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Foreword 

 
As major fleet operators and builders of extensive infrastructure systems, public transit agencies 

have an opportunity to demonstrate the benefits of a wide range of GHG emission reduction 

practices through both their day-to-day operations and through their capital investment programs.     

 

The objective of this Compendium is to provide up-to-date information to transit operators, as 

well as regional transportation planners and decision–makers, on the sort of greenhouse gas 

(GHG) emissions reductions being reported, and on the sources of information available for 

making informed decisions about specific GHG reduction actions. 

 
The Compendium provides a framework for identifying greenhouse gas (GHG) reduction 

opportunities,  highlighting specific examples of effective GHG reduction practices.  The GHG 

savings benefits of public transit are first described. GHG saving opportunities are then  

organized under four activity areas: 1. Agency Planning for System Expansions and Major 

Construction Projects; 2. Agency Fleet Procurement Practices; 3. Agency Fleet Operation and 

Maintenance Practices; and 4. Agency Support for Green Buildings and Green Workforce 

Practices.  

 

The Compendium also includes a detailed GHG footprint for the Metropolitan Atlanta Rapid 

Transit Authority in Atlanta, Georgia. Data on MARTA‘s 2008 operations is used to demonstrate 

how transit agencies can use the data they collect to develop an annual GHG footprint. This 

footprint uses a three-scope emissions accounting system that is based on reporting 

recommendations made by the American Public Transportation Association.   

 

 

NOTICE  
 

This document is disseminated under the sponsorship of the United States  Department  of 

Transportation in the interest of information exchange. The United States Government assumes no 

liability for its contents or use thereof. The United States Government does not endorse products of 

manufacturers.  

 

Trademarks or manufacturers’ names appear in the document only because they are essential to the 

objective of this report. 
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EXECUTIVE SUMMARY 

 
Compendium Purpose and Organization  

 

As vehicle fleet operators, and often as builders of extensive infrastructure systems, public transit 

agencies across the country are demonstrating the benefits of a wide range of greenhouse gas 

(GHG) emissions reduction practices, both through their day-to-day operations and through their 

capital investment programs. This Compendium provides a framework for identifying GHG 

reduction opportunities, while highlighting specific examples of effective GHG reduction 

practices. The objective of the Compendium is to provide up-to-date information to transit 

operators, as well as regional transportation planners and decision–makers, on the sort of GHG 

reductions being reported, and on sources of information available for making informed 

decisions about specific GHG reduction actions.
1
. GHG saving opportunities are organized in the 

Compendium under four activity areas: 

 

1. Agency Planning for System Expansions and Major Construction Projects (Chapter 3) 

2. Agency Fleet Procurement Practices (Chapter 4) 

3. Agency Fleet Operation and Maintenance Practices (Chapter 5), and 

4. Agency Support for Green Buildings and Green Workforce Practices (Chapter 6) 

 

The Compendium also includes (Chapter 7) a detailed ―GHG footprint‖ for a single transit 

agency, demonstrating how transit agencies can use the data they collect on energy consumption 

and combine it with data linking energy use to GHG emissions, to develop an annual GHG 

footprint. The footprint is based on data made available by the Metropolitan Atlanta Rapid 

Transit Authority (MARTA), one of the nation‘s largest public transit agencies, with extensive 

heavy rail, fixed route bus and paratransit services. The footprint follows closely the reporting 

recommendations made by the American Public Transportation Association (APTA) based on a 

Three-Scope emissions accounting system similar to the protocols developed by The Climate 

Registry and World Resources Institute. The results indicate that the regionwide GHG emissions 

reductions benefits from keeping transit riders out of their automobiles exceeds MARTA‘s 

current vehicle operating emissions from bus, rail and paratransit trips by between 2-to-1 and 3-

to-1.     

 

Before describing the many transit supply side actions covered by these four activity areas, such 

savings are placed in the context of transit‘s broader role in reducing GHG emissions by 

attracting automobile riders to leave their vehicles at home, and instead use alternative forms of 

more energy efficient and less polluting transportation such as bus, vanpool and rail transit. This 

includes the important role transit systems can play in encouraging more compact, and more 

travel efficient land development patterns.    

 

From a transit agency‘s perspective, the ability to limit carbon dioxide and other GHG emissions, 

while maintaining high service frequency and ride quality, presents both a challenge and an 

opportunity: one tied closely to an agency‘s ability to reduce costly energy consumption in both 

vehicle fleet and fixed infrastructure operations. Supported by federal research and development 

                                           

1
 The purpose of this report is not to propose GHG policies for the transit industry, nor does it recommend 

government actions to reduce emissions. Any products referenced in the report are meant to illustrate the 

types of actions possible, and are not an endorsement of any vendor specific product or service per se. 
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dollars, transit agencies have become important testbeds for developing more fuel efficient 

personal transportation technologies as well more energy efficient workplaces. The actions 

discussed in this Compendium draw on numerous studies reported in the literature.  A web-based 

survey was also used to seek examples of successful and planned GHG reduction practices 

within transit agencies known to be pursuing innovative ways to reduce their energy bills and 

GHG emissions.   

 

Summary of GHG Emissions Reduction Practices Discovered  

 

The Compendium includes the following GHG reduction actions, reported in Chapters 3 through 

6 respectively:  

 
Planning for System Expansions & Major Construction Projects:  

 

System Planning  

 Getting GHGs on the Agenda 

 

Project Development 

Putting GHG Impacts into the Assessment 

 

Construction 

Selecting Greener Construction Materials   

Applying Energy Efficient Construction Equipment and Practices 

Limiting Travel for Workers, Construction & Waste Materials 

 

Transit agencies, along with State DOTs and MPOs are currently looking for ways to capture 

GHG emissions within the transportation planning and project selection process. This is starting 

to happen and is expected to become a common element as federal as well as regional climate 

change legislation evolves. With significant GHG emissions (and emissions reduction potentials) 

associated with large construction projects, there is currently a need to develop consistent 

measures of the full life-cycle emissions associated with capital investments in rail and highway 

system extensions. This includes the emissions resulting from the provision, application, 

transport, use, and disposal of construction materials such as concrete, asphalt and steel.  While a 

good deal of information on the GHG emissions associated with construction processes is now 

becoming available (see Chapter 3), there is currently limited reporting on how to apply this to 

transit projects.  

 

Vehicle Procurement Practices: 

 

Selecting a Vehicle/Fuel Technology 

Benefits of Electric, Electric-Hybrid, Biofuel, and Fuel Cell Buses 

Emissions Reducing Railcar Technologies 

Battery Supported Light Rail Systems 

Hybrids for Paratransit, Non-Revenue, & Ferryboat Services  

 

Successful GHG Emissions Reduction Technologies  

Regenerative Braking  

On-Board and Wayside Energy Storage Systems   

Advanced Transmissions Technologies  
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Lightweight Materials 

Smart Grid Technology  

In-Wheel Electric Motors 

 

The single biggest decision affecting a transit agency‘s production of GHG emissions is likely to 

be the selection of fleet vehicles, their energy efficiencies when in service and the types of fuel 

they use.  Life cycle assessments of vehicle emissions indicate that hybrid-diesel buses have 

been very effective in reducing GHGs at reasonable cost, while biodiesel buses, electric powered 

buses and trolley –buses all offer significant GHG reductions, especially if the electricity driving 

them is from clean sources such as nuclear and hydro power. Gasoline hybrids are also popular 

purchases for non-revenue fleet vehicles.  

 

Fleet Operation and Maintenance Practices: 

 

Efficient Fleet Management Practices 

Environmental Management Systems Certification 

Uses of IVS/ITS Technology 

Flexible/Deviated Fixed Route Services   

Demand Responsive Real-Time Software   

Vehicle-to-Passenger Load Matching 

 Route Restructuring 

 Reduced Vehicle Deadheading 

 

Efficient Vehicle Operation  

Driver Training  

Idle Reduction  Technologies & Protocols 

Speed and Braking Controls  

Low Rolling Resistance Tires  

 

 

Vehicle Maintenance Practices 

Real Time Maintenance Monitoring Technologies  

Automated Fuel  and Fluid Management Systems  

Application of the latest Environmental Management Systems (EMS) techniques to vehicle fleet 

operation and maintenance practices is another way to reduce fuel consumption and GHG 

emissions. By making use of the latest in-vehicle monitoring and tracking technologies, transit 

agencies can gain benefits from reduced non-revenue vehicle miles to more efficient vehicle 

driving practices. A combination of idle shutoff technology and enforcement of idling protocols 

can offer significant fuel savings. 

 

Green Building, Property, and Workforce Practices: 

 

Sustainable Building Design, Construction and Operations  

Green Building Codes and Standards    

Integrated Design 

Building Envelopes  

More Efficient Energy Consuming Equipment 

 

Renewable Energy Systems 
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Building Retrofits 

 

Employee Travel Savings 

Employee Rideshare/Flextime/Telecommuting & Bicycle Storage Programs 

 

Public transit agencies have been at the forefront of green building practices over the past 

decade, introducing some of the earliest LEED  Certified buildings into a region. The energy 

consumed in heating, cooling, lighting, and operating on-site machinery can be a significant 

percentage of a transit agency‘s annual energy bill. The GHG emissions attributed to the 

MARTA‘s rail stations and yards, bus depots, offices, and other buildings in Chapter 7 represent 

roughly 30% of the agency‘s 2008 carbon footprint. While this percentage may vary a good deal 

across agencies, use of the latest building designs and operating technologies can prove cost 

effective as well as less polluting from an agency standpoint. 

 

Most transit agencies appear to be interested in reducing greenhouse gas emissions from their 

operations, and as the case studies reported in this Compendium demonstrate, significant 

progress is being made. However, the quality of the empirical evidence currently available to 

help them do so is rather uneven. While the study managed to identify a wide range of actions 

that transit agencies have been using to reduce their GHG emissions, and in the process often 

lowering their energy bills, a consistent approach to selecting the best mix of these activities for 

a given situation and type of transit agency has yet to be developed. Still largely absent from the 

available empirical evidence is a comprehensive and standardized accounting of the costs 

associated with many GHG emissions reduction actions now available.    

 



 

 

1 

1. INTRODUCTION 

 
1.1 Purpose and Organization of the Compendium 
 

This Compendium describes both a framework and a set of in-practice examples for public 

transit agencies to consider when looking to reduce their energy consumption and greenhouse 

gas (GHG) emissions. In doing so, the Compendium provides the following information: 

 

1. A framework for considering the many specific actions transit agencies can take to 

reduce their own GHG emissions (Chapter 1)  

 

2. A concise statement of the important roles that public transit agencies play in reducing 

GHG Emissions (Chapter 2) 

 

3. Example case studies, highlighting recent and current transit agency projects and 

practices that demonstrate and quantify ways to achieve significant GHG reductions 

(Chapters 3 through 6); and  

 

4. A detailed ―GHG footprint‖ for a single transit agency (the Metropolitan Atlanta Rapid 

Transit Authority in 2008), demonstrating how transit agencies can quantify their GHG 

emissions, and the nature of the data sources required to do so (Chapter 7).   

 

As major fleet operators and builders of extensive infrastructure systems, public transit agencies 

have an opportunity to demonstrate the benefits of a wide range of GHG emission reduction 

practices, through both their day-to-day operations and their capital investment programs.  Since 

the 1970 Clean Air Act, the nation‘s transit agencies have served as test beds for emissions 

reducing vehicle technologies. With the addition of GHGs to the list of emissions to be 

controlled for, transit agencies can similarly provide leadership in society‘s efforts to develop 

more environmentally benign transportation systems.   

 

Information for the case studies reported in the Compendium is drawn from a number of sources: 

via a literature search; via analysis of the information contained in the National Transit Database; 

via a web-based survey and telephone follow-up with selected transit agencies. The 

Compendium has also benefitted from material contained in the American Public Transportation 

Association’s Recommended Practice for Quantifying Greenhouse Gas Emissions from Transit 

(APTA, 2009), which offers additional case studies as well as additional technical details to 

support such practice.  

 

The GHG footprinting chapter draws heavily on the latest ideas in life cycle analysis (LCA) in 

order to develop a comprehensive agency footprint, covering each of an agency‘s major GHG 

producing activities. A bibliography at the end of each chapter contains useful reference 

materials that readers may wish to pursue in search of greater details on a specific topic. The 

research project supporting development of this Compendium also produced a review of existing 

greenhouse gas emissions calculators available for use by transit agencies (Weigel et al, 2010).   
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The principal audience for the Compendium is transit system planners and both staff and board 

members in metropolitan planning organizations and state departments of transportation who 

want a single source of information on the sort of reductions in GHG emissions that are 

achievable, both currently and in the near future.  Recognizing that the principal goals of a transit 

agency are to make public transit more accessible, more affordable, and ultimately more 

adoptable by the general public, the Compendium offers useful examples of how a transit agency 

might continue to do so, while at the same time limiting greenhouse gas emissions and certain 

aerosols produced by its services 

 

In addition to providing benefits to society at large, successful carbon management practices can 

also bring immediate rewards to the transit agency itself. This includes help in marketing 

services to environmentally conscious riders, help in reducing the costs of purchased energy, and 

help in making the agency more attractive to federal grant programs (FTA 2009a,b). With both 

federal and many state governments considering limiting carbon emissions through such 

instruments as carbon ‗cap and trade‘ programs, the more energy efficient a transit agency can 

become, the greater its chance of competing in the new carbon limited energy consumption 

marketplace.  

 

Better GHG accounting can also prepare an agency for more effective participation in climate 

change registries, such as The Climate Registry, and U.S. EPA‘s Climate Leaders program, and 

for involvement in carbon trading schemes such as the Chicago Climate Exchange, and Climate 

Exchange Plc that are now starting to offer financial benefits for GHG emissions reductions. To 

get the most out of such schemes a transit agency will need to be able to measure GHG 

production from the acquisition and subsequent operation of all of its assets: its fuels, its vehicle 

fleets, and its built structures. Transit agencies can also play an important role here in setting a 

high standard for such reporting, one that can help an agency look for ways in which to cut 

GHGs, and ultimately benefit financially from the emissions it saves and the continually 

lowering costs of clean technologies it implements. 

 

Finally, many of the actions for reducing GHGs described in the Compendium carry with them 

additional benefits to both a transit agency and society at large. The most obvious of these is 

energy cost savings, from which other benefits also accrue, notably reduced criteria pollutants, as 

well as a reduced dependence on imported oil (CFR, 2006). These benefits are usually addressed 

in the detailed studies found in the references supplied. An effort is made within the 

Compendium itself, however, to identify potential disbenefits and other barriers to the adopting 

specific GHG reducing actions. 

 
1.2 Emissions Reduction Framework: Key Activity Areas 

 

GHG saving opportunities are organized in this Compendium under four activity areas: 

 

Chapter 3: Agency Planning for System Expansions and Major Construction Projects 

Chapter 4: Agency Fleet Procurement Practices 

Chapter 5: Agency Fleet Operation and Maintenance Practices, and 

Chapter 6:  Green Building, Green Structures and Green Workforce Practices  
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Figure 1.1 provides a summary of the GHG measurement issues associated with each of these 

four areas, showing the linkages (from left to right) between agency planning and decision-

making contexts, the GHG inventories they impact, example emissions reduction opportunities, 

and how these relate to the  best practice case studies found within  Chapters 3 through 6 of this 

Compendium.   

 

                   Figure 1.1 Linking Decision-Making Contexts to GHG Reduction                                  

Opportunities and Best Practices 
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Planning for System Expansions and Major Construction Projects. A great deal can be 

accomplished if GHG emissions considerations are brought into an agency‘s strategic planning 

activities from the very start of the process, especially where the planning involves decisions 

about large monetary investments in new or improved infrastructure, vehicles, and levels of 

service. Significant capital investments in any of these activities may impact GHG emissions for 

years and possibly decades to come. They include the selection of new or significantly expanded 

guideways associated with both underground and above ground rail and bus projects, and may 

include new rail stations, new park-and-ride lots, new maintenance depots, garages and fuel 

storage facilities, offices, warehousing space and other buildings.  System planning may also 

include the adoption of substantially revised bus transit system route plans.  
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Fleet Procurement Practices. A second area of opportunity addresses the embodied energy and 

GHG emissions associated with the production of different transit fleet vehicles (railcars, buses, 

vanpool vehicles, etc) as well as their more commonly reported end use, or tailpipe, emissions.  

 
Fleet Operations and Maintenance Practices can also have a significant impact on energy usage 

and GHG emissions.  Efficiencies can be obtained from a variety of practices. Briefly here, 

examples including driver training courses, better matching of vehicle size with temporally 

varying demands for service, properly inflating tires, and utilizing regenerative breaking systems.  

 

Other Activities: Green Building, Green Properties, and Green Workforce Practices can all 

lower GHG emissions. Approximately 43 percent of U.S. carbon dioxide (CO2) emissions result 

from the energy services required by residential, commercial, and industrial buildings (EPA, 

2006). The various buildings and other structures maintained and operated by transit agencies 

fall into this category. While transit vehicles account for the majority of energy used by a typical 

transit agency, buildings and other structures are also important consumers of energy. For 

example, of the 2.7 MMtCO2e emitted by the New York Metropolitan Transportation Authority 

(NYMTA) in 2007, 18% are attributed to electricity and heating in the  agency‘s facilities, 

stations, and maintenance yards (Gallivan and Grant, 2010, Chapter 3). As derived in Chapter 7 

of this Compendium, the GHG emissions attributed to Atlanta‘s MARTA system of rail transit 

stations and yards, bus depots, offices, and other structures represents an estimated 30% of  the 

agency‘s  2008 carbon footprint, principally from electricity generation and consumption.    

 

Since the late 1970s the United States has made remarkable progress in reducing the energy use 

and carbon intensity of its building stock and operations, with a 25 percent decline in energy use 

per square foot of commercial building space (Brown et al, 2005). This includes savings from 

retrofitting of energy efficient lighting fixtures and other green buildings practices associated 

with the adoption of the Leadership in Energy and Environmental Design (LEED ) certified 

activities. Retrofitting buildings with more energy efficient options includes periodic 

replacement with the latest lighting, heating and cooling system components. Renewable Energy 

(RE) installations can further increase the net efficiency of a building, and even be a source of 

offsetting revenue.  Where new or significantly expanded stations, depots, garages and office 

buildings are concerned, data on current and emerging green building practices is available from 

a variety of sources, including assessments based on the U.S. Green Building Council‘s LEED™ 

certification of buildings.
2
 Transit agencies can also help to reduce GHG emissions by 

supporting employer-based transportation demand management (TDM) strategies. Savings via 

reduced vehicle miles of travel can also come from flexible employee working programs, 

including telework, flex-time, and also rideshare programs.  

 

Not directly related to these actions, but providing a context for the empirical values reported in 

subsequent chapters, Chapter 2 below provides a concise description of how shifts away from 

private automobile travel to public transit ridership help to reduce GHG emissions in some 

                                           

2
 See www.usgbc.org/leed/ 

http://www.usgbc.org/leed/
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significant ways. The Chapter also provides an introduction to the use of life cycle assessment 

(or LCA) as a tool for measuring and comparing the greenhouse gas emissions associated with  

the provision of both public transit and private automobile ridership.  

 
1.3 Causes and Impacts of Global Climate Change  

 

The large majority of climate scientists today believe that human activity in the form of 

greenhouse gas production is contributing significantly to a long-term warming of the planet.. 

These gases, most notably emissions of carbon dioxide (CO2), but also significant amounts of 

non-CO2 GHGs and certain aerosols.
3
 result from the rapid growth in fossil fuel-supported 

industrial production, itself fueled by rapid growth in world population and increasing levels of 

individual resource consumption (of food, health care, material possessions, travel, etc.) that 

have accompanied rising incomes in the more developed countries  

 

Because of CO2‘s long ―shelf-life‖ in the atmosphere and large anthropogenic production 

relative to many other short-lived GHGs, CO2 is the most important greenhouse gas over the 

long-term.  However, the importance of non-CO2 GHGs should not be understated in that it is 

estimated that the combined impact of anthropogenic non-CO2 GHG emissions produced 

between 1750 and 2005 is considered to have caused a roughly equal amount of warming as 

anthropogenic emissions of CO2 caused during the same time period.  If the effects of the 

anthropogenic emissions of black carbon over this time period are added to the impact of 

anthropogenic non-CO2 GHG emissions, the combined impact exceeds that of anthropogenic 

CO2 emissions (though CO2 is still is more important because of its generally longer shelf-life).  

If actions are not taken to limit GHG emissions, scientists at the Intergovernmental Panel on 

Global Climate Change (IPCC) anticipate global average surface temperature rises by the end of 

this century in the range 2.0 to 4.5 degrees Centigrade (3.6 to 5.2 degrees Fahrenheit) resulting 

from a doubling of Carbon Dioxide (equivalent) over pre-industrial levels (IPCC, 2007a). Such 

temperature changes bring with them considerable potential to disrupt current crop cycles and to 

affect economic activity in a variety of harmful ways, including loss of land and infrastructures 

to rising sea levels (Meyer, 2006), and increases in the frequencies of intense precipitation 

events, droughts, and hurricanes (IPCC, 2007b).    

 

The Energy Information Administration (EIA)
4
 and World Resources Institute (WRI)

5
  estimate 

that almost 21% of worldwide GHGs are attributable to U.S. sources. Since 1980 total carbon 

emissions in the United States have increased by 0.8 percent each year. Even with the enactment 

of more stringent CAFE
6
 , building, and appliance standards, total U.S. carbon emissions are 

projected to grow by another 7 percent between 2007 and 2030, making reductions all the more 

urgent if we are to avoid the worst effects of a warming planet (EIA, 2009a).  Ongoing federally 

                                           

3
 Transit agencies may influence global climate through the emission of  tropospheric 

ozone and black carbon. Because of their short atmospheric lifetime – which ranges from weeks to 

months -- and uncertainties about their global warming potential, these substances are currently not 

included in official emissions estimates  (TRB, 2009). 
4
 See http://www.eia.doe.gov/oiaf/1605/ggrpt/ 

5
  See http://cait.wri.org/ for access to the World Resources Institute‘s Climate Analysis Indicators Tool 

6
 Corporate Average Fuel Efficiency 

http://www.eia.doe.gov/oiaf/1605/ggrpt/
http://cait.wri.org/
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mandated studies of the problem in the U.S. are seeking ways to mitigate future GHG emissions 

through a wide range of actions (NAS, 2009). Consistent with the recommendations for 

economy-wide actions coming out of recent U.S. National Academy of Sciences studies (NAS 

1992, 2008, 2009), and the sort of responses the transportation sector might take to reduce our 

society‘s dependence on fossil fuels (TRB, 2009: Appendix B), the practices described in this 

report represent a subset of actions focused on reducing GHG emissions from public transit 

systems.   

 

1.4 The U.S. Transportation Sector Emissions Profile 
 

The transportation sector currently accounts for some 27 percent of the nation‘s annual end-use 

GHGs: with 95% of these emissions in the form of carbon dioxide (CO2). This means that the 

U.S. transportation sector alone is responsible for almost 6% of worldwide GHG production. 

Transportation is also the fastest growing contributor to our economy‘s GHGs (see Figure 1.2), 

with expected improvements in the energy efficiency of vehicles forecast to be more than offset 

by anticipated growth in vehicle miles of travel (EIA, 2008, 2009b).  Furthermore, the 

transportation sector in the United States is the largest contributor of the aerosol black carbon 

(BC), primarily through the use of diesel fuel.  Aerosols are thought to have a net cooling effect 

on climate, but BC specifically is thought to have a warming effect.    

 

Figure 1.2 Transportation End-Use Contributions to U.S. CO2 Emissions 1990-2008 
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Although the percentages above are impressive, the particular constituents of the transportation-

sector emissions profile cause even more warming relative to other economic sectors.  New 

analysis shows that warming caused by the on-road transportation sector is enhanced by 

interactions between non-CO2 greenhouse gases and aerosols that can lead to the lengthening of 

the lifespan of methane (CH4) already present in the atmosphere, contribute substantially to the 

warming caused by tropospheric ozone (O3), and reduce the cooling properties of clouds, snow, 

and ice.  NASA Goddard Institute for Space Studies modeling of climate change impacts has led 

to the conclusion that when using constant year 2000 GHG emissions levels, on-road 

transportation is and will be the most significant economic sector responsible for positive forcing 

(warming) in the short term (about 20 years out).  By the end of the century, on-road 

transportation will still be the second most important anthropogenic perturbation on the climate, 

surpassed only by the power generation sector. Both of these sectors are represented in transit 

agency GHGs.  

 

 

     

Additional examples of current public transit agency greenhouse gas savings 
practices can be found in Current Practices in Greenhouse Gas Emissions 

Savings from Transit. TCRP Synthesis 84 (Gallivan and Grant, 2010).
http://www.trb.org/Publications/Blurbs/163614.aspx

 
 

 

The on-road transportation sector is the largest contributor of carbon monoxide (CO) emissions 

in the United States.  Though methane emissions for the sector are small relative to other 

economic sectors, the indirect effect of CO on existing CH4 in the atmosphere can have a 

substantial impact by extending CH4‘s lifespan and consequently increasing its global warming 

potential (GWP).  CO, along with Nitrogen Oxides (NOx) and non-methane volatile organic 

compounds (NMVOCs) from the sector, is also a precursor to the formation of O3, a greenhouse 

gas that causes atmospheric warming.   Additionally, black carbon (BC) from the sector is an 

aerosol that can cause warming through effects on cloud properties and settlement on ice and 

snow cover.  The on-road transportation sector is the largest contributor of black carbon aerosols 

in the United States.    

 

In contrast, the power generation sector, which is currently ranked above transportation in terms 

of gross GHG emissions, presently has a much smaller net-warming impact than the on-road 

transportation sector due primarily to the negative forcing (cooling) effect of sulfate aerosol 

emissions.  By the end of the century, this sector is projected to have a much stronger net-

positive forcing due to the long shelf-life of CO2 emissions in the atmosphere that eventually 

overcompensates for the effect of negative forcings within this sector.  Despite this, on-road 

transportation is still projected to be second in terms of warming by the end of the century, 

doubling its 2020 positive radiative forcing on the planet (Unger et al, 2010). 
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In addition to the GHGs and aerosols covered above, three additional classes of GHGs are 

associated with direct emissions from common leakages, such as leakages associated with 

building heating and cooling practices. These Perfluorocarbons (PFCs, with GWPs in the range 

5,200 to 12,200), Hydrofluorocarbons (GWP range 124 to 12,800) and sulfur hexaflourides (SF6, 

with GPWs in the range 16,300 to 22,800) are very effective absorbers of infrared radiation, so 

that even the leakage of small amounts of these gases contribute significantly to global warming. 

These are the sorts of emissions that need to be minimized, for example, through ―green 

building‖ practices. It is common practice to use global warming potential (GWP) conversion 

factors to aggregate overall greenhouse gas emissions into what are called CO2 equivalents 

(CO2e) by including alongside CO2 the per-gram warming impact of non-CO2 gases in relative 

comparison to CO2.  These typically include methane (CH4), with a per gram GWP 21 times 

that of CO2 over a 100-year period, and nitrous oxide (N2O) with a GWP 310 times that of 

carbon dioxide (IPCC, 2007).  This methodology is employed in several of the example transit 

activities and case studies in this compendium.  However, as noted previously, the indirect effect 

of transportation-specific non-CO2 greenhouse gas emissions, and the direct and indirect effect 

of black carbon have a substantial influence on the overall impact of the transportation sector 

emissions profile.  While the CO2e methodology employed in this compendium is generally 

useful to translate overall GHG impact relative to CO2 alone, inclusion of transportation-specific 

indirect and precursor GHGs and direct and indirect aerosol effects in this methodology may be 

beneficial in future analyses. 

 

Table 1.1 CO2 Emissions per Gallon of Fuel or per Kilowatt-Hour of Electricity 
 

Fuel Source: CO 2 Emissions Rates:

Gasoline
1  

19.4 lbs /gallon ( 8.81 kilograms/gallon)    

Diesel
1 

22.2 lbs/gallon (10.15 kilograms/gallon)

Ethanol
2

12.6 lbs/gallon (5.7 kilograms/gallon)

CNG
1

0.119 lbs/gallon (0.054 kilograms/gallon)

LNG
1

9.83 lbs/gallon (4.46 kilograms/gallon)

Biodiesel
2

21.2 lbs/gallon (9.6 kilograms/gallon)

Electricity
1,3 Ranges from .272 to 2.28 lbs/kilowatt-

hour (national average of 1.431 lbs/kWh)   

Data Sources:  

1. EPA (2008) Climate Leaders Greenhouse Gas 

Inventory Protocol Core Module Guidance. Direct 

Emissions from Mobile Combustion Sources. U.S. 

