
Optimization for the Cray XE6 Interlagos
Architecture

ERDC Scientific Computing Research Center
Monika Jankun-Kelly

1. Optimizing Code and Core Affinity for the Cray XE6 Interlagos Architecture 2
1.1. Optimizing Core Affinity 2
1.2. Optimizing Code 2

2. Interlagos Architecture 3
2.1. Compute Node Layout 3
2.2. Memory Hierarchy 5

2.2.1. Cache Utilization and Performance 6

3. Optimizing Core Affinity 7
3.1. Single Stream Mode/Dual Stream Mode 8

3.1.1. Compiling Code for Single/Dual Stream Mode 9
3.1.2. Running Code in Single/Dual Stream Mode 10
3.1.3. Single Stream Hybrid/Threaded Codes 15

3.2. More Memory Per Process 19
3.3. Core Specialization 21

4. Optimizing Code 23
4.1. Loop Unrolling 23

4.1.1. Compiler Optimization Level 23
4.1.2. Cache Blocking 24
4.1.3. Cache Blocking Example 25
4.1.4. Vectorized Math Operations 27
4.1.5. Loop Unrolling Example 28

4.2. Coding Guidelines for Loop Unrolling 29
4.2.1. Nested Loops, Multidimensional Arrays, and Data Access 29
4.2.2. Inline Function Calls Within Loops 29
4.2.3. Avoid Dependencies 30
4.2.4. Avoid Pointer Aliasing 31
4.2.5. Align Data to Vector Boundary or Cache Line 31

4.3. Fused Multiply Add (FMA) 32
4.3.1. Compiler Optimization Options 32
4.3.2. Pitfalls to Avoid 32

4.4. Dynamic Memory Allocation 33
4.4.1. Memory Allocation on the Cray XE6 33
4.4.2. MPI Memory Allocation Example 33
4.4.3. Threaded Codes 34
4.4.4. Shared Memory Codes 34

5. Further Reading 35

2

1. Optimizing Code and Core Affinity for the Cray XE6 Interlagos
Architecture

The techniques listed below can be used to optimize the performance of your code
on garnet and copper, which have Interlagos processors. Optimizing for Interlagos
may not require rewriting code. For example, core affinity, the manner in which
processes are assigned to cores, can be optimized quickly and simply, from the
aprun command line. Some code optimization can be achieved simply by changing
compiler flags. Even greater performance improvement may come from altering the
code. All optimization techniques below can be applied better after gaining a basic
understanding of the organization of cores, cache, and memory in the Interlagos
architecture, described in the next section.

1.1. Optimizing Core Affinity

Optimizing core affinity, the assignment of processes and threads to cores, requires
little or no rewriting of code. The following methods may be used:

• single stream/dual stream mode
• more memory per process
• core specialization

1.2. Optimizing Code

Code optimization may require some code rewriting (or it may simply require
changing compiler flags). Code optimization can improve code performance in ways
not possible by simply optimizing core affinity. The following methods may be used:

• loop unrolling
o cache blocking
o vectorized math operations

• fused multiply add
• "first touch" dynamic memory allocation

3

2. Interlagos Architecture

To achieve optimal performance from your code, it is helpful to understand the
basics of the Interlagos architecture. Extensive, detailed knowledge is not required.
By understanding how cores are grouped and connected, and the number of cores
that share certain resources, even novice users can apply some simple yet powerful
optimization techniques, which are discussed later.

2.1. Compute Node Layout

Each compute node consists of 32 cores organized into pairs, called "compute units."
The two integer cores in a compute unit each have their own L1 cache, but share an
L2 cache and a floating point unit (FPU). The diagram below illustrates a single
compute unit (core pair).

Compute Unit

Compute units are grouped into NUMAs (non-uniform memory access). Each NUMA
contains 4 compute units (a total of 8 cores), an L3 cache, and 16 GBytes of memory.
There are four NUMAs (two processors) on each compute node as shown in the top
section of the diagram below, and a total of 64 GBytes of memory. The four NUMAs
on a node are connected to each other by HyperTransport links, which allow a core
on one NUMA to access the memory on the other NUMAs. Thus, every core on a
compute node can access all 64 GBytes of memory on the node.

4

Compute Node

5

2.2. Memory Hierarchy

The memory hierarchy balances the competing needs for fast data access and large
data capacity. The memory hierarchy is made up of levels of increasing size and
increasing access time, as shown in the lower half of the diagram below and the
table on the following page. A core's L1 cache has the fastest access time, followed
by the L2 cache of a core pair, then the L3 cache of a NUMA (8 cores), then the
NUMA's memory, then processor's memory, and finally the node's memory. A core
can most quickly access memory on its own NUMA (8 cores). Accessing memory on
a neighboring NUMA requires going through HyperTransport links, which is slower.
Memory on a core's own processor can be accessed more quickly than memory on
the other processor. The two NUMAs on a processor (16 cores) share memory
address space. Accessing memory on another node requires using the Gemini
network and is much slower than accessing memory on a core's own node.
Accessing the disk is extremely slow. The table below shows that access time for
cache, memory, another node, and disk differs by several orders of magnitude.

