "-I" option from

within the interactive environment. For example,

qsub -l ncpus=# -q queue_name -l walltime=HHH:MM:SS -I

Your batch shell request will be placed in the desired queue and scheduled for
execution. This may take a few minutes because of the system load. Once your
shell starts, you can run or debug interactive applications, post-process data, etc.
This session will also be shared with other users.

http://www.afrl.hpc.mil/docs/policyUserGuide.html

23

At this point, you can launch parallel applications onto your assigned set of
compute nodes by using the m command. You can also run interactive
commands or scripts on this service node, but you should limit your memory and
cpu usage. Use the Cluster Compatibility Mode for executing memory- and
process-intensive commands such as tar and gzip/gunzip and certain serial
applications directly on a dedicated compute node.

6.5 Batch Request Submission

PBS batch jobs are submitted via the qsub command. The format of this

command is:

qsub [options] batch_script_file

qsub options may be specified on the command line or imbedded in the batch

script file by lines beginning with "#PBS".

For a more thorough discussion of PBS Batch Submission, see the PBS User
Guide.

6.6 Batch Resource Directives

Batch resource directives allow you to specify to PBS how your batch jobs should
be run, and what resources your job requires. Although PBS has many
directives, you only need to know a few to run most jobs.

The basic syntax of PBS directives is as follows:

#PBS option[[=]value]

where some options may require values to be included. For example, to set the
number of cores for your job, you might specify the following:

#PBS –l ncpus=8

The following directives are required for all jobs:

Option Value Description

-A project_ID Name of the project

-q queue_name Name of the queue

-l ncpus=# Number of cores

-l walltime=HH:MM:SS Maximum wall time

Figure 10: Required Directives

A more complete listing of batch Resource Directives is available in the PBS
User Guide.

http://www.afrl.hpc.mil/docs/pbsUserGuide.html
http://www.afrl.hpc.mil/docs/pbsUserGuide.html
http://www.afrl.hpc.mil/docs/pbsUserGuide.html
http://www.afrl.hpc.mil/docs/pbsUserGuide.html

24

6.7 Sample Scripts

While it is possible to include all PBS directives at the qsub command-line, the

preferred method is to embed the PBS directives within the batch request script

using "#PBS". The following is a sample batch script:

25

#!/bin/csh

Declare the project under which this job run will

be charged. (required)

Users can find eligible projects by typing "show_usage"

on the command line.

#PBS -A project_ID

Request 1 hour of wallclock time for execution

(required).

#PBS -l walltime=01:00:00

Request 4 cores (required).

#PBS -l ncpus=4

Submit job to debug queue (required).

#PBS -q debug

Declare a jobname.

#PBS -N myjob

Send standard output (stdout) and error (stderr) to the

same file.

#PBS -j oe

Change to the $JOBDIR directory.

cd $JOBDIR

Check MSAS availability. If not available, then wait.

archive stat -s

Retrieve executable program from the MSAS.

archive get -C $ARCHIVE_HOME/project_name program.exe

Retrieve input data file from the MSAS.

archive get -C $ARCHIVE_HOME/project_name/input data.in

Execute a parallel program.

mpiexec_mpt -np 8 ./my_program < data.in > projA-7.out

Check MSAS availability. If not available, then wait.

archive stat -s

Create a new subdirectory on the MSAS.

archive mkdir -C $ARCHIVE_HOME/project_name output7

Transfer output file back to the MSAS.

archive put -C $ARCHIVE_HOME/project_name/output7 projA-

7.out

Clean up unneeded files from working storage.

cd $WORKDIR

rm -r projA-7

26

Additional examples are available in the PBS User Guide and in the Sample

Code Repository ($SAMPLES_HOME) on Predator.

6.8 PBS Commands

The following commands provide the basic functionality for using the PBS batch
system:

qsub: Used to submit jobs for batch processing.

qsub […qsub options…] my_job_script

qstat: Used to check the status of submitted jobs.

qstat PBS_JOBID #check one job

qstat –u my_user_name #check all of user’s jobs

qdel: Used to kill queued or running jobs.

qdel PBS_JOBID

A more complete list of PBS commands is available in the PBS User Guide.

6.9 Advance Reservations

An Advance Reservation Service (ARS) is available on Predator for reserving
cores for use, starting at a specific date/time, and lasting for a specific number of
hours. The ARS is accessible via most modern web browsers at
https://reservation.hpc.mil/ . Authenticated access is required. An ARS User’s
Guide is available online once you have logged in.

7 Software Resources

7.1 Application Software

A complete listing with installed versions can be found on our software page. The
general rule for all COTS software packages is that the two latest versions will be
maintained on our systems. For convenience, modules are also available for
most COTS software packages.

http://www.afrl.hpc.mil/docs/pbsUserGuide.html
http://www.afrl.hpc.mil/docs/pbsUserGuide.html
https://reservation.hpc.mil/
http://www.afrl.hpc.mil/software/index.html

27

7.2 Useful Utilities

The following utilities are available on Predator:

Utility Description

archive Perform basic file-handling operations on the MSAS

mpscp High-performance remote file copy

qpeek
Display spooled stdout and stderr for an

executing batch job.

qview Display information about batch jobs and queues

show_queues Report current batch queue status, usage, and limits

show_storage Display MSAS allocation and usage by subproject

show_usage Display CPU allocation and usage by subproject

fromdos.sh
Strip DOS end-of-record control characters from a
text file

Figure 11: Local Utilities

7.3 Sample Code Repository

The Sample Code Repository is a directory that contains examples for COTS
batch scripts, building and using serial and parallel programs, data management,
and accessing and using serial and parallel math libraries. The

$SAMPLES_HOME environment variable contains the path to this area, and is

automatically defined in your login environment.

8 Links to Vendor Documentation

8.1 SGI Links

SGI Documentation Home: http://techpubs.sgi.com/
SGI Message Passing Toolkit User's Guide

8.2 Red Hat Links

Red Hat Home: http://www.redhat.com/

8.3 GNU, Intel Links

GNU Home: http://www.gnu.org
GNU Compiler: http://gcc.gnu.org
Intel Compiler: http://software.intel.com/en-us/intel-compilers

http://techpubs.sgi.com/
http://techpubs.sgi.com/
http://techpubs.sgi.com/
http://docs.sgi.com/library/tpl/cgi-bin/browse.cgi?coll=linux&db=bks&cmd=toc&pth=/SGI_EndUser/MPT_UG
http://www.redhat.com/
http://www.gnu.org/
http://gcc.gnu.org/
http://software.intel.com/en-us/intel-compilers