Environmental Protection Agency, EPA430-K-08-

004 Washington, D.C. 

www.epa.gov/stateply/documents/resources/m

obilesource_guidance.pdf

2. U.S. Department of Energy, Argonne National 
Laboratory
http://www.transportation.anl.gov/modeling_si

mulation/GREET/publications.html

3.Brown and Logan (2008).  
http://www.spp.gatech.edu/faculty/workingpapers.php

Tables B-8 and B-10  

Notes: CNG =Compressed Natural Gas, LNG = 
Liquefied Natural Gas
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1.5 Relating GHG Emissions to Energy Consumption 

 

CO2e estimates produced in transportation planning studies and project assessments are usually 

obtained by tracking the amount of energy used to power different types of vehicles (i.e. rather 

than measuring atmospheric CO2e concentrations directly).
7
 This means converting a gallon of 

fuel, or in the case of a mode powered by electricity, the number of kilowatt-hours (kWh) of 

electricity, into its CO2e. A number of readily accessible sources now provide conversion factors 

to help with this. However, it is important in using such sources to be aware of their underlying 

assumptions. Table 1.1 provides a set of CO2 conversion factors for the most commonly reported 

alternative motor fuels used in transit vehicles. The figures represent typical average emissions 

rates, reported per gallon of liquid or gaseous fuel or per kilowatt-hour (kWh) of electricity, as 

reported in NAFA-EDF (2009).  

 

The major determinant of how much CO2e is associated with a kilowatt-hour (kWh) of electricity 

depends principally on the fuel feedstock used to produce this electricity, and notably coal, 

nuclear, or hydro-power. As a result, significant state by state  differences exist. Utility generated 

electricity mainly from coal produced an upper value of over 2,000lbs of CO2 per kWh in a 

number of coal dominated power production states,,  while the States of Idaho and Washington 

but had values below 330 lbs/kWh in 2005, due to extensive use of hydro-electric power (Brown 

and Logan, 2008). For the purposes of this Compendium what matters most is our ability to 

compare the GHGs emitted across these different energy feedstocks (coal, petroleum, hydro, 

nuclear, solar and wind power) as well as across the different modes of transportation they 

enable, in a consistent manner.   

 
1.6 GHG Emissions Calculations 

 

While most transit agency decision-making contexts warrant evaluation of GHG emissions, the 

majority of transit agency GHG emissions arise from the energy and material processes 

supporting vehicle fleet propulsion. Therefore, vehicle and fuel procurement decisions involve 

considerable GHG emissions implications. Publicly available GHG emissions calculators fall 

under two main categories, each one reflecting different emerging needs of transit agencies for 

GHG reporting (Weigel et al, 2010):   

  

1. Registry/inventory based calculators, most suitable for standardized voluntary reporting, 

carbon trading, and regulatory compliance.  

  

2. Life cycle analysis (LCA) calculatorssuitable for demonstrating the benefits of transit over 

private automobile travel, or the advantages of one type of transit sub-mode or vehicle type over 

another.   

 

Inventory-based calculators are generally consistent in their approach to GHG emissions 

quantification; however, their limited focus constrains their use for comprehensive GHG 

                                           

7
 The direct measurement of CO2 is being done at thousands of sites around the world.  In the U.S this includes the 

VULCAN project , see:  http://www.purdue.edu/eas/carbon/vulcan/index.php 

http://www.purdue.edu/eas/carbon/vulcan/index.php


 

 

10 

emissions estimation. LCA calculators represent a growing attention to the ―upstream‖ and 

―downstream‖ GHG emissions associated with vehicle and fuel supply chains. With the passage 

of California‘s 2006 Global Warming Solutions Act (AB-32), the importance of more 

comprehensive LCA-based analyses is likely to increase, and to influence the way carbon 

registries accept reporting of GHG savings in the future. Both methods give most of their 

attention to the GHG (and energy) savings resulting from the use of alterative vehicle/fuel 

combinations that have immediate relevance to vehicle fleet and fuel procurement decisions. 

Federal data collection and reporting requirements, notably through the Federal Transit 

Administration‘s (FTA) National Transit Database (NTD), support the quantification of these 

actions by collecting fuel consumption, electricity use, and vehicle miles of travel data on a year 

by year basis. 

 

The suitability and utility of a GHG emissions calculator depends upon the emissions reporting 

needs of the user. The inventory calculators that are based on a reporting protocol (APTA, 2009; 

EA 2009; ICLEI, 2009; The Climate Registry, 2009; WRI, 2009) follow what has become a 

standard ―three-scope‖ division of emissions: direct emissions controlled by the agency (Scope 

1), indirect emissions that occur outside of the agency (Scope 2), and  ―optional‖ emissions 

(Scope 3). With respect to revenue transit vehicle emissions, vehicle fuel combustion and 

refrigerant leaks fall under Scope 1, purchased electrical energy falls under Scope 2 (unless 

installing renewable energy onsite (e.g., solar or wind)), and upstream and downstream vehicle 

and fuel lifecycle emissions fall under Scope 3. The assumption of Scopes 2 and 3 is that these 

emissions would be accounted for as Scope 1 emissions by the organizations or entities that 

directly control them. GHG emissions avoidance due to a mode shift in favor of public transit, 

including congestion reduction and land use–related travel reduction benefits also come under 

Scope 3. The agency specific carbon footprint presented in Chapter 7 of this Compendium is 

based on this three scope approach as described in the American Public Transportation 

Association‘s ―Recommended Practice for Quantifying Greenhouse Gas Emissions from 

Transit‖ (APTA, 2009). 

 

In addition to serving the requirements of emissions reporting, the calculator outputs should also 

support an internal evaluation of the emissions efficiency of fuel and vehicle procurement 

decisions. Such efficiency may be accounted for in terms of energy inputs (GHGs per gasoline 

gallon equivalent of fuel used), operational activity (GHGs per mile), or service output (GHGs 

per passenger-mile). An emission per passenger-mile based metric provides a widely applicable 

normalization that allows for comparison of GHG emissions efficiencies both across and within 

transportation modes.  

 

While the integration of LCA and inventory/registry based GHG calculators evolves towards a 

common set of procedures, we have chosen in this Compendium to demonstrate the value of both 

approaches.  In Chapter 3 we report on both the direct and indirect (largely ―upstream‖) 

emissions savings associated with different fleet procurement options. Chapter 7 provides an 

example of how such indirect savings can be captured in the 3-Scope, inventory based protocol 

for GHG reporting proposed by APTA (2009).  
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2. TRANSIT’S ROLE IN MITIGATING GLOBAL CLIMATE CHANGE 

 

2.1 Introduction  

 
Public transportation systems play an  important role in reducing both the nation‘s energy 

consumption and its production of GHG emissions.  Transit agencies have also been widening 

this GHG emissions gap between private automobile travel and public transit ridership by 

reducing their own GHG emissions. Significant GHG reductions can result from increasing 

transit ridership, whether considering the  direct vehicle propulsion based emissions, or broader 

life-cycle assessments including vehicle, fuel, and infrastructure provision.  

 

2.2 Riding Transit Can Reduce Vehicle-Combustion Related Emissions  
 

“Tailpipe” Emissions: While the average single occupant auto emits 0.96 pounds of CO2  per 

passenger mile, the average public transit bus mile emitted only 0.64 pounds, while a (nationally 

averaged) bus with all seats taken would emit only 0.18 pounds per passenger mile. Similarly 

large, and potentially much larger savings are also possible from rail and vanpool services (see 

Figure 2.1).    

 

Table 2.1 GHG Reductions Due to Public Transit: Recent Studies 

               

Study Findings - Annual Emissions Reductions

Hodges, 2010

While the average single occupant auto emits 0.96 pounds of CO2  

per passenger mile, the average public transit bus mile emitted only 

0.64 pounds per passenger mile in 2008, with a ridership weighted 

average over all public transit modes of 0.45 pound per passenger 

mile

Bailey, 2007;             

Bailey and 

Mokhtarian, 2008

Transit ridership saved more than 8.4 million metric tons of CO2 in 

calendar year 2004 

Southworth & 

Sonnenberg, 2007

Public transit systems operated in the nation‘s largest 100 

metropolitan areas, when averaged over all mode/service types, 

produced less than 65% of the emissions of the equivalent number 

of private auto passenger miles on an annual basis

 
  

With travel by public transit modes accounting for less than 4% of all person miles of travel in 

the U.S (BTS, 2009), considerable additional potential to reduce nationwide GHG emissions 

resides in convincing Americans to travel less by low occupancy automobiles, pickup trucks and 

sport utility vehicles, in favor of  higher occupancy public transit alternatives.  
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Figure 2.1 Estimated CO2 Emissions per Passenger Mile: Average and Full Vehicle 

Occupancies 

 

                  
            Source: Hodges (2010)   

          Notes: The average number of passengers for private auto work trips = 1.14, and 1.63 for general   

          trips. 

 

Transit-Supportive Land Development Benefits: Public transit systems can also influence 

tripmaking, and therefore direct, vehicle-combustion based GHG emissions, through the land use 

arrangements they encourage and help to sustain. More compact and mixed land use   

arrangements can reduce direct, vehicle propulsion-based GHG emissions by reducing vehicle 

trip frequencies and trip lengths.  

 

At the local level this effect can be felt through the siting of individual transit facilities. Such 

facilities have often been catalysts for a change in travel choices. To encourage downtown 

development the Chattanooga Area Regional Transit Authority (CARTA) developed peripheral 

parking garages with free shuttle service. By constructing parking facilities at either end of the 

business district the system intercepts commuters and visitors before they drive into the city 

center, reducing traffic problems. Free shuttle buses are financed through the garages‘ parking 

revenues. These buses depart from each garage every five minutes all day, every day, and pass 

within walking distance of most downtown destinations. The electric powered shuttles transport 

approximately one million riders each year, while also making shuttle-served property attractive 

to businesses (EPA, 2006). 
  

 

At the regional or metropolitan level, transit-oriented development (TOD) is one of the most 

effective strategies for linking land use and transit investment at specific sites. TCRP Report 

128: Effects of Transit-Oriented Development (TOD) on Housing, Parking, and Travel, surveyed 

17 housing projects that combined compact land use with transit access and found that these 



 

 

15 

projects averaged 44 percent fewer vehicle trips per weekday than that estimated by the Institute 

for Transportation Engineers (ITE) manual for a typical housing development (Arrington and 

Cervero, 2008). 

 

A 2008 study in Minneapolis-St-Paul found that comprehensive transit and smart growth policies 

will be essential to meeting Minnesota‘s goal to reduce GHG emissions 15% below 2005 levels 

by 2015. The study found that an extensive light rail transit (LRT) or bus rapid transit (BRT) 

network in the Twin Cities region might reduce statewide vehicle miles of travel by 2.2% in 

2025.  Improvements to the region‘s existing transit system could reduce statewide VMT by 

0.3% (Boies et al, 2008). 

 

In Portland, Oregon, studies of household location and travel behavior have indicated that  transit 

service and mixed use development have had an important influence on reducing  automobile 

trips, and even auto ownership.  For example, neighborhoods with mixed use development and 

transit service had a 58% auto share for neighborhood trips and a VMT per capita of 9.8.  This 

compared to a regional average of 87.3% auto share and a 21.8 VMT per capita.  In Arlington 

County, Virginia, transit ridership in corridors served by regional rail service had 39% commute 

share by transit whereas the commute share outside the corridors was 17%.  In the San Francisco 

Bay Area, the Bay Area Air Quality Management District approved guidelines in 2010 that gives 

cities and counties numerical pollution thresholds to use in deciding whether to require 

developers to conduct studies on ways to remove pollution during the land-use review process.  

Under the guidelines, developers planning projects expected to generate more than 1,100 metric 

tons of greenhouse gases a year — the amount from 55 typical new single-family houses — 

would have to conduct an environmental review on ways to reduce or offset pollution.  To 

reduce their carbon footprint, developers could consider locating projects near bus and train 

stations, creating shuttles to transit centers, or installing solar energy panels on buildings and 

using energy-saving insulation. 

 

Bailey et al (2008) found that the availability of a rail station within ¾ mile and a bus stop within 

¼ mile of one‘s residence is associated with fewer miles driven: reducing aggregate, nationwide 

vehicular travel on the order 102.2 billion miles in 2004. This translates into an additional 3.4 

billion gallons saved due to transit‘s secondary effects though more efficient urban form. At 8.9 

Kg of CO2 per gallon of gasoline this in turn translates into a reduction of 37 million metric tons 

of GHGs emitted in 2004 due to the presence and operation of the nation‘s public transit 

systems.
8
 

 

Based on an analysis of household travel data sampled from many different urban areas, Bento et 

al (2005) estimate that a 10% reduction in distance to the nearest transit stop reduces annual 

average vehicle miles of travel by about one percent, while in the 26 cities with a rail system a 

10% increase in rail route miles reduces annual vehicle miles of travel by 0.2%. They also found 

that a 10% increase in distance to the nearest transit stop raised the probability of owning one 

vehicle by about 3%; while greater rail supply reduced the likelihood of a vehicle purchase, 

                                           

8
 A number of other studies, including those reported in Davis and Hale (2007) and by APTA (2009), 

while correlative rather than causal, also find large secondary travel reduction multipliers associated with 

transit‘s interaction with urban form. 



 

 

16 

conditional on a city having a rail system to begin with. Brown et al (2008, 2009) show a similar 

association, with a positive correlation between rail transit mileage and lower carbon emissions 

per capita among the nation‘s 100 largest metropolitan areas. Chen et al (2008) found that higher 

job accessibility to work by public transit decreases the likelihood of households owning more 

cars in the New York metropolitan region, as well as deterring people from using the auto for 

home-based work tours: while longer distances to public transit at both home and work increased 

the propensity to use the automobile in home-based work tours. They also found that maximizing 

the transit-enabled job accessibility of all locations in such home-based tours helped to deter 

automobile use to some degree.  

 

The recent Report to Congress (USDOT, 2010) describes a range of potential GHG reductions 

from land use strategies. Three studies were highlighted in the Report to Congress – the Urban 

Land Institute‘s Growing Cooler report (Ewing et al, 2008); the Urban Land Institute‘s Moving 

Cooler report (Cambridge Systematics, 2009); and the Transportation Research Board‘s Special 

Report 298: Driving and the Built Environment (TRB 2009). The Report to Congress took the 

middle estimate of the study ranges and adjusted them to the same baseline. This yielded a 

reduction of U.S. transportation GHG emissions of 1 to 4 percent in 2030 and 3 to 8 percent in 

2050 for compact land use strategies. The TRB Special Report 298 Driving and the Built 

Environment (TRB 2009) concluded that ―the literature suggests that doubling residential density 

across a metropolitan area might lower household VMT by about 5 to 12%, and perhaps as much 

as 25%, if coupled with higher employment concentrations, significant public transit 

improvements, mixed uses and other supportive demand management measures‖. All three 

reports concluded that transit, non-motorized improvements, and pricing would be most effective 

over the long term if they were implemented in combination with more compact and better 

integrated land use patterns that reduce overall trip lengths and make alternative modes viable as 

a means of travel for many trips. 

 

2.3 Reduced Life Cycle Emissions  
 

Direct, Upstream and Downstream Emissions: Before any fossil fuel is burned in a vehicle‘s 

engine, or electricity used for vehicle propulsion, a good deal of energy has already been 

expended, and GHGs produced in the manufacture and  delivery of the fuel, the vehicle, the 

roadways and the many other built infrastructures that support these vehicle operations. The US 

Environmental Protection Agency (US EPA, 2006) refers to these emissions as either  

―upstream‖ emissions, produced during the processes of extraction (or in the case of biofuels, 

harvest), manufacture, assembly, and transport. In the case of transit systems this infrastructure 

includes rail tracks, stations, depots, bus shelters, park-and-ride structures and administrative 

offices owned or operated by the transit agency, as well as any dedicated (e.g. bus-only lane) 

roadways. There can also be  downstream emissions associated with the processes involved in 

disposal or recycling of vehicles and their parts (e.g. tires), used oils and other spent lubricants, 

and with discarded building contents (e.g. old furniture, used light bulbs) and construction 

materials. These upstream and downstream emission are often grouped together and termed 

―indirect‖ emissions.  
 

Figure 2.2 shows some of the results of a recent study by Chester and Horvath (2008). In all 

cases, for the systems they evaluated, well patronized public bus, light rail, and heavy rail transit 
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services produce much lower upstream as well as lower direct emissions per passenger mile than 

does private automobile travel. It is also clear from this study, however, that ridership levels play 

a large role in transit‘s ability to reduce travel related GHGs.  More riders means more fuel saved 

and fewer GHGs produced. 
 

Figure 2.2 Direct (Vehicle Propulsion) and Indirect Emissions for Selected Passenger 

Modes*      
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Source: Derived from Chester and Horvath (2008), Tables 33 and 76.  Notes: BART = San Francisco (CA) Bay 

Area Rapid Transit, electrified heavy rail , Caltrain (CA) = diesel  powered heavy rail;    Muni  = San Francisco 

(CA) electric light rail Municipal Railroad; Green Line  = Boston  (Mass) electric    light rail Boston Green Line; 

Bus = 40-foot diesel powered urban transit bus.  MJ = megajoule, g = gram, PMT = passenger miles of travel. 

 

 

2.4 Summary of GHG Emissions Reduction Opportunities 

 

Combining the direct plus indirect upstream and downstream emissions reduction possibilities 

described above produces the complete life-cycle assessment approach shown in Figure 2.3.  

Examples of both direct and indirect emissions reduction actions are found in this Compendium. 
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Figure 2.3 Greenhouse Gas Savings Opportunities from Public Transit 

                 

Primary Savings: Transit 
enabled vehicle emissions 
reductions from the use of  
lower GHG per gallon (or 
per kWh) per person mile 
of travel , including savings 
from congestion reduction  

Secondary Savings: Transit-
enabled mixed-use and 
more compact land 
development leading to 
fewer and shorter vehicle 
trips. 

Direct, End-Use (Tailpipe”) 
Vehicle Emissions 

Indirect Supply-Chain
Determined Emissions   

Upstream Savings:
Reduced GHG emissions 
associated with the 
manufacture of fuels, 
vehicles, supporting built 
infrastructures and 
workforce practices.

Downstream Savings:
Reduced GHG emissions 
associated with the re-use 
and recycling of products (e.g. 
vehicles) and materials. 

Complete Life-Cycle Emissions
 

  Source: Based on APTA (2009) 
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3. PLANNING FOR SYSTEM EXPANSIONS AND MAJOR CONSTRUCTION 

PROJECTS   

3.1 Introduction  

 

Any significant expansion of transit service within a region will produce significant GHG 

emissions (although, as demonstrated in Chapter 2, the net result may be to reduce emissions    

account if auto travel and its associated system expansion needs are taken into account). This is 

especially true if the expansion involves the preparation of new guideways associated with  

surface level, above ground, or underground rail projects. Some fixed route bus projects also 

may require improvements to sections of the highway network, as well as the construction of 

new park-and-ride lots, bus stations, maintenance depots, garages, fuel storage facilities, 

warehousing space and other buildings.  GHG emissions associated with new building practices 

are covered in Chapter 6 of this Compendium. The focus here is on system level decision-

making practices and the construction technologies they subsequently bring into play.  

 

Three elements, or phases, of activity can be identified with system expansions and major transit 

agency construction projects (see Figure 3.1). All three phases can have a substantive impact on 

the GHG emissions profile of a transit agency.   

 

Figure 3.1 System Planning, Project Development, and Construction Issues 
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In considering each of these three phases in turn below, transit agency staff must become 

familiar with: 
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1.  the role of GHG emissions assessment within the regional transportation planning 

process 

2. appropriate measures of GHG emissions impacts within this process, on a project by 

project basis, and  

3. the tools and methods available for quantifying project specific GHG emissions, 

including the indirect life-cycle emissions associated with projects involving construction 

of new transit guideways and other transit service supporting facilities. 

 

3.2 Incorporating GHG Impacts Into System Planning  

 

Transit agencies are important partners in the statewide and especially the metropolitan 

transportation planning process.  It is during this process that important decisions are made 

concerning the future characteristics of the transportation system, such as what priority will be 

given to different modal investments, what policies and programs need to be in place to enhance 

system performance and where the funding will come from for prospective investments.  Figure 

3.2 shows the key steps in this planning process.   

 
Figure 3.2 Steps in the Transportation Planning Process 
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Transit agencies need to participate in every step of this process, from determining a regional 

vision to monitoring system operations.  Considering GHG emissions during the system planning 

process can be done in a variety of ways.  Given the often ―high level‖ nature of the planning 

process, such a consideration is at a very general level, for example, examining different land use 

scenarios and corresponding transportation system configurations to see how each relates to the 

region‘s goals and objectives.   

 

Figure 3.3. Land Use/Transit Scenarios to Reduce GHG Emissions    
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           Source: Fregonese Associates., 2009 (re-drawn figure)   

 

Figure 3.3 shows a common way of indicating the impact of scenarios on important planning 

factors, in this case, CO2 emissions.  This example comes from the Southern California 

Association of Governments (SCAG) representing the Los Angeles metropolitan area. This 

analysis was in response to state legislation that requires each Metropolitan Planning 

Organization (MPO) to develop a sustainable communities strategy (SCS) for reducing carbon 

emissions. Alternatively, if the GHG emissions reduction targets cannot be met through the SCS, 

an Alternative Planning Strategy (APS) may be developed showing how those targets would be 

achieved through alternative development patterns, infrastructure, or additional transportation 

measures  or policies. In the case shown in Figure 3.3, new transportation investments would be 

needed especially in upgrading some major corridors with local bus transit to rapid service. 
9
 

 

As concern for climate change and GHG emissions grows, it seems likely that such concern will 

manifest itself in each step of the planning process (ICF International, 2008). For example, a 

                                           

9
 Although the Envision scenario in Figure 3.3 showed a higher level of GHG emissions reduction, 

relative to the ―conceptual‖ scenario, it did so by not meeting city and county forecasts of population and 

employment growth (Fregonese Associates, 2009). 
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regional vision and the corresponding goals statement could present minimizing pollutant 

emissions, including GHG emissions, as one of the important directions for the region‘s 

transportation system.  Identifying different improvement strategies (step 2 in Figure 3.2) that are 

targeted at reducing GHG emissions then become  part of the alternatives identification process.  

Such planning is usually undertaken by transit agencies when major system-level investment in 

transit is being considered, or when decisions need to be made on what transit technology (for 

example, heavy rail, light rail, bus rapid transit, etc.) should be adopted regionally, or in specific 

corridors. Systems and corridor-level planning are key steps in project development here, since it 

as at these points that the context is set for the selection of a project for implementation (FTA 

2010b). 

 
Figure 3.4 Assessing GHG Emissions in Different System Planning Scenarios, Puget Sound 
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Source: PSRC, 2010 (re-drawn figure) 

 

A second example of a system-level planning approach, shown in Figure 3.4, also comes from 

Seattle, Washington. The Washington legislature has passed legislation setting statewide goals to 

reduce GHG emissions to 1990 levels by 2020, 25 percent below 1990 levels by 2035, and 50 
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percent below 1990 levels by 2050 (PSRC, 2010). According to the final environmental impact 

statement for the region‘s 2040 transportation plan, ―the state has set benchmarks for reducing 

annual statewide per capita vehicle miles traveled (VMT). These benchmarks are to decrease 

annual statewide VMT per capita by 18 percent by 2020, 30 percent by 2035, and 50 percent by 

2050. These reductions are from a forecasted statewide VMT baseline of 75 billion in 2020.‖  As 

part of the metropolitan transportation plan update, each alternative was evaluated for GHG 

emissions as well as total and per capita VMT.  A four-part Greenhouse Gas Strategy to reduce 

GHG emissions was included in the plan, focusing on land use, transportation choices, user fees, 

and technology strategies.  

 

Table 3.1 CO2e Summary Emission Burden Assuming Current LRT Energy Profile and 

Carbon Free Electric Profile, Sound Transit 

 

  

Mode
No Build 

2030

 2030 With ST2 Plan - 

Current Energy Profile

 2030 With ST2 Plan - 

Carbon Free Energy Profile

Roadways

Daily Auto VMT 99,398,539 98,536,539 98,536,539

Total Daily CO2e (metric tons) 45,485 45,091 45,091

% Change from Baseline - -0.87% -0.87%

Sound Transit Buses

Daily Bus VMT 50,420 42,427 42,427

Total Daily CO2e (metric tons) 125 105 105

% Change from Baseline - -15.85% -15.85%

Other Buses

Daily Bus VMT 166,497 122,704 122,704

Total Daily CO2e (metric tons) 431 318 318

% Change from Baseline - -26.30% -26.30%

LRT

Daily LRT VMT 25,587 92,587 92,587

Total Daily CO2e (metric tons) 71 258 0

% Change from Baseline - 261.86% -

Commuter Rail

Daily Commuter Rail VMT 7,956 10,063 10,063

Total Daily CO2e (metric tons) 54 68 68

% Change from Baseline - 26.48% 26.48%

TOTAL (Roadways,LRT & Commuter Rail, Buses)

Total Daily CO2e (metric tons) 46,166.60 45,850.20 45,581.90

Total Annual (metric tons) 14,080,813 13,981,261 13,902,480

% Change from No Build - -0.71% -1.11%
 

   Source: Sound Transit, 2008 (re-drawn) 
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Another systems level planning process focuses specifically on different transit system 

technologies and network configurations to be selected: for example, when a decision over 

whether heavy rail, light rail, bus rapid transit, etc. should be adopted regionally or in specific 

corridors. An example of this type of planning is also found in Seattle, where Sound Transit, the 

region‘s express bus and rail transit agency, was developing a regional transit investment 

strategy that was going to be placed before the voters in a region-wide referendum.  Extensive 

planning was undertaken in numerous corridors, with a wide range of evaluation criteria and 

performance measures being considered.   

 

Table 3.1 shows some of the results of the analysis that was included in the planning effort, in 

this case, focusing on GHG gas emissions and change in VMT.  In 2030, the build alternative 

was predicted to reduce overall regional CO2e emissions by approximately 326 metric tons daily, 

or 99,552 metric tons annually using current electric power fuel mix assumptions. Under a 

potential future scenario in which all electricity was generated using non-carbon emitting 

sources, the CO2e emissions reduction is about 585 metric tons daily or 178,334 metric tons 

annually. To estimate the GHG impacts of the plan, transportation modeling estimates of VMT 

by mode and vehicle type (i.e. cars, LRT, buses, commuter rail) was converted into energy 

consumption. Then depending on the energy source, the energy consumption of the various  

modes was converted into CO2 equivalents (CO2e). 

 
3.3 Considering GHG Emissions in Project Development  

 

The need for a system improvement often leads to a project development process, which is a 

more detailed planning and engineering effort to provide the information needed to construct or 

implement a project. For projects that could have significant environmental impacts, project 

development also includes environmental analyses and studies that identify potential impacts and 

corresponding mitigation strategies.  The degree of complexity and effort associated with project  

development will depend on the size of the project and the likely impacts.  For example, minor 

improvements to bus bays or station access points still go through some form of project 

development effort, although nowhere near the level of effort as would be required for a new 

light rail line or bus rapid transit facility.   

 

For projects that go through an environmental review process, GHG emissions could be 

considered in many different steps.  Defining a scope for environmental review includes having 

all agencies potentially concerned with an environmental analysis agree upfront with the scope 

of the analysis effort.  The scope includes the geographic boundaries, types of impacts, needed 

data, required methodologies and types of mitigation strategies that should be considered.  The 

scoping process is not an analysis-focused process.  In essence, it is a process of developing a 

consensus among the major stakeholders for a particular project that some set of environmental 

impacts, certain types of data, and proposed analysis methods should be used during the 

environmental review process.  The role of GHG analysis in this stage is thus being identified by 

major stakeholders as one of the analyses that should be undertaken during the environmental 

review process.   

 

Identifying a purpose and need for the project planning process is a legislatively required action 

that explains to the public and decision makers that the expenditure of funds is necessary and 
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worthwhile and that priority for the project relative to other needed projects is warranted. The 

project purpose and need also drives the process for alternatives consideration, in-depth analysis, 

and ultimate selection.  In this early stage of the environmental review process, it is not likely 

that formal analyses will be undertaken to show potential GHG impacts.   

 

The next step encompasses effective alternatives analysis—identification of the project 

evaluation criteria, analysis of individual project alternatives, and selection of the preferred 

alternative.  To the extent that the scoping process has identified GHG emissions as a critical 

impact factor, these steps will be the core technical process for analyzing potential GHG impacts.  

Similar to previous steps in statewide/regional and corridor transportation planning, the 

identification of project evaluation criteria will most likely borrow from national and other 

sources.  For example, tons of GHG emissions or GHG emissions per traveler could be used as 

criteria for assessing differences among alternatives.  The actual analysis of alternatives would 

use these criteria as a guide for producing the assessment information that will be used to 

identify a preferred alternative.   

 

The most important decision points in project planning are the decisions that result in an adopted 

plan or in the projects that will be implemented.  Thus, making sure that the prioritization criteria 

are consistent across the different levels of decisions is important.  This is particularly true with 

GHG emissions-related projects.  Often, the results of the planning process are not reflected in 

the actual projects that are programmed (in many cases, different groups do the planning and the 

programming, and the influence of federal funding programs can be critical in determining which 

projects are funded).  If plans and policies identify GHG emission reduction strategies as 

important priorities for a state or region, but the programming process does not consider related 

criteria or the criteria are not given adequate consideration, it is not likely that the results of GHG 

analysis will have much influence on the types of investments that will occur in a jurisdiction.   
 

