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1. Optimizing Code and Core Affinity for the Cray XE6 Interlagos
Architecture

The techniques listed below can be used to optimize the performance of your code 
on garnet and copper, which have Interlagos processors.  Optimizing for Interlagos 
may not require rewriting code.  For example, core affinity, the manner in which 
processes are assigned to cores, can be optimized quickly and simply, from the 
aprun command line.  Some code optimization can be achieved simply by changing 
compiler flags.  Even greater performance improvement may come from altering the 
code.  All optimization techniques below can be applied better after gaining a basic 
understanding of the organization of cores, cache, and memory in the Interlagos 
architecture, described in the next section. 

1.1. Optimizing Core Affinity 

Optimizing core affinity, the assignment of processes and threads to cores, requires 
little or no rewriting of code.  The following methods may be used: 

• single stream/dual stream mode
• more memory per process
• core specialization

1.2. Optimizing Code 

Code optimization may require some code rewriting (or it may simply require 
changing compiler flags).  Code optimization can improve code performance in ways 
not possible by simply optimizing core affinity.  The following methods may be used: 

• loop unrolling
o cache blocking
o vectorized math operations

• fused multiply add
• "first touch" dynamic memory allocation
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2. Interlagos Architecture

To achieve optimal performance from your code, it is helpful to understand the 
basics of the Interlagos architecture.  Extensive, detailed knowledge is not required. 
By understanding how cores are grouped and connected, and the number of cores 
that share certain resources, even novice users can apply some simple yet powerful 
optimization techniques, which are discussed later.   

2.1. Compute Node Layout 

Each compute node consists of 32 cores organized into pairs, called "compute units."   
The two integer cores in a compute unit each have their own L1 cache, but share an 
L2 cache and a floating point unit (FPU).  The diagram below illustrates a single 
compute unit (core pair). 

Compute Unit 

Compute units are grouped into NUMAs (non-uniform memory access).  Each NUMA 
contains 4 compute units (a total of 8 cores), an L3 cache, and 16 GBytes of memory.  
There are four NUMAs (two processors) on each compute node as shown in the top 
section of the diagram below, and a total of 64 GBytes of memory.  The four NUMAs 
on a node are connected to each other by HyperTransport links, which allow a core 
on one NUMA to access the memory on the other NUMAs.  Thus, every core on a 
compute node can access all 64 GBytes of memory on the node. 
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Compute Node 
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2.2. Memory Hierarchy 

The memory hierarchy balances the competing needs for fast data access and large 
data capacity.  The memory hierarchy is made up of levels of increasing size and 
increasing access time, as shown in the lower half of the diagram below and the 
table on the following page.  A core's L1 cache has the fastest access time, followed 
by the L2 cache of a core pair, then the L3 cache of a NUMA (8 cores), then the 
NUMA's memory, then processor's memory, and finally the node's memory.  A core 
can most quickly access memory on its own NUMA (8 cores).  Accessing memory on 
a neighboring NUMA requires going through HyperTransport links, which is slower.  
Memory on a core's own processor can be accessed more quickly than memory on 
the other processor.  The two NUMAs on a processor (16 cores) share memory 
address space.   Accessing memory on another node requires using the Gemini 
network and is much slower than accessing memory on a core's own node.  
Accessing the disk is extremely slow.  The table below shows that access time for 
cache, memory, another node, and disk differs by several orders of magnitude. 

Memory Hierarchy 
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Memory Hierarchy, Size, and Access Time 

Memory Hierarchy Level Number 
of_Cores Size Access Time 

   L1 cache 1 16 KBytes   4 CPU cycles 
   L2 cache 2 2 MBytes 20 CPU cycles 
   L3 cache 8    6 MBytes * 45 CPU cycles 
   Memory (own NUMA) 8 16 GBytes X hundred CPU cycles 
   Memory (other NUMA) 16 32 GBytes 2X hundred CPU cycles 
   Memory (other processor) 32   62 GBytes ** 3X hundred CPU cycles 
   MPI Message  
   to Other Node 

--- --- ~3000 CPU cycles 
or ~1.5 µs 

   Disk --- 5 PBytes millions of CPU cycles 
or several ms 

(*) The L3 cache size is 8 MBytes, but 2 MBytes are reserved for cache coherency, 
thus only 6 MBytes are accessible to the user. 

(**) A compute node has 64 GBytes of memory, but only 62 GBytes are accessible to 
the user. 