Memory Hierarchy

6

Memory Hierarchy, Size, and Access Time

Memory Hierarchy Level Number
of_Cores Size Access Time

 L1 cache 1 16 KBytes 4 CPU cycles
 L2 cache 2 2 MBytes 20 CPU cycles
 L3 cache 8 6 MBytes * 45 CPU cycles
 Memory (own NUMA) 8 16 GBytes X hundred CPU cycles
 Memory (other NUMA) 16 32 GBytes 2X hundred CPU cycles
 Memory (other processor) 32 62 GBytes ** 3X hundred CPU cycles
 MPI Message
 to Other Node

--- --- ~3000 CPU cycles
or ~1.5 µs

 Disk --- 5 PBytes millions of CPU cycles
or several ms

(*) The L3 cache size is 8 MBytes, but 2 MBytes are reserved for cache coherency,
thus only 6 MBytes are accessible to the user.

(**) A compute node has 64 GBytes of memory, but only 62 GBytes are accessible to
the user.

2.2.1. Cache Utilization and Performance

The data needed for computation are either read from files on disk or created in
memory. Computation is performed on data in a core's L1 cache. Therefore, data
from lower levels of the memory hierarchy (disk, memory) must move up through
the hierarchy to the L1 cache before it can be used in computation. The L1 cache is
very small, thus as new data are brought in and computation results are generated,
the L1 cache fills up. To make room in the L1 cache, older data are overwritten, and
computation results are moved out of L1 cache and down the hierarchy into
memory. Frequently moving data to and from the lower, slower levels of the
memory hierarchy degrades performance because the core sits idle waiting for
needed data to arrive in the L1 cache. Therefore it's good to maximize cache hits
(needed data found in cache) and minimize cache misses (needed data not found in
cache). Optimal cache utilization has a high cache hit/miss ratio. Techniques for
improving cache utilization are discussed in a later section.

7

3. Optimizing Core Affinity

Core affinity is the way processes are assigned to cores. Core affinity is controlled
by various aprun command options, shown in the table below. Changing your core
affinity does not require rewriting your code. However, some core affinity
optimization techniques make more resources available to each process. For
greater performance improvement, you may wish to rewrite your code to take
advantage of this.

aprun option purpose
-n procs Total number of processes
-N procs Number of processes per node

For hybrid codes, number of MPI processes per node
-S procs Number of processes per NUMA
-d cores Number of cores per process

For hybrid codes, number of threads per process
-j 1 Run in single stream mode

(The default is dual stream)

8

3.1. Single Stream Mode/Dual Stream Mode

Interlagos cores are arranged into compute units comprised of an integer core pair,
a shared floating point unit (FPU), and a shared L2 cache. Understanding when to
run code on both cores in a pair (dual stream mode) and when to run on just one
core in a pair (single stream mode) may improve performance. In single stream
mode, one core per pair remains idle, freeing some resources for exclusive use by
the other active core. The possible benefits of single stream mode are listed below.

• no contention for shared floating point unit (FPU)
• entire L2 cache available to one core
• contention for L3 cache may be halved
• twice as much memory available to each core
• greater memory bandwidth
• less contention for Gemini interconnect to remote nodes

Keep in mind that some codes may run better in dual stream mode than single
stream. For example, if a code's performance is not bound by FPU contention,
reducing FPU contention will probably not significantly improve performance.
If performance is memory bound, improving cache utilization won't help much.
There are possible advantages to running in dual stream mode.

• shared memory codes, more threads can access memory on the same node
• communication between processes/threads is faster on the same node than

between separate nodes
• if cores used per node is maximized, less nodes needed to run same number

of processes

By default, code is compiled for and run in dual stream mode; no special options are
needed. To compile code for single stream mode, use the interlagos-cu compute
unit compile target. To run code in single stream mode, use the aprun –j 1
option to specify only one core per compute unit should be used.

How do you determine whether your code can benefit from running in single stream
mode? You can quickly and easily run small, representative test cases in both
modes. Optionally, you can use profiling tools to find bottlenecks in performance.
Codes whose performance is bound by floating point computations, hampered by L2
cache misses, or excessive contention for the interconnect may benefit from running
in single stream mode.

9

3.1.1. Compiling Code for Single/Dual Stream Mode

Cray provides two compile targets for codes built for compute nodes. The default
interlagos target is meant for codes running in dual stream mode. The default
target will also work for codes running in single stream mode. Recompiling code for
single stream mode is optional, but may improve performance. Use the default
interlagos target for dual stream mode. Use either interlagos or interlagos-cu for
single stream mode. Do not run in dual stream mode if your code was built for the
interlagos-cu target.

The interlagos-cu target is optimized for codes running in single stream mode.
The difference between the two targets is primarily the way in which the compiler
uses the shared memory subsystem hardware resources. To change from the default
interlagos target to interlagos-cu, use the –h cpu=interlagos-cu compiler
flag, or swap modules as shown below.

module swap craype-interlagos craype-interlagos-cu

Both interlagos and interlagos-cu are Cray compiler targets, so be sure the Cray
programming environment module PrgEnv-cray is loaded.