For major capital transit projects, the Federal Transit Administration (FTA) has defined an 

alternatives analysis process that identifies the key steps in taking a project from concept to final 

design. The role of GHG analysis in this process is primarily one of assessing the GHG 

emissions associated with each alternative and the change in emissions relative to some base 

case.  As one proceeds through this process, the level of specificity of the alternatives and of the 

final locally preferred alternative (LPA) becomes much greater. For example, FTA guidance 

states that the final definitions of the alternatives should consist of the plan and profile drawings, 

cross-section drawings for various line segments, conceptual drawing of stations and park/ride 

lots, and proposed specifications developed in a conceptual engineering effort (FTA, 2010c).   

Final service operating plans reflect the equilibration of transit service levels with travel 

demand.  The definition of alternatives should include:  

 

1. Headway assumptions 

2. Peak hour peak direction volume (at peak load point); 

3. Peak hour vehicle loadings; 

4. Weekday vehicle miles and hours for each route; and  

5. Adopted vehicle loading standards 
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Each of these could have a significant impact on ridership and ultimately on the GHG emissions 

associated with each alternative.  For example, intelligent vehicle spacing technology for 

coordinating train station arrivals and departures, by monitoring and adapting running speeds, 

can help to optimize the use of energy captured by wayside regenerative braking systems that use 

ultracapacitors suited to rapid collection and discharge of electric power (see Chapter 4). In such 

cases the limited storage capability of many current wayside energy storage systems places a 

premium on train scheduling, allowing energy stored from braking to be used productively, 

notably to accelerate trains out of stations, rather than losing much of this energy to heat 

dissipation (avoiding unwanted line voltage build-up).   

 

An example of project-level consideration of GHG emissions is found in the environmental 

analysis for the Columbia River Crossing project in Portland, Oregon (CRC, 2008).  This  is a 

bridge, transit and highway project whose purpose is to improve travel efficiency and safety in 

Interstate 5 traveling over the Columbia River in Portland, OR and Vancouver, WA.  The project 

consists of a five-mile section that includes a new bridge crossing and numerous interchange 

improvements. The Draft Environmental Impact Statement (DEIS) for the project identified five 

alternatives for consideration: no build, replacement of the I-5 bridge along with bus rapid 

transit, replacement of the bridge along with light rail, a supplemental bridge along with bus 

rapid transit and a supplemental bridge along with light rail. The GHG emission analysis 

included both short-term construction related effects and long-term effects relating to the 

operations of both the highway and transit services for the project.  For each mode and project 

phase, GHG emissions were estimated based on the energy consumed.  For example, the 

estimated GHG emissions level for transit operations was based on the following equation: 

 
   EM = E x EF x CDE           (3.1) 
 

 where:  EM =  Emissions of carbon dioxide (lbs. of CO2) 

   E  =  Energy (fuel) consumed (gallons or kWh) 

   EF = Emission conversion factor by fuel type 

   CDE = Carbon dioxide equivalents factor (100/95) (CO2 emissions  

   are assumed to account for 95% of GHGs emitted by transportation). 
 

For transit operations, the energy consumed was estimated using the following equation: 

 

E = V x L x FCR x CF           (3.2)  

 

 where:  E = Energy consumed (BTU) 

   V = Daily volume of light rail cars 

   L = Length of rail segment (miles) 

   FCR = Fuel consumption rate based on average operating speed  

    (kWh/mile) 

   CF = Fuel conversion factor (BTU/KWh) 

 

Table 3.2 shows the estimated impact of each alternative on CO2e emissions.  The replacement 

crossing with associated highway improvements, a toll on I-5, and light rail or bus rapid transit 

(Alternative 2 or 3) would reduce CO2e emissions by about 2 or 3 percent compared to the No-
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Build Alternative. This reduction is due to fewer auto trips over the river, more people riding on 

public transit, and reduced traffic congestion which also improves fuel efficiency.  Alternatives 4 

and 5 were estimated to increase CO2e emissions relative to the No-Build alternative, primarily 

because they include aggressive increases in the frequency of light rail or bus rapid transit and 

other bus routes without realizing proportional decreases in auto travel.  

 

Table 3.2 CO2 Emissions Analysis for Columbia River Crossing 

 

Full  Alternatives Summary of Daily Energy Use and CO2 Emissions 

                         Alternative

Energy 

Consumed 

(mBtu)

Electricity 

Consumed 

(mBtu)

Gasoline 

consumed 

(gal)

Bio/Diesel 

Consumed 

(gal)

 CO2e 

Emissions  

(tons)

Existing 4,014.4 77,355.3 8,343.0 19,585.2 342.5

Alternative 1 (No-Build) 5,384.2 152,628.0 10,661.0 25,536.6 463.3

Alternative 2 (Repalcement, BRT) 5,248.1 152,628.0 9,598.0 25,520.9 452.3

Alternative 3 (Replacement, LRT) 5,242.3 162,063.3 9,598.0 25,231.8 452.4

Alternative 4 (Supplemental, BRT) 5,729.2 160,645.6 9,622.0 28,790.3 493.7

Alternative 5 (Supplemental, LRT) 5,687.1 172,053.3 9,622.0 28,172.0 490.7
 

Source:  (CRC, 2008, re-drawn) 
 

The DEIS identified several strategies that should be considered to mitigate the impact of 

project-related GHG emissions, including: 

 

1. Implement programs that further encourage use of public transit 

2. Promote compact and transit-oriented development that encourages walking 

3. Provide safe and well-lighted sidewalks to encourage walking 

4. Provide safe and more accessible connections to paths for bicyclists and pedestrians 

5. Offer ride-share and commute choice programs 

6. Construct with materials and build systems that meet efficiency standards for equipment 

and lighting design 

7. Recycle building materials, such as concrete, from project 

8. Use sustainable energy to provide electricity for lighting and other operational demands 

9. Plant vegetation to absorb or offset carbon emissions 

10. Promote fuel-efficiency improvements, such as a low carbon fuel standard 

11. Promote diesel engine emission reduction 

12. Consider clean energy certificates or other carbon offsets for energy used 

 

This project is a good example of how construction-related emissions can be considered as part 

of a study. The DEIS also focused attention on the potential impacts of a changing climate on the 

project alternatives, an issue of particular concern given the crossing of a river. 

 

3.4 GHG Accounting in the Construction Phase 

 

―Given the importance of a life-cycle approach to GHG emissions analysis, there is uncertainty 

regarding the need to estimate emissions resulting from transportation system construction and 
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maintenance, as opposed to system use. Methods to estimate construction GHG emissions are 

poorly developed.‖ (ICF International, 2008) 
 

The above quote is taken from a recent review of state DOT and MPO efforts to include ‗climate 

change‘ concerns into the transportation planning process. The same uncertainly currently affects 

transit agency planning agencies. To date, transit agencies have focused on estimating the GHG 

emissions associated with the use of their transportation vehicles and supporting facilities. 

However, agencies are now also starting to consider quantifying the emissions associated with 

construction as well as maintenance of these facilities. Including an estimate for GHG emissions 

for construction in a planning or project development study is one step towards a more complete 

life cycle analysis approach to the study. Doing so can also identify opportunities for significant 

cost savings associated with reduced materials acquisition, energy consumption, and materials 

disposal costs.       

 

Capital projects typically lead to construction activities that produce significant GHG emissions, 

as a consequence of raw materials conversion (e.g. from limestone to cement), structural 

manufacture and installation, and transportation of materials, workers, and waste to/from 

construction sites. Much of this activity is out-sourced to private contractors; while a few of the 

larger transit agencies may also carry out some construction projects using in-house resources. A 

recent review of GHG reducing construction practices for the US Environmental Protection 

Agency concluded that: 

 

―Although a comprehensive construction- related life cycle emissions inventory has not been 

conducted, there clearly are opportunities to reduce emissions by recycling and/or reusing 

materials, improving shipping methods, and/or selecting different materials‖.  (EPA, 2009a) 

 

Transit agencies can take actions under three broad GHG reducing strategies (Gallivan and 

Grant, 2010: 

  

1. Use  of alternative, including recycled construction materials   

2. Use of  more energy efficient construction equipment, and 

3. Reduction of emissions associated with transporting workers and materials to, from, and 

within construction sites. 

  

While transit agencies cannot regulate the activities of their contractors as easily as they can their 

own employees, they can pay attention to the following opportunities when developing support 

contracts, to try to ensure that the most effective GHG reducing construction practices are being 

applied. Cost savings are possible where GHG reductions are the result of lower energy costs, or 

reductions in the volume of materials purchased.   

 
Alternative Construction Materials: Depending on the type of capital construction project, 

(e.g. rail line or bus lane system expansion, a great deal of concrete, steel, asphalt, wood, or 

industrial composites may be used. There is currently no widely accepted procedure for 

estimating the GHG emissions from the use of such materials in  transit or non-transit projects. 

With this in mind, the following information should be seen as a general guide to the sort of 

GHG emissions involved in construction projects.  
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The life-cycle GHG (CO2e) emissions associated with four different rail transit and one high 

speed rail system
10

 were estimated by Chester and Horvath (2008), including the emissions 

associated with the built infrastructure required to support these systems. The values shown 

below are drawn from their summary of the energy and GHG emissions factors, under the 

heading ―track and power delivery‖:  

 

Construction sector GHG emissions are often grouped into three broad categories of activities: 

fossil fuel combustion to produce heat to run equipment, purchased electricity, and non-

combustion activities, including production of GHGs from  reactions such the CO2 released 

during lime production (EPA, 2009a, Schokker, 2010).  Concrete production is a major GHG 

emitter (see Table 3.3), due largely to the direct creation of CO2 emissions in the production of 

cement. 
11

  About half of the CO2 used to produce cement comes from burning coal or other fossil 

fuels, and the rest comes from the conversion of limestone to lime.  Efforts to reduce the GHG 

emissions associated with this process include improving manufacturing plant efficiency, and 

measures such as burning waste tires instead of coal to reduce the GHG emissions from 

combustion. A third trend is towards the use of high-strength, 9000 psi concrete columns in place 

of 4000 psi concrete, leading to the use of less material overall. A fourth widely used tactic to 

reduce the carbon content of a cubic yard of concrete is to replace cement with materials such as 

fly ash, slag cement, and silica fume (Schokker, 2010).   

 

Table 3.3  Example GHG Emissions Estimates from the Creation of  Rail        

Infrastructure Materials 

 

Type of Retrofit Total Cost $ Savings/Yr. Payback 

Yr.

Lighting Retrofits $ 1,350,000 $ 313,190 4.3

Lighting Controls $    436,900 $ 104,084 4.2

Roof Replacement $    428,000 $   75,088 5.7

Overhead Doors $      42,100 $     7,550 5.6

Total $ 2,257,000 $ 499,912 4.5

 
        Source: Chester and Horvath (2008) Extracted from Table 64 – ―Fundamental Environmental Factors for Rail   

        Modes‖ 
 

Reuse and recycling of materials is an important area for GHG reductions. In the U.S. there are 

established secondary markets for the reuse of asphalt, concrete, steel, and certain other metals 

(EPA, 2009b).  For example, two-thirds of recovered asphalt is re-used for new asphalt hot 

                                           

10
 San Francisco‘s BART and Caltrain Heavy Rail Transit and its Muni and Boston ‗s Green Line Light 

Rail Transit systems, and a proposed California High Speed Train line. 
11

 Concrete is a mixture of cement, coarse and fine aggregates (i.e. rock and sand) and water, with cement 

made  typically from limestone and clay.    
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mixes, and one-third is recycled as sub-base material for paved roads (EPA, 2009a).  At its major 

expansion project worksites, New York‘s MTA recycles some 80% of worksite debris, either as 

recycled waste or reused construction materials, diverting thousands of tons of traditionally 

landfill-bound construction waste for recycling (MTA, 2010).  For a light rail project, TriMet in 

Portland, Oregon  installed some 6,000 plastic ties made of recycled automobile gas tanks, using 

recycled plastic bollards, reusing existing road-base concrete, and using recycled asphalt and 

concrete for road base materials, and providing cost savings to the agency in the process. At the 

New York MTA railroad ties made of a composite of recycled plastic, waste tires, waste 

fiberglass, and structural mineral fillers are being introduced (MTA, 2009).   

 
Energy Efficient Construction Equipment and Practices: The US EPA‘s study of the 

potential for reducing GHG emissions in the construction sector identifies, and provides example 

calculations for a number of promising practices (EPA, 2009a):  

 

1. Use alternative fuels/technologies in non-revenue vehicles: e.g. use of biodiesel   

2. -idling policies on gasoline and diesel powered trucks and 

other on site vehicles:  

3. Establish regular equipment maintenance policies: e.g. proper tires inflation and wheel 

alignments in non-revenue vehicles can reduce fuel consumption for a small truck by 3- 4 

%.  Proper forklift maintenance can also save on propane fuel.   

4. Consider alternatives to diesel generators: including dual-fuel generators using a mix of 

natural gas or propane and diesel, using non –fossil fuel generated electricity, or using 

solar panels in offices to reduce the need to run the generators. 

5. Fuel savings from proper sizing of vehicles to haulage tasks, and  

6. Training in support of proper vehicle operating practices: e.g. two stage slope excavation 

in a stair fashion, instead of dragging a bucket from bottom to top in one motion uses 8% 

less fuel. For example, having an excavator‘s boom swivel 30 degrees to dump its load 

instead of 90 degrees could reduce fuel use by 3%. 

 

Transportation of Workers, Construction Materials, and Waste: The distances that workers, 

construction materials, and also waste materials have to travel to get to and from a construction 

site make a significant contribution to GHG emissions: varying a good deal between 5% to 85% 

of the total emissions generated in the process of assembling on site structures (Cole, 1999). 

Therefore the acquisition of locally provided materials can be a significant benefit. So too can 

the proximity of landfills or other waste disposal sites.  Recycling of materials, as opposed to   

disposal in landfills can also be a profitable option.  

  

Sources of GHG Emissions Estimates Associated with Construction Projects: APTA‘s 

(2009) protocol for reporting transit agency GHG emissions suggests using the following default 

associated with the consumption of construction materials for steel, cement and asphalt used in a 

reporting year: 

 

 

 

 

 



 

 

35 

Table 3.4 Example Construction Materials Emissions Factors 

 

Default Emission Factor

(MT CO2e/MT of material)

Steel 1.06

Cement 0.99

Asphalt 0.03

Material

 
                   Source:  APTA, 2009 

 

However, for the purposes of estimating potential GHG reductions a more detailed set of 

computations is required. This presents something of a challenge currently. There are no 

consistent and widely accepted guidelines for estimating emissions from road or rail construction 

projects for use in either National Environmental Policy Act (NEPA) analysis, or for State 

Implementation Plan (SIP) and conformity development. There are, however, a number of 

software tools available for assessing the GHGs associated with construction projects. The 

National Institute of Standards and Technology‘s (NIST) BEES
12

 software  provide full life 

cycle estimates of the emissions resulting from raw material acquisition, manufacture, 

transportation, installation, use, and waste management, while EPA‘s Waste Reduction Model 

(WaRM)
13

 provide emissions calculations associated with alternative waste management 

practices.  

 

The Sacramento Metropolitan Air Quality Management District has also developed a Road 

Construction Emissions Model that computes CO2 emissions produced from construction 

vehicles and equipment (SMAQMD, 2010).
14

 This detailed spreadsheet model estimates CO2, 

CO, NOx, and BC emissions from a wide variety of construction activities and also both on-

highway and off-highway vehicle/equipment types. These activities include, but are not limited 

to, grubbing/land clearing, grading/excavation, drainage/utilities/sub-grade work, transport of 

materials, and paving. The equipment and activity emissions are aggregated into a bottom-up 

estimate of a construction project‘s emissions per day, per construction phase, and per the entire 

construction period. The model has been used to calculate construction emissions for transit 

projects, such as the Sacramento Regional Transit District‘s (RT) Downtown/Natomas/Airport 

Corridor light rail transit project. Construction of the one mile project was estimated to emit 587 

tons of CO2. By reducing private automobile travel, the light rail project is estimated to reduce 

operational GHG emissions by 20 tons per year
15

. Thus, the emissions produced during the 

construction of the project are estimated to be offset or ―payed-back‖ by operational emissions 

savings. 

                                           

12
 http://www.bfrl.nist.gov/oae/software/bees/ 

13
 http://www.epa.gov/climatechange/wycd/waste/calculators/Warm_home.html 

14
 http://ww.airquality.org/ceqa/RoadConstructionModelVer6.3-2.xls. 

15
 http://www.sacrt.com/dna/pdfs/MOS-1DEIR/Chapter%205%20-%20Environmental%20Analysis.pdf 

http://www.bfrl.nist.gov/oae/software/bees/
http://www.epa.gov/climatechange/wycd/waste/calculators/Warm_home.html
http://www.airquality.org/ceqa/RoadConstructionModelVer6.3-2.xls
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The CHANGER
16

 software developed for the International Raid Federation (Zammataro, 2010)  

also enables a detailed environmental analysis of the total amount of greenhouse gas emissions 

released in the course of a road construction project. It accommodates a wide range of different 

user needs, from gross ‗pre‐project phase‘ estimations through to comprehensive end‐project 

assessment. The pre‐construction module takes into account:  

 

1. Clearing and piling: based on the ground surface area cleared per unit of road 

 surface, an estimation can be generated for both machine use and fuel consumption. 

2. Cut exports and fill imports transport to and from the road site  

 
The pavement module takes into account:   

 

1. On‐site impacts: electricity and fuel consumption on the construction site as identified 

and evaluated.  

2. Pavement construction materials: this section encompasses unbound materials, 

hydraulically bound materials, bituminous bound materials, metals, rubber and plastic, 

etc., from which the user can easily select the materials required for construction of the  

different layers of the given pavement. 

3. Materials transport including the transport of aggregates, bituminous materials,  

cement, concrete, and emulsions either directly to the road site or first to a mixing plant, 

then from the plants to the road  

4. Construction machines: total consumption of fuel is determined on the basis of the 

working hours of the machinery and characteristics and efficiency of the material used. 

 

Tthe URBEMIS software
17

, created for the South Coast Air Quality Management District (Jones 

and Stokes Associates, 2007) for the purpose of estimating a range of  emissions from land use 

development projects, also contains useful information. It breaks construction emissions into the 

following seven project ‗phases‘:  Demolition, Mass Site Grading, Fine Site Grading, Trenching, 

Building Construction, Asphalt, and Coating (Paints).  This software also includes the ability to 

account for transporting materials to and from a construction site.  
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4. VEHICLE PROCUREMENT PRACTICES 

 

4.1 Introduction 

 

This chapter is used to summarize the opportunities offered to reduce an agency‘s GHG 

emissions, as well as reduce its fuel consumption bill, based on transitioning to more energy 

efficient and less polluting vehicle technologies. Procurement of vehicles is a major transit 

agency expense that has implications for fuel costs and greenhouse gas emissions for many years 

to come. Fleet procurements are therefore one of the principal means of reducing an agency‘s 

GHG footprint. The typical lifetime for a transit bus, when used in cost-benefit analyses for 

example, is twelve years. Similarly, more than sixty percent of all heavy railcars, more than half 

of all commuter railcars, and over one third of all light railcars were over 15 years old in 2008.
18

 

Some locomotives have remained in active use for more than 30 years.  

 
4.2 Selecting a GHG Reducing Vehicle/Fuel Technology 

 

The ability to reduce an agency‘s fuel bill and at the same time reduce GHG emissions is only 

one in a number of considerations constraining vehicle choice. Final selection, whether of a 

single vehicle, or a fleet of vehicles (perhaps incorporating more than one type, or size, of 

vehicle) will depend on a number of variables, including: 

 

1. available capital versus operating budgets, and how these square with vehicle 

purchase costs and with vehicle life-cycle operating and maintenance costs;   

2. types of routes operated:  notably route lengths and stop-go frequency;   

3. nature of sunk investments, such as existing rail track; 

4. availability of rights of way for system expansions; 

5. revenue generating potential: based on ridership levels and vehicle load factors;  

6. life-cycle GHG emissions production; and  

7. criteria emissions production, and the ability to comply with federal and regional air 

quality regulations  

 

Recognizing that specific financial, physical and also regulatory constraints will constrain most 

new vehicle purchase decisions, the following sections highlight recent and emerging vehicle 

technologies that are demonstrating significant in-service GHG reductions on a per vehicle-mile 

as well as per passenger-mile basis. The principal focus is on bus and railcar technologies, which 

together cover the vast majority of transit rides today. Direct comparisons between bus and rail 

transit options are not the subject of this chapter.  

 

4.3 Successful and Emerging GHG Emissions Reduction Technologies  

 
Over the past decade or so, a number fuel saving technologies have been introduced successfully 

into both bus and rail transit vehicles. a number of these technologies work synergistically, with 
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 FTA‘s National Transit Database. Table 25. 

  



 

 

41 

net GHG reductions and associated fuel savings dependent on how well they are integrated into 

in-service operations. Knowledge of these technologies, including a vehicle‘s 

make/model/version, technical specification, and amount of in-service experience are all 

important considerations when selecting cost effective as well as clean bus or railcar options.   

 
Regenerative Braking: Regenerative braking technology converts a vehicle‘s kinetic energy 

into a form of potential (stored) energy that, instead of being dissipated as heat, can be used to 

power the vehicle. As a vehicle‘s brakes are applied the electric motor becomes an electric 

generator. The generation of electricity results in a resistive torque that slows the vehicle. In a 

regenerative braking system, the electricity generated from braking can be stored chemically (as 

in a battery), mechanically (as in a flywheel) or electrostatically (as in an ultracapacitor). The 

technology is being used today in transit and trolley buses as well as in heavy and light rail 

transit systems.  The regenerative braking technology being used by the Metropolitan Transit 

Authority ‗s heavy rail system in  the  New York is estimated to supply between 7.5% and 22.5% 

of the energy and associated GHG reductions(MTA, 2009).  

  

On-Board and Wayside Energy Storage Systems: Today about sixty percent of U.S. rail 

transit systems use regenerative braking to capture and re-use energy (Holmes, 2008). Two 

forms of energy capture are in use: on-board and wayside. In the case of rail wayside systems, 

the energy storage system is set up to redirect the regenerated braking energy to a third rail 

which runs parallel to the two rails used to support the train, and where it can then be used to 

power nearby trains, notably when a train is accelerating out of a station. These wayside energy 

storage solutions uses energy storage devices such as ultracapacitors and flywheels, located at 

intervals along a rail track, as part of a system-wide power conversion and distribution system. A 

train decelerating into a station sends the energy captured through regenerative braking to a 

nearby wayside storage devices which then a nearby accelerating train. Tackoen (2010) provides 

a description of many of the latest energy recovery storage technologies in use and in use today, 

with examples from Europe, Asia and the United States. In the U.S. this includes a $5.2 million 

pilot project to use carbon fiber flywheel technology on a 2·4 megawatt lineside (wayside) 

system, by MTA‘s Long Island Rail Road (LIRR) in New York. This technology has had success 

in storing energy regenerated during braking, for re-use when commuter trains accelerate, 

helping to lower energy consumption as well as reduce the peak power demand.  A $4.5 million 

2009 TIGGER grant from the FTA the Los Angeles County MTA will also use flywheel 

technology to capture regenerative braking energy with the installation of a wayside energy 

storage substation (or WESS) at the Westlake high-speed heavy rail passenger station.   

 

Ultracapacitors are electrical energy storage devices that have the ability to recover and store 

some of a vehicle‘s kinetic energy through regenerative braking, by combining battery and 

capacitor forms of energy storage technology. Using a porous material such a carbon immersed 

in an electrolyte solution, they are able to store a large amount of energy (a high capacitance). By 

also storing the energy as a separation of charge (as capacitors do) they are capable of releasing 

this stored energy very quickly when needed.  On-board ultracapacitors have been shown to  

work well if transit buses make frequent stops per mile, operate at low speeds, and are able to 

take advantage of the high charge and discharge rates associated with frequent starts and stops 
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(Lammert, 2008).  In Shanghai, China, an ultracapacitor electric bus network using 400 roadside 

charging points plus a number of larger vehicle charging stations is under development.
19

 

 

Ultracapacitors are excellent rapid charging /recharging devices, but have limited energy storage 

capabilities when compared to the most modern  batteries. New rail transit technology in 

Sapporo, Japan is testing Nickel Metal-Hydride (NiMH) batteries that are expected to complete 

more than 1.4 million life cycles, and offer a useful life of roughly 15 years: versus a lithium ion 

type of battery that currently offers about half as many life cycles. In addition, these new 

batteries also appear to suffer very little ―memory effect‖: a condition whereby a battery loses its 

maximum energy capacity over time due to repeated recharging following a partial after partial 

discharge. The batteries are also relatively easy to disassemble and recycle, having no welding 

connections, and no lead, mercury or cadmium to dispose of.  Termed Battery Power Stations, or 

BPSs, track-side batteries can be used to store some of the energy from regenerative braking that 

is often lost in current rail transit systems (by limiting line voltage drop). BPSs also allow an 

increase in the minimum distance required between recharging substations, fewer substations are 

required to operate the system. In November 2007, Kawasaki tested its BPS on the Tanimachi 

line of the Osaka mass transit system in Japan, with electricity energy consumption decreased by 

20 percent in the test area.  

 

Smart Grid Technology: Making the most of wayside energy storage systems depends upon the 

ability to not only capture but also store, and then quickly release the energy when as well as 

where it is most needed.  solution for the release and allocation of energy here  is ―smart grid‖ 

technology
20

. This technology  utilizes software to allocate electric energy from the local grid on 

a moment by moment basis, possibly using flywheel or ultracapacitor technologies, improved 

nickel- metal-hydride or lithium-ion batteries to store an electrical charge long enough to be 

made best use of  (Holmes, 2008). A challenge for rail transit systems is to find a way to 

successfully store and later re-use, either locally or elsewhere in the rail system, as much of the 

energy captured from regenerative braking systems as possible. If sufficient energy storage 

capability can be achieved significant benefits may also one day accrue to local power utility 

companies which may then be able to buy back electricity from the local transit agency. Tackoen 

(2010) briefly references the idea of ―reversible substations‖ which can put electricity obtained 

from braking back onto the electric Grid.     

 

Successful storage solutions will allow transit agencies to use lower cost off-peak electricity to 

run trains, as well as protecting the transit system from potentially damaging voltage sags that 

can damage the electronic equipment used in railcars.   

 
Advanced Transmissions Technologies (Bus, Van, Non-Revenue Vehicles):  A move to 8-

speed automatic transmissions, along with friction reduction and  improved gear shift logic is 

estimated to reduce fuel consumption in transit buses between 1% and 4% ( TRB, 2010, Table 6-

12). ―Intelligent transmissions‖ are now also finding their way into the latest buses.  These 
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 http://www.technologyreview.com/energy/23754/ 

20
 As called for in the Energy Independence and Security Act (EISA) of December 2007, Title XIII, 

Section 1305.  See http://www.nist.gov/smartgrid/ 

http://www.technologyreview.com/energy/23754/
http://www.nist.gov/smartgrid/
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transmissions are linked to control software systems that offer intelligent acceleration-dependent 

gear shifting points that adapt to topography, vehicle acceleration, axle transmission ratio and 

load conditions to minimize fuel expenditure. The number of gearshifts may be reduced by as 

much as 50 percent, producing better fuel consumption in the lower speed ranges thanks to the 

partly mechanical power transmission, as well as a diminished thermal load on the engine 

cooling circuit using the power-split principle. Shift-free driving also leads to higher driving 

comfort and less engine maintenance, while a typical oil change interval is also extended, 

possibly dramatically (LMS International, 2009) when compared to a typical oil drain interval 

every 6,000 miles for a conventional diesel transit bus (Schiavone, 2010)
21

 . Intelligent 

transmissions are now appearing in buses around the world, with one major manufacturer of 

intelligent transmissions reporting estimates of fuel savings from a combination of an 

economical transmission and intelligent terrain-dependent transmission control at up to 19% over 

conventional transmissions in a 40 foot bus.
22

   

 

Lightweight Materials: In addition to emission reductions through alternative fuel use, further 

reductions are possible through the use of ultra high strength stainless steel, composites, and 

carbon fibers in vehicle bodies and chassis (EERE, 2005). Based on experience in Houston, TX, 

a 10% reduction in fuel consumption appears to be possible (TRB, 2003).  Recent advances in 

lightweight materials technology begun under the US Department of Energy‘s Freedomcar & 

Vehicle Technologies Program are now moving into the commercialization stage, with a 50% 

reduction in the mass of the basic bus body, through the use of a chassis consisting of ultra high 

strength stainless steel.  By making the platform lighter, the size and mass of other bus 

components, including the suspension, wheels, brakes, and propulsion system can also be 

reduced.  This not only reduces the initial and maintenance costs of a bus, but the new low-floor 

ultra lightweight buses have room for 45 passengers, about 5 more passengers than can fit in a 

standard low-floor bus. The major enablers of this extra space are the absence of a mechanical 

drive train and the smaller wheels. A cost savings of 15%–20% over the standard bus body is 

anticipated, while fuel efficiency is projected to rise to as high as 13 mpg  -  about three times 

that of current 40 seat buses.  