2.2.1. Cache Utilization and Performance 

The data needed for computation are either read from files on disk or created in 
memory.  Computation is performed on data in a core's L1 cache. Therefore, data 
from lower levels of the memory hierarchy (disk, memory) must move up through 
the hierarchy to the L1 cache before it can be used in computation.  The L1 cache is 
very small, thus as new data are brought in and computation results are generated, 
the L1 cache fills up.  To make room in the L1 cache, older data are overwritten, and 
computation results are moved out of L1 cache and down the hierarchy into 
memory.  Frequently moving data to and from the lower, slower levels of the 
memory hierarchy degrades performance because the core sits idle waiting for 
needed data to arrive in the L1 cache.  Therefore it's good to maximize cache hits 
(needed data found in cache) and minimize cache misses (needed data not found in 
cache).  Optimal cache utilization has a high cache hit/miss ratio.  Techniques for 
improving cache utilization are discussed in a later section.   
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3. Optimizing Core Affinity

Core affinity is the way processes are assigned to cores.  Core affinity is controlled 
by various aprun command options, shown in the table below.  Changing your core
affinity does not require rewriting your code.  However, some core affinity 
optimization techniques make more resources available to each process.  For 
greater performance improvement, you may wish to rewrite your code to take 
advantage of this. 

aprun option purpose 
-n procs Total number of processes 
-N procs Number of processes per node 

For hybrid codes, number of MPI processes per node 
-S procs Number of processes per NUMA 
-d cores Number of cores per process 

For hybrid codes, number of threads per process 
-j 1 Run in single stream mode 

(The default is dual stream) 
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3.1. Single Stream Mode/Dual Stream Mode 

Interlagos cores are arranged into compute units comprised of an integer core pair, 
a shared floating point unit (FPU), and a shared L2 cache.  Understanding when to 
run code on both cores in a pair (dual stream mode) and when to run on just one 
core in a pair (single stream mode) may improve performance.  In single stream 
mode, one core per pair remains idle, freeing some resources for exclusive use by 
the other active core.  The possible benefits of single stream mode are listed below. 

• no contention for shared floating point unit (FPU)
• entire L2 cache available to one core
• contention for L3 cache may be halved
• twice as much memory available to each core
• greater memory bandwidth
• less contention for Gemini interconnect to remote nodes

Keep in mind that some codes may run better in dual stream mode than single 
stream.  For example, if a code's performance is not bound by FPU contention, 
reducing FPU contention will probably not significantly improve performance.   
If performance is memory bound, improving cache utilization won't help much. 
There are possible advantages to running in dual stream mode. 

• shared memory codes, more threads can access memory on the same node
• communication between processes/threads is faster on the same node than

between separate nodes
• if cores used per node is maximized, less nodes needed to run same number

of processes

By default, code is compiled for and run in dual stream mode; no special options are 
needed.  To compile code for single stream mode, use the interlagos-cu compute 
unit compile target.  To run code in single stream mode, use the aprun –j 1
option to specify only one core per compute unit should be used.  

How do you determine whether your code can benefit from running in single stream 
mode?  You can quickly and easily run small, representative test cases in both 
modes.  Optionally, you can use profiling tools to find bottlenecks in performance.  
Codes whose performance is bound by floating point computations, hampered by L2 
cache misses, or excessive contention for the interconnect may benefit from running 
in single stream mode. 
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3.1.1. Compiling Code for Single/Dual Stream Mode 

Cray provides two compile targets for codes built for compute nodes.  The default 
interlagos target is meant for codes running in dual stream mode.  The default 
target will also work for codes running in single stream mode.  Recompiling code for 
single stream mode is optional, but may improve performance.  Use the default 
interlagos target for dual stream mode.  Use either interlagos or interlagos-cu for 
single stream mode.  Do not run in dual stream mode if your code was built for the 
interlagos-cu target. 

The interlagos-cu target is optimized for codes running in single stream mode.   
The difference between the two targets is primarily the way in which the compiler 
uses the shared memory subsystem hardware resources. To change from the default 
interlagos target to interlagos-cu, use the –h cpu=interlagos-cu compiler
flag, or swap modules as shown below. 

module swap craype-interlagos craype-interlagos-cu 

Both interlagos and interlagos-cu are Cray compiler targets, so be sure the Cray 
programming environment module PrgEnv-cray is loaded.
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3.1.2. Running Code in Single/Dual Stream Mode 
 
The  –j aprun option specifies whether code runs in single or dual stream mode.  
Note that –j is only available on garnet because it has the newer CLE 4.1 operating 
system, while copper has the older CLE 4.0.  The default dual stream mode uses both 
cores in a compute unit, while single stream mode uses one core and leaves the 
other idle, increasing resources available to the active core.  The value of –j is the 
number of cores in a compute unit, or core pair, to use for user jobs.  Refer to the 
compute unit diagram in the architecture section, earlier in this guide. 
 
 -j 0 (default) use all cores in a compute unit 
 -j 1 use one core in a compute unit 
 -j N use N cores in a compute unit 

N can be at most 2, thus –j 0 is equivalent to –j 2 
 
When running codes on copper, know whether your code is nonthreaded, e.g., pure 
MPI, or threaded, e.g. OpenMP or hybrid MPI/OpenMP.  On copper, the –j option is 
unavailable. Thus the –d 2 option is used to run code in single stream mode, but 
this only works for nonthreaded codes.  Threaded codes running in single stream 
mode on copper must have cores manually assigned with –cc core_list. 
 