 10

3.1.2. Running Code in Single/Dual Stream Mode

The –j aprun option specifies whether code runs in single or dual stream mode.
Note that –j is only available on garnet because it has the newer CLE 4.1 operating
system, while copper has the older CLE 4.0. The default dual stream mode uses both
cores in a compute unit, while single stream mode uses one core and leaves the
other idle, increasing resources available to the active core. The value of –j is the
number of cores in a compute unit, or core pair, to use for user jobs. Refer to the
compute unit diagram in the architecture section, earlier in this guide.

 -j 0 (default) use all cores in a compute unit
 -j 1 use one core in a compute unit
 -j N use N cores in a compute unit

N can be at most 2, thus –j 0 is equivalent to –j 2

When running codes on copper, know whether your code is nonthreaded, e.g., pure
MPI, or threaded, e.g. OpenMP or hybrid MPI/OpenMP. On copper, the –j option is
unavailable. Thus the –d 2 option is used to run code in single stream mode, but
this only works for nonthreaded codes. Threaded codes running in single stream
mode on copper must have cores manually assigned with –cc core_list.

% single stream mode (garnet, CLE 4.1)
aprun –j 1

% single stream mode (copper, CLE 4.0 non-threaded)
aprun –d 2

% single stream mode (copper, CLE 4.0 threaded)
aprun –cc core_list

If your code runs on garnet and is threaded or has core affinity other than one
process per core, it is important to understand the distinction between –d and the
new –j option. The –j option controls the number of cores per compute unit (core
pair) to be used. The –d option is the number of cores assigned to each process.
The –j option is applied first, and the –d option operates on the cores left after
the –j option has been applied. Other core affinity options, such as –N, processes
per node, and –S, processes per NUMA, are also applied after –j.

 11

The examples below show core affinity in dual stream mode and single stream mode
for a 16-process MPI job. Recall that in dual stream mode, the 8 active cores on a
NUMA share the L3 cache, and each core pair shares an L2 cache and floating point
unit (FPU). In single stream mode, 4 active cores per NUMA get more L3 cache, and
each core gets the whole L2 cache and exclusive use of the FPU.

% dual stream mode
aprun –n 16

% single stream mode (garnet, CLE 4.1)
aprun –n 16 –j 1

% single stream mode (copper, CLE 4.0)
aprun –n 16 –d 2

 12

The following examples illustrate the effect of using the single stream –j1 option
with other options that affect core affinity, such as –d depth,
-S cores_per_numa, and –N cores_per_node. Any examples with the –j
option are for garnet only, not copper.

When –j1 and –d are both used, -d skips over twice as many cores, since –j1
removes odd numbered cores from the available core set.

aprun –n 4 –d 4

In the example above, NUMAs 0 and 1 had two active cores sharing an L3 cache.
When each NUMA has only one active core, that core gets the entire L3 cache for its
own use.

aprun –n 4 –d 4 –j 1 (garnet only)

 13

When using –S procs_per_numa, remember that the single stream –j1 option
changes process spacing within a NUMA. In single stream mode, 4 processes at
most can be placed on a NUMA, not 8.

aprun –n 6 –S 3

aprun –n 6 –S 3 –j 1 (garnet only)

 14

When using –N procs_per_node, keep in mind that in single stream mode, only
16 of the 32 cores on a node are available.

This example runs 100 processes, placing 20 processes per node, and using 5 nodes.
It will work in dual stream mode because 20 cores is less than the maximum of
32 cores per node. In single stream mode, half the cores are idle and
procs_per_node must be 16 or less.

% 5 nodes used, 20 processes per node, dual stream
aprun –n 100 –N 20

% INCORRECT! (garnet only)
% Only 16 cores available per node in single stream mode
aprun –n 100 –N 20 –j 1

% Fixed! (garnet only)
% Now uses 10 nodes, 10 processes per node
aprun –n 100 –N 10 –j 1

 15

3.1.3. Single Stream Hybrid/Threaded Codes

Single stream threaded codes and single stream hybrid codes require different
aprun options on copper than on garnet, because of garnet running the newer CLE
4.1 operating system, and copper running CLE 4.0.

Copper Only Examples, Single Stream Threaded/Hybrid Codes

When running single stream threaded codes, you must manually map threads to
cores with the –cc cpu_list option and specify the number of MPI processes
per node with the aprun –N option if using MPI. Furthermore, you must set the
OpenMP environment variable $OMP_NUM_THREADS to the number of threads per
MPI process.

In the single stream hybrid MPI/OpenMP examples below, we only use the even-
numbered cores to ensure that one core in each core pair remains idle. That means
16 out of 32 cores per node will be used. Divide 16 by the number of MPI processes
to determine the max number of threads per MPI process.

% single stream mode, hybrid MPI/OpenMP codes (copper)
% 8 MPI processes, 2 OpenMP threads per MPI process
export $OMP_NUM_THREADS=2
aprun –N 8 –cc 0,2:4,6:8,10:12,14:16,18:20,22:24,26:28,30

% single stream mode, hybrid MPI/OpenMP codes (copper)
% 4 MPI processes, 4 OpenMP threads per MPI process
export $OMP_NUM_THREADS=4
aprun –N 4 –cc 0,2,4,6 : 8,10,12,14 : 16,18,20,22 : 24,26,28,30

% single stream mode, hybrid MPI/OpenMP codes (copper)
% 2 MPI processes, 8 OpenMP threads per MPI process
export $OMP_NUM_THREADS=8
aprun –N 2 –cc 0,2,4,6,8,10,12,14 : 16,18,20,22,24,26,28,30

 16

Garnet and Copper Example, Changing from Dual to Single Stream

This example starts with a dual stream hybrid MPI/OpenMP code, then modifies aprun
options to run it in single stream mode.