 

A 2009 study by TIAX for the National Academies (TRB, 2010, page 143) estimated fuel 

savings of 2% - 3% are feasible in a 2015-2020 timeframe, and also estimated the costs of 

getting these reductions at between $2 and 4$ per pound up to the first 800 lbs, rising to 8$ to 

10$ per pound in the 1,600-2,800 lb range. This applies to a representative 40 foot, 40,000 gross 

vehicle weight transit bus with an average fuel consumption of 31 gallons of diesel per 100   

miles (or 3.22 mpg).  
 

In a recent study of a wide range of sustainable transit practices by the Metropolitan Transit 

Authority of the State of New York (MTA, 2009), a set of 10% , 15% and 25% energy savings 

scenarios are developed, using technology that has a reasonable chance of near-term availability. 

                                           

21
 While some newer engines with more advanced emissions controls, especially those with exhaust gas 

recirculation, require more frequent oil change intervals at 3,000 miles (Schiavone, 2010, page 13). 

However, the of an oil drain interval as large as every 24,000 miles has been posited for  hybrid diesels 

(Chandler, K. andWalkowicz, K., 2006, page 7) 
22

 http://www.zf.com/corporate/en/products/innovations/ecolife/topodyn/topodyn.html 

http://www.zf.com/corporate/en/products/innovations/ecolife/topodyn/topodyn.html
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Based on either retrofitting or purchasing new railcars for the region‘s heavy rail system, CO2 

reductions were estimated for a number of different technology adoption and performance 

scenarios associated with a) regenerative energy systems and b) the use of lightweight materials 

in railcars construction/operation. The regenerative techniques here "include on-board and 

trackside energy storage, operational enhancements such as start/stop synchronization, and 

software modifications allowing train cars to better use regenerated energy".   The weight 

reduction techniques include " elimination of redundant components, substituting lighter 

materials such as aluminum for steel, and design optimization to enable identical structural 

performance with reduced weight" (MTA 2009, page 23).   

 

The vehicle weight reduction scenarios assume a roughly 2,000 lb weight reduction per railcar, 

producing a 2.5% savings in electricity generation in each case, suggesting a similar reduction in 

CO2e emissions. The following is a list of the weight reducing actions described in the report 

(MTA, 2009, page 24: see report for technical details, estimated energy saving impacts of 

specific actions, and assumptions used): 

 

1. Composite instead of plymetal panel flooring 

2. Giga cell battery with alternative battery box 

3. Utilize oilless compressor concepts 

4. Corrugated wheels / lightweight wheels 

5. Utilize single draft gear (tube style) link bar 

6. One free axle on 1 non-motorized truck replacing OSMES* 

7. Gear unit with lowest weight 

8. Lightweight floor pans 

9. Eliminate OSMES*, brackets and equipment 

10. Eliminate flip up seats 

11. Eliminate secondary center collision posts 

12. Trip cock linkage weight reduction 

13. Eliminate 1 of 2 coupler adapters on NMTs units 

14. Reduce weight of coupler guides on type 1 truck 

15. Reduce heater grill weight 

16. Reduce advertisement card clips weight 
*OSMES refers to an optical speed and position measurement system  

 

In-Wheel Electric Motors: In the Netherlands a new kind of hybrid-electric bus is now being 

road tested, one that uses in-wheel electric motors to improve efficiency. The bus is a series 

hybrid: a diesel generator charges a battery, which in turn supplies electricity for two motors, one 

in each rear wheel. Thanks largely to its in-wheel motors, the bus can travel twice as far as a 

conventional bus on a gallon of diesel. As with other hybrid buses, the in-wheel design saves fuel 

by capturing energy from braking, using it to generate electricity that can be employed for 

acceleration. The in-wheel motors also offer additional savings by eliminating the need for a 

transmission, differential, and related  mechanical parts, while reducing overall vehicle weight.
23

 

This is a technology that transit agencies in the U.S. may wish to monitor over the next year or 

two.   
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 See http://www.e-traction.com/news.htm 
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4.4 Transit Bus Fleet Options 

 
The Changing Composition of the Current US Transit Bus Fleet: Public transit agencies 

around the country, and around the world, have introduced a variety of more energy efficient 

and/or alternatively fueled buses into service over the past two decades. This has lead to 

significant reductions in criteria pollutants, including non-CO2 GHGs and aerosols such as 

carbon monoxide, nitrogen oxide, ozone and particulate matter (which contains black carbon),  

as well as increased fuel efficiencies and lower greenhouse gas (GHG) emissions. Further 

improvements are expected in the coming decades. A 2010 National Academy of Sciences study 

(TRB, 2010) reports possible technology-driven fuel economy improvements for conventional 

diesel buses in the range of 9% to 14% between 

2015 and 2020 
24

 Significant GHG reductions 

associated with new vehicle procurements are 

also being achieved through selection of 

alternative fuel (AF), hybrid electric (HE), or 

combined AF-HE vehicles. For example, the 

2010 TRB study suggests that hybrid power 

trains could lower the fuel consumption of buses 

that stop frequently by as much 35%. 

Complimenting these ―greener‖ fuel/engine 

technologies, additional energy and GHG 

reductions can also be obtained from the use of 

lightweight materials in vehicle construction, as 

well as from more aerodynamic vehicle designs, 

and by using a variety of devices to provide 

inexpensive auxiliary (sometimes also called 

―hotel‖) power for air-conditioning and other 

means of ensuring customer comfort.   

 

Table 4.1 shows the recent trend in buses built or 

on order in 2008. The majority of buses currently 

in use in the United States are petro-diesels, but 

by 2008 hybrid-electric (HE), compressed and 

liquefied natural gas (CNG and LNG), 

and biodiesel fueled buses accounted for 28% of 

all transit bus fuel consumption (APTA, 2010, 

Table 15).  A number of additional bus 

technologies are also in the early stages of in-

service testing, in most instances as part of a 

                                           

24
 The results of this study have also influenced a proposed new US DOT/US EPA rule-making leading to new 

heavy duty vehicle, including bus, fuel economy regulations and standards. See  

http://www.epa.gov/oms/climate/regulations.htm#prez 
 

Alternative & Emerging Bus 

Technologies  

Diesel Buses (Conventional)  

Diesel Hybrid-Electric (HE) Buses  

Biodiesel HE Buses 

CNG HE Buses 

Gasoline HE Buses 

LPG HE Buses 

Plug-in Diesel HE Buses 

Biodiesel Fuel Blend Buses 

CNG and LNG Fueled Buses 

Electric Battery-Powered Buses  

Hydrogen Fuel Cell (FC) Buses 

Hydrogen FC HE Buses 
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single or small number of vehicles taking part in a federally subsidized technology 

demonstration project, notably hydrogen fuel cell and hydrogen-hybrid electric buses.  

 

The majority of the hybrid buses in service in the United States today use a petro-diesel engine 

combined with an electric motor and batteries. However, CNG-hybrids, biodiesel-hybrids, and 

hydrogen fuel cell hybrids are also candidates for significant net energy and GHG savings. A few 

transit agencies are also operating buses, including trolley buses, that draw power from the 

nation‘s electricity grid. These include pure electric vehicles (EVs) as well as a small number of 

smaller seating capacity plug-in hybrid electric vehicles (PHEV).           

 
Table 4.1 Recent Trends in Transit Bus Orders by Fuel Type  

 

Bus (Fuel) Type
# Buses  

Built in 2008 
% # Buses Ordered %

Conventional Diesel 1,508 47.7% 559 23.7%

Diesel & Electric Battery 579 18.3% 781 33.1%

CNG 670 21.2% 488 20.7%

Biodiesel 279 8.8% 304 12.9%

CNG & Diesel 18 0.6% 150 6.4%

Gasoline 50 1.6% 25 1.1%

CNG & Gasoline 23 0.7% 0 0.0%

Gasoline & Electric 

Battery

21 0.7% 37 1.6%

Hydrogen 14 0.4% 16 0.7%

Total 3,162 100.0% 2,360 100.0%
                                   

                                        

 

Diesel-Electric Hybrid Buses: A number of both in-service studies of the fuel savings and GHG 

reductions associated with shifting to diesel-electric hybrid buses have been carried out. Between 

12% and 35% reductions n per vehicle mile GHG emissions were obtained (see inset). As a 

result, diesel-electric hybrids have become a very popular technology for fixed route bus 

procurements over the past decade. Fourteen of the forty-three TIGGER
25

 projects funded by the 

federal government in 2009 include purchases of DHE fleet vehicles. Buses are available in 

various sizes, including 40-foot and 60-foot articulated versions, as well as smaller capacity 

models. The latest electric hybrids, as well as all-electric powered buses and trolleys  (and  

electrified rail systems also, see below) now obtain additional GHG reductions through the use 

of regenerative braking technology, which can capture and re-use up to 25 percent of the kinetic 

energy lost by a decelerating vehicle (TRB, 2003). Plug-in, Grid powered diesel-electric  hybrids 

are also in development and in-the-field testing (Advanced Energy, 2003).   

                                           

3 See  http://www.fta.dot.gov/index_9440_9326.html 
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Seattle, Washington: Table 4.2 shows the estimated GHG emissions associated with in-service 

diesel and diesel-electric hybrid bus use by King County Metro Transit, after converting CH4 and 

N2O emission to their CO2  equivalents. On a per mile basis, the hybrid  buses achieved a 21.1% 

reduction in GHG emissions relative to the diesel buses.
26

  The ‗Metro  has 235 hybrid buses 

(nearly one-quarter of its bus fleet), 213 of which are 60 ft articulated hybrid buses.  

 

Table 4.2 GHG Emissions Savings 

 

                   

Diesel Bus Hybrid Bus

CO2 (kg) 1,420,959 1,157,648

N2O (g) 1,683 1,738

CH­4 (g) 1,788 1,846

CO2e (tonnes) 1,421.51 1,158.21

CO2e (grams/mile) 4,055 3,199

CO2e (grams/mi. % reduction) -- 21.10%
 

                   Source: Chandler and Walkowicz, 2006 
 

 

A National Renewable Energy Laboratory assessment of vehicle performance compared the 

emissions generated by 10 model year 2004 New Flyer DE60LF diesel-electric hybrid buses 

against 10 model year 2004 New Flyer D60LF diesel buses. Both bus types are based on the 

same vehicle platform and provide the same service capacity,and over a 12 month period 

between April 1, 2005 and March 31, 2006, the hybrid and diesel buses logged similar average 

monthly miles of service. Table 4.3 summarizes the specifications, costs, and laboratory based 

fuel use performance data.  The maintenance costs accounts for all maintenance activities during 

the evaluation period. It is important to note that the maintenance costs do not account for major 

repair and overhaul activities that are known to occur during the bus life cycles, such as engine 

rebuilds, transmission rebuilds, and battery replacement (for the hybrids). The evaluation of the 

buses included a measurement of the CO2 emissions rate on a dynamometer test designed to 

replicate a Metro Transit duty cycle.  

 
New York City operates the largest hybrid  diesel- electric bus fleet in the world, totaling over 

1,700 vehicles in 2009.
27

 Two studies by the National Renewable Energy Laboratory in Golden, 

                                           

26
 Notice that for this estimate, the N2O and CH4 emissions were higher for the hybrid bus than for the diesel bus 

.Currently there is no per mile emission factor available for N2O and CH4 emissions from hybrid buses, so the 

conventional per mile emission factors were applied to the higher mileage of the hybrid buses, resulting in 

conservative estimates. 
27

 http://www.mta.info/nyct/facts/ffenvironment.htm  
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Colorado (Barnitt and Chandler, 2006; Barnitt, 2008) provide compelling evidence for the fuel 

savings benefits of these vehicles. First, ten Orion VII (model year 2002) hybrid-diesel electric 

40-foot buses (with a capacity of 38 Seated, 32 standing) operating out of two NYC bus depots 

were evaluated over the course of a 12-month period, from October 2004 to September 2005. 

Buses out of these depots travel at average speeds around 6.3 - 6.5 mph and make frequent stops.     

     
      Table 4.3 King County Metro Hybrid Bus Evaluation Data  

                  

Diesel Bus Hybrid Bus

Number of Buses 10 10

Manufacturer and Model New Flyer DE60LF New Flyer D60LF

Model Year 2004 2004

Seats 58 58

Purchase Cost (per bus) $445,000 $645,000 

Maintenance Cost ($/mile)1 0.462 0.444

Total Mileage (maint. cost est.) 353,785 371,458

Total Mileage (fuel est.) 350,567 362,049

Fuel Cost ($/mile) 0.791 0.624

Fuel Consumption (gallons) 139,996 114,054

Fuel Type B5 ULSD

Fuel Economy (avg. mpg) 2.5 3.17

Lab Test CO2 (grams/mile)2 3,446 2,614

 
 Source: Chandler and Walkowicz, 2006  

1 
The maintenance costs do not account for major repair and   overhaul 

activities that are known to occur during the bus life cycles, such as engine rebuilds, transmission  rebuilds, and (for 

the hybrids) battery replacement. 
2.
 Both bus types are based on the same vehicle platform   and provide the same 

service capacity. Table 4.3 summarizes the results. The evaluation of the buses included   measurement of CO2 

emissions based on  a dynamometer test designed to replicate a Metro Transit duty cycle.  

 

The 2006 evaluation found these series
28

 diesel-hybrid buses achieved an average of 3.19 miles 

per diesel equivalent gallon, giving a 37% higher fuel economy than the (1994 and 1999 model 

                                           

28
See http://www.eesi.org/files/eesi_hybrid_bus_032007.pdf , for example, for a brief description of series 

vs. parallel hybrid electric vehicle propulsion systems. 

http://www.eesi.org/files/eesi_hybrid_bus_032007.pdf
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year) diesel buses being run on the same city routes; and an 88% improvement over 2002 model 

year CNG buses also tested. The hybrid-electric buses also had a 23% lower cost per mile than 

these CNG buses, due almost entirely to the difference in fuel economy.  Based on the 

calculation procedure used for the King County Metro buses, the MTA hybrid buses produced 

only 3,182 g/mile of CO2e, equivalent to a per mile GHG savings of 26.9% and 25.3% 

respectively over MTA‘s diesel and CNG buses, respectively.  A subsequent study  by Babbitt 

(2008), based on a February 2006 to January 2007 in service evaluation of a more recent (Gen II) 

hybrid bus technology purchased by NYC Transit. While fuel economy was slightly lower than 

the Gen I hybrids, this was attributed by the manufacturer to greater use of air conditioning in the 

Gen II bus tests, An additional improvement for the newest set of hybrid-electric buses is a 

reported to be a lithium-ion energy storage system, replacing the Gen I and Gen II lead acid 

battery technology.  
 

Denver, Colorado: Since 2005 the Denver Regional Transportation District (RTD) has 

purchased over 270 forty-foot low-floor diesel buses, including nine hybrid electric buses. Over 

a 12 month, post 2008  recording period the hybrid buses achieved a 15.6% fuel economy 

improvement over the convention diesel buses, when both models were equipped with the same 

energy saving intelligent transmission shifting technology. This intelligent acceleration-

dependent gearshift technology adapts vehicle performance to topography, vehicle acceleration, 

axle transmission ratio and load conditions, reducing the need for gearshifts and giving a 

reported 5% to 10% fuel savings (RTD, 2010). Less maintenance is also anticipated, with a 

typical oil change interval.   

 

Edmonton, Alberta: A one year in–use performance based life cycle comparison of four 

alternative bus technologies in the city of Edmonton, Canada yielded similar fuel economy and 

CO2e savings results. The two model year 2006 hybrid electric diesel bus models tested  yielded  

GHG savings the 12% to 20%  range, when compared with a year 2007 model clean diesel bus 

(Checkel, 2008).  The fourth option tested, an electric trolley bus (drawing electrical power from 

an overhead wire, but using motor controls and an on-board emergency battery that allows it to 

travel at reduced speeds off the trolley wires for several miles, in order to bypass traffic accidents 

and blockages) yielded comparable CO2e emissions to the clean diesel bus, depending on local 

versus regional electricity fuel feedstock mix: 

 

Clean Diesel  Hyrbid 1* Hybrid 2*   New Trolley** 

Kg CO2e /mile                  3.16      2.78   2.54               2.93 to 3.11 
 

Notes: * 2006 model year hybrid buses; ** includes use of a 20% backup diesel fleet in case of power outages. 

These tests were run under trolley bus corridor conditions that involved more stops, more traffic, lower average 

speed and lower annual mileage than most transit fleet averages. 
This Edmonton report is also useful for its comparisons of different bus purchase and life cycle 

operating costs, as well as some attempt at a sensitivity analysis of these costs and the various 

bus emissions produced.   

 

Biodiesel Powered Buses: Many transit agencies now use biodiesel in their buses. Biodiesel 

offers a number of potential benefits. In terms of greenhouse gas emissions, the CO2 absorbed by 

the plants grown to produce the biofuels feedstock can also help to offset the carbon emissions 

generated when biofuel is burned in the vehicle. Biodiesel also has the benefit of being a 
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domestically produced renewable fuel. Most production at present comes from soybeans, but 

transit agencies are also running vehicles on canola oil, tallow, and recycled cooking oils. A   

1998 life cycle analysis study by the National Renewable Energy Laboratory (Sheehan, et al, 

1998) concluded that biodiesel produced from soybean oil reduces net emissions of CO2 by over 

78% compared to petroleum based diesel, while B20 (20% biofuel, 89% petro-diesel) can reduce 

CO2 emissions from urban buses by around 15.7%. Both EPA and DOE studies produce similar 

findings (DOE, 2005). From a health effects perspective, significant reductions in tailpipe 

emissions of carbon monoxide, hydrocarbons, and particulate matter are have also been reported, 

and biodiesel also appears to improve the performance of diesel  particulate filters, which are 

now standard equipment on new diesel powered vehicles (Krahl et al, 2003).
29

  

 

Schiavone (2007) provides a recent review of biodiesel use in the nation‘s transit fleets, 

including two agency specific case studies (the Central Ohio Transit Authority (COTA) and the 

Roaring Fork Transportation Authority in Aspen, Colorado) that offer insights into the costs of 

adopting biodiesel and the pros and cons of different biodiesel blends. Eighteen transit agencies 

are identified, ten of which use biodiesel blends including from 2% to 20%  biofuel, seven using 

a 20% (B20) blend, and one  (COTA) using blends from 20% to 90 % (B20 to B90).  

 
Electric Powered Trolley Buses: Trolley buses are rubber-tired vehicles with electric motors 

powered by electricity from overhead wires. The trolley buses connect to the wire via a ―trolley‖ 

pole on the roof that is topped by an insulated shoe. In North America, the cities of Seattle, San 

Francisco, Boston, Philadelphia, and Dayton in the U.S. and Vancouver in Canada, operate 

electric trolley systems. Many other trolley systems operate in Europe. The GHG savings 

associated with trolley service are tied closely to the energy feedstock used to produce the 

electricity. If this energy comes from hydroelectric, nuclear, wind or solar power, a complete life 

cycle analysis of these energy production and distribution systems shows very little end use 

GHG emissions, and one to two orders of magnitude fewer GHG emissions per kilowatt hour 

than fossil fuel (coal, gas, oil) based power plants (Spadaro, 2000, WNA, 2009).  However, even 

with the use of fossil fuel-based electricity sources, research has shown that GHG emissions can 

still be substantially lower than gasoline or diesel powered vehicles (Unger et al, 2009).     

 

With over 330, 60 foot articulated and 40 foot standard trolley buses serving 16 different routes, 

San Francisco in California has the largest trolley-bus fleet in North America. Along with its 

streetcars and the cable motors for the cable cars, the city‘s trolleys get their electric power from 

the city's hydroelectric Hetch Hetchy Water & Power Project. The city of Seattle in Washington 

State operated 159 trolley buses, over 14 different city routes, with some 19.7 million boardings 

in 2009. The power is delivered to these vehicles from 40 Metro substations scattered across the 

city. Each substation houses electrical equipment that converts the incoming 26,000-volt AC 

(alternating current) power into the 700-volt DC (direct current) *power used by the trolleys.
30

 

The converted electricity is fed into the overhead wires via conduits that travel underneath 

Seattle streets and then the poles that support the overhead system. Seattle Metro purchases the 

electricity to power these trolleys from Seattle City Light, which reports deriving almost 98% of 

                                           

29
 http://www.epa.gov/otaq/diesel/retrofit-tips.htm#standards 

30
 http://metro.kingcounty.gov/up/projects/trolleyevaluation.html 

http://www.epa.gov/otaq/diesel/retrofit-tips.htm#standards
http://metro.kingcounty.gov/up/projects/trolleyevaluation.html
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its electricity from very low GHG producing hydropower (88.8%), nuclear, and wind energy 

sources (Seattle City Light, 2009).        

 
4.5 Life-Cycle Cost Comparison Issues for Alternative Bus Technologies   

 

The decision to purchase an alternative transit bus technology will be heavily influenced by both 

the up-front capital investment (i.e. the vehicle procurement cost) as well as the full life-cycle  

cost of purchasing, operating, and maintaining the vehicles. The following sections provide some 

background information on both of these issues.  

 

When considering the results of comparative bus technology studies, it is important to 

understand that a number of different aspects of bus technology, as well as environmental 

conditions, can impact fuel consumption and related emissions rates. From a climate change 

perspective, since absolute reductions in GHG emissions is the ultimate goal, this is not a 

problem. Realistically, however, comparative life cycle-based purchase, operation and 

maintenance costs need to be compared across vehicle types to determine the GHG reductions 

obtained per dollar spent. Financial constraints may warrant considering a slightly more 

polluting vehicle on an overall life cycle cost plus life cycle emissions basis.   

 
Example Bus Procurement Costs: According to American Public Transportation Association‘s 

2009 Public Transportation Vehicle Database (APTA, June 2009), the average price paid to the 

manufacturer for a standard 40 foot diesel bus in 2008 and 2009 (3,031 vehicles available 

nationwide) was $427,721; and for a 60 foot articulated bus (338 vehicles available nationwide) 

it was $820,719.  Table 4.4 shows the average cost paid to the manufacturer for all 2008 and 

2009 conventional diesels, hybrid electric diesels (= diesel battery hybrids), CNG, gasoline and 

hydrogen electric hybrids and biodiesels, as well as reported prices for buses on order in 2010 

and 2011.   

 

Based on Table 4.4 below, the capital costs of acquiring either a hybrid diesel electric bus in 

2008 through 2011 is just over 47% higher, on the average, than the cost of acquiring a 

conventional diesel, and after adjusting for average number of seats per bus Biodiesels cost 17% 

more on average, and CNG buses 23% more on average than conventional diesels based on 

currently reported payments to the bus manufacturers. Articulated, 60 foot hybrid diesel electric 

buses were 17.5% more expensive to acquire than conventional articulated diesels. These costs 

can often be reduced, however, through governmental programs that are intended to give these 

technologies a competitive edge.  

 

Recognizing that transit agencies are faced with an ―uncertain mix of volatile energy prices, 

emerging bus technologies, and pending climate change regulation‖, Peet et al (2010) have 

developed a prototype model for transit operators that examines the fuel type, consumption, and 

emissions of an existing transit fleet mix. Using the fleet characteristics of the Chicago Transit 

Authority (CTA), the spreadsheet-based method provides information for an evaluation of 

alternative fleet mixes, based on user-modified inputs of operating, capital and regulatory costs, 

illustrating the sensitivity to various inputs for both short-term fleet allocation and long-term 

fleet procurement practices. The model is being developed to help  a transit agency estimate the 

potential operating costs and emissions of new bus procurements ―through a life-cycle 
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comparison of conventional),  maturing   and emerging hybrid and electric vehicle technologies, 

under varying scenarios‖. 

 

Table 4.4 2008-2011 Bus Procurement Costs by Vehicle/Fuel Types 

 

Bus (Fuel) Type
Procurement 

Period
1 # Orders

2 # Buses
Average 

Cost/Bus

Average # 

Seats/Bus

DF = Diesel Fuel (Conventional) 2008-11 (O) 98 1193 356,583 37.1

2008-9 89 1057 356,030 37.2

DF = Diesel Fuel (Conv.), Articulated 2008-11 (O) 4 81 690,409 57.3

 2008-9 2 27 672,266 51.2

DB = Diesel & Electric Battery 2008-11 (O) 12 528 560,778 39.6

 2008-9 8 281 541,723 40.3

BD = Biodiesel  2008-10 (O) 28 316 407,484 36.2

2008-9 26 295 395,084 36.6

HY = Hydrogen 2008-10 (O) 3 15 598,874 38.7

2008-9 1 12 617,596 36

CN = Compressed Natural Gas 2008-11 (O) 20 797 470,288 39.7

2008-9 17 771 473,929 39.8

GB = Gasoline & Electric Battery 2008-9 2 40 564,961 38.0

CB = CNG & Electric Battery 2008-9 1 3 1,300,000 40.0

DB = Diesel & Electric Battery, Articulated 2008-11 (O) 7 277 793,126 56.0

2008-9 6 219 795,013 55.7

HY = Hydrogen, Articulated 2008-10 (O) 2 15 895,700 60.0

2008-9 1 13 873,000 60.0  

Source: based on data reported in APTA (2009). 
1  

2008-9 refers to buses purchased or on order in 2008 and 2009. 

2008-10 (O) or 2008 -11 (O) refers to buses purchased in 2008 and 2009, and on order for delivery in 2009, 2010 or 

2011; 
2
  = number of separately reported purchases (can be 1 or a large number of buses per order). Not all active or 

on-order bus procurements reported in the APTA database have a reported purchase price, The .# buses refers to 

those purchased or on order that did report a purchase cost.  

 

Comparable Bus Life Cycle Costs: While alternatively fuelled hybrid-electric, biodiesel and 

CNG buses are currently more expensive to acquire than conventional diesels, they can still be 

an attractive choice for bus fleet managers since they provide substantial fuel cost savings, while 

showing comparable maintenance costs.   

 

Clark et al (2009) provide a detailed capital plus variable life cycle costing study of hybrid 40 

foot and 60 foot buses, drawing comparisons with pre-2007 and more recent conventional diesel,  

CNG, and also gasoline-electric hybrid vehicles. Based on data from test sites in four cities (New 

York, NY; Seattle, WA; Long Beach, CA, and Washington, D.C.), the study found that a diesel-

electric hybrid bus purchase was more expensive than the purchase of conventional diesel or 

natural gas buses, but the hybrid electric bus offers superior fuel efficiency, particularly at low 

speeds.  
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A “Well-to-Wheels” Analysis computes the energy and emissions resulting 
from primary energy source extraction through vehicle operation. This includes 

the fuel production and delivery process, ending with the fuel used at the pump. 
It also  captured  the energy and emissions required to   manufacture and deliver 

the vehicle itself.   See http://greet.es.anl.gov/ for example .

  
 

Drawing from the report‘s executive summary, life cycle cost (LCC) was found to be affected 

substantially by several cost factors, such as purchase incentives, fuel price, bus operation speed 

and mileage, battery technology, and bus lifespan. Diesel buses with a conventional drivetrain 

were usually found to be the least expensive technology, in comparison with diesel-electric 

hybrid and CNG buses—especially during intermediate- and high-speed operation, and despite 

the growing complexity of diesel engine technology. Diesel-electric buses are impacted by high 

purchase cost and battery replacement cost, but become attractive for their fuel savings when 

operated at slow speed or over longer life mileage. Fuel efficiencies for the in- service buses 

tested ranged 1.71 to 3.74 miles per diesel equivalent gallon, suggesting significant GHG 

savings potential if the right bus can be matched to the right service conditions.  

 

Assuming that bus mileage and fuel consumption, per mile maintenance costs and fuel costs 

remain constant, and no interest is charged/earned on bus procurement, operation, and 

maintenance cash flows, the fuel cost savings of the diesel-electric hybrid bus nearly offset its 

higher purchase cost in at  the end of the bus lifetime (payback period of 12.3 years). The FTA 

may also cover up to 80% of the purchase price of a standard diesel bus under its various grant 

programs
31

, while its discretionary 5308 Clean Fuels Grant Program
32

 may cover up to 90% of 

the net incremental costs to comply with the Clean Air Act.  These grants can significantly 

reduce the purchase cost differential.   

 

Gasoline-electric hybrid buses were found to cost around 5% to 10% more than diesel-electric 

hybrids overall, and to offer a good alternative to diesel  for situations in which a hybrid system 

is desired to achieve fuel efficiency but criteria emissions restrictions might prohibit pre-2010 

diesel engine operation. The LCC of CNG buses was usually found to fall between those of 

conventional diesel and diesel-electric hybrids. It was also noted that to be competitive ―the 

purchase scale for CNG buses should be large (over 50 buses) to offset capital infrastructure 

costs), unless these costs will not be borne by the bus operator, are reduced by some 

infrastructure incentives, or CNG infrastructure is already in place‖.  