% single stream mode (garnet, CLE 4.1) 
aprun –j 1 
 
% single stream mode (copper, CLE 4.0 non-threaded) 
aprun –d 2 
 
% single stream mode (copper, CLE 4.0 threaded) 
aprun –cc core_list 
 
If your code runs on garnet and is threaded or has core affinity other than one 
process per core, it is important to understand the distinction between –d and the 
new –j option.  The –j option controls the number of cores per compute unit (core 
pair) to be used.  The –d option is the number of cores assigned to each process.  
The –j option is applied first, and the –d option operates on the cores left after  
the –j option has been applied.  Other core affinity options, such as –N, processes 
per node, and –S, processes per NUMA, are also applied after –j. 
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The examples below show core affinity in dual stream mode and single stream mode 
for a 16-process MPI job.  Recall that in dual stream mode, the 8 active cores on a 
NUMA share the L3 cache, and each core pair shares an L2 cache and floating point 
unit (FPU).  In single stream mode, 4 active cores per NUMA get more L3 cache, and 
each core gets the whole L2 cache and exclusive use of the FPU. 
 
% dual stream mode 
aprun –n 16 
 

 
% single stream mode (garnet, CLE 4.1) 
aprun –n 16 –j 1 
 
% single stream mode (copper, CLE 4.0) 
aprun –n 16 –d 2 
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The following examples illustrate the effect of using the single stream –j1 option 
with other options that affect core affinity, such as –d depth,  
-S cores_per_numa, and –N cores_per_node.  Any examples with the –j 
option are for garnet only, not copper. 
 
 
When –j1 and –d are both used, -d skips over twice as many cores, since –j1 
removes odd numbered cores from the available core set. 
 
aprun –n 4 –d 4 
 

 
In the example above, NUMAs 0 and 1 had two active cores sharing an L3 cache.  
When each NUMA has only one active core, that core gets the entire L3 cache for its 
own use. 
 
aprun –n 4 –d 4 –j 1    (garnet only) 
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When using –S procs_per_numa, remember that the single stream –j1 option 
changes process spacing within a NUMA.  In single stream mode, 4 processes at 
most can be placed on a NUMA, not 8. 
 
 
aprun –n 6 –S 3 
 

 
aprun –n 6 –S 3 –j 1    (garnet only) 
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When using –N procs_per_node, keep in mind that in single stream mode, only 
16 of the 32 cores on a node are available. 
 
This example runs 100 processes, placing 20 processes per node, and using 5 nodes.  
It will work in dual stream mode because 20 cores is less than the maximum of  
32 cores per node.   In single stream mode, half the cores are idle and 
procs_per_node must be 16 or less. 
 
% 5 nodes used, 20 processes per node, dual stream 
aprun –n 100 –N 20 
 
% INCORRECT! (garnet only) 
% Only 16 cores available per node in single stream mode 
aprun –n 100 –N 20 –j 1     
 
% Fixed! (garnet only) 
% Now uses 10 nodes, 10 processes per node 
aprun –n 100 –N 10 –j 1      
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3.1.3. Single Stream Hybrid/Threaded Codes 
  
Single stream threaded codes and single stream hybrid codes require different 
aprun options on copper than on garnet, because of garnet running the newer CLE 
4.1 operating system, and copper running CLE 4.0. 
 

Copper Only Examples, Single Stream Threaded/Hybrid Codes 
 
When running single stream threaded codes, you must manually map threads to 
cores with the  –cc cpu_list option and specify the number of MPI processes 
per node with the aprun –N option if using MPI.  Furthermore, you must set the 
OpenMP environment variable $OMP_NUM_THREADS to the number of threads per 
MPI process.   
 
In the single stream hybrid MPI/OpenMP examples below, we only use the even-
numbered cores to ensure that one core in each core pair remains idle.  That means 
16 out of 32 cores per node will be used.  Divide 16 by the number of MPI processes 
to determine the max number of threads per MPI process. 
 
% single stream mode, hybrid MPI/OpenMP codes        (copper) 
% 8 MPI processes, 2 OpenMP threads per MPI process 
export $OMP_NUM_THREADS=2 
aprun –N 8 –cc 0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30 
 
% single stream mode, hybrid MPI/OpenMP codes        (copper) 
% 4 MPI processes, 4 OpenMP threads per MPI process 
export $OMP_NUM_THREADS=4 
aprun –N 4 –cc 0,2,4,6 : 8,10,12,14 : 16,18,20,22 : 24,26,28,30 
 
% single stream mode, hybrid MPI/OpenMP codes        (copper) 
% 2 MPI processes, 8 OpenMP threads per MPI process 
export $OMP_NUM_THREADS=8 
aprun –N 2 –cc 0,2,4,6,8,10,12,14 : 16,18,20,22,24,26,28,30 
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Garnet and Copper Example, Changing from Dual to Single Stream 
 
This example starts with a dual stream hybrid MPI/OpenMP code, then modifies aprun 
options to run it in single stream mode. 
 
% dual stream, hybrid code 
% 4 MPI processes per node 
% 8 threads per MPI process 
 
export OMP_NUM_THREADS=8 
aprun –N 4 –d 8 
 

 
In single stream mode, there are only 16 cores available rather than 32.  We must reduce 
either the number of MPI processes per node or the number of threads per MPI process. 
 