% dual stream, hybrid code
% 4 MPI processes per node
% 8 threads per MPI process

export OMP_NUM_THREADS=8
aprun –N 4 –d 8

In single stream mode, there are only 16 cores available rather than 32. We must reduce
either the number of MPI processes per node or the number of threads per MPI process.

% single stream, hybrid code
% 2 MPI processes per node
% 8 threads per MPI process

export OMP_NUM_THREADS=8
aprun –N 2 –d 8 –j 1 (garnet)

export OMP_NUM_THREADS=8
aprun –N 2 –cc 0,2,4,6,8,10,12,14:16,18,20,22,24,26,28,30 (copper)

 17

% single stream, threaded code
% 4 MPI processes per node
% 4 threads per MPI process

export OMP_NUM_THREADS=4
aprun –N 4 –d 4 –j 1 (garnet)

export OMP_NUM_THREADS=4
aprun –N 4 –cc 0,2,4,6:8,10,12,14:16,18,20,22:24,26,28,30 (copper)

 18

To change PBS script from dual stream mode to single stream mode, follow the steps
below. It may help to use the core affinity chart below.

Copper, CLE 4.0 instructions

1. Double the number of cores requested (PBS ncpus)
or halve the total number of processes (aprun –n)

2. Specify single stream mode
a. nonthreaded codes (aprun –d2)
b. threaded codes (aprun –cc core_list)

3. Determine if processes per node (aprun –N) or per NUMA (aprun –S)
should remain the same or need to be cut in half

Garnet, CLE 4.1 instructions

1. Double the number of nodes requested (PBS select)
or halve the total number of processes (aprun –n)

2. Specify single stream mode (aprun –j1)
3. Determine if processes per node (aprun –N, PBS mpiprocs)

or per NUMA (aprun –S) should remain the same
or may need to be cut in half

Core Affinity Chart

Examples of hybrid MPI/OpenMP PBS scripts can be found in the garnet PBS guide
and copper PBS guide.

http://www.erdc.hpc.mil/docs/garnetPbsGuide.html
http://www.ors.hpc.mil/docs/copperPbsGuide.html

 19

3.2. More Memory Per Process

By default, an MPI job runs one process per core, with all processes sharing the
available memory on the node. If you need more memory per process, then your job
needs to run fewer MPI processes per node. Similarly, the eight cores on a NUMA
share L3 cache. To increase L3 cache available to each process, reduce processes
per NUMA with the aprun –S option. The two cores in each compute unit share L2
cache. To give a process exclusive use of the whole L2 cache, leave one core per pair
idle. This can be done either by running in single stream mode, aprun –j1, or by
using the aprun –d depth option, where depth is 2 or more. See the single
stream/dual stream section for more information about single stream mode.

In the example below, 32 MPI processes per node fully utilize all cores on a node.
This –N 32 option is the default. Each process receives 1/32 of available memory,
or 2 GBytes. Core pairs contend for the L2 cache, and all eight cores on each NUMA
contend for the L3 cache.

aprun –N 32

 20

By cutting the number of processes per node in half, we double the memory
available to each process from 2 GBytes to 4 GBytes. By cutting the number of
processes on each NUMA in half, we reduce contention for the L3 cache.

aprun –N 16 –S 4

Each process has exclusive use of the entire L2 cache (shared by core pairs),
contends for the L3 cache with only one other process, and can use 8 GBytes of
memory.

aprun –N 8 –S 2 –d 4

 21

3.3. Core Specialization

Core specialization reserves a small number of cores for Application Level
Placement Scheduler (ALPS) processes such as apinit and apsched. The rest of
the cores on a node can then run user job processes without interruption by ALPS
processes. Core specialization eliminates the buffer flushes and cache flushes that
occur during context switch from user process to ALPS process, which may improve
performance but also reduce the number of cores on a node that run user processes
and may decrease performance. Dual stream mode is more likely to benefit from
core specialization than single stream mode.

The aprun –r option is used to specify the number of cores per node dedicated to
system services. The default is –r0 and means no dedicated cores; thus system
service processes will interrupt user processes. When running in dual stream mode,
users should reserve entire compute units (core pairs) rather than individual cores.

% single stream mode
% one core reserved for system services
aprun –r 1

% dual stream mode
% core pair reserved for system services
aprun –r 2

Keep in mind that cores reserved for ALPS processes mean less cores available for
user jobs, and adjust your aprun –n option accordingly.

% dual stream mode
% 16 user processes
% core pair reserved for system services
% 18 out of 32 cores used
aprun –n 16 –r 2

% dual stream mode
% 30 user processes, not 32!