 

Figure 4.1  MPG estimates for Four Types of Bus  

at National Annual Average Speed* 

 

                                           

31
 http://www.fta.dot.gov/grants_financing.html 

32
 http://www.fta.dot.gov/funding/grants/grants_financing_3560.html 

http://www.fta.dot.gov/grants_financing.html
http://www.fta.dot.gov/funding/grants/grants_financing_3560.html
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                  Source: See Clark et al (2007) 12.72 mph. All buses are 40-foot, low floor designs.   

 
        Figure 4.2 Well-to-Wheels CO2e Emissions in Grams/Mile for Four Bus Types* 
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               Source: Clark et al (2007) *Emissions averaged Over a 12 Year Vehicle Life: 2007- 2019 

         GHG emissions include carbon dioxide and methane, derived using Argonne National Laboratory’s    

       GREET model .See:  http://greet.es.anl.gov/ 
 

A 2007 LCC analysis by the University of West Virginia, based on data collected from a number 

previous studies, suggests significant GHG reductions possible from operating diesel-hybrid 

buses. Based on a 12 year vehicle operating life, a ―Well-to-Wheels‖ analysis found significant 

fuel economy savings potential (Figure 4.1), as well as significant GHG reduction possibilities 

on a grams per vehicle mile basis: on the order of 18% better than the ultra low sulfur diesel bus 

they used for comparison (Figure 4.2).  
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4.6 Rail Transit Vehicles  

 
Recent U.S. Railcar Procurements: Both heavy and light rail public transit systems in the 

United States are powered by electricity drawn from the nation‘s Electric Grid. In 2008, some 

11,377 heavy rail transit (HRT) and 1,969 light rail transit (LRT) vehicles were available for 

service nationwide, powered by 3,897.7 and 720.9 million kilowatt hours of Grid supplied 

electricity respectively (APTA, 2010). Self-powered commuter railcars consumed a further 

million kilowatt hours of electricity in 2008, while commuter locomotives consumed and 

additional million gallons of diesel fuel. The electric power supply for these vehicles is provided 

either by overhead lines (catenaries) or by contact rails. GHG reductions are obtainable from 

either the use of ‗cleaner‘ (i.e. lower carbon emitting) electricity, from more fuel efficient 

diesels, or from a move to lower carbon fuels. 

 

The costs of procuring, operating, and maintaining rail transit vehicles varies considerably by 

type of transit mode (commuter, heavy or light rail) and by individual vehicle capacities, as well 

as by the nature, including the frequency of services offered. Within an rail sub-mode similar 

challenges exist in selecting the most suitable technology. Table 4.5 below shows the average 

procurement costs (paid to the manufacturer) based on APTA (2009) reporting of recent and 

pending procurements, through 2011.    

 

Table 4.5 Recent Railcar Procurement  Costs 

 

Transit Mode Fuel Type
Procurement 

Period
1 # Orders

2 # Rail Cars 
Average $ Cost     

per Railcar

Average # 

Seats per 

Railcar

Heavy Rail Electricity 2010-11 12 1313 1,684,698 43.2

Light Rail Electricity 2008-10 6 184 4,209,374 75.0

Commuter Rail Electricity 2009-11 9 514 2,218,185 106.7

Commuter Rail Unpowered 2008-10 25 480 2,196,952 135.2
 

Source: based on data reported in APTA (2009) 
1 
2008-9 refers to railcars purchased or on order in 2008 and 

2009. 2010 and 2011 refers to railcars on order. 
2
  = number of separately reported purchase orders  (can be 1 or a 

large number of railcars per order). Not all active or on-order railcar procurements reported in the APTA database 

have a reported purchase price.# Rail Cars refers to those purchased or on order that did report a purchase cost. 
 

The unpowered railcars shown in Table 4.5 require a locomotive. The average cost of a diesel 

fueled commuter rail locomotive, based on some 38 vehicles purchased in 2008 and 2009 was 

just under $2.6 million dollars (APTA, 2009).  Some  62 electrically powered commuter rail 

locomotives are also reported to be on order for 2010-11, at an average procurement cost of just 

under $9.2 million dollars.    

 

The carbon emissions associated with Grid-powered trains are heavily dependent on the energy 

feedstock used in vehicle propulsion. With just over half of all U.S. electricity generated from 

coal, most transit agencies must draw at least some of their electric power from coal-based power 

plants. However, even with the use of fossil fuel-based electricity sources, research has shown 

that such a GHG emissions profile is still a substantial improvement over non-electricity 

powered vehicles (gasoline/diesel) and their associated GHG emissions profile (Unger et al, 
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2009).  Where nuclear or hydro-electric sources of power are involved, or additional power can 

be obtained from renewable sources such as solar collectors and wind turbines, significant GHG 

emissions reductions are possible on a life cycle basis. A number of transit systems today also 

draw on Grid electricity produced from natural gas, which is typically a source of lower life 

cycle emissions than either coal or petroleum based fuels.     

 

Heavy Rail Systems: A number of advances in rail transit vehicle technology offer energy and 

associated GHG savings. BASE Energy, Inc. (2007) provide a detailed description of seven of 

these technologies and how they computed the potential for electricity savings associated with 

their use in the Bay Area Rapid Transit (BART) heavy rail system in San Francisco, California 

(see Table 4.6).   

 

Table 4.6  BART Rail Car Energy Efficient Technologies Study   

 

Technology
Energy 

Savings

CO2e Reduction 

Potentials1

kWh/car-year metric tons /car-year

Ultracapacitors for regenerative breaking energy storage 123,989 83.1

Permanent magnet motors for car propulsion2 45,063 30.2

Variable frequency drives on HVAC supply fans 4,196 2.8

Optimized outside air intake into cars 2,184 1.5

Higher efficiency HVAC units 1,242 0.8

Daylight controls on flourescent lamps 1,194 0.8

High efficiency lighting 1,170 0.8

Total 179,038 120.0
 

 Source: Based on BASE Energy, Inc. (2007) Table ES-2B  
1
Estimates computed by Compendium authors. 

 
2
Refers to replacing existing Induction Motors and Direct Current Motors. 

 
The GHG reductions shown were computed by the authors of this Compendium, and are based 

on an average US electricity mix (of coal, nuclear, hydro-power, etc) of 670 grams of CO2e per 

kilowatt hour (Samaras and Meisterling, 2008), including an average of 54 grams of CO2e from 

―upstream‖ extraction, processing, and transport of fuels prior to generation. A similar table for 

potential energy savings associated with retrofitting the seven technologies shown to existing 

railcars is also provided by the BASE Energy study, to which is also added significant energy 

savings from directing cooler air to the inlet of the railcar condenser heat exchangers. The study 

identifies total energy saving technologies that could potentially save an estimated 43% of BART 

total railcar electrical usage, with a projected cost savings of over $13 million per year 
 

Other U.S. transit agencies with large railcar fleets, such as Chicago‘s CTA, the New York 

MTA, and MARTA in Atlanta are also making use of ultra capacitors (Burke, 2000; BASE, Inc, 

2007) to store the energy captured from  regenerative breaking technology, using the braking 

action to feeds energy that would otherwise be lost as heat when the train stops. The energy 
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being recovered from regenerative braking systems is being passed via a third rail or catenary to 

power other, nearby trains. A portion of this kinetic energy can be reused to power vehicles 

auxiliaries, such as lighting and air conditioning, but most of it is being returned to the network.  

 
Battery Supported Light Rail Systems: Light rail transit (LRT) systems are currently 

undergoing significant changes that are starting to demonstrate significant energy and associated 

GHG emissions reductions (Siu, 2007; Fujimoto, 2008; Barrow, 2009). LRT systems have 

historically drawn their power from an overhead catenary, with  a number of ground based power 

sources introduced into practice over the past decade in cities such as Bordeaux, France and 

Manheim, Germany (solving the safety issues associated with the potential electrocution of 

pedestrians by using a variety of technologies that draw electric current only when the LRT 

vehicle is passing over the line).  Each of these systems can now make extensive use of 

regenerative braking technology linked to ultracapacitors for rapid energy.  In cities such as Nice 

in France, Lisbon in Portugal and Sapporo in Japan, these energy capture technologies are now 

linked to advances in nickel-metal hydride (NiMH) batteries, allowing light rail vehicles store 

more of the energy they get from regenerative braking and as a result to operate for long 

stretches without  the need to draw on either a ground based or overhead catenary power supply.  

This also means eliminating the ―upstream‖ energy and GHG emissions associated with the 

provision as well as upkeep of these structures. And it allows the possibility of taking more 

direct or more attractive routes that may also increase ridership, especially through historic or 

other tourist areas where overhead wires are discouraged or not allowed. In Sapporo, Japan, 

Kawasaki report that a 3-car, 3-bogie articulated 28 seat, 60 passenger Swimo tram,  can now use 

a NiMH battery for traction power on sections up to six miles when overhead catenary power is 

not available, storing power from regenerative braking and requiring only 5 minutes to recharge 

the battery, the time it takes to turn the vehicle around at terminals (Kawasaki, 2008).  LRT 

vehicle suppliers such as Alstom, Bombadier, CAF, and Siemens are reporting battery 

recharging times as low as a few seconds. Just how many GHG emissions are avoided depends a 

good deal on the upstream electricity source . In Alberta, Canada, Calgary‘s CTrain fleet is 

powered with very low GHG producing electricity, generated by 12 large windmills (wind 

turbines) located in southern Alberta.  

 
4.7 Paratransit Fleets, Non-Revenue Vehicles, and Ferryboat Services  

 

A number of transit agencies have procured hybrid gasoline-electric vehicles for use in their 

paratransit/demand responsive services, and/or as part of their non-revenue vehicle fleet. Using a 

TIGGER grant, 31 paratransit buses in seven transit agencies across the Illinois will be replaced 

with hybrid gasoline-electric buses to help reduce greenhouse gas emissions and energy 

consumption in that state. The vehicles are expected to reduce fuel consumption by a total of 

100,000 gallons, and reduce GHGs by a total of 871 metric tons annually. The vehicle will turn 

the engine off  to prevent emissions from idling and use regenerative braking technology to save 

additional energy.  Rabbittransit in York county, Pennsylvania is introducing 10 hybrid gasoline-

electric buses into its paratransit fleet as part of a pilot project. These vehicles are believed to 

offer a 32% reduction in greenhouse gas emissions, due to a 40% improvement in miles per 

gallon over a conventional gasoline vehicle of the same capacity, with all-electric operation of 

the vehicle at low speeds and an anticipated 75% reduction in fuel consumption during idling. 

The Valley Transportation Authority Santa Clara, California operates the largest fleet of hybrid-
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electric paratransit vehicles in the country. The agency estimates that it cut its annual GHG 

emissions by 385 metric tons by replacing it gasoline powered vehicles with a fleet of 60 hybrid 

gasoline-electric sedans and a non-revenue fleet of 10 hybrid gasoline-electric SUVs.  Paratransit 

fuel economy is reported to have increased from around 15 mpg to around 45 mpg as a result. 

Fleet expansion to 106 hybrids is underway. 

 

Transit agencies are also turning to hybrid gasoline-electric vehicles for use in day-to-day non-

revenue service activities, including vehicles used by transit police. For example, the Maryland 

Transit Authority‘s police force use a variety of energy-efficient vehicles, including three 

electrically-powered patrol scooters,  bicycles, a gasoline-electric hybrid sedan, and two sedans 

and six SUVs that can be powered with ethanol. Similarly, the Chicago Transit Authority‘s non-

revenue fleet includes gasoline-electric hybrid SUVs, sedans, and pickup trucks; as well as 

vehicles that can run on E-85 fuel, a blend of 85 percent ethanol and 15 percent gasoline, and 

vehicles that run on compressed natural gas.  

 

The Broward County, Florida Mass Transit Department is operating a hybrid diesel-electric 

ferryboat service. Of the eight ferryboat services reported in the FTA‘s National Transit 

Database, seven use diesel-powered craft, while the New York City DOT operates ferry boats 

run on biodiesel as well as petro-diesel.  Washington State DOT is experimenting with 5%, 10% 

and 20% blends (B5, B10, B20) of biodiesel, mixed with ultra-low sulfur petro-diesel fuels, as 

part of a Biodiesel Research and Demonstration Project. Three different vessels are used, with 

the biodiesel produced from canola oil, soybean oil, restaurant oil and tallow (unused beef fat left 

over from the rendering process).   
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5. FLEET OPERATION AND MAINTENANCE PRACTICES 

 
5.1 Introduction 

 

Transit agencies engage in a wide range of operation and maintenance (O&M) practices on a 

daily and periodic basis, and nearly all of these  practices affect the efficient use of fuels/energy, 

which in turn affects agency GHG emissions. This chapter provides insights and guidance on 

strategies for reducing agency GHG emissions through periodic operations and maintenance 

(O&M) activities. This includes practices focused on maximizing productive service output per 

unit of energy, and on practices that minimize energy losses. Such practices reduce vehicular 

GHG emissions by improving the day-to-day energy efficiency of agency owned or leased 

revenue generating transit fleet vehicles, as well as non-revenue vehicles such as those used in 

right-of-way maintenance and security activities.  

 
5.2 A Wide Variety of  O&M  Activities Can Reduce GHG Emissions 

 

Strategies for reducing GHG emissions can be arranged into three general categories:  

 

1. fleet management/logistics  

2. vehicle operations, and  

3. vehicle and (rail) track maintenance.  

 

Many of these strategies are listed in Table 5.1, each associated with one or more mechanisms 

for GHG reduction, using either a technological, or a protocol fix, or sometimes a combination of 

both. For example, actions to save energy by reducing vehicle idling include both a technological 

fix in the form of  automatic engine idle stop-start shut off systems, and a protocol-based fix in 

the form of a fleet wide mandatory idle reduction directive. Similarly, energy savings from 

smoother vehicle motion, involving less acceleration and stop-go movements can be captured 

through one or more combinations of preemptive transit vehicle signal control (fleet logistics), 

the use of on-board adaptive vehicle braking/cruise control/ traction control/ power management 

technology (vehicle operation), and driver training in support of efficient ―eco-driving‖ practices 

(vehicle operation). These practices can be further supported by energy efficient tire inflation  

practices, and possibly low tire pressure warning technology (while also providing a more 

comfortable ride for patrons).  

 

The ability to combine GHG reduction mechanisms in this manner can lead to a greater payoff,  

in both emission and financial terms. This in turn requires coordination of such actions within an 

agency. While both the operations activities and maintenance practices of transit agencies are 

both closely tied to the provision of mobility services, they are often administered and influenced 

by distinct groups of personnel within a transit agency. Operational activities are conducted by 

service planners, dispatchers, vehicle operators, and others who have unique responsibilities and 

skills for the efficient delivery of mobility services. Maintenance activities are separately 

conducted by specialists such as mechanics, electricians, and service attendants. Since the work 

of  maintenance personnel impacts the efficiency of vehicle and fixed guideway operations, 

interdepartmental coordination of O&M activities can enhance complementary outcomes. 
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        Table 5.1 GHG Reducing O&M Practices 

       

Mode Strategy/Objective   GHG Reduction Mechanism

Fleet Management/Logistics

Bus, Van  Better matching of vehicle capacity with passenger 

demand 

Fleet management software

Bus, Van More efficient (passenger miles/ vehicle mile) route 

structures

Fleet management software

Bus More efficient vehicle positioning to reduce 

deadheading 

Automatic vehicle location (AVL) & real time  computer aided  

dispatch (CAD) 

Bus, Van "Flex"/deviated fixed route scheduling Automatic vehicle location (AVL) & real time computer aided  

dispatch (CAD) 

Van More efficient vehicle dispatching Dynamic CAD

Bus, Van, Light 

Rail

Smoother, more efficient vehicle movement Transit signal priority/preemption 

Non-Revenue 

Fleet

Vehicle patrolling, surveillance and road call 

reductions

Automatic vehicle location (AVL) & real time computer aided  

dispatch (CAD) 

All Less energy lost in idling  Mandatory idle reduction policies 

 Vehicle Operation

Bus, Van, Rail Less energy lost in idling  Auto stop-start idle shut-off system

Bus, Rail Less energy lost when vehicles standing Switching auxiliary power off  when vehicles in yard

Bus, Rail Less energy lost in non-propulsive uses Use of auxiliary power units for "hotel" energy sourcing of air-

conditioning, lighting, and other non-propulsive functions (bus)

Rail Less energy lost in non-propulsive uses Tier II head end power (HEP) units for "hotel" energy sourcing   

Bus, Van Smoother, more efficient vehicle movement Adaptive vehicle braking/ cruise control/ traction control/ power 

management
 Rail Less energy lost in vehicle air conditioning Variable speed fans   

Rail Less energy lost in vehicle warm-ups Use of auxiliary power units 

Bus Less energy wasted in transmission losses Optimal transmission shifting program 

Rail  Less energy wasted in transmission losses Transmission retarders 

Bus, Van,               

Non-Revenue

Smoother, more efficient vehicle movement Driver training/"Eco -driving" 

 Vehicle Maintenance

All Less polluting lubrication Use of synthetic lubricants

Rail Less polluting rail track maintenance Biodegradable, non-petroleum based grease 

All Efficient operation/fewer repairs/replacements Maintenance monitoring technologies

All Extended vehicle life Scheduled engine & drivetrain tune-ups

Bus, Van,               

Non-Revenue

Smoother, more efficient vehicle movement Correct tire inflation

 
 

 

5.3 Efficient Fleet Management Practices 

 
The reduction of greenhouse gases per se may not  be the major reason behind a transit agency‘s 

decision to  restructure ridership services, but it does tend to correlate well with reductions in 
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fuel consumption on a per passenger or passenger mile served. And, given a  reduction in fleet 

size requirements for a given level of ridership served, with a reduction in the  ―upstream‖ 

emissions associated with vehicle  manufacture.     

 

Environmental Management Systems (EMS) Certification: A number of transit agencies 

have incorporated GHG emissions reduction actions into Environmental Management Systems, 

or EMS plans. An EMS is a set of processes and practices that enables an organization such as a 

public transit agency to both track and reduce its environmental impacts while increasing its 

operating efficiency.  In 2003 the FTA began the promotion of, and offered some financial 

support for, EMS training and certification according to ISO (International Organization for 

Standardization) 14001 Standards.  These standards are adapted to transit agency use, employing 

a toolbox of management techniques oriented towards minimizing harm to the environment.
33

  

This program entered its third round in June of 2010.
34

  The EMS being developed by the Los 

Angeles County Metropolitan Transportation Authority is especially interesting here because of 

its stated use as climate change management tool (Metro, 2010).  In Seattle, Sound Transit has 

developed an annual Sustainability Progress Report based on its ISO 14001 derived EMS 

practices, with climate change mitigation strategies listed as one of five major thrust areas (along 

with Green Building and Design, Environmentally Preferable Purchasing, Waste Prevention and 

Recycling, and Energy Efficiency: see Sound Transit, 2010). 

 
Uses of IVS/ITS Technology: Many of the improvements in O&M practices used by transit 

agencies over the past two decades have involved use of the latest electronic communications 

technology, usually in conjunction with the introduction of computer software and hardware 

platforms geared to optimizing the use of fleet vehicles. This includes a variety of technologies 

often grouped under the label Intelligent Vehicle System (IVS) or Intelligent Transportation 

System (ITS) technologies, and when applied at the  system-wide or agency-wide level to large 

vehicle fleets, as IVS/ITS architectures.
35

 In particular, many of the nation‘s public  transit 

agencies  now benefit from the deployment of GPS assisted automatic vehicle location (AVL) 

devices, coupled with computer aided dispatch (CAD) systems. When applied in combination, 

AVL and CAD provide up-to-date information on vehicle locations to assist vehicle dispatchers 

in matching demand to supply: as well as informing travelers of the status of current services via 

station message signs.  A review of AVL use in bus transit operations, by Parker (2008), 

identifies maintenance as well as operational benefits, while putting capital investment costs for 

deployed systems in the range of $10,000 to $20,000 per instrumented vehicle as a general rule 

of thumb.
36

 

                                           

33
 http://www.fta.dot.gov/planning/environment/planning_environment_227.html 

34
 Access to information on EMS participation, and to a number of agency specific EMS experiences from Round 2 

of this program can be found at:   

http://www.fta.dot.gov/planning/environment/planning_environment_227.html.   
35

  ―Transit Management‖ deployment statistics for U.S. metropolitan areas through 2007 can be found at  

the US DOT‘s ITS Deployment Statistics site: http://www.itsoverview.its.dot.gov/TM.asp  
36

  Using the following regression formula as  a rough approximation of expected capital costs for any 

given project: Contract Award = R2 = 

awards dating from 2001 to 2007 in the United States and Canada: and best suited for fleets having less 

than 750 vehicles. 

http://www.metro.net/default.asp
http://www.metro.net/default.asp
http://www.fta.dot.gov/planning/environment/planning_environment_227.html
http://www.fta.dot.gov/planning/environment/planning_environment_227.html
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At its best, IVS technology integrates both on-board vehicle and wayside systems. ―For example, 

IVS applications could ultimately reduce bus fuel consumption, maintenance costs, and running 

time variation by (Hwang et al, page 232): 

 

1. Determining the vehicle‘s expected time of arrival at an upcoming intersection 

(taking into account past history, current speed, traffic levels, and active stop 

requests); 

2. Communicating with the wayside traffic signal controller to request priority handling 

at a particular intersection; 

3. Determining in advance what signal will actually be displayed at the time the vehicle 

is expected to arrive; and 

4. Informing the operator whether it would be advisable to maintain speed or decelerate 

for an expected stop signal.‖ 

 

Flexible/Deviated Fixed Route Services:  In a variation on traditional demand responsive or 

paratransit application, the use of  “Flex‖ or ―Deviated Fixed Route‖ service options allows 

otherwise fixed route buses or vanpools to deviate from their usual, pre-scheduled route, on order 

to pick up or drop off one or more riders  at an otherwise out-of-route location. Once the pick up 

or drop off is made, the vehicle returns to, and resumes its usual route. Where the deviation leads 

to a higher passenger-mile per gallon of fuel consumed, the service is reducing overall travel 

GHGs. If the out-of-route passengers also pay a full fare or subscription for the service, revenue 

dollars per vehicle mile of service may also result. The down side is the potential for delay to 

other riders, and possible loss of patronage as a result. Software programs exist to help transit 

agencies optimize this sort of flexible service provision.  

 

As more operators equip their smaller buses and vanpool vehicles with various forms of ITS 

communication and location tracking technologies, shorter lead times may be required in order to 

determine which out-of-route trip requests to meet, allowing these flexible routing and 

scheduling systems to  become more energy efficient in the future. For example, the Utah Transit 

Authority began operating three new community ―flex‖ routes in May of 2010. The routes bring 

new all-day service to areas that previously had no service or had only morning/evening 

commuter buses. The new routes offer a regularly scheduled route through the community but 

have the ability to deviate up to 3/4 mile off of the regular fixed route for just $1 more than 

standard fare. Customers can call to schedule a deviation up to two hours prior to the trip. The 

new routes operate using a smaller shuttle-style van, which is less expensive to operate than a 

full-size bus, but still has room to carry the potential number of riders on the routes. 

 

In Fitchburg, Massachusetts, the Montachusetts Area Regional Transit merged conventional 

paratransit with a full-fare subscription service that delivered an operating cost reduction of 60% 

with no impact on quality of service. Next day rideshare services appear to be especially popular 

for transporting young children to schools, as well as for federal welfare, Head Start, disabled, 

and special needs riders, where conventional fixed-route transit typically involves multiple 

transfers or extended walking distances (Hwang et al, 2006).   Potts et al (2010) found that 194 

out of 501 transit agencies responding to their survey currently used some form of 

flexible/deviated route transit service. They provide  a number of case study examples, and 
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guidelines on where such services may apply in rural, small urban and larger urban 

environments. A detailed analysis of miles reduced, fuel saved and emissions avoided  per 

passenger served has still to be provided for such services, given a suitable regional ridership 

demand profile.  However, cost savings reported indicate some promise, given a suitable 

ridership demand profile and service area geography.For example, the Potomac and 

Rappahannock Transportation Commission (PRTC) operates OmniLink, a route-deviation 

system blended with fixed-route characteristics to provide transit services for all area residents 

without operating a separate ADA paratransit system. PRTC estimates a 25% to 50% cost 

savings by operating this one service versus two separate (fixed, demand-responsive) services.   
 

Demand Responsive Real-Time Software: The Toledo Area Regional Transit Authority 

(TARTA) of Ohio uses a demand response software solution that enables passengers to quickly 

gain access to, and request paratransit information via a touchtone telephone. With flexible 24 

hours a day, seven day a week automated system access, passengers are able to set up call-back 

reminders that promote punctuality and reduce missed trips. TARTA‘s service for riders with 

special needs is called TARPS (Toledo Area Regional Paratransit Service) and covers all of 

Toledo, Sylvania, Maumee, Rossford, Perrysburg, Ottawa Hills, Waterville and Spencer and 

Sylvania Townships. The paratransit software is designed to reduce driver wait times and no 

shows, as well as prevent same day cancellations. Using interactive voice response (IVR) 

confirmation, callback and cancel modules, the software enables clients to review trip bookings 

through a computerized voice system to confirm accuracy, while the callback module also 

provides passengers with automatic reminders of upcoming trips.
37

 The benefits of such a system 

is the ability to reduce emissions from vehicle miles of travel lost to no-shows, as well as to 

reduce vehicle idling while waiting for customers to board an arrived vehicle.   

 
Vehicle-to-Passenger Load Matching:  By going with the smaller buses on routes that are not 

currently operating at capacity,  a transit agency might save on the vehicle‘s purchase price as 

well operating costs as through significantly reduced fuel consumption.  However, heavier-duty 

40 foot buses tend to have a longer operating life, on the order of  350,000 miles, versus 150,000 

to 200,000 miles for a lighter-duty (e.g. 20 foot) bus. In considering these options, the  Lawrence 

transit agency in  Kansas City selected a mix of bus sizes, supplementing a small fleet including 

40 foot and 30 foot fixed route buses with the  procurement of six shorter, 20 foot buses (at an 

estimated cost of  $480,000).    

 
Route Restructuring: Changes in the spatial distribution of household populations sometimes 

warrant a restructuring of fixed bus routes in order to provide short distance access to a larger 

number of potential riders. A higher ratio of seat miles to vehicle miles can also be achieved 

through more the application of route optimization software tools based on the ―traveling 

salesman‖ principle of making the largest number of pickups per vehicle mile. Some significant 

fuel reduction gains may be possible. For example, the Port Authority of Allegheny County, 

                                           

37
  http://www.encyclopedia.com/doc/1G1-209031445.html 

 

http://www.encyclopedia.com/doc/1G1-209031445.html
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when surveyed, reported that ―Current route restructuring (phased 4/2010 - 3/2012) will reduce 

non-revenue mileage by 28%.‖ Many other examples are provided in the FTA sponsored series 

of reports included in TCRP 95: Traveler Response to Transportation System Changes 

Handbook. The handbook also provides suggestions for how to approach route restructuring 

issues, and case studies demonstrating the impacts on ridership levels and service levels from 

bus, rail, and demand-responsive route restructuring actions.
38

 The challenge, of course, is to   

reduce vehicle operating costs, including energy costs, while retaining, and where possible 

increase, ridership on the new routes. This is not a simple task, and has been the subject of 

numerous technical papers. The textbook by Ceder (2007) provides a comprehensive treatment 

of many of the practical as well as scientific aspects of matching transit services to the pattern of 

ridership demands, and to issues associated with the efficient design of fleet resources as well as 

route structures.  
 

Reduced Vehicle Deadheading: Moving buses around empty is to be avoided if possible, but is 

often required in order to position the vehicles for their next round of service. This repositioning 

is often termed ‗deadheading‖. This includes the reduction of non-revenue, deadheading miles 

associated with empty vehicle pre-positioning and return to garage, or to the miles involved in 

moving from one fixed route to another over the course of a day.  Sound Transit in the state of 

Washington implemented a mid-day bus storage program so that its‘ express buses coming from 

Pierce County are stored close to the central business district in Seattle between the morning and 

afternoon commutes, rather than driving back and forth empty.  This is estimated to have saved 

some 95,000 gallons of diesel fuel (approximately 965 metric tonnes of CO2), in 2008, without 

changing the amount of service provided. 