% single stream, hybrid code 
% 2 MPI processes per node 
% 8 threads per MPI process 
 
export OMP_NUM_THREADS=8 
aprun –N 2 –d 8 –j 1            (garnet) 
 
export OMP_NUM_THREADS=8 
aprun –N 2 –cc 0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30  (copper) 
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% single stream, threaded code 
% 4 MPI processes per node 
% 4 threads per MPI process 
 
export OMP_NUM_THREADS=4 
aprun –N 4 –d 4 –j 1            (garnet) 
 
export OMP_NUM_THREADS=4 
aprun –N 4 –cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30  (copper) 
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To change PBS script from dual stream mode to single stream mode, follow the steps 
below.  It may help to use the core affinity chart below. 
 
Copper, CLE 4.0 instructions 
 

1. Double the number of cores requested (PBS ncpus)  
or halve the total number of processes (aprun –n) 

2. Specify single stream mode 
a. nonthreaded codes (aprun –d2) 
b. threaded codes (aprun –cc core_list) 

3. Determine if processes per node (aprun –N) or per NUMA (aprun –S) 
should remain the same or need to be cut in half 
 

Garnet, CLE 4.1 instructions 
 

1. Double the number of nodes requested (PBS select) 
or halve the total number of processes (aprun –n) 

2. Specify single stream mode (aprun –j1) 
3. Determine if processes per node (aprun –N, PBS mpiprocs)  

or per NUMA (aprun –S) should remain the same  
or may need to be cut in half 

 
 
Core Affinity Chart  
 

 
Examples of hybrid MPI/OpenMP PBS scripts can be found in the garnet PBS guide 
and copper PBS guide.  

http://www.erdc.hpc.mil/docs/garnetPbsGuide.html
http://www.ors.hpc.mil/docs/copperPbsGuide.html
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3.2. More Memory Per Process 
 
By default, an MPI job runs one process per core, with all processes sharing the 
available memory on the node. If you need more memory per process, then your job 
needs to run fewer MPI processes per node.  Similarly, the eight cores on a NUMA 
share L3 cache.  To increase L3 cache available to each process, reduce processes 
per NUMA with the aprun –S option.  The two cores in each compute unit share L2 
cache.  To give a process exclusive use of the whole L2 cache, leave one core per pair 
idle.  This can be done either by running in single stream mode, aprun –j1, or by 
using the aprun –d depth option, where depth is 2 or more.  See the single 
stream/dual stream section for more information about single stream mode. 
 
In the example below, 32 MPI processes per node fully utilize all cores on a node.   
This –N 32 option is the default.  Each process receives 1/32 of available memory, 
or 2 GBytes.   Core pairs contend for the L2 cache, and all eight cores on each NUMA 
contend for the L3 cache. 
 
aprun –N 32 
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By cutting the number of processes per node in half, we double the memory 
available to each process from 2 GBytes to 4 GBytes.  By cutting the number of 
processes on each NUMA in half, we reduce contention for the L3 cache. 
 
aprun –N 16 –S 4 
 

 
Each process has exclusive use of the entire L2 cache (shared by core pairs), 
contends for the L3 cache with only one other process, and can use 8 GBytes of 
memory. 
 
aprun –N 8 –S 2 –d 4 
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3.3. Core Specialization 
 
Core specialization reserves a small number of cores for Application Level 
Placement Scheduler (ALPS) processes such as apinit and apsched.  The rest of 
the cores on a node can then run user job processes without interruption by ALPS 
processes.  Core specialization eliminates the buffer flushes and cache flushes that 
occur during context switch from user process to ALPS process, which may improve 
performance but also reduce the number of cores on a node that run user processes 
and may decrease performance.  Dual stream mode is more likely to benefit from 
core specialization than single stream mode. 
 
The aprun –r option is used to specify the number of cores per node dedicated to 
system services.  The default is –r0 and means no dedicated cores; thus system 
service processes will interrupt user processes.  When running in dual stream mode, 
users should reserve entire compute units (core pairs) rather than individual cores. 
 
% single stream mode 
% one core reserved for system services  
aprun –r 1 
 
% dual stream mode 
% core pair reserved for system services  
aprun –r 2 
 
Keep in mind that cores reserved for ALPS processes mean less cores available for 
user jobs, and adjust your aprun –n option accordingly.   
 
% dual stream mode 
% 16 user processes 
% core pair reserved for system services 
% 18 out of 32 cores used 
aprun –n 16 –r 2 
 

 
% dual stream mode 
% 30 user processes, not 32! 
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% core pair reserved for system services 
% all 32 cores used 
aprun –n 30 –r 2 
 

 
% single stream mode   (CLE 4.1) 
% 15 user processes, not 16! 
% one core reserved for system services 
% 16 cores idle, all 32 cores used 
aprun –n 15 –j 1 –r 1 
 
% single stream mode   (CLE 4.0) 
% 15 user processes, not 16! 
% one core reserved for system services 
% 16 cores idle, all 32 cores used 
aprun –n 15 –d 2 –r 1 
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4. Optimizing Code 
 
The code optimization techniques and examples that follow demonstrate how to 
optimize your code for the Interlagos architecture.  While these techniques can be 
applied to many architectures, this guide shows how to apply them specifically to 
Interlagos. 
 