 22

% core pair reserved for system services
% all 32 cores used
aprun –n 30 –r 2

% single stream mode (CLE 4.1)
% 15 user processes, not 16!
% one core reserved for system services
% 16 cores idle, all 32 cores used
aprun –n 15 –j 1 –r 1

% single stream mode (CLE 4.0)
% 15 user processes, not 16!
% one core reserved for system services
% 16 cores idle, all 32 cores used
aprun –n 15 –d 2 –r 1

 23

4. Optimizing Code

The code optimization techniques and examples that follow demonstrate how to
optimize your code for the Interlagos architecture. While these techniques can be
applied to many architectures, this guide shows how to apply them specifically to
Interlagos.

4.1. Loop Unrolling

Loop unrolling is an optimization technique that can be performed by the compiler,
but can also be done manually. Its goals are to reduce loop overhead, improve
resource utilization, and increase parallelism. Loop unrolling can be used to
improve cache utilization, the amount of data currently being used that is in the
cache. It can also be used to vectorize math operations, meaning that the same
operation is performed on several pieces of data at once rather than on just one
piece of data.

4.1.1. Compiler Optimization Level

For best results, use the Cray compiler. It was designed for the Interlagos
architecture, performs automatic cache blocking, and vectorizes more loops than
other compilers. The GNU compiler should be the last choice. Be sure to use the
appropriate compiler optimization level to enable vectorization, loop unrolling, and
function inlining. For more precise control of compiler optimization, consult the
compiler manual for a description of all available flags. If you wish to see feedback
about optimization from the compiler, use compiler feedback flags.

Compiler Optimization Level Feedback Flags
Cray -O2 -h list=a

-h display_opt
-rm (Fortran)

PGI -O2 -Minfo=inform
Intel -O2 -vec-report3
GNU -O3

-march=bdver1
-ftree-vectorizer-verbose=2

 24

4.1.2. Cache Blocking

Recall that cache access is much faster than memory access. Cache blocking breaks
work into blocks that fit neatly into cache, increases reuse of data in cache, and
reduces the need to slowly fetch data from memory. You can have the compiler try
to do this for you automatically through loop unrolling. You can also write your
code in such a way that you work on data in cache-sized chunks.

Consider a simple matrix multiplication code that performs C = A*B. The original
version multiplies one row of A and one row of B during each loop iteration.

A blocked matrix multiplication code multiplies a block of A by a block of B at each
loop iteration.

 25

4.1.3. Cache Blocking Example

This example shows how to manually optimize matrix multiplication for the
garnet/copper L1 cache, and later, the L1 and L2 caches. To ensure your data fits
into the cache, remember that on garnet and copper, the L1 cache is 16 KBytes, the
L2 cache is 2 MBytes, and the L3 cache is 6 MBytes.

The following blocked matrix multiplication example works on data blocks that fit
neatly into the L1 cache. Here is the original version. Let matrix A be of size MxN,
matrix B NxP, and matrix C MxP.

for(int row = 0; row < M; ++row)
{
 for(int col = 0; col < P; ++col)
 {
 C[row][col] = 0;
 for(int i = 0; i < N; ++i)
 C[row][col] += A[row][i] * B[i][col];
 }
}

Here is the manually blocked version. If profiling indicates your chosen compiler
may not be performing good cache blocking, you may try to do it manually. The L1
cache is 16 KBytes. The A and B matrix blocks will be heavily reused during blocked
multiplication, so we want them both in the cache. That's two blocks so each block
can be 8 KBytes at most. If we wish to work on NxN-sized blocks, that's roughly
89x89 Bytes. If our matrices hold values of type double, and each double is 4 bytes,
that's roughly 22x22 doubles.

 26

#define BLOCK_SIZE 22

// assume M, N, P are all evenly divisible by BLOCK_SIZE
// if not, a bit extra coding is needed, or pad the data
int row_block_count = M / BLOCK_SIZE;
int col_block_count = P / BLOCK_SIZE;

for(int row = 0; row < M; ++row)
 for(int col = 0; col < P; ++col)
 C[row][col] = 0;

for(int br = 0; br < row_block_count; ++br)
{
 for(int cr = 0; cr < col_block_count; ++cr)
 {
 int row_start = br * BLOCK_SIZE;
 int row_end = row_start + BLOCK_SIZE;
 for(int row = row_start; row < row_end; ++row)
 {
 col_start = cr * BLOCK_SIZE;
 col_end = col_start + BLOCK_SIZE;
 for(int col = col_start; col < col_end; ++col)
 {
 int ia, ib;
 for(int i = 0; i < BLOCK_SIZE; ++i)
 {
 ia = i + col_start;
 ib = i + row_start;
 C[row][col] += A[row][ia] * B[ib][col];
 }
 }
 }
 }
}

If we wanted to optimize for both the L1 and L2 caches, we could do another level of
nesting in the code. How many of our L1-sized matrix blocks can be fit into the L2
cache? If each block is 22x22 doubles, that's 484 doubles or 1936 Bytes. The L2
cache is 2 MBytes, so it can hold at most 1033 matrix blocks of 22x22 doubles.
Recall we want to fit both A and B into the cache, so that's about 516 blocks of 22x22
doubles for A and B each. Our matrix multiplication code now looks something like
this:

loop over entire matrix, broken into pieces of 516 blocks
 loop over 516 matrix blocks
 perform matrix multiplication on block of 22x22 doubles

 27

4.1.4. Vectorized Math Operations

Many science and engineering codes loop over arrays of data, performing math
operations on one scalar at a time. Such codes may run faster if vectorized. Instead
of working on one value of an array at a time, vectorized code works on several
values at a time. The compiler will try to vectorize loops for you. You may achieve
more vectorization with some code rewriting.