 
5.4 Efficient Vehicle Operation  

 

The efficient operation of individual vehicles within the transit fleet has also benefitted from 

recent advances in electronic communication-enabled IVS technology. Hwang et al (2006) 

identify the following IVS technologies as having energy savings, and hence GHG reduction, 

potential, either individually or in combinations: 

 

1. Global Positioning System (GPS)-based route guidance and navigation 

2. Communications-Based Train Control (CBTC) 

3. Digital onboard Vehicle Area Networks (VAN) and Trainline networks 

4. Short-range wireless communications 

5. Mobile Data Terminals (MDT) 

6. Multiplexed electrical systems 

7. Adaptive braking 

8. Adaptive traction control 

                                           

38
 Chapter 10, ―Bus Routing and Coverage,‖broadens the coverage of conventional bus operations, as 

does Chapter 4 for express bus services, and Chapters 7 and 8 for urban rail systems. All aspects of 

demand  

responsive and ADA (Americans with Disabilities Act) services are covered in Chapter  

6; this includes matters of ―scheduling‖ (dispatching) and service quantity. 
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9. Adaptive cruise control 

10. Adaptive power management 

11. Infrared vision enhancement 

12. ―Heads Up‖ Displays (HUD) 

13. Wheel/tire temperature and air pressure monitoring 

14. Precision steering and docking 

15. Onboard Supervisory Control and Data Acquisition (SCADA) 

16. Short-range Radio Direction and Ranging (RADAR) proximity sensing 

17. Short-range ultrasonic proximity sensing 

18. Machine vision  

19. Interactive electronic defect card.  

 
Driver Training (Bus, Van): Driving behavior has a strong effect on fuel use, and U.S., 

European, and Japanese studies have indicated that fuel economy improvements on the order of 

5 to 10 percent can be obtained if drivers are aware of the effects of their driving style on 

efficiency and adjust their driving accordingly (ECCJ 2003, ECMT/IEA 2005). ―Eco-driving‖ is 

a term that is becoming popular when referring to the use of non-aggressive driving techniques 

such as shifting up as soon as possible, maintaining a steady speed, anticipating traffic flow and 

decelerating smoothly. According to GTZ (2005), efficient driving techniques achieved through 

a combination of vehicle fuel, speed and acceleration monitoring, and driver training can reduce 

fuel consumption by 5% to 10%, and sometimes by a good deal more, depending on starting 

conditions. In Edmonton, Canada, the ―Fuel Sense‖ program instructs drivers to operate vehicles 

for maximum fuel efficiency while considering operational needs. Participating drivers learn 

techniques such as reducing idling time and planning more efficient routes. A computerized fuel 

dispensing system measures the fuel usage of individual drivers at regular intervals. Data for 

some 800 trained municipal bus operators averaged a 12% fuel efficiency gain with overall GHG 

savings to date put at around 10% (Transport Canada, 2010). The addition of real-time fuel 

economy indicators on vehicle dashboards is also a useful method worth exploring.    

 
Idling Reduction (Bus and Van): Vehicle engine idling is a major source of GHG emissions 

from both revenue and non-revenue activities, and from both highway and rail transit vehicles.  

Referring back to Table 5.1, emissions from idling are influenced by a variety of operating 

characteristics. These include time spent stopped in congested traffic and/or at signalized 

intersections, stopping for passenger boarding/alighting and fare purchase, engine operation 

solely for the provision of passenger comfort and security, freeze protection and warm-up of the 

engine and ancillary systems, cleaning of the vehicle interior (―hotel‖ loads), and even stationary 

surveillance of transit property from transit police cruisers.   

 

Agencies can therefore benefit from a coordinated effort at idling reduction across the various 

departments and personnel that either have an impact on the way vehicles are operated or on the 

practices of their vehicle operators and maintenance staff. For example, many recent orders for 

diesel buses include the provision of automatic engine stop/start technology; however, the use of 

these technologies may not be compatible with ancillary computer systems (such as bus stop 

announcing systems or emergency road call systems), or they may not be compatible with the 

provision of comfortable interior conditions demanded by operators or passengers. Best practice 
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therefore suggests an assessment of idling practices prior to vehicle procurement as well as 

during vehicle operations. 

 

Example Bus Idling Reduction Case Study: Chicago Transit Authority (CTA). Researchers 

at the University of Illinois at Chicago have helped the CTA investigate strategies for mitigating 

excessive idling of diesel transit buses (Ziring and Sriraj, 2010). With respect to bus 

technologies, the CTA has utilized automatic shutdown/start-up systems to shutdown diesel bus 

engines left in idle. For the CTA, all New Flyer and Optima buses are delivered with 15 minute 

automatic shutdown systems, and NABI and NOVA buses are delivered with 30 minute systems. 

No shutdown devices are installed on buses manufactured before 2000. Each of the alternative 

idle reduction strategies shown in Table 5.2 could provide emission reduction benefits for as 

long as the life of the vehicle. 

 
Table 5.2 Direct Bus Energy and GHG Emissions for Entire Fleet 

 

Strategy Diesel Consumption 

(gallons)

CO2 Emissions 

(tons)

Fuel/CO2 

Reduction (%)

Baseline 40,865,010.00  453,601.61 --

Auxiliary power unit (APU) 35,636,009.55 395,559.71 12.80%

Battery-powered AC/diesel-

fired heater
34,060,146.40 378,067.63 16.65%

Automatic Shutdown/Start-up 33,701,995.68 374,092.15 17.53%

Source: See Ziring & Sriraj, 2010 

 

Table 5.3 Financial Costs and Savings per Bus 

 

Strategy Capital Cost Operating/ 

Maintenance Cost

Annual Savings Payback 

(years)

Auxiliary power unit (APU) $8,000 $400 $12,396 - $14,719 0.5 – 0.6

Battery-powered AC/diesel-

fired heater

$7,500 $400 $13,769 - $14,719 0.5

Automatic Shutdown/Start-up $1,200 $0 $11,740 - $14,380 0.1

Direct power connection $2,100 $0 $3,407 0.6
 

Source:  See Ziring & Sriraj, 2010 
 

Not only do bus idling reduction strategies provide direct fuel, financial, and GHG emissions 

savings, they can also help to reduce engine wear-and-tear which affects the frequency of oil 

changes and overhauls, as well as fuel economy.  Bus idling reductions can also help to reduce 

criteria air pollutants in areas where buses idle (notably locations adjacent to bus garages, bus 

terminals, and special events bus parking). However, the feasibility of both automatic and driver 

initiated shutdowns are limited by concerns of start-up reliability, interior comfort, and 
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disruptions to on-board computer systems (estimated at one hour per day of idling between 

maintenance tasks at the pilot garage).  

 

In 2004 the CTA issued a General Bulletin aimed at curtailing unnecessary idling of buses. The 

bulletin states that bus operators must shut off engine on layovers of more than 5 minutes,  

except in extremely cold or hot weather, and must also shut off the engine immediately when 

their bus is staged at an event, except in extremely cold or hot weather.  However, Ziring and 

Sriraj (2010), who interviews 58 different bus operators (10% of operators at a specific CTA bus 

garage), identified two significant opportunities for reducing fuel/energy losses due to idling, 

which they term storage idling and service idling: 

   

Storage idling occurs at bus garages and terminals when repairers, servicers and operators start a 

bus‘s engine earlier than necessary and neglect to shut off a bus‘s engine when the bus is not 

required to be on, or unnecessarily restart a bus‘s engine immediately after the bus‘s automatic 

shutdown timer has turned the bus off.‖ Such idling may be greatest at outdoor bus garages 

where low ambient temperatures conditions necessitate extensive idling. 

 

Service idling is non-discretionary idling which occurs while a bus is in the field but not engaged 

in transporting passenger: notably idling while standing in lace at special events, and idling on 

layovers. These buses may idle their engines for the duration of these events to maintain 

comfortable cabin temperatures. Idling for long periods of time could also occur on layovers, 

which occur when bus operators wait for shift relief, wait to pull onto their route in the opposite 

direction, or stop for a personal break. The authors note that ―While storage idling reaches its 

highest levels during winter months when bus warm-up times are longer, service idling occurs 

consistently year-round‖.   

 

Idle reduction programs are now being applied in a number of transit agencies around the 

country. When surveyed in April, 2010, the Port Authority of Allegheny County  reported 

―Idling practices (were) altered 3 years ago in conjunction with County ordinance. (This resulted 

in a) 12% reduction in idle time.‖  In responding to the same survey, The Utah Transportation 

Authority (UTA) reported that ―No idling of buses saves around $1 million per year‖.  The City 

of Calgary, in Canada‘s Alberta province has a no-idling policy which states that:  

 

―City Transit vehicles will not be parked with engine operating for more than 5 minutes unless it 

is essential for performance work. Exceptions are during an initial engine warm-up period in 

weather below-10 Celsius and during periods of extreme cold weather below-10 Celsius. When 

engines must be left operating, for any reason, the operator will remain with the unit.‖ 

 

Similar anti-idling laws exist elsewhere, and the number of locally and regionally imposed anti-

idling laws is on the rise (Gaines and Levinson, 2009a). In New York, for example, a statewide 

idling law sets a similar limit of 5 minutes for trucks and buses, unless the temperature is below 

25 degrees Fahrenheit. Many of these laws are targeted principally at trucks, but the technologies 

for reducing idling by providing more energy efficient means of heating both passenger spaces 

and engine blocks, as wall as providing air conditioning are generally applicable to heavy duty  

diesel buses also.  Idling has also become an issue with school and tour buses and the emissions 

they release (Gaines and Levinson, 2009b). As a result, more effective idle reduction 
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technologies may be on the horizon. For example, Intercity Transit, which operates in Thurston 

county, Washington implemented a bus pre‐heater program in 2009 that it expects will reduce its 

fuel costs by $30,000 to $50,000 per year.
39

 

  

Speed and Braking Controls (Bus):  A vehicle retarder, when actuated, provides an auxiliary 

and independent braking system for absorbing a portion of the kinetic energy of a decelerating 

bus. By sharing braking with the service brake system, the retarder results in cooler brakes and 

significantly increased lining life (Boktor, 1983).  Intercity Transit, WA recently (May, 2010) 

completed a retarder application test that it projects will save the agency $60,000 to $80,000 per 

year in fuel costs when implemented in its bus fleet. The retarder action occurs when the brake is 

applied, rather than when the throttle is disengaged (i.e. when the throttle is relaxed to the idle or 

throttle off position, causing the engine and transmission to slow the vehicle, instead of using the 

brakes and transmission). As a result, it is expected that brake replacement costs may increase, 

but both dollar savings and fuel/emission reductions will be significant.
25

 Safety issues must 

remain paramount in making such changes, of course.   

 

Low Rolling Resistance Tires (Buses, Vans, Non-Revenue Vehicles):  Transit buses are 

unlikely to adopt wide based single tires, however, although low rolling resistance and next 

generation dual tires are expected to offer fuel consumption savings over current tires on the 

order of 0.8% to 2% (TRB, 2010, Table 6-11). 

 
Idling Reduction (Rail): The purchase of idle reduction technology in rail transit operations is 

also paying dividends in terms of energy as well as emissions savings. When used in diesel 

fueled commuter locomotives it can offer significant GHG emissions reduction where long 

duration in-station idling has been the norm. A number of technologies can be retrofitted to 

existing diesel powered  locomotives for the purpose, including (Gaines, 2003): 

 
1. Automatic engine stop-start controls (AESS) 

2. On-board auxiliary power units (APU) 

3. Electric Grid powered plug-in units 

4. Diesel-driven heating systems (DDHS) 

 

In some instances AESS systems that shut of the engine after a set idle time can cut idling times 

in half, using sensors to monitor the locomotive‘s water temperature, brake pressure and battery 

charge (e.g. engine stays on below 40
o
F or water temperature drops below 100

o
F: so that fuel 

savings tend to be greater in southern locations in the U.S.). 

 

APUs provide an alternative, more efficient energy source to the locomotive‘s diesel engine for   

carrying out a number of tasks not associated with propulsion when a train is at a station. APUs 

are used to carry out such functions as lighting, heating and circulating the coolant and oil, 

charging batteries, and powering cab heaters. Use of APU technology in diesel locomotives 

recently acquired by the Maryland Area Rail Commuter (MARC) service are expected to reduce 
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fuel consumption by around 3O%, in part from APU enabled reductions in locomotive idling.   

An option here is use Electric Grid-powered plug-in power units. Over 2,000 of these units have 

already been installed on commuter trains in the U.S., as well as on short line, regional, and 

Class 1 locomotives. As a fourth option, DDHS systems can also be used to charge batteries and  

power in-cab heaters. These systems make use of waste heat produced by variable engine 

operating speeds, to efficiently heat water and oil and maintain brake pressure. Operating 

independently of other locomotive systems, small, two cylinder, water cooled diesel engines, 

coupled with a water circulation pump and an alternator can pump heated coolant through a 

locomotive‘s engine, compressor, expansion tank, oil cooler and cab heater to keep the entire 

locomotive's water system warm during shutdowns. According to one manufacturer, these units r 

consumes less than a half gallon of fuel per hour during engine shutdown, compared with the 3 

to 5 gallons per hour that idling locomotives typically use. 
40

 

 
Sound Transit in Washington State installed an auto start-stop system on all commuter rail 

locomotives in 2009.  This automatically shuts down the locomotive's engine when its idling for 

long periods of time and automatically starts the engine when necessary.  This is estimated to 

reduce engine idling by about 34 percent, and to cut over 1.8 million pounds of carbon dioxide 

emissions per year.  

 

In late 2007 New Jersey Transit it announced plans to end locomotive idling when temperatures 

rose above 40°F and then expanded the no-idling policy to when temperatures dropped to 0°F. 

Since then, more than 100 diesel locomotives have been retrofitted with new starters, block 

heaters, and batteries. In addition, new wayside power stations have been installed in rail yards 

so that maintenance can continue on the locomotives even when the engines are turned off. The 

agency expects to save $835,000 a year in fuel costs and reduce emissions by 2,269 tons of 

carbon dioxide, as well as 26 tons of nitrogen oxides, and one-half ton of particulates, by having 

made these improvements. 

 

Speed and Braking Controls (Rail):  In 1996, New York City Transit began its Subway Car 

Shunting Elimination Program, one of its most successful energy conservation projects. By 

modulating the acceleration rate and limiting the top speed of the 5,800-car subway fleet, the 

agency reduces energy use per subway car mile by 12 percent and saves 240 million-kilowatt 

hours of electricity annually (MTA, 2010).   

 
The New York MTA is also deriving energy savings by laying ―humped tracks‖ as part of its 

Second Avenue Subway project. By adjusting track inclines at stations, it is possible to use 

gravity to reduce the energy trains expend in braking and acceleration, shaving kilowatts off each 

train arrival. Similarly, minute calibrations of the turn radius in tracks can minimize energy loss 

in braking (MTA, 2010, page 22).   
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 5.5 Adoption of Advanced Vehicle Maintenance Practices 

 

Schiavone (2010), reviewing the latest preventative maintenance (PM) practices by U.S. public 

transit agencies, reports a wide variety of computer-based programs being used to schedule their 

PM intervals, with these same programs also being used to guide and track PM activities (i.e., 

follow-up repairs, parts, costs, etc.) over time by most agencies reporting. The more capable PM 

programs were found to be part of ―a larger Management Information System (MIS) that tracks 

and helps manage many maintenance-related activities, including repairs, costs, parts inventory 

and purchasing, fuel and lubricant dispensing, vehicle history files, vehicle availability, 

timekeeping, payroll, account payable, facilities maintenance, and others‖. 

 

Regular vehicle maintenance has long been known to pay feul saving dividends. For example, 

TriMet in Portland Oregon reports that its maintenance crews boosted gas mileage on buses an 

extra 0.32 miles per gallon in 2005, by adjusting transmissions, front-end alignments and 

steering control arms, and maintaining a set tire pressure, saving an estimated half a million 

gallons of diesel fuel that year.
41

  

 

Real-Time Maintenance Monitoring Technologies allow for automatic collection and 

reporting of vehicle condition and maintenance record.  This includes the ability to monitor a 

vehicle‘s engine performance, its fuel, lubricants, and antifreeze levels, the pressure in its tires or 

temperature of its wheels, and the conditions in the vehicle operator‘s cab as well as in passenger 

compartments.   Properly inflated tires on vans and transit agency automobiles (e.g. transit police 

cars) can reduce fuel consumption by more than 3% according to the US Department of Energy, 

with under-inflated tires lowering gas mileage by 0.3 percent for every 1 psi drop in pressure of 

all four tires
 42

. According to GTZ (2005), bus tire pressures that are between 15% and 20% too 

low can increase fuel consumption between 5% and 8%. The use of tire monitors is estimated to 

save on the order of 0.25% of a representative 40 foot transit bus‘s fuel, at a capital cost of 

around $900 (TRB, 2010, Table 6-11).  

 

Automated Fluid Management Systems: King County Metro Transit in Seattle, WA, uses an 

automated fuel and fluid management system, that allows it to quickly identify and fix oil leaks, 

eliminate fuel discrepancies and leakages, and assess MPG changes to gauge whether or not 

vehicles need maintenance.  Fuel station pumps can recognize a specific vehicle by number and 

use an automated shut-off system for recording and dispensing fuel that prevents at-the-tank 

overflows (and prevents fuel from being stolen, also).
43
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6. GREEN BUILDING, GREEN PROPERTY, AND GREEN WORKFORCE 

PRACTICES 

 

6.1  Introduction 

 

Public transit agencies have been among the leaders in a number of cities in adopting low 

energy, low GHG ―green‖ building practices. In further support of such actions, in July of 2009, 

and at the direction of the US Congress, the FTA released its Transit Green Building Action Plan 

(FTA, 2009). The Plan reviews ways that green building practices can conserve resources, as 

well as lower construction, operations, and maintenance expenditures through the efficient use of 

energy, water, building materials and land. This includes the construction of new transit 

facilities, as well as the refurbishment of existing facilities.  In addition, FTA‘s Transit 

Investments for Greenhouse Gas and Energy Reduction (TIGGER) program provided funding 

for 9 solar installations, 2 wind installations, and 2 geothermal installations, reflecting the 

potential of transit properties to generate clean energy.  The focus of this present chapter is on 

the energy and related greenhouse gas emission reductions obtainable from such practices. Also 

covered briefly in this chapter are ways for transit agencies to offer low GHG commute 

opportunities to their own employees. 

 

6.2 Significant GHG Reduction Opportunities Exist in Building Design, Construction and 

Operations  

 

The design, construction, and operations of buildings each offer significant opportunities to 

reduce energy consumption and GHG emissions. In the United States, buildings account for 38% 

of direct domestic CO2 emissions (NETL, 2009). U.S. buildings are responsible for 40% of 

domestic energy consumption (ASHRAE, 2009), while commercial buildings account for 18% 

of total domestic energy consumed (DOE, 2009). By 2020, the reduction in energy use as a result 

of energy efficiency practices could result in the abatement of 1.1 gigatons of greenhouse gas 

emissions annually. This reduction in GHG emissions is the equivalent of taking the entire U.S. 

fleet of passenger vehicles and light trucks off the roads. Incorporating high performance energy 

efficiency measures into commercial and public buildings accounts for 25% of this potential 

reduction in GHG emissions (McKinsey, 2009).  

 

Energy use in large commercial and industrial buildings is generally dominated by HVAC and 

lighting loads. Figure 6.1 shows the breakdown of energy by end-use in commercial buildings. 

The actual breakdown of energy end-use depends on the type and function of a building, its 

occupancy, and the climate where the building is located. While many energy efficiency 

strategies in buildings, such as the use of natural daylighting, may require minimal or no upfront 

cost, often energy efficiency measures require upfront investment in return for savings that 

accrue over the lifetime of the solutions (McKinsey, 2009). 

 

Transit agencies can play an integral role in working towards building energy efficiency by 

adopting green building practices in their many and varied  facilities, such as transit guideways, 

stations, offices, garages, fuel storage depots, maintenance facilities, and the many other built 

structures that support transit services on a daily basis.  The design and construction of high-

performance, energy efficient buildings, as well as retrofitting existing buildings to be more 
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energy efficient, can be  a source of significant environmental opportunity, as well as operational 

cost savings,  for transit agencies.   

 

Figure 6.1 Commercial Buildings Percent Energy by End-Use                     

 

Lighting  
25.5%

Space Heating 
14.2%

Space 
Cooling 
13.1%

Water Heating 
6.8%

Electronics 
6.3%

Ventiliation 
6.0%

Refrigeration 
4.1%

Computers  
3.2%

Cooking 2%

Other*
18.7%

 

        Source: DOE, 2008.   

         Other * includes 1 quad of energy (5.5%) that is a statistical  adjustment by the  Energy Information    

         Administration to reconcile two divergent data sources. 

 

Chapter 7 of this Compendium provides a good example of this.  The GHG emissions attributed 

to the Metropolitan Atlanta Rapid Transit Agency‘s  rail stations and yards, bus depots, offices, 

and other buildings represents roughly 30% of   MARTA‘s  2008 carbon footprint  (some 88,750 

metric  tons of CO2e  out of a total of 292,240 metric tons, principally from electricity generation 

and consumption.    

 

Green building practices that have been demonstrated by transit agencies to significantly reduce 

GHG emissions can be grouped under the following headings: 

 

1. Green building codes and standards      

2. Integrated design 

3. Building envelopes  

4. Energy consuming equipment 

5. Renewable energy systems 

6. Building retrofits 

 

The rest of this chapter describes such practices, puts them in context, and identifies successful 

practices that transit agencies should consider for reducing their GHG emissions. Most of these 

practices should have general applicability across transit agencies. 
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Adopting Green Building Codes and Standards:  It is the responsibility of states or local 

jurisdictions to enforce building and energy code, while the responsibility to comply with the 

building energy code falls on developers, designers, and contractors. There are two primary 

baseline building energy codes that may be adopted by states and local jurisdictions: 

 

1.  the International Energy Conservation Code® (IECC) developed under the auspices of 

the International Code Council (ICC), and  

2.  the ANSI/ASHRAE/IESNA Standard 90.1 Energy Standard for Buildings except Low-

Rise Residential Buildings developed under the auspices of the American Society of 

Heating, Refrigerating and Air Conditioning Engineers.  

 

These codes and standards are maintained and updated by their respective organizations per a 

well defined revision process (DOE, 2010). Many jurisdictions across the country are also 

adopting more rigorous green building and energy efficiency codes. As of August 2009, there 

were over 300 such programs adopted by states and jurisdictions nationwide. Some jurisdictions 

are opting to either mandate these programs or are offering incentives to those who voluntarily 

comply (DOE, 2010). The State of California has even adopted a statewide mandatory green 

building code called CALGREEN scheduled to become effective on January 1, 2011 (BSC, 

2010). CALGREEN will mandate that every new building constructed in California reduce water 

consumption by 20 percent, divert 50 percent of construction waste from landfills, install low 

pollutant-emitting materials, and requires increased energy efficiency. The California Air 

Resources Board estimates that these mandatory provisions will reduce greenhouse gas 

emissions in CO2 equivalent, by 3 million metric tons in 2020 (State of CA, 2010). 

 

One of the most widely accepted green building certification programs, promulgated by the non-

profit organization the United States Green Building Council (USGBC), is the Leadership in 

Energy and Environmental Design (LEED®) Green Building Rating System™. LEED® 

certification provides an independent, third-party verification that a building project is 

environmentally responsible (USGBC, 2010a). Specific LEED® rating systems and certification 

programs are tailored for new construction as well as for existing buildings. The LEED® rating 

system is a multi-tiered system that includes Certification, Silver, Gold, and Platinum rating, 

with Platinum being the highest rating. The LEED® standard has been applied to transit facilities 

such as the Corona Maintenance Facility in Queens, New York among others throughout the 

country. Some transit authority commissions are recommending that in the future, all applicable 

transit building projects seek LEED® certification. (MTA, 2009a)  A number of public transit 

agencies in cities such as Charlottesville VA,  Knoxville TN,  and Toronto in Canada have 

already  taken ―the lead on LEED‖ to become the first LEED™ certified buildings in their 

respective cities. APTA‘s (2009) Transit Sustainability Guidelines directs analysts to the Green 

Building Initiative‘s (GBI) guidance and assessment program
44

 and to the International Initiative 

for a Sustainable Build Environment‘s (IISBE) SBTool 07 toolkit for assessing the sustainability 

of traditional buildings.
45
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The GBI‘s Green Globes® system offers an online assessment protocol, rating system as well as 

guidance for green building design, operation and management. The system is used in Canada 

and in the USA. The Green Globes® assessment and rating system can be applied to new 

buildings as well as to existing buildings.  Also, the system includes portfolio management 

capability that allows owners and developers with multiple properties to assess and compare the 

buildings in their portfolio. The Green Globes® system provides a recognizable certification that 

is achieved by undergoing third-party verification by trained regional verifiers (Green Globes, 

2010). 

 

The U.S. Environmental Protection Agency‘s (EPA) ENERGY STAR program for buildings 

allows many types of existing buildings to be rated on energy performance on a scale of 1-100 

relative to similar buildings nationwide using EPA‘s Portfolio Manager. Buildings rating 75 or 

greater may qualify for the ENERGY STAR. Portfolio Manager allows you to track and assess 

energy and water consumption within individual buildings as well as across an entire building 

portfolio. Energy consumption and cost data are entered into a Portfolio Manager account to 

benchmark building energy performance, assess energy management goals over time, and 

identify strategic opportunities for savings and recognition opportunities. The ENERGY STAR 

program also offers the Target Finder building design rating system. Target Finder is a free 

online tool that informs and encourages the design of more energy efficient buildings. Building 

project designs that meet the Target Finder performance score threshold are eligible for 

―Designed to Earn the ENERGY STAR‖ certification. (EPA, 2010a). 

 

Example LEED® Case Study: The Corona Maintenance Shop in Queens New York 

received a LEED® Certified rating by the U.S Green Building Council. The maintenance shop, 

which opened in December 2006 was the first LEED® Certified transit facility in the country. 

The facility incorporates several green building strategies including fuel cell technology, 100 

KW photovoltaic array system, extensive use of daylighting, and rainwater collection. The 200 

kW fuel cell unit mounted on the rooftop, is an electrochemical energy device that generates 

electricity to power motors, lights, and building equipment by converting hydrogen and oxygen 

into electricity. The building‘s use of natural lighting reduces the demand for electric lighting. 

Daylight enters the building through side windows and skylights. Windows with Low-e (low 

emissivity) coatings allow the transmission of visible light into the building interior while 

blocking radiant heat. Rainwater is harvested by the facility to wash subway cars. The facility is 

estimated to be 36% more energy efficient than is required by New York State energy code 

(MTA, 2010). 

 

The total project cost for the Corona Maintenance Shop was $167 M. The added cost associated 

with the green components and LEED® Certification was $5.1 M (3% of total project cost), and 

the added cost associated with the energy reducing green components was $3.425 M (2% of total 

project cost). The expected yearly energy cost savings is $396,523. Therefore it is anticipated 

that in approximately 9 years the project will break even and realize net cost savings.  

 

Integrated Design: The integrated design process relies on the exchange of information between 

all the stakeholders across the life cycle of the project, from defining the need for a building, 

through planning, design, construction, building occupancy, and operations. This approach is a 

http://www.energystar.gov/index.cfm?c=evaluate_performance.bus_portfoliomanager
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deviation from the typical planning and design process, which entails specialists working in their 

respective specialties usually somewhat isolated from each other. 

 

The integrated design process involves communication among the designers to ensure that all of 

the building systems are designed in concert with one another. Furthermore, integrated building 

design is most effective when key issues are identified early in the planning and design process.  

 

A design charrette, a focused and collaborative brainstorming session, is a very useful activity to 

hold at the beginning of a project to encourage the exchange of ideas and information and allow 

truly integrated design solutions to take shape (NIBH, 2008).  

 

In order to benefit from high performance, green strategies, the major components of a building 

including  the building envelope, the heating, ventilation and air conditioning (HVAC) system, 

and the lighting systems, should be designed in an integrated manner that permits synergistic 

benefits to be realized. By using the integrated design approach, significant savings in both 

energy and cost may be achieved. For example, high performance building envelope and lighting 

design strategies could significantly reduce HVAC system requirements (NIBH, 2008).  

 

Building Envelopes: The interface between the interior of a building and the outdoor 

environment is referred to as the building envelope or is sometimes referred to as the skin of the 

building. The envelope provides protection from the elements and controls the transmission of 

heat, moisture, and sunlight in order to maintain comfort for the building occupants. The transfer 

of energy through the building envelope occurs through surfaces such as the roof, walls, floors, 

doors, windows, as well as by air infiltration/leakage. To achieve high performance of a building 

envelope, materials must be specified to ensure enhanced insulating properties and moisture 

controls. 

 

A building’s roof is a large surface-area that is exposed to year-round direct sunlight. Light 

colored reflective roof products, also referred to as Cool Roofs, work by reflecting most of the 

sun‘s energy back into the atmosphere thereby keeping a building cooler and reducing air 

conditioning bills. Many reflective roof products are ENERGY STAR
®

 labeled roof products 

which help save money by reducing energy use. The ENERGY STAR
® 

 website provides a 

Roofing Comparison Calculator intended to roughly estimate the savings a reflective roof can 

offer to a typical building and aid in the decision whether to choose a reflective roof (EPA, 

2010a). Reflective roofs have been shown to reduce cooling energy savings up to 20 and 30 

percent with a simple payback period of one to two years. Considering that roof surfaces are 

replaced on regular, albeit long intervals, installations of reflective roofs are relevant for both 

new buildings as well as for retrofits of existing buildings (Brown et al, 2005). 