4.1. Loop Unrolling 
 
Loop unrolling is an optimization technique that can be performed by the compiler, 
but can also be done manually.  Its goals are to reduce loop overhead, improve 
resource utilization, and increase parallelism.  Loop unrolling can be used to 
improve cache utilization, the amount of data currently being used that is in the 
cache.  It can also be used to vectorize math operations, meaning that the same 
operation is performed on several pieces of data at once rather than on just one 
piece of data. 
 

4.1.1. Compiler Optimization Level 
 
For best results, use the Cray compiler.  It was designed for the Interlagos 
architecture, performs automatic cache blocking, and vectorizes more loops than 
other compilers. The GNU compiler should be the last choice.  Be sure to use the 
appropriate compiler optimization level to enable vectorization, loop unrolling, and 
function inlining.  For more precise control of compiler optimization, consult the 
compiler manual for a description of all available flags.  If you wish to see feedback 
about optimization from the compiler, use compiler feedback flags. 
 

Compiler Optimization Level Feedback Flags 
Cray -O2 -h list=a 

-h display_opt 
-rm (Fortran) 

PGI -O2 -Minfo=inform 
Intel -O2 -vec-report3 
GNU -O3 

-march=bdver1 
-ftree-vectorizer-verbose=2 
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4.1.2. Cache Blocking 
 
Recall that cache access is much faster than memory access.  Cache blocking breaks 
work into blocks that fit neatly into cache, increases reuse of data in cache, and 
reduces the need to slowly fetch data from memory.  You can have the compiler try 
to do this for you automatically through loop unrolling.  You can also write your 
code in such a way that you work on data in cache-sized chunks. 
 
Consider a simple matrix multiplication code that performs C = A*B.  The original 
version multiplies one row of A and one row of B during each loop iteration. 
 

 
A blocked matrix multiplication code multiplies a block of A by a block of B at each 
loop iteration. 
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4.1.3. Cache Blocking Example 
 
This example shows how to manually optimize matrix multiplication for the 
garnet/copper L1 cache, and later, the L1 and L2 caches.  To ensure your data fits 
into the cache, remember that on garnet and copper, the L1 cache is 16 KBytes, the 
L2 cache is 2 MBytes, and the L3 cache is 6 MBytes.   
 
The following blocked matrix multiplication example works on data blocks that fit 
neatly into the L1 cache.  Here is the original version.  Let matrix A be of size MxN, 
matrix B NxP, and matrix C MxP. 
 
for( int row = 0; row < M; ++row ) 
{ 
  for( int col = 0; col < P; ++col ) 
  { 
    C[row][col] = 0; 
    for( int i = 0; i < N; ++i ) 
      C[row][col] += A[row][i] * B[i][col]; 
  } 
} 
 
Here is the manually blocked version.  If profiling indicates your chosen compiler 
may not be performing good cache blocking, you may try to do it manually.  The L1 
cache is 16 KBytes.  The A and B matrix blocks will be heavily reused during blocked 
multiplication, so we want them both in the cache.  That's two blocks so each block 
can be 8 KBytes at most.  If we wish to work on NxN-sized blocks, that's roughly 
89x89 Bytes.  If our matrices hold values of type double, and each double is 4 bytes, 
that's roughly 22x22 doubles. 
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#define BLOCK_SIZE 22 
 
// assume M, N, P are all evenly divisible by BLOCK_SIZE 
// if not, a bit extra coding is needed, or pad the data 
int row_block_count = M / BLOCK_SIZE; 
int col_block_count = P / BLOCK_SIZE; 
 
for( int row = 0; row < M; ++row ) 
  for( int col = 0; col < P; ++col ) 
    C[row][col] = 0; 
 
for( int br = 0; br < row_block_count; ++br ) 
{ 
  for( int cr = 0; cr < col_block_count; ++cr ) 
  { 
    int row_start = br * BLOCK_SIZE; 
    int row_end   = row_start + BLOCK_SIZE; 
    for( int row = row_start; row < row_end; ++row ) 
    { 
      col_start = cr * BLOCK_SIZE; 
      col_end   = col_start + BLOCK_SIZE; 
      for( int col = col_start; col < col_end; ++col ) 
      { 
        int ia, ib; 
        for( int i = 0; i < BLOCK_SIZE; ++i ) 
        { 
          ia = i + col_start; 
          ib = i + row_start; 
          C[row][col] += A[row][ia] * B[ib][col]; 
        } 
      } 
    } 
  } 
} 
 
 
 
If we wanted to optimize for both the L1 and L2 caches, we could do another level of 
nesting in the code.  How many of our L1-sized matrix blocks can be fit into the L2 
cache?  If each block is 22x22 doubles, that's 484 doubles or 1936 Bytes.  The L2 
cache is 2 MBytes, so it can hold at most 1033 matrix blocks of 22x22 doubles.  
Recall we want to fit both A and B into the cache, so that's about 516 blocks of 22x22 
doubles for A and B each.  Our matrix multiplication code now looks something like 
this: 
 
loop over entire matrix, broken into pieces of 516 blocks 
  loop over 516 matrix blocks 
    perform matrix multiplication on block of 22x22 doubles  
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4.1.4. Vectorized Math Operations 
 
Many science and engineering codes loop over arrays of data, performing math 
operations on one scalar at a time.  Such codes may run faster if vectorized.  Instead 
of working on one value of an array at a time, vectorized code works on several 
values at a time.  The compiler will try to vectorize loops for you.  You may achieve 
more vectorization with some code rewriting. 
 