The Interlagos floating point unit (FPU) can perform vectorized math operations on
128 bits at a time in dual stream mode, or 256 bits in single stream mode. The table
below shows the vector size, or number of simultaneous operations in a manually
unrolled loop, and gives an upper bound on the speedup you may achieve from
vectorization. If your loop iterates over an array of doubles, and each double is 32
bits, you can work on a vector of 8 doubles at a time in single stream mode, or a
vector of 4 doubles in dual stream mode. Thus, the maximum speedup from
vectorization would be 8. Please refer to an earlier section of this document for an
explanation of single and dual stream modes. Integer types are shown in the table,
but keep in mind that mixed floating point/integer math is done by the FPU,
whereas pure integer math is performed by the integer core.

array data type FPU vector size
(dual stream)

FPU vector size
(single stream)

byte 16 32
float 8 16

double 4 8
int 4 8

long 2 4

 28

4.1.5. Loop Unrolling Example

This simple example illustrated the concept of loop unrolling. The loop below is not
unrolled. The loop counter increments by one, and one piece of data is computed in
the body of the loop. If you make no change to the code below, the compiler will try
to unroll it for you, provided you used the correct compiler optimization level.

for(int i = 0; i < data_count; ++i)
{
 result[i] = a[i] * b[i];
}

Here is the same loop as above, unrolled x4. The loop counter now increments by 4,
and four pieces of data are computed in the body of the loop. If the compiler unrolls
your loop, it will look something like this. You can also unroll the loop manually by
rewriting your loop as shown below. Manual unrolling gives you greater control,
but may or may not be an improvement over how the compiler would unroll loops.

for(int i = 0; i < data_count; i = i+4)
{
 result[i] = a[i] * b[i];
 result[i+1] = a[i+1] * b[i+1];
 result[i+2] = a[i+2] * b[i+2];
 result[i+3] = a[i+3] * b[i+3];
}

Here is the unrolled loop x16, but in compact form. The compiler directive explicitly
asks the compiler to unroll the loop, saving you some typing for longer unrolled
loops. C and C++ code uses #pragma unroll, while Fortran uses !DIR$ UNROLL
N, meaning unroll the loop xN.

for(int i = 0; i < data_count; i = i+16)
{
 #pragma unroll
 for(int j = i; j < i+16; ++j)
 result[j] = a[j] * b[j];
}

 29

4.2. Coding Guidelines for Loop Unrolling

Follow these coding guidelines to make your loops more suitable for unrolling by
the compiler and to make your data structures more suitable for efficient
vectorization and cache blocking.

4.2.1. Nested Loops, Multidimensional Arrays, and Data Access

Nested loops are often used to work on multidimensional arrays. Be aware of
language-dependent data access patterns. C and C++ will make the most efficient
use of memory and cache when accessing data in row-major order. That means for
a 2D matrix, within each row, you stride across the columns. Fortran is best with
column-major order. Within each column, you stride down the rows.

// C, C++
for(row=0; row<n; row++)
 // unroll this column loop
 for(col=0; col<n; col++)
 a[row][col]=b[row][col]*s;

! Fortran
do col=1,n
 ! unroll this row loop
 do row=1,n
 a(row,col)=b(row,col)*s
 enddo
enddo

4.2.2. Inline Function Calls Within Loops

Function calls in a loop can render it nonvectorizable. Inline functions when
possible, either with appropriate compiler optimization levels or explicit compiler
directives, such as C's #pragma inline or Fortran's !DIR$ INLINE.

#pragma inline
double dot(double * b, double * a)
{ return(a[0]*b[0] + a[1]*b[1] + a[2]*c[2]); }

for(int i = 0; i < vec_count; ++i)
{
 res[i] = dot(vecsA[3*i], vecsB[3*i]);
}

 30

After inlining the code looks like this and can be vectorized.

for(int i = 0; i < vec_count; ++i)
{
 res[i] = vecsA[i]*vecsB[i] + vecsA[i+1]*vecsB[i+1]
 + vecsA[i+2]*vecsB[i+2];
}

4.2.3. Avoid Dependencies

Loop dependence means the loop must be executed sequentially to produce the
desired result. Thus the loop cannot be parallelized. If possible, try to rewrite the
computation in a nondependent way.