 

Green roofs are vegetated roofs that incorporate a high quality water proofing and root repellant 

system, a drainage system, filter cloth, a lightweight growing medium and plants. The two types 

of green roofs are intensive systems, which incorporate deeper root systems and larger plants, 

and extensive systems, with up to six inches of soil and which employ shallow root systems and 

smaller plants. Green roofs provide additional insulating value to the roof system and reduce 

solar heat gain of a roof, resulting in potential savings on energy heating and cooling costs. In 

addition, green roofs provide increased storm water retention. They also help reduce the heat 
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island effect, which is the phenomenon that occurs when built up areas are hotter than nearby 

rural areas as a result of paved and dark surfaces. Finally, green roofs can be an amenity for 

building occupants in the form of accessible green space and roof gardens.  

 

High performance wall designs minimize heat loss by reducing the amount of framing used and 

by optimizing the use of insulated materials. Generally these designs provide continuous exterior 

wall insulation as a thermal barrier with excellent thickness to performance ratio and air 

tightness. Examples of high performance wall systems include structural insulated panels (SIPs), 

insulated concrete forms (ICFs), and even straw bail design in dryer climates. Also with 

conventional wall designs, minor modifications can significantly reduce energy losses. For 

example, polyurethane bearing blocks have twice the insulating capability of wood and can be 

used to thermally isolate steel walls from foundations and from steel attic beams (Brown et al, 

2005). 

 

While improved wall system designs generally apply to new construction, insulated sheathing is 

available for wall retrofits but often requires modifications to window jambs and doorframes. 

Another strategy is to take advantage of modern insulating fabrics that can be hung from or 

applied to interior wall surfaces. The reflective properties of such materials can also be 

engineered to provide greater human comfort at reduced (winter) or elevated (summer) indoor 

temperatures, further increasing the energy savings (Brown et al, 2005). 

 

Ventilation vs. moisture control: The two goals of minimizing energy use while also controlling 

moisture levels inside the building are often at odds. For example, while increasing the use of 

natural ventilation or use of an economizer may decrease energy consumption, if not 

implemented properly these strategies can potentially increase the amount of moisture in the 

form of water vapor that is brought into the building. In order to avoid this barrier to more 

efficient design and ensure proper control of humidity, designers must employ building science, 

expert planning and design, and the proper use of building materials in different climates. 

Furthermore, it should be noted that there is always a tradeoff between ventilation rates and 

energy consumption, especially in non-economizer mode in which outdoor air is conditioned.  

This tradeoff between ensuring adequate ventilation and minimizing energy consumed by 

conditioning outdoor air, is especially relevant where ventilation rates are determined by 

occupant actuated exhaust ventilators. 

 

The use of thermal storage in a building structure, also referred to as thermal mass, is an 

effective strategy to reduce energy consumption, especially in climates where daily temperature 

swings require both heating and cooling in the same 24-hour period. Materials with significant 

mass and with high heat capacity such as stone, adobe, brick, concrete, and ceramic have long 

been used as thermal storage. In addition, lighter-weight thermal storage materials and phase 

change materials (PCMs), including water, salts, and organic polymers, can be used for thermal 

storage (Brown et al, 2005). 

 

Windows can improve the thermal performance of buildings by minimizing heat loss in heating-

dominated climates and by minimizing solar heat gain in cooling-dominated climates. High 

performance fenestration technologies include improved framing materials, low-emissivity (low-

E) and solar control coatings, low-conductance gas fills, improved thermal breaks and edge 
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spacers, and better edge sealing techniques. These technologies may be used independently or in 

combination, but should be selected with consideration of climate zone in order to achieve 

optimal performance (EPA, 2000). Other GHG reducing technologies include:  

 

       Lower U-factor widows have a higher insulating value and experiences lower thermal heat 

 transfer through the window. The window industry measures the energy efficiency of  their 

products in terms of the rate of heat transfer through a product.  The  lower the U-factor, the 

lower the amount of heat loss, and the better a  product is at insulating a building. A window 

with a lower solar heat gain coefficient (SHGC) experiences lower transmittance of solar 

energy as solar radiation that is allowed to pass through. Also, windows with low emissivity 

coatings on the interior side, are designed to reduce the flow of infrared energy from the 

building to the environment. Low-E coatings on the exterior side are designed to reject 

infrared energy from the sun, thus reducing air-conditioning loads. Also, the design of the 

window frame influences thermal performance of fenestration systems.  

 

      Electrochromic windows, also called smart glass, offer dynamic control and can change the 

light transmittance, transparency, or shading of windows in response to environmental 

signals such as sunlight, temperature or an electrical control. For instance these windows can 

reflect infrared energy away during the summer but transmit this energy into the building 

during the heating season. Estimated HVAC energy savings for office buildings in arid 

climates using electrochromic windows range from 30 to 40 percent (Brown et al, 2005). 

 

     Passive solar window design is also a cost effective and important strategy to control solar 

heat gain. In heating-dominated climates, major glazing surfaces should face south to collect 

solar heat in the winter when the sun is low in the sky. During the summer, when the sun‘s 

trajectory is high overhead, overhangs or other shading devices (e.g., awnings) block the 

solar radiation from entering the building and prevent excessive heat gain. In cooling-

dominated climates, the optimal glazing strategy is preferential use of north-facing windows 

and generously shaded south-facing windows (EPA, 2010c). 

 

Energy Consuming Equipment: Energy-consuming equipment in buildings include systems 

such as heating, ventilation, and air conditioning (HVAC) equipment, water heating equipment, 

and lighting equipment. In most commercial buildings, HVAC equipment accounts for over 30% 

of energy use in commercial building, lighting equipment accounts for over 25% of energy use, 

and water heating accounts for approximately 7% of energy use. Plug loads, including 

computers, electronics, and other appliances generally account for approximately 13.6% of 

energy used in commercial buildings (DOE, 2008). It is important to note that energy consumed 

by interior lighting and appliances adds to the cooling load of a building, so improvements in the 

efficiency of lighting and appliances can achieve additional energy savings for cooling systems. 

The energy use breakdown for transit agency facilities is somewhat different to commercial 

buildings. For transit agencies the proportion of energy consumed by lighting equipment is likely 

much greater, especially for transit stations and certainly for stations without climate controls. 

One case study of a transit agency, referenced later in this report, puts energy consumption of 

lighting systems at 45% of the total energy use. 

 

http://www.energysavers.gov/your_home/windows_doors_skylights/index.cfm/mytopic=13570
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Plug loads are energy consuming appliances and electronics such as computers, vending 

machines, message boards, and other appliances. There are many opportunities to reduce energy 

usage by managing plug loads, such as by purchasing ENERGY STAR rated equipment, setting 

computer monitors to energy management mode, removing light bulbs from vending machines, 

and turning task lighting off when not in use. Long Island Bus in Ney York has completed the 

installation of a high-efficiency 1 megawatt sodium sulfur battery energy storage system at their 

Mitchell Field facility. The battery charged at night when electricity demand and utility rates are 

low and then used during the day to power compressors for fueling the Long Island Bus fleet of 

compressed natural gas buses. (MTA, 2009b).  

 

HVAC Systems: The use of high performance HVAC equipment can result in energy savings 

between 10%-40%. Utilizing high-performance HVAC equipment along with whole building 

design can result in significant energy savings. Typically, a 30% reduction in annual energy costs 

is achievable with a simple payback period of about three to five years, and if the payback 

threshold is extended to seven years, the savings can be about 40% (NIBH, 2009). There are 

many manufacturers and various system designs for HVAC equipment, however the 

fundamentals of good design should be applied in all cases. When designing HVAC systems, all 

aspects of the building should be considered simultaneously in a whole building perspective. For 

example, the building envelope design must consider its effect on cooling loads and daylighting. 

In this way, an energy-efficient building envelope, coupled with a state-of-the-art lighting 

system, optimal use of natural daylight, and efficient, properly-sized HVAC equipment will cost 

less to purchase and operate than systems that are selected in isolation from each other (NIBH, 

2009). 

 

HVAC systems should be sized properly and safety factors for load calculations used reasonably 

to ensure efficient operation. Oversized equipment is less efficient in operation and costs more 

than properly sized equipment. Designers should not assume a simultaneous worst-case scenario 

for all load components (occupancy, lighting, shading devices, weather) and then apply the 

highest safety factors for sizing. Furthermore, since HVAC systems are sized to meet design 

heating and cooling peak conditions that historically occur only 1% to 2.5% of the time, 

designers should consider part-load performance of the equipment when selecting equipment. In 

addition, it is important to commission the HVAC systems as they do not always work as 

expected. Commissioning involves testing the HVAC systems under all aspects of operation 

(NIBH, 2009). 

 

Ventilation systems use a great deal of energy and can be expensive to run. New York City 

Transit uses Heat Recovery Units (HRU) in many projects to reduce a building's ventilation 

energy load. When it is cold outside, the HRU recovers heat from outgoing air by using a heat 

exchanger to preheat fresh incoming air, which the HRU system distributes throughout the 

building. The roof of the Grand Avenue Bus Depot and Central Maintenance Facility in 

Maspeth, Queens has 34 ventilation and heating units. The facility's heat recovery application 

runs warms air exhausts past the cold winter air that the ventilation system must constantly bring 

in because of bus fumes and exhausts. These heat conductors warm the fresh air enough to save 

approximately 48 percent in heating energy costs (MTA, 2010). 

 

 

http://www.wbdg.org/resources/daylighting.php?r=hvac
http://www.wbdg.org/resources/efficientlighting.php?r=hvac
http://www.wbdg.org/resources/efficientlighting.php?r=hvac
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Example HVAC Case Study:  Denver Regional Transportation District, East Metro In May 

2009, a technical feasibility audit was conducted by East Metro to determine the technical scope 

and preliminary budget for replacing the outdated components of the current heating system and 

to estimate the projected annual savings in natural gas consumption with the new system and 

advanced controls (RTD, 2009). 

 

The existing heating system at East Metro accounts for over 74% of the facility‘s total annual 

energy consumption.  The current system includes three Cleaver Brooks model CB200-600, 15-

psi steam boilers. The boilers are each 30 years old and run on natural gas with fuel oil back up.  

These boiler units consume over 66,000 MMBtu of natural gas annually. The boilers average 

runtime is 4,800 hours per year and average two cycles per hour. The nitrogen oxide (NOx) 

levels at high fire are 60 ppm, and the units operate at approximately an 82% efficiency rate. 

 

Table 6.1 East Metro Heating Upgrades and Respective Savings 

                                  

 

System Detail Value

System installed cost $770,000

Projected annual energy savings
19,341 

MMBtu/yr

Projected annual GHG savings (CO2e) 1,032 tonnes/yr

Projected annual savings ($7/MMBtu) $135,390

Percentage of facility‘s annual natural gas 

consumption saved
29%

Percentage of facility‘s annual total energy saved 22%

Potential lifetime energy savings 386,829 MMBtu

Potential lifetime GHG savings (CO2e) 20,640  tonnes

Potential lifetime savings ($7/MMBtu) $2,707,800

Initial TIGGER investment/lifetime energy savings $2/MMBtu

 
 

East Metro will replace the three existing Cleaver Brooks boilers with three CBLE200-600, 15-

psi, 20-ppm NOx boilers with Advanced Hawk Integrated Control Systems.  The advanced 
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control system will operate the boilers based on load demand as opposed to the current control 

system which is based on outside temperature. The systems are expected to yield overall 

efficiencies over 90%.   

 

The updated heating system is expected to save 19,341 MMBtu/yr in natural gas consumption 

resulting in operational savings of over $135,000/yr at $7/MMBtu. Based on default emission 

factors for stationary combustion in commercial natural gas boilers (53.06 kg CO2/MMBtu, 0.9 

kg CH4/MMBtu, and 0.9 kg N2O/MMBtu), 1,032 tonnes of CO2 will be avoided annually. As 

shown in Table 1, these savings would yield a 29% reduction in natural gas energy consumption 

and a 22% reduction in the annual energy consumption of the East Metro facility. 

 

Water Heating:  On average water heaters account for 6.8% of commercial energy end-use 

(DOE, 2008). Some technical improvements in water heating include heat pump water heaters, 

water heating dehumidifiers, and heating water with waste heat (Brown et al, 2005). Other 

technological innovations include solar water heaters, gas condensing water heaters, and tankless 

(or instantaneous) water heaters (Brown et al, 2005).  Another effective strategy to decrease 

water heating energy is to reduce pipe runs by moving the water heater tank closer to the points 

of use and insulating hot water pipes, thereby reducing thermal losses in hot water pipes.  

 

Lighting Systems: Lighting accounts for a significant portion of energy consumption in 

commercial buildings, and energy-efficient lighting technologies as well as use of natural 

daylight should be employed wherever possible. An energy efficient lighting strategy considers 

lighting technologies such as lamps, luminaires, ballasts, lighting controls, and use of natural 

daylight.   Based on a sensitivity analysis of light rail transit station O&M practices in Europe 

(MALTESE, 2000), underground station lighting costs were found to be significant, and as much 

as more than twenty times higher than for a comparable surface station.  In underground stations 

lighting also accounted for a higher percentage of operating energy used, as much as 63% versus 

46% for surface stations.   

 

Lamps, commonly called light bulbs, are selected for specific commercial applications based on 

their performance characteristics such as Color Rendering Index (CRI), Correlated Color 

Temperature (CCT), and Efficacy. At 70-100 lumens/watt, fluorescent lamps are among the 

lamps with the highest efficacy or energy efficiency.  Use of fluorescent T10 or T8 lamps, offers 

advantages over T12 lamps in energy efficiency. Compact fluorescent lamps (CFLs) are small-

diameter fluorescent lamps that are folded for compactness. CFLs last up to 10 times longer than 

incandescent lamps and use about one-fourth the energy and produce 90 percent less heat. High-

intensity discharge (HID) lamps produce a large quantity of light in a small package. These 

lamps are typically used when high levels of light are required over large areas and when energy 

efficiency and/or long life are desired. Low-pressure sodium lamps produce up to 180 

lumens/watt and have the highest efficacy of all commercially available lighting sources. 

Light-emitting diodes (LEDs), achieving efficacies up to 100 lm/w, have great potential as 

energy-efficient lighting for commercial building use (DOE, 2010a).   

 

One example of an advanced, energy-saving technology in lighting that has achieved strong 

market acceptance is the electronic ballast. (DOE, 2008). Traditionally, fluorescent lights, which 

is the predominant lighting type in commercial buildings used magnetic ballasts. Replacing 
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magnetic ballasts with electronic ballasts can result in as much as a 10 to 15 percent increase in 

lighting energy efficiency, as well as enable other energy saving features such as dimming and 

remote control (DOE, 2010a). 

 

Another way to conserve energy in buildings is to install energy-efficient exit signs and parking 

lot luminaires. The most efficient light source technology for exit signs is light-emitting diodes 

(LED) which have a higher first-cost than incandescent signs, but will save money in the long-

run. The most commonly used parking lot luminaires are energy-efficient, high-intensity 

discharge lamps or low-pressure sodium lamps, however the most efficient light source 

technology for outdoor use is outdoor photovoltaic lighting. In addition, task lighting can result 

in significant energy savings and improved visibility for workers (DOE, 2010a). 

 

Natural Daylight:  Daylighting can offer significant energy savings by offsetting a portion of the 

electric lighting load. An added benefit is the reduction in cooling capacity resulting from 

lowering a significant component of internal heat gains caused by electric lighting. Daylighting 

also improves occupant satisfaction and comfort (DOE, 2010a). 

 

Use of high reflectance surfaces will allow the daylight to be reflected into and around the room 

and will reduce extreme brightness contrast. The ceiling is the most important interior light-

reflecting surface, and high reflectance paints and ceiling tiles are now available with .90 or 

higher reflectance values. Tilting the ceiling plane toward the daylight source will increase the 

daylight that is reflected into the space. Light shelves are horizontal light-reflecting overhangs 

placed above eye-level with a transom window placed above. Light shelves are most effective on 

southern orientations to improve daylight penetration, create shading near the window, and to 

reduce window glare (DOE, 2010a).  

 

Toplighting may be used beneficially in large single level floor areas and the top floors of multi-

story buildings. Toplighting strategies include skylights, clerestories, monitors, and sawtooth 

roofs. High performance skylight designs incorporate reflectors or prismatic lenses to reduce the 

peak daylight and heat gain while increasing early and late afternoon daylight contributions. 

Lightpipes make use of high reflectance ducts which channel the light from a skylight down to a 

diffusing lens in the room. Clerestory windows make use of vertical glazing located high on an 

interior wall allowing daylight to reflect deep into an interior space. South-facing clerestories 

should be shaded from direct sunlight by a properly designed horizontal overhang (DOE, 2010a). 

 

Lighting Controls help conserve energy and make a lighting system more flexible. A building 

designed for daylighting should incorporate photosensors to automatically adjust the light output 

by dimming the electrical lighting system based on detected daylight illuminance. Dimming the 

lights in response to natural daylight lowers the electric power demand and also reduces the 

thermal load on a building's cooling system. Occupancy sensors are used to turn lights on and off 

based on the detection of motion within a space. Clock switches or timers control lighting based 

on a preset schedule. Centralized building controls or building automation systems can be used 

to automatically turn on and off, or dim electric lights around a building (DOE, 2010a).  

 

Example Lighting Case Study: MTA Lighting Retrofits. The Metropolitan Transportation 

Authority (MTA) in New York City replaced 1,700 lightbulbs with energy efficient compact 
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florescent light bulbs. Of these 1,700 light bulbs, 700 were switched from 60W to 15W CFLs 

and 1,000 were changed from 100W to 20W CFLs. The CFLs require annual replacement while 

the previous bulbs required monthly replacement. The annual cost of the original bulbs was 

$10,200 per year while the annual cost of the CFLs is $11,050 per year. However, the cost 

savings from the CFLs from the annual cost of purchasing electricity is nearly $147,000 per year 

resulting in essentially an immediate payback period. This lighting retrofit reduces the annual 

electricity consumption by nearly 980,000 kilowatt-hours (MTA, 2009b). Based on U.S. EPA 

eGRID emission rates for the NYCW subregion (815.45 lbs CO2/MWh, 36.02 lbs CH4/GWh, 

and 5.46 lbs N2O/GWh), the yearly savings in annual energy consumption equates to annual 

GHG emissions savings of approximately 362.5 tonnes of CO2e. 

 

For MTA‘s first completed LED conversion, MTA replaced all 262 mercury vapor fixtures on its 

Verrazono Narrows Bridge necklace lighting with energy saving, cost efficient light emitting 

diode (LED) fixtures. An LED light uses 30 watts of power to provide the equivalent light of a 

traditional 100 watt mercury vapor fixture. The LEDs also have a life span of up to seven years 

versus a three year life span for mercury vapor fixtures, resulting in lower maintenance costs of 

LEDs and substantially fewer roadway closures for light changing work. The retrofit will reduce 

the electrical power consumption for the necklace lighting by 73%. MTA is hoping to change out 

all of the necklace lighting at other crossings over the next few years (MTA, 2010).
46

 

 

Energy management systems (EMS) and control systems incorporate a variety of devices and 

systems ranging from simple time clocks that control HVAC or lighting systems to centralized, 

computer-based building automation systems (BAS) that monitor, control, and optimize building 

systems and energy use. The BAS‘s main functions are to keep the building climate within a 

specified range, provide lighting based on an occupancy schedule, and monitor system 

performance and device failures.  

 

The BAS can reduce building energy and maintenance costs when compared to a non-controlled 

building. A properly configured BAS-based system automatically controls building systems for 

cost effective and efficient use of energy. In addition, the BAS can provide energy information in 

clear, compelling formats, directly to the building operators and those best equipped to translate 

it into value. 

 

Converged, integrated network solutions may be of particular value to transit agencies that 

oversee a portfolio of facilities. An integrated network system allows for a higher level of 

connectivity among a variety of products and building systems as well as among large portfolios 

of facilities. This integration can result in benefits such as cost reductions, process improvements 

in facility automation, monitoring, and management, and more efficient portfolio management. 

Converging building control and utility data into a shared network enables optimum management 

of facilities by connecting various silo systems and applications. The goal of the converged BAS 

is to create an open, integrated infrastructure that supports real-time control systems, enterprise 

                                           

46
 The Bay Area Rapid Transportation, or BART system in (San Francisco, CA is also testing energy-

saving, light-emitting diode (LED) lights.    
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applications, and information flow (King, 2009). 

 

Many subway systems in Europe and in Asia employ the use of platform edge doors also called 

platform screen doors. Now the Metropolitan Transportation Authority (MTA) plans to use 

platform screen doors in the Second Avenue subway in New York City (Neuman, 2007). The 

doors, set into a wall of glass or metal, would create a floor-to-ceiling barrier, sealing off the 

track and tunnel area from the platforms, much like those in use in this country in many airport 

shuttle train systems.  

 

There are several advantages to platform edge doors including improving climate control within 

the station, reducing the risk of accidents, and even preventing suicides. The doors would result 

in substantial energy savings from the station cooling systems. With open platforms, the air from 

the tunnels can mix with the air in the stations. With doors on the platform edge, the air from the 

tunnels would be at least partly blocked and the cooling system could operate more efficiently. 

Train systems that use platform edge doors also incorporate a computerized system to operate 

trains enabling trains to stop at exactly the same spot every time and line up properly with the 

platform doors. The MTA has a long term plan to develop a computerized system for New York 

subways, but in the mean time, doors would have to be designed to operate with trains controlled 

by human drivers. 

 

NYC Transit is also introducing escalators that slow down and use "sleep mode" when not in 

use. A sensor recognizes a customer's approach, and the escalator gradually increases its speed. It 

is estimated that each "green" escalator in the New York subway system can save 17,122 

kilowatts of power a day, a yearly savings of $1,883 per escalator. Since certain parts of green 

escalators may last between 11 percent and 33 percent longer than traditional escalators, they are 

expected to save maintenance and repair costs over time."
47

  

 

Third rail systems, located either alongside or between the rails of a transit vehicle, act as a 

conductor of electricity, providing power to heavy rail and light rail cars. The MTA in New York 

has installed wireless equipment for the remote control of electric resistance heaters on the third-

rail systems that provide power to its subways. Rather than leave the heaters on throughout the 

winter, the remote-control feature helps to minimize electricity use when the weather is warm 

enough that switching devices will not break down due to cold weather. 

 

Renewable Energy Systems: At present, using renewable energy systems to provide a portion 

of a facility‘s or vehicle fleet‘s power requirements is usually more cost effective after most 

other energy efficiency strategies are exhausted. If energy efficiency strategies are available, 

generally the payback period of such strategies such as lighting retrofits, insulation upgrades, and 

refurbishing or replacing mechanical equipment is much faster than the payback on solar 

photovoltaic (PV) arrays and wind power generation projects.  However, renewable energy 

installations have the potential to produce energy beyond the equivalent aggregate energy 

                                           

47
 http://www.mta.info/nyct/facts/ffenvironment.htm#green_build 

 

 

http://www.statemaster.com/encyclopedia/Suicide
http://www.mta.info/nyct/facts/ffenvironment.htm#green_build
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reductions such energy efficiency strategies are capable of, and the cost of renewable energy 

installations have declined markedly in recent years, with further cost declines forecasted against 

increasing costs of fossil fuel-based energy.  When designing facilities it is always important to 

incorporate as many energy efficiency and energy conserving strategies as is cost effective, so 

that planned renewable energy components of design offset a larger portion of the total energy 

requirement.  

 

In contrast to the situation for legacy fuels like petroleum, renewable energies are experiencing 

an explosion in growth due to dramatic reductions in cost and increasing support from most 

governments.  In 2009, over 50% of new power capacity added in the United States came from 

renewable energy sources. The Obama Administration has strongly supported efforts to place the 

U.S. in a more competitive position in this market, while China, Germany, Spain have 

experienced unprecedented growth.  The trends are so strong in parts of Europe that several EU 

countries are already on track to meet or exceed their 2020 targets for percentage of renewable 

energy consumption.  Positioning public transportation to take advantage of a transition to these 

burgeoning markets supports long-term sustainability of the industry in addition to the potential 

for large GHG reductions.  Conversely, the continued use of legacy fuels by the transit industry 

over the long-term could jeopardize its economic viability by burdening it with a less desirable 

energy cost-curve compared to that of renewable energy.  Conveying the economic advantage of 

these new fuels over legacy fuels to transit agency decision-makers could help more seriously 

foster a vested interest on their part, while markedly improving transit‘s GHG emissions profile.   

 

While almost every area of the country can take advantage of renewable energy technologies, 

some technologies are better suited for particular areas than others. Assessing the resources of a 

region, state, city, or neighborhood is critical to renewable energy planning and siting. In 

addition to solar and wind energy for example, technologies to effectively tap geothermal energy 

resources depend on the amount of heat available at various depths from the surface (NREL, 

2010). 

 

Solar Photovoltaic (PV) systems are made from semiconducting materials that convert sunlight 

into electricity without producing air pollution or GHG emissions during operation. Grid-

connected systems supply surplus power to the utility and take from the utility grid when the 

building system‘s power supply is low. Building-integrated photovoltaic (BIPV) systems 

produce electricity and serve as construction materials at the same time, replacing traditional 

building components including curtain walls, skylights, atrium roofs, awnings, roof tiles and 

shingles, and windows. Almost all locations in the United States have enough sunlight for PV 

systems, with varying degrees of efficiency, and these arrays can be easily sited on roofs, 

integrated into building components, or placed above parking lots. (Brown et al, 2005).  

 

Public transit agencies have been leaders in the construction of solar powered buildings. In April 

2009 the Los Angeles County Metropolitan Transportation Authority (Metro) opened its 

Support Services Center in downtown Los Angeles, the agency‘s central maintenance facility 

for buses.  The facility contains some 6,720 individual solar panels which generate 1,200 

kilowatts of renewable, emission-free power. Along with other energy-efficient improvements, 

the project is expected to cut by 50% the facility's annual $1.1 million energy bill which is also 

expected to reduce the agency‘s carbon emissions by more than 3,700 metric tons. In 2010 
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Greater Bridgeport Transit in Connecticut installed the first of a series of solar-powered bus 

stops. The lighting systems for these stops are powered by a solar battery which builds up 

electricity throughout the day through a solar cell mounted on top of the shelter.   In Atlanta, 

Georgia a 2009 FTA TIGGER grant is being used to install energy-efficient solar panels at the 

Laredo Bus  Maintenance Facility in Decatur, GA The project will provide for shade structures 

with integrated, grid-tied photovoltaic (PV) cells. The steel-and-concrete structures will cover 

220 bus parking stalls, and will include translucent panels to filter sunlight.  The facility‘s 

canopies will be equipped with light-emitting diodes (LEDs) to provide lighting for safety and 

maintenance activities at night. It is anticipated that the PV panels will generate electricity 

equivalent to the facility‘s annual electricity consumption.  

 

In June of 2010 the Metropolitan Transportation Authority (MTA) began operating a rooftop-

mounted solar thermal array consisting of 48 solar panels that heats hot water to wash subway 

cars at New York City Transit's Coney Island Overhaul Shop and Maintenance Facility. 

Installation of the array cost $550,000, but the agency's power bill is expected to be reduce by 

$94,000 a year, while avoiding 86 tons of carbon dioxide emissions a year associated with 

electricity use (RT&S, 2010). Miami-Dade Transit is utilizing solar-powered lighting in its over 

900 bus shelters. 

 

Wind power has also been increasing in economic feasibility. For coastal transit agencies, 

offshore wind power could play a greater role in increasing the percentage of power obtained 

from green power sources. For example, MTA is considering joining forces in a consortium with 

New York Power Authority (NYPA), Long Island Power Authority (LIPA), New York City, the 

suburban counties, and other parties to develop offshore wind sources along the coastlines. The 

scale of clean energy potential and the high efficiency of offshore wind farming, could be 

transformational for the MTA and how it meets its energy requirements. Furthermore, 

Renewable Energy Certificates (RECs) which can be sold separately from the underlying 

physical electricity associated with the renewable-based generation source, could be a potentially 

viable financing vehicle. (MTA, 2009b). Aside from offshore wind, onsite renewable generation 

from wind energy is gaining in popularity and has the added advantage of avoiding congested 

transmission lines. GO Transit in Toronto has installed an EW50 wind turbine at its Lisgar 

Station. The turbine can produce some 50 kilowatts of power in winds of (25.3 mph, and is 

expected to generate about 80% of the station‘s power, based on projections (GO Transit, 2009)  

 

 

Example Renewable Energy Case Study: Greater Lafayette Public Transportation 

Corporation Wind Energy. The Greater Lafayette Public Transportation Corporation (GLPTC) 

plans to reduce its electrical energy usage by investing in onsite equipment to harness a 

renewable source of energy generated by wind power. Due to zoning restrictions requiring that 

the distance between the base and any adjacent property line exceed the height of the shaft, 

GLPTC has elected to purchase systems that are mounted on the roof of its administrative and 

maintenance facilities. The unit will be on pivoting mounts allowing it to turn directly into the 

prevailing winds to maximize energy captured. The energy produced by the system will be 

connected directly to 3 phase power. The system is expected to have a minimum lifespan of 30 

years (GLPTC, 2009) 
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GLPTC will use the energy produced by the wind turbine to provide electricity to its facilities. 

Any additional energy needed to operate the facilities will be purchased from the existing energy 

provider, Duke Energy. In the case that the wind turbine produces more energy than what is 

demanded by GLPTC at any given time, the excess energy will be sold back to Duke Energy. 