The Interlagos floating point unit (FPU) can perform vectorized math operations on 
128 bits at a time in dual stream mode, or 256 bits in single stream mode.  The table 
below shows the vector size, or number of simultaneous operations in a manually 
unrolled loop, and gives an upper bound on the speedup you may achieve from 
vectorization. If your loop iterates over an array of doubles, and each double is 32 
bits, you can work on a vector of 8 doubles at a time in single stream mode, or a 
vector of 4 doubles in dual stream mode. Thus, the maximum speedup from 
vectorization would be 8.  Please refer to an earlier section of this document for an 
explanation of single and dual stream modes.  Integer types are shown in the table, 
but keep in mind that mixed floating point/integer math is done by the FPU, 
whereas pure integer math is performed by the integer core. 
 

array data type FPU vector size  
(dual stream) 

FPU vector size  
(single stream) 

byte 16 32 
float 8 16 

double 4 8 
int 4 8 

long 2 4 
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4.1.5. Loop Unrolling Example 
 
This simple example illustrated the concept of loop unrolling.  The loop below is not 
unrolled.  The loop counter increments by one, and one piece of data is computed in 
the body of the loop.  If you make no change to the code below, the compiler will try 
to unroll it for you, provided you used the correct compiler optimization level. 
 
for( int i = 0; i < data_count; ++i ) 
{ 
  result[i] = a[i] * b[i]; 
} 
 
Here is the same loop as above, unrolled x4.  The loop counter now increments by 4, 
and four pieces of data are computed in the body of the loop.  If the compiler unrolls 
your loop, it will look something like this.  You can also unroll the loop manually by 
rewriting your loop as shown below.  Manual unrolling gives you greater control, 
but may or may not be an improvement over how the compiler would unroll loops.  
 
for( int i = 0; i < data_count; i = i+4 ) 
{ 
  result[i  ] = a[i  ] * b[i  ]; 
  result[i+1] = a[i+1] * b[i+1]; 
  result[i+2] = a[i+2] * b[i+2]; 
  result[i+3] = a[i+3] * b[i+3]; 
} 
 
Here is the unrolled loop x16, but in compact form.  The compiler directive explicitly 
asks the compiler to unroll the loop, saving you some typing for longer unrolled 
loops.  C and C++ code uses #pragma unroll, while Fortran uses !DIR$ UNROLL 
N, meaning unroll the loop xN. 
 
for( int i = 0; i < data_count; i = i+16 ) 
{ 
  #pragma unroll 
  for( int j = i; j < i+16; ++j ) 
    result[j] = a[j] * b[j]; 
} 
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4.2. Coding Guidelines for Loop Unrolling 
 
Follow these coding guidelines to make your loops more suitable for unrolling by 
the compiler and to make your data structures more suitable for efficient 
vectorization and cache blocking. 
 

4.2.1. Nested Loops, Multidimensional Arrays, and Data Access 
 
Nested loops are often used to work on multidimensional arrays.  Be aware of 
language-dependent data access patterns.  C and C++ will make the most efficient 
use of memory and cache when accessing data in row-major order.  That means for 
a 2D matrix, within each row, you stride across the columns.  Fortran is best with 
column-major order.  Within each column, you stride down the rows.   
 
// C, C++ 
for( row=0; row<n; row++ ) 
  // unroll this column loop   
  for( col=0; col<n; col++ )  
    a[row][col]=b[row][col]*s; 
 
! Fortran 
do col=1,n  
  ! unroll this row loop 
  do row=1,n  
    a(row,col)=b(row,col)*s  
  enddo 
enddo 
 
 

4.2.2. Inline Function Calls Within Loops 
 
Function calls in a loop can render it nonvectorizable.  Inline functions when 
possible, either with appropriate compiler optimization levels or explicit compiler 
directives, such as C's #pragma inline or Fortran's !DIR$ INLINE. 
 
#pragma inline 
double dot( double * b, double * a ) 
{ return( a[0]*b[0] + a[1]*b[1] + a[2]*c[2] ); } 
 
for( int i = 0; i < vec_count; ++i ) 
{ 
  res[i] = dot( vecsA[3*i], vecsB[3*i] );  
} 
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After inlining the code looks like this and can be vectorized. 
 
for( int i = 0; i < vec_count; ++i ) 
{ 
  res[i] = vecsA[i]*vecsB[i] + vecsA[i+1]*vecsB[i+1]  
                             + vecsA[i+2]*vecsB[i+2]; 
} 
 

4.2.3. Avoid Dependencies 
 
Loop dependence means the loop must be executed sequentially to produce the 
desired result. Thus the loop cannot be parallelized.  If possible, try to rewrite the 
computation in a nondependent way. 
 