Read After Write

This loop is not parallelizable. If unrolled, element a[i-1] would be read before its
correct value had been written.

for(int i = 1; i < count; ++i)
 a[i] = a[i-1] + b[i];

initial values sequential result parallel result
a0 = 4 b0 = 1 (correct) (INCORRECT)
a1 = 3 b1 = 2 a1 = 4+2 = 6 a1 = 4+2 = 6
a2 = 5 b2 = 3 a2 = 6+3 = 9 a2 = 3+3 = 6
a3 = 2 b3 = 1 a3 = 9+1 = 10 a3 = 5+1 = 6
a4 = 8 b4 = 5 a4 = 10+5 = 15 a4 = 2+5 = 7

Write After Read

This loop can be parallelized. The original and unrolled versions produce the same
result because element a[i+1] does not have to be written before it is read.

for(int i = 0; i < count-1; ++i)
 a[i] = a[i+1] + b[i];

initial values sequential result parallel result
a0 = 4 b0 = 1 (correct) (correct)
a1 = 3 b1 = 2 a0 = 3+1 = 4 a0 = 3+1 = 4
a2 = 5 b2 = 3 a1 = 5+2 = 7 a1 = 5+2 = 7
a3 = 2 b3 = 1 a2 = 2+3 = 5 a2 = 2+3 = 5
a4 = 8 b3 = 5 a3 = 8+5 = 13 a3 = 8+5 = 13

 31

4.2.4. Avoid Pointer Aliasing

Aliasing happens when two pointers point to the same memory location. When a
loop uses pointers, it might not vectorize because the compiler assumes there could
be dependencies. To prevent this, either never alias, or when you know a certain
loop has pointers but is free of aliasing, suggest or even force the compiler to
vectorize with compiler directives.

The IVDEP directive suggests a following loop be vectorized.
// C/C++
#pragma ivdep

!Fortran
!DEC$ IVDEP

The VECTOR ALWAYS pragma forces a loop to be vectorized, so use caution!

// C/C++
#pragma vector always

!Fortran
!DEC$ VECTOR ALWAYS

4.2.5. Align Data to Vector Boundary or Cache Line

For data whose size can be neatly divided into vector or even smaller cache-line-
sized chunks can be accessed more efficiently. The Cray XE6 has a cache line size of
8 bytes and a vector size of 16 bytes in dual stream mode, or 32 bytes in single
stream mode.

In C code, use the memalign function to allocate memory in chunks of XX bytes.

memalign(XX, size);

In Fortran90 code, use the –align arrayXXbyte compiler option.

In multidimensional arrays, padding lower dimensions for alignment may be
beneficial. For example, instead of an array a[15][16][16], use a[16][16][16].

 32

4.3. Fused Multiply Add (FMA)

Some scientific codes and many graphics codes make heavy use of the expression
a*b + c, known as a multiply add. The Interlagos instruction set contains a fused
multiply add (FMA) instruction that combines both operations into one instruction,
which is executed faster than a multiply followed by an add. Taking advantage of
FMA requires little to no code rewriting, since the compiler does most of the work if
it sees expressions matching a*b + c.

Below are examples of code that would benefit from use of FMA and also from
vectorization (see previous section).

// C / C++
for(int i = 0; i < data_count; i += 4)
{
 D[i] = A[i]*B[i] + C[i];
 D[i+1] = A[i+1]*B[i+1] + C[i+1];
 D[i+2] = A[i+2]*B[i+2] + C[i+2];
 D[i+3] = A[i+3]*B[i+3] + C[i+3];
}

! Fortran
D[1:4] = A[1:4]*B[1:4] + C[1:4]

4.3.1. Compiler Optimization Options

The Cray and Intel compilers are aware of the Interlagos architecture FMA
capability. The PGI and GNU compilers are not. Use the Cray or Intel compilers with
the O2 compiler optimization option to enable vectorized fused multiply add.

4.3.2. Pitfalls to Avoid

If using the Intel compiler, the –fma option enables fused multiply add. This option
is used by default. However, be aware that the –fp-model strict option turns off
the –fma option. If using –fp-model strict, you must manually set the –fma
option.

 33

4.4. Dynamic Memory Allocation

Ideal dynamic memory allocation assigns memory "closest" to the core that will be
using that memory. To make best use of memory, we need to understand when
memory is allocated and the location and size of each part of the memory hierarchy.

4.4.1. Memory Allocation on the Cray XE6

Cray compute node Linux has a "first touch policy" for memory allocation.
Allocation does not occur when calling an allocation function (C *alloc , C++ new,
Fortran allocate,etc.). Allocation is deferred until memory is "touched" or
accessed. Allocation occurs in memory "closest" to the touching core. Thus,
dynamically allocated memory will be placed closest to the core that initialized it.

Linux assumes "swap space" exists for allocations too large to fit into local memory,
but there is no swap space on a Cray XE6. Over allocation or out-of-memory errors
will not be apparent until memory is "touched" or accessed.

4.4.2. MPI Memory Allocation Example

In MPI codes, to ensure each MPI process has its data closest to its own core,
allocate after MPI_Init has been called and then be sure the data are initialized.

// C++ MPI example
#include <mpi.h>

int main(int argc, char * argv[])
{
 int rank, size;
 int * array = NULL;

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);

 // allocate memory
 array = new int[ARRAY_SIZE];
 for(int i = 0; i < ARRAY_SIZE; ++i)
 array[i] = 0;

 // do work
 ...

 // deallocate memory
 delete [] array; array = NULL;

 MPI_Finalize();
}

 34

4.4.3. Threaded Codes

As with pure MPI codes, if a thread is to have dynamically allocated memory that
only that thread uses, allocate and initialize the memory after the thread has been
created to ensure the memory is closest to the core running the thread.