Read After Write 
 
This loop is not parallelizable.  If unrolled, element a[i-1] would be read before its 
correct value had been written. 
 
for( int i = 1; i < count; ++i ) 
  a[i] = a[i-1] + b[i]; 
 
initial values     sequential result    parallel result 
a0 = 4  b0 = 1        (correct)           (INCORRECT) 
a1 = 3  b1 = 2     a1 =  4+2 =  6       a1 =  4+2 =  6 
a2 = 5  b2 = 3     a2 =  6+3 =  9       a2 =  3+3 =  6 
a3 = 2  b3 = 1     a3 =  9+1 = 10       a3 =  5+1 =  6 
a4 = 8  b4 = 5     a4 = 10+5 = 15       a4 =  2+5 =  7 
 
 
Write After Read 
 
This loop can be parallelized.  The original and unrolled versions produce the same 
result because element a[i+1] does not have to be written before it is read. 
 
for( int i = 0; i < count-1; ++i ) 
  a[i] = a[i+1] + b[i]; 
 
initial values     sequential result    parallel result 
a0 = 4  b0 = 1        (correct)            (correct) 
a1 = 3  b1 = 2     a0 =  3+1 =  4       a0 =  3+1 =  4 
a2 = 5  b2 = 3     a1 =  5+2 =  7       a1 =  5+2 =  7 
a3 = 2  b3 = 1     a2 =  2+3 =  5       a2 =  2+3 =  5 
a4 = 8  b3 = 5     a3 =  8+5 = 13       a3 =  8+5 = 13 
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4.2.4. Avoid Pointer Aliasing 
 
Aliasing happens when two pointers point to the same memory location.  When a 
loop uses pointers, it might not vectorize because the compiler assumes there could 
be dependencies.  To prevent this, either never alias, or when you know a certain 
loop has pointers but is free of aliasing, suggest or even force the compiler to 
vectorize with compiler directives. 
 
The IVDEP directive suggests a following loop be vectorized. 
// C/C++ 
#pragma ivdep 
 
!Fortran 
!DEC$ IVDEP 
 
The VECTOR ALWAYS pragma forces a loop to be vectorized, so use caution! 
 
// C/C++ 
#pragma vector always 
 
!Fortran 
!DEC$ VECTOR ALWAYS 
 

4.2.5. Align Data to Vector Boundary or Cache Line 
 
For data whose size can be neatly divided into vector or even smaller cache-line-
sized chunks can be accessed more efficiently.  The Cray XE6 has a cache line size of 
8 bytes and a vector size of 16 bytes in dual stream mode, or 32 bytes in single 
stream mode. 
 
In C code, use the memalign function to allocate memory in chunks of XX bytes. 
 
memalign( XX, size ); 
 
In Fortran90 code, use the –align arrayXXbyte compiler option. 
 
In multidimensional arrays, padding lower dimensions for alignment may be 
beneficial.  For example, instead of an array a[15][16][16], use a[16][16][16].  



 32 

4.3. Fused Multiply Add (FMA) 
 
Some scientific codes and many graphics codes make heavy use of the expression 
a*b + c,  known as a multiply add.  The Interlagos instruction set contains a fused 
multiply add (FMA) instruction that combines both operations into one instruction, 
which is executed faster than a multiply followed by an add.  Taking advantage of 
FMA requires little to no code rewriting, since the compiler does most of the work if 
it sees expressions matching a*b + c. 
 
Below are examples of code that would benefit from use of FMA and also from 
vectorization (see previous section). 
 
// C / C++ 
for( int i = 0; i < data_count; i += 4 ) 
{ 
  D[i  ] = A[i  ]*B[i  ] + C[i  ]; 
  D[i+1] = A[i+1]*B[i+1] + C[i+1]; 
  D[i+2] = A[i+2]*B[i+2] + C[i+2]; 
  D[i+3] = A[i+3]*B[i+3] + C[i+3]; 
} 
 
! Fortran 
D[1:4] = A[1:4]*B[1:4] + C[1:4] 
 
 

4.3.1. Compiler Optimization Options 
 
The Cray and Intel compilers are aware of the Interlagos architecture FMA 
capability.  The PGI and GNU compilers are not. Use the Cray or Intel compilers with 
the O2 compiler optimization option to enable vectorized fused multiply add. 
 
 

4.3.2. Pitfalls to Avoid 
 
If using the Intel compiler, the –fma option enables fused multiply add.  This option 
is used by default.  However, be aware that the –fp-model strict option turns off 
the –fma option.  If using –fp-model strict, you must manually set the –fma 
option. 
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4.4. Dynamic Memory Allocation 
 
Ideal dynamic memory allocation assigns memory "closest" to the core that will be 
using that memory.  To make best use of memory, we need to understand when 
memory is allocated and the location and size of each part of the memory hierarchy.   
 