// C++ OpenMP example
#include <omp.h>

int main(int argc, char *argv[])
{
 int tid = 0;
 int num_thrds = 1;
 int * array = NULL;

 #pragma omp parallel default(shared) private(tid,num_thrds, array)
 {
 num_thrds = omp_get_num_threads();
 tid = omp_get_thread_num();

 // allocate memory
 array = new int[ARRAY_SIZE];
 for(int i = 0; i < ARRAY_SIZE; ++i)
 array[i] = 0;

 // do work
 // ...
 }
}

4.4.4. Shared Memory Codes

In shared memory codes, one core may allocate memory that several cores access. If
cores that access the same chunk of memory are on the same NUMA, they can all use
the same L3 cache and avoid the higher cost of moving data from one NUMA's
memory to another NUMA's L3 cache.

 35

5. Further Reading

The following documents were used as source material and can provide
more in-depth information on the topics covered in this guide.

Cray Online Documentation
http://docs.cray.com/

How to Make Best Use of the AMD Interlagos Processor
http://www.hector.ac.uk/cse/reports/interlagos_whitepaper.pdf

AMD Bulldozer Overview, by Ted Barragy
http://www.olcf.ornl.gov/wp-content/uploads/2012/01/TitanWorkshop2012_Day1_AMD.pdf

Beagle Cray System Specifications
http://wiki.ci.uchicago.edu/Beagle/SystemSpecs

Blue Waters System Overview
https://bluewaters.ncsa.illinois.edu/user-guide

Maximizing Application Performance on the Cray XT6/XE6, by Jeff Larkin
http://www.slideshare.net/jefflarkin/maximizing-application-performance-on-cray-xt6-and-xe6-
supercomputers-dodmod-users-group-2010

Cache Blocking Techniques, by Wendy Doerner
http://software.intel.com/en-us/articles/cache-blocking-techniques

Chapter 6, Optimizing Cache Utilization, from Silicon Graphics
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_ht
ml/ch06.html

Vectorization, presentation by D. Stanzione, L. Koesterke, B. Barth, K. Milfeld
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-
944a8d897149&groupId=13601

Introduction to Intel Advanced Vector Extentions (AVX)
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions

HECToR Guides, Loop Vectorization
http://www.hector.ac.uk/cse/documentation/Phase3/

HECToR Guides, Serial Optimization
http://www.hector.ac.uk/cse/documentation/SerialOpt/

http://docs.cray.com/
http://www.hector.ac.uk/cse/reports/interlagos_whitepaper.pdf
http://www.olcf.ornl.gov/wp-content/uploads/2012/01/TitanWorkshop2012_Day1_AMD.pdf
http://wiki.ci.uchicago.edu/Beagle/SystemSpecs
https://bluewaters.ncsa.illinois.edu/user-guide
http://software.intel.com/en-us/articles/cache-blocking-techniques
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_html/ch06.html
http://techpubs.sgi.com/library/dynaweb_docs/0640/SGI_Developer/books/OrOn2_PfTune/sgi_html/ch06.html
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-944a8d897149&groupId=13601
http://www.tacc.utexas.edu/c/document_library/get_file?uuid=7d7b3025-a9fb-41ff-9223-944a8d897149&groupId=13601
http://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://www.hector.ac.uk/cse/documentation/Phase3/
http://www.hector.ac.uk/cse/documentation/SerialOpt/

	1. Optimizing Code and Core Affinity for the Cray XE6 Interlagos Architecture
	1.1. Optimizing Core Affinity
	1.2. Optimizing Code

	2. Interlagos Architecture
	2.1. Compute Node Layout
	2.2. Memory Hierarchy
	2.2.1. Cache Utilization and Performance

	3. Optimizing Core Affinity
	3.1. Single Stream Mode/Dual Stream Mode
	3.1.1. Compiling Code for Single/Dual Stream Mode
	3.1.2. Running Code in Single/Dual Stream Mode
	3.1.3. Single Stream Hybrid/Threaded Codes
	Copper Only Examples, Single Stream Threaded/Hybrid Codes
	Garnet and Copper Example, Changing from Dual to Single Stream

	3.2. More Memory Per Process
	3.3. Core Specialization

	4. Optimizing Code
	4.1. Loop Unrolling
	4.1.1. Compiler Optimization Level
	4.1.2. Cache Blocking
	4.1.3. Cache Blocking Example
	4.1.4. Vectorized Math Operations
	4.1.5. Loop Unrolling Example

	4.2. Coding Guidelines for Loop Unrolling
	4.2.1. Nested Loops, Multidimensional Arrays, and Data Access
	4.2.2. Inline Function Calls Within Loops
	4.2.3. Avoid Dependencies
	4.2.4. Avoid Pointer Aliasing
	4.2.5. Align Data to Vector Boundary or Cache Line

	4.3. Fused Multiply Add (FMA)
	4.3.1. Compiler Optimization Options
	4.3.2. Pitfalls to Avoid

	4.4. Dynamic Memory Allocation
	4.4.1. Memory Allocation on the Cray XE6
	4.4.2. MPI Memory Allocation Example
	4.4.3. Threaded Codes
	4.4.4. Shared Memory Codes

	5. Further Reading