4.4.1. Memory Allocation on the Cray XE6 
 
Cray compute node Linux has a "first touch policy" for memory allocation.  
Allocation does not occur when calling an allocation function (C *alloc , C++ new, 
Fortran allocate,etc.). Allocation is deferred until memory is "touched" or 
accessed. Allocation occurs in memory "closest" to the touching core.  Thus, 
dynamically allocated memory will be placed closest to the core that initialized it. 
 
Linux assumes "swap space" exists for allocations too large to fit into local memory, 
but there is no swap space on a Cray XE6.  Over allocation or out-of-memory errors 
will not be apparent until memory is "touched" or accessed. 

4.4.2. MPI Memory Allocation Example 
 
In MPI codes, to ensure each MPI process has its data closest to its own core, 
allocate after MPI_Init has been called and then be sure the data are initialized. 
 
// C++ MPI example 
#include <mpi.h> 
 
int main( int argc, char * argv[] ) 
{ 
  int rank, size; 
  int * array = NULL; 
 
  MPI_Init( &argc, &argv ); 
  MPI_Comm_rank( MPI_COMM_WORLD, &rank ); 
  MPI_Comm_size( MPI_COMM_WORLD, &size ); 
 
  // allocate memory 
  array = new int[ ARRAY_SIZE ]; 
  for( int i = 0; i < ARRAY_SIZE; ++i ) 
    array[i] = 0; 
 
  // do work 
  ... 
 
  // deallocate memory 
  delete [] array; array = NULL; 
 
  MPI_Finalize(); 
} 
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4.4.3. Threaded Codes 
 
As with pure MPI codes, if a thread is to have dynamically allocated memory that 
only that thread uses, allocate and initialize the memory after the thread has been 
created to ensure the memory is closest to the core running the thread. 
 
// C++ OpenMP example 
#include <omp.h>  
 
int main(int argc, char *argv[])  
{  
  int tid = 0;  
  int num_thrds = 1;  
  int * array = NULL; 
 
  #pragma omp parallel default(shared) private(tid,num_thrds, array) 
  {  
    num_thrds = omp_get_num_threads();  
    tid = omp_get_thread_num();  
 
    // allocate memory 
    array = new int[ ARRAY_SIZE ]; 
    for( int i = 0; i < ARRAY_SIZE; ++i ) 
      array[i] = 0; 
 
    // do work 
    // ...  
  }  
} 
 

4.4.4. Shared Memory Codes 
 
In shared memory codes, one core may allocate memory that several cores access.  If 
cores that access the same chunk of memory are on the same NUMA, they can all use 
the same L3 cache and avoid the higher cost of moving data from one NUMA's 
memory to another NUMA's L3 cache. 
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5. Further Reading 
 
The following documents were used as source material and can provide  
more in-depth information on the topics covered in this guide. 
 
Cray Online Documentation 
http://docs.cray.com/ 
 
How to Make Best Use of the AMD Interlagos Processor 
http://www.hector.ac.uk/cse/reports/interlagos_whitepaper.pdf 
 
AMD Bulldozer Overview, by Ted Barragy 
http://www.olcf.ornl.gov/wp-content/uploads/2012/01/TitanWorkshop2012_Day1_AMD.pdf 
 
Beagle Cray System Specifications 
http://wiki.ci.uchicago.edu/Beagle/SystemSpecs 
 
Blue Waters System Overview 
https://bluewaters.ncsa.illinois.edu/user-guide 
 
Maximizing Application Performance on the Cray XT6/XE6, by Jeff Larkin 
http://www.slideshare.net/jefflarkin/maximizing-application-performance-on-cray-xt6-and-xe6-
supercomputers-dodmod-users-group-2010 
 
Cache Blocking Techniques, by Wendy Doerner 
http://software.intel.com/en-us/articles/cache-blocking-techniques 
 
Chapter 6, Optimizing Cache Utilization, from Silicon Graphics 
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_ht
ml/ch06.html 
 
Vectorization, presentation by D. Stanzione, L. Koesterke, B. Barth, K. Milfeld 
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-
944a8d897149&groupId=13601 
 
Introduction to Intel Advanced Vector Extentions (AVX) 
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions 
 
HECToR Guides, Loop Vectorization 
http://www.hector.ac.uk/cse/documentation/Phase3/ 
 
HECToR Guides, Serial Optimization 
http://www.hector.ac.uk/cse/documentation/SerialOpt/ 
 

http://docs.cray.com/
http://www.hector.ac.uk/cse/reports/interlagos_whitepaper.pdf
http://www.olcf.ornl.gov/wp-content/uploads/2012/01/TitanWorkshop2012_Day1_AMD.pdf
http://wiki.ci.uchicago.edu/Beagle/SystemSpecs
https://bluewaters.ncsa.illinois.edu/user-guide
http://software.intel.com/en-us/articles/cache-blocking-techniques
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_html/ch06.html
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_html/ch06.html
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-944a8d897149&groupId=13601
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-944a8d897149&groupId=13601
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://www.hector.ac.uk/cse/documentation/Phase3/
http://www.hector.ac.uk/cse/documentation/SerialOpt/
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