The GLPTC garage, maintenance facility, and administration facility use an estimated 768,000 

KWh of energy annually.  The installation of wind turbine system on the GLPTC premises is 

expected to provide over 90% of the total amount of electrical energy used by the transit agency. 

Based on U.S. EPA eGRID emission rates for the RFCW subregion (1,537.82 lbs CO2/MWh, 

18.23 lbs CH4/GWh, and 25.71 lbs N2O/GWh), the yearly savings in annual energy consumption 

equates to annual GHG emissions savings of approximately 482.2 tonnes of CO2e. 

 

Building Retrofits: Due to federal policy mandates as well as a boost from the American 

Recovery and Reinvestment Act of 2009 (ARRA), the best-funded opportunities for retrofit 

projects today are major upgrades in institutional buildings (Nock, 2009). Energy retrofits 

involve the improvement or replacement of a building‘s systems to increase energy efficiency. 

An energy retrofit program includes a detailed assessment or energy audit of the facility. A 

comprehensive energy audit entails a physical assessment of the building envelope, mechanical 

systems, and lighting  systems. The energy audit also includes an evaluation of energy usage by 

fuel type, using metered data or utility bill data. The energy audit should provide a detailed 

analysis of the condition of existing systems, energy usage, and payback analysis for specific 

upgrades. A cost/benefit analysis should focus on strategies that are cost effective and result in 

the highest energy savings. 

 

Energy Performance Contracting (EPC) is a project management and financing mechanism that 

is growing in popularity. EPC is a turnkey service, similar to design/build construction 

contracting which provides customers with a comprehensive set of energy efficiency measures, 

and often is accompanied by guarantees that the resulting savings from a project will be 

sufficient to finance the full cost of the project. The EPC is offered by an Energy Services 

Company (ESCO) and includes a combination of one or more of the following services: energy 

audit, design engineering, construction management, arrangement of long-term project financing, 

commissioning, operations and maintenance, as well as savings monitoring & verification (EPA, 

2007). 

 

Recommissioning is the practice of tuning up a building‘s HVAC, controls, and electrical 

systems. Building recommissioning is the same process as commissioning but applied to an 

existing building‘s systems. It is a quality assurance based process of verifying, and documenting 

that the performance of a facility‘s systems meets their defined objectives and criterion. Research 

indicates that recommissioning can typically translate into energy savings of 5 to 15 percent and 

that 80 percent of all savings from recommissioning comes from optimizing building control 

systems. Nearly all remaining savings results from improving operations and maintenance (EPA, 

2010b). 

 

Example Building Retrofit Case Study: Greater Cleveland Regional Transit Authority 

Energy Retrofit. In 2007, the Greater Cleveland Regional Transit Authority (GCRTA) launched 

a plan to reduce energy usage in its facilities by creating preliminary estimates and baseline 

assessments. Low-cost strategies were implemented including lowering thermostat settings, 
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increasing technology sensor lightings, night temperature setbacks, insulating windows and 

closing unused spaces (GCRTA, 2009). 

 

Upon further investigation, the GCRTA found that substantial savings would result from energy 

retrofits and modification to building structures in its antiquated buildings. A Comprehensive 

Energy Conservation Plan was developed which recommended corrective actions with the 

emphasis on 1) fast-payback energy conservation measures; and 2) long-term strategies that can 

be done by concentrating on modifications of building use patterns, operating procedures, and 

design aspects. Assessments showed that maintaining the facilities with short-term solutions and 

without building modifications could result in an estimated 8% in energy use savings. However 

with an investment toward building modifications the GCRTA could save up to 31% more, 

which can be paid back with savings in 4.5 years. 

 

The facilities selected for retrofits were based on where the greatest savings would be achieved 

and where the most long-term gain would occur from energy retrofitting. The selected facilities 

for retrofitting include the Central Rail Maintenance Facility, The Central Bus Maintenance 

Facility, district bus garages, a paratransit facility, and the main office building. 

 

Table 6.2 Example Retrofit Costs and Savings 

 

Type of Retrofit Total Cost $ Savings/Yr. Payback 

Yr.

Lighting Retrofits $ 1,350,000 $ 313,190 4.3

Lighting Controls $    436,900 $ 104,084 4.2

Roof Replacement $    428,000 $   75,088 5.7

Overhead Doors $      42,100 $     7,550 5.6

Total $ 2,257,000 $ 499,912 4.5

 
 

Of the total electricity consumption of these facilities, 45% was attributed to lighting. A total of 

6,417 lighting fixtures will be replaced. An expected 4,038,576 kWh and $417,274 annual 

savings will occur with the lighting retrofits. Based on U.S. EPA eGRID emission rates for the 

RFCW subregion (1,537.82 lbs CO2/MWh, 18.23 lbs CH4/GWh, and 25.71 lbs N2O/GWh), the 

yearly savings in annual energy consumption equates to annual GHG emissions savings of 

approximately 2,817.2 tonnes of CO2e. Lighting fixture retrofits and lighting control retrofits 

include the following: 

 

1. Replace T-12 fixtures with T-8 lamps and high efficiency ballasts.  

 

2. Replace the high intensity discharge (HID) lighting with high efficiency T-8 fixtures. 

 

3. Install occupancy sensors and lighting controls in rooms that are not fully occupied to 

turn back most of the lighting during the unoccupied periods.  
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4. Consolidate bus storage in one bus facility from four discrete storage bays to one or two 

storage bays. Energy savings will result from reducing the size of the space that must be 

heated and allowing the heating and lighting systems to be turned off in the storage areas 

used for obsolete storage or vacated/closed. 

 

An infrared survey of the Woodhill Garage roof area indicated that 48,397 sq. ft. of roof area was 

saturated with water and had lost its insulation value. The proposed solution is a total removal of 

the existing roof and installation of a new four ply built up roof with rigid insulation. The energy 

savings with the new roof are expected to be $75,088.00 per year with a payback time of 5.7 

years. Assuming an average rate of $0.10/kWh for electric heat, the energy savings equate to 

523.8 tonnes of CO2e avoided annually. 

 

The existing 12‘X 18‘ overhead doors in the Central Rail Maintenance Facility are over 25 years 

old. The doors are in disrepair with the seals broken and panel joints having air gaps from normal 

wear. The doors are used frequently and operate at a slow speed resulting in high-energy loss. 

The proposed solution is to replace the overhead doors with high-speed doors and new weather 

stripping. The total savings is expected to be 135,000 kWh/yr or $7,550.00/yr, with a payback 

time of 5.6 years. These energy savings equate to 94.2 tonnes of CO2e avoided each year. 

 

Embodied Energy of Building Materials: While energy used in operation of buildings is the 

majority of energy consumed by buildings, the embodied energy of the building‘s materials is 

also an important consideration. Embodied energy refers to the energy consumed in production 

and distribution of a product or material. Currently the embodied energy of building materials 

accounts for between 15 % to 20% of the energy used by a building over a 50 year period 

(Architecture 2030, 2010).  The design of the building, size, regional material sources, and 

framing material selection all significantly affect the embodied energy and GHG emissions.  

 

Use of Recycled Materials: One of the most effective ways to reduce the embodied energy of 

building materials is to salvage and reuse materials from demolished buildings, even considering 

the extensive cleaning and repair often required of the salvage materials (Brown et al, 2005):  in 

LCA terms, this represents ―downstream‖ (of direct, end user) energy consumption.  Examples 

of strategies to reduce embodied energy in the building construction include use of fly ash in 

concrete mixes in place of cement, use of materials with recycled content, procuring materials 

harvested and manufactured from local regional sources, and minimizing construction waste.  

 

Some transit agencies have again taken the lead in this area. Examples include the Rapid Central  

Station, operated by the Interurban Transit Partnership in Grand Rapids, MI. A terrazzo floor in 

the passenger waiting area and the mezzanine makes use of recycled glass, providing a durable 

flooring surface that is expected to last for decades with little or no maintenance other than 

cleaning. Not only does a percentage of the station‘s construction materials contain recycled 

content, another percentage was recycled after construction.
48

 Other green building components 

include a layer of live sedum growing on flat portions of the roof to reduce storm water runoff, 

maintain temperature control in the building, and significantly increase the useful life of the roof 

                                           

48
See  http://www.ridetherapid.org/about/environment 

http://www.ridetherapid.org/about/environment
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itself by shielding it from damaging ultraviolet rays. 

 

Given the variety of building types owned and operated by public transit agencies, a wide range 

of  opportunities exist to select ―green‖ construction materials and components. Among the more 

significant choices in terms of their volume and impacts on GHG savings, are the replacement of 

traditional wooded rail ties with ties made from composites of aluminum, recycled plastic, waste 

tires, waste fiberglass, and structural mineral fillers (see MTA, 2010). New York‘s Metropolitan 

Transportation Authority (MTA) is also introducing aluminum composite third rail to its system, 

along with remote operated third rail heating systems. As a way to use trash that would have 

been headed for the landfill, San Francisco‘s Bay Area Rapid Transit (BART) is using discarded 

grocery bags, milk bottles and car tires to plastic ties that are more environmentally friendly than 

old-fashioned wooden ties (which need to be soaked in creosote, a byproduct of chemicals 

derived from heating coal).  The process used to create these plastic ties is considered three times 

cleaner than that required to manufacture wooden ties (BART, 2009).  

 

6.3  GHG Emissions Can Be Reduced  Through Employee Travel Savings 

 

Most transit agencies appear to carry their concerns for energy efficiency into their support for  

green employee travel, and notably commuting, practices.  Programs being offered that lend 

themselves to reduced fuel consumption and GHG emissions through reductions in vehicles of 

travel include: 

 

1. Employee transit passes 

2. Employee rideshare/rideshare matching and incentive programs 

3. Employee flextime/variable time work weeks    

4. Employee telecommuting programs 

5. Employee secure bicycle storage facilities 

 

All transit agencies responding to a request for information on such programs indicated the use 

of transit passes, while more than half indicated the use of flextime/variable time work weeks.  

While the energy and emissions savings benefits of these programs rarely appear to be evaluated, 

for the larger transit agencies these programs can yield significant GHG savings. For example, 

transit passes for all employees at the Chicago Transit Authority (CTA) were estimated to yield 

an annual average of 2.8 million rides between 2007 and 2009, with rides not limited to commute 

trips. In addition to indentifying carpooling or vanpooling opportunities, an agency can also offer 

employees financial incentives to rideshare to and from work. For example, the Pace Suburban 

Bus program in South Holland, Illinois offers its employees a $75/month incentive to use a 

vanpool.   
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7. AN EXAMPLE GREENHOUSE GAS FOOTPRINT  

(Metropolitan Atlanta Rapid Transit Authority, 2008) 
 
7.1 Components of an Agency’s GHG Footprint 

 

This chapter describes the estimation of an agency‘s GHG footprint. The footprint is based on 

data made available by the Metropolitan Atlanta Rapid Transit Authority (MARTA), one of the 

nation‘s largest public transit agencies, with extensive heavy rail, fixed route bus and paratransit 

services. The chapter follows closely the reporting recommendations made by APTA (2009), and 

thus follows the Scope 1, Scope 2 and Scope 3 emissions accounting system used by The 

Climate Registry  (TCR, 2008) and other greenhouse gas (GHG) emissions inventory protocols.  

 

This three-scope accounting system includes all direct and indirect GHG emissions resulting 

from the agency‘s operations and activities. Scope 1 emissions are from direct GHGs produced 

by processes under the agency‘s control or ownership. Scope 2 emissions are all ―indirect GHGs 

associated with the consumption of purchased or acquired electricity, steam, heating, or cooling‖ 

(TCR, 2008). Scope 3 emissions are ―All other indirect emissions not covered in Scope 2, such 

as upstream and downstream emissions, emissions resulting from the extraction and production 

of purchased materials and fuels, transport related activities in vehicles not owned or controlled 

by the reporting entity, use of sold products and services, outsourced activities, recycling of used 

products, waste disposal, etc.‖ (TCR, 2008). 

 

In addition to following standard GHG emissions accounting, this GHG footprint is organized by 

the agency‘s various modal services and facility operations categories. In accordance with APTA 

recommended practices, the estimated GHG emission categories are reported as total emissions, 

emissions per vehicle mile, emissions per revenue vehicle hours, and emissions per passenger 

mile. This style of reporting helps to identify opportunities for improving GHG emissions 

performance in terms of the current supply of, and demands for, transit service. The GHG 

footprint presented below represents a baseline estimation of the annual greenhouse gases 

emitted by the agency‘s various operations and activities. While most of the estimated emissions 

occurred during the 2008 calendar year, some of the emissions, such as those arising from 

vehicle manufacturing, occurred in previous years and a proportion of the past emissions are 

allotted to the 2008 calendar year based on the total service life of the asset.  

 

Following the approach recommended by APTA (2009) we first compute the emissions 

produced by MARTA‘s transit operations. Then we compute the emissions displaced as a result 

of MARTA‘s transit ridership.  

 
7.2 Emissions Produced by Transit 

 

Table 7.1 summarizes MARTA‘s GHG footprint for 2008, organized by major emissions-

generating services, activities, and assets (see APTA, 2009, Figure 10). The following sections 

describe these emissions estimates, the sources of data used and the methods of computation. 

The Vehicle Miles, Revenue Vehicle Hours, and Passenger Miles data shown in Table 7.1 are 

taken from the 2008 data tables in the National Transit Database (FTA, 2009).   
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The example calculations illustrate the relationship between direct, operational emissions and 

indirect ―upstream‖ emissions, notably the emissions generated by fuel production and vehicle 

manufacture.  In all cases GHG emissions are reported as the sum of carbon dioxide (CO2), 

methane (CH4), and nitrous oxide (N2O) emissions, translated into CO2 equivalent (CO2e) 

emissions based on the following global warming potential (GWP) factors from the IPCC 

(2007): 

 

GWP (CO2)   = 1;   GWP (CH4 ) = 21 , and  GWP(N2O) = 310.  

 
Table 7.1 MARTA GHG Performance Metrics, Annual CO2e Scope 1, 2, and 3 

Emissions for 2008 

 

Mode Fuel / Energy Emissions (E)

Metric Tons 

Total   

(000s)                      

E/VM 

(lbs)

Total   

(000s)                      E/RH (lbs)

Total   

(000s)                      

E/PM 

(lbs)

Bus (MB) Diesel & CNG 98,628 30,765 7.07 2,191 99.2 213,460 1.019

Paratransit (DR) Diesel 11,536 6,196 4.10 284 89.6 5,423 4.689

Heavy Rail (HR) Electricity 84,771 24,063 7.77 873 214.0 593,419 0.315

Non-Revenue Vehicles Diesel & Gasoline 8,735 5,953 3.23 -- -- -- --

Stationary Sources Electricity & Nat. Gas 88,750 -- -- -- -- -- --

Total1 292,420 66,978 9.63 3,349 192.5 812,302 0.794
1 Includes Emissions from stationary sources

Vehicle Miles (VM)

Revenue Vehicle 

Hours (RH)

Passenger Miles 

(PM)

 
 
7.3 Scope 1 Emissions    
 

The principal sources of Scope 1 emissions of greenhouse gases are the direct operation of both 

revenue generating and non-revenue generating vehicles owned and operated by the transit 

agency (see Figure 7.1).  At the end of 2008,  MARTA reported a fleet of 189 diesel and 441 

compressed natural gas (CHG) buses  (616 active buses reported in the 2008 NTD), and 255 

diesel powered paratransit vans (141 reported as active in the 2008 NTD). In addition, the 

agency operated a fleet of 446 non-revenue, unleaded gasoline powered vehicles as well as a 

number of off-road, diesel-powered vehicles, used principally for maintenance of way (MOW) 

activities.                                                                                                                                                                      

 

Bus and Paratransit Fleet Operations: Direct, mobile source CO2 emissions are calculated 

directly from fuel and modal service-specific energy consumption numbers reported by 

MARTA.  For diesel-fueled buses and paratransit vehicles the following equation is used:
49

 

 

CO2 metric tons = (Fuel gallons)mode x (CO2 Kg/gallon) mode x (1 metric ton/1,000 Kg) (7.1) 

                                           

49
 For diesel, gasoline, and CNG emission factors, see Chapter 13 of The Climate Registry (TCR) General 

Reporting Protocol, May, 2008  http://www.theclimateregistry.org/downloads/GRP.pdf 

http://www.theclimateregistry.org/downloads/GRP.pdf
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The same general formula is used to estimate on-road, non-revenue gasoline and diesel-fueled 

vehicles. For CNG buses the direct mobile source CO2 emissions are calculated by the following 

equation, based on fuel consumption data reported in decatherms:  

 

CO2 metric tons = (CNG decatherms) x (CO2 Kg/ MMBtu) x (1 MMBtu/1 decatherm)  

                             x (1 metric ton/1,000 Kg)          (7.2) 
   

Figure 7.1 MARTA Scope 1 GHG Emissions for  2008  
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CH4 and N2O emissions are highly dependent upon vehicle combustion technology and vehicle 

activity, thus a calculation from VMT data is preferred to a calculation from fuel consumption 

data: 

 
(CO2 metric tons)mode = (VMT) mode   x  (CH4 grams/mile)mode  x (1 metric ton/ 1,000,000 grams)  

                                      x  (21grams of CO2e /1 gram of CH4)                                                             

(7.3)    

   
(CO2 metric tons)mode = (VMT) mode   x  (N2O grams/mile)mode  x (1 metric ton/ 1,000,000 grams)  

                                      x  (310 grams of CO2e /1 gram of N2O)            

(7.4)                                                         
 

Non-Revenue Vehicle Operations: In 2008, MARTA owned 446 on-road non-revenue vehicles, 

including a number of sedans (such as MARTA police vehicles), SUVs, pickup trucks, minivans, 
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cargo vans, and dump trucks. The agency also operated a number of off-road (or hi-rail), notably 

rail, maintenance of way (MOW) vehicles and heavy equipment, including a 15-ton crane, 

loader, backhoe, forklifts, stabilizer, tampers, bridge inspection truck, tunnel washer truck, and a 

diesel-electric locomotive. For off-road, non-revenue vehicles, GHG emissions calculations are 

based on reported fuel consumption
50

:  

 

CO2 metric tons = (Fuel gallons) x (CO2 Kg/gallon) x (1 metric ton/1,000 Kg)      (7.5)  

 

CH4 metric tons = (Fuel gallons) x (CH4 grams/gallon) x (1 metric ton/1,000,000 gram)     (7.6)  

 

N2O metric tons = (Fuel gallons) x (N2O grams/gallon) x (1 metric ton/1,000,000 gram)     (7.7)  

 

using the coefficients reported in TCR (2008) Tables 13.1 and 13.6 (see Appendix) 

 

A final category of Scope 1 emissions accounts for the on-site burning of natural gas in agency 

buildings. These emissions are estimated by summing over the monthly natural gas usage 

reported for each facility (in therms), and then multiplying this result by average GHG/MMBtu 

rates.
51

  

 

Other Scope 1 emissions to be included are fugitive leaks of HFCs and CFCs from air 

conditioning equipment. Although a complete inventory of MARTA‘s air conditioning 

equipment was unavailable, a ―screening method‖ (see TCR, 2008) calculation based on an 

equipment inventory estimate indicates that refrigerant GHG emissions are less than five percent 

of total agency emissions.  

 
7.4 Scope 2 Emissions    
 

Scope 2 emissions consist of GHGs resulting from purchased electricity, heating, cooling and 

steam. In the MARTA system, Scope 2 emissions arise solely from purchased electricity (see 

Figure 7.2). MARTA‘s purchased electricity is used for two main purposes: heavy rail vehicle 

propulsion, and stationary facility operations. 

 
Heavy Rail Vehicle Propulsion Emissions: The following equation was used for each of the 

greenhouse gases (GHGs) and shows how to estmate metric tons of CO2e, as presented in 

Table7.1 above
52

: 

 

CO2 metric tons = (Elect. MWh) x (CO2 lbs/MWh) x (0.4536 Kg/ 1lb)  

                              x (1 metric ton/ 1,000 Kg)                                                                           (7.8)   

                                           

50
 See Chapter 13 of The Climate Registry (TCR) General Reporting Protocol, May, 2008   

http://www.theclimateregistry.org/downloads/GRP.pdf 
51

 See Chapter 12 of The Climate Registry (TCR) General Reporting Protocol, May, 2008   

http://www.theclimateregistry.org/downloads/GRP.pdf  
52

 See Chapter 16 of The Climate Registry (TCR) General Reporting Protocol, May, 2008   

http://www.theclimateregistry.org/downloads/GRP.pdf 

See U.S. EPA eGRID 2007 for emission factors (2005 data) 

http://www.theclimateregistry.org/downloads/GRP.pdf
http://www.theclimateregistry.org/downloads/GRP.pdf
http://www.theclimateregistry.org/downloads/GRP.pdf
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CO2e metric tons = (Elect. GWh) x (CH4 lbs/GWh) x (0.4536 Kg/ 1lb)     

                                 x (1 metric ton/ 1,000 Kg) x (21grams of CO2e /1 gram of CH4)            (7.9)                                                                        
  

CO2e metric tons = (Elect. GWh) x (N2O lbs/GWh) x (0.4536 Kg/ 1lb)     

                                 x (1 metric ton/ 1,000 Kg) x (310 grams of CO2e /1 gram of N2O)        (7.10) 

 
Figure 7.2 MARTA Scope 2 GHG Emissions for 2008 
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Emissions from Stationary Facilities: GHG emissions associated with the electrical energy 

consumed in agency owned and operated buildings are calculated by the same method used for 

heavy rail vehicle propulsion emissions. The only difference is that these emissions are 

accounted separately as stationary sources. Stationary facility energy consumption is calculated 

by summing the monthly MWh of electricity use reported for each facility. 

 

A Note on Emission Rates from Electricity Consumption: It is important to note that a good 

deal of variability exists in emission rates of GHGs associated with electricity generation. Much 

depends on the energy feedstock, which varies a great deal across regions of the country. These 

rates also change from year to year according to the principal sources of this data:  the U.S. 

EPA‘s eGRID
53

 and the U.S. EIA‘s State Electricity Profiles.
54

 Although the reporting protocols 

recommend use of local data to develop GHG footprints where feasible, local data such as plant-

level power generation emission factors may not always provide the most accurate GHG 

                                           

53
 http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 

54
 www.eia.doe.gov/fuelelectric.html.   

http://www.eia.doe.gov/fuelelectric.html
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emission estimation for the end-user. Some electricity may be imported to the local grid from 

outside production areas, thereby resulting in a different energy production mix. The production 

mix will also vary locally and/or regionally depending on the time of day, with peak load times 

possibly drawing on a different mix of energy feedstocks than off-peak loadings.   

 

Differences in the electricity production mix affect the GHGs from purchased electricity, since 

the production mix includes power generated by carbon-intensive coal as well as nuclear, hydro, 

or other low or non-carbon energy sources. Four options were identified for use in this footprint: 

 

1. Locally derived emissions rates based on eGRID plant level energy consumption  

2. Statewide average emissions rates based on eGRID reporting  

3. Statewide average emissions rates estimates based on EIA State Electricity Profiles 

4. Regional average emissions rates estimates based on eGRID reporting  

 

In this report the 2007 statewide average CO2 emissions of 1,447 lbs/MWh was used, based on 

the EIA State Electricity Profile for Georgia, because no out-of-state importing of electricity 

sources could be identified.
55

 In comparison, the EPA‘s most recent eGRID estimate for the state 

(2005 data) is a little lower, at 1,402.5 lbs/MWh.
56

  In sharp contrast, and based on local plant 

level eGRID reporting, the power generation-weighted average emissions rate for the seven local 

power plants serving MARTA region produced an estimate of 2,039 lbs CO2/MWh, which is 

more than 40% higher than the statewide average value. This higher emission rate is largely due 

to a much larger percentage of the energy (97% VS. 64%) being produced by coal combustion.  

 

Based on discussions with local energy use experts, the importing of electricity from other parts 

of Georgia into the Atlanta metro area, coupled with the absence of any of this imported 

electricity from other states led us to use the statewide emissions factors. Table 7.2 summarizes 

the Scope 1 and 2 emissions estimates for each of the major emissions sources identified above. 

That is, the table presents the results in Table 7.1, less the Scope 3, upstream emissions described 

in the following section.         

 

Table 7.2 MARTA GHG Performance Metrics, Annual CO2e Scope 1 and 2 Emissions for 

2008 

 

Mode Fuel Emissions (E)

Metric Tons 

Total   

(000s)                      

E/VM 

(lbs)

Total   

(000s)                      

E/RH 

(lbs)

Total   

(000s)                      

E/PM 

(lbs)

Bus (MB) Diesel & CNG 75,565 30,765 5.41 2,191 76.0 213,460 0.780

Paratransit (DR) Diesel 7,094 6,196 2.52 284 55.1 5,423 2.884

Heavy Rail (HR) Electricity 64,284 24,063 5.89 873 162.3 593,419 0.239

Non-Revenue Vehicles Diesel & Gasoline 3,611 5,953 1.34

Stationary Sources Electricity & Nat. Gas 76,275

Total1 226,829 66,978 7.47 3,349 149.3 812,302 0.616

Vehicle Miles (VM)

Revenue Vehicle 

Hours (RH)

Passenger Miles 

(PM)

 

                                           

55
 http://www.eia.doe.gov/cneaf/electricity/st_profiles/e_profiles_sum.html 

56
 http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 

http://www.eia.doe.gov/cneaf/electricity/st_profiles/e_profiles_sum.html
http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
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7.5 Scope 3 Emissions    
 

While Scope 3 emissions are listed as optional by APTA (2009), they may in some instances 

offer useful information when comparing, for example, the purchase of alternatively fueled 

vehicles. While the development of standards for indirect, notably ―upstream‖ (EPA, 2006) 

emissions reporting is still a work in progress, a number of software programs and methods exist 

for estimating these emissions. Included in the Table 7.1 emissions reported above, and 

presented in Figure 7.3 are emissions associated with:  

 

1. vehicle-cycle emissions from vehicle manufacture, rebuild, maintenance, and disposal;   

2. fuel-cycle emissions from fuel extraction, refining and transportation 

 

Note that since vehicles operate over a number of years - an annual GHG footprint that 

incorporates such upstream vehicle emissions must represent the emissions on an annual basis. 

This may be accounted for by dividing the estimated lifetime vehicle-cycle emissions by the 

proportion of VMT occurring during the accounting year.  

 

Figure 7.3 MARTA Scope 3 GHG Emissions for 2008             
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Bus and Vanpool Upstream Emissions: A number of spreadsheet software programs exist for 

this purpose, breaking down both the vehicle- and fuel-production cycles on the basis of the 

typical amount of materials or energy required at each stage in the extraction, manufacturing, 
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assembly and delivery process,. This includes the transportation energy used to deliver the 

vehicles and fuel itself (see Weigel, Southworth and Meyer, 2010, which provides a review of 

available GHG calculators). The GREET
57

 and GHGenius software programs were identified as 

the most advanced and readily available tools for computing the upstream vehicle- and fuel- 

cycle emissions associated with transit buses and vanpools. For immediate ease of application to 

bus emissions GHG computations, we selected GHGenius (Version 3.15).
58

  GHGenius is a life 

cycle assessment (LCA) tool built to consider the environmental impacts of introducing 

alternative transportation fuels and the vehicles that use them into the marketplace.
59

 

 

An LCA analyzes the cumulative impacts of a product‘s lifecycle, from extraction of raw 

materials to their end-use and disposal, computing the emissions associated with each process. In 

this context a ‗product‘ such as bus transportation requires the ability to inventory and measure 

the many different materials and activities needed to get the bus operating on the region‘s transit 

routes, including the extraction, manufacture and delivery of the fuel it uses. Specifically, the 

upstream fuel-cycle emissions estimates from GHGenius are composed of emissions associated 

fuel production, dispensing, storage and distribution, fuel feedstock transport, and CO2 and CH4 

and leaks and flares. Upstream vehicle manufacture and delivery (―vehicle-cycle‖) emissions 

include emissions associated with the materials used in vehicle assembly, transport and delivery. 

Figure 7.3 shows the estimates developed using GHGenius for a typical diesel and CNG bus, 

using a diesel powered light duty vehicle approximation for a diesel vanpool vehicle.  

 

Rail Upstream Emissions:  In contrast to the LCA of highway modes, rail transport options have 

to date received much less attention, at least in terms of their energy and GHG emissions 

impacts.  

 

The estimation of the upstream emissions associated with heavy rail vehicle manufacture, 

rebuild, and maintenance used data on vehicle purchase price and vehicle expected life reported 

by MARTA and APTA. These dollar valued estimates are then combined with estimated 

emissions from the rail vehicle manufacturing sector, based on a run of Carnegie-Mellon‘s 

Economic Input-Output Life Cycle assessment (EIO-LCA) model.
60

 The EIO-LCA approach 

builds on Leontief‘s Input-Output Modeling framework for relating the dollar valued outputs of 

one industry to the dollar valued inputs of another industry, converting these monetary 

transactions into their equivalent energy consumption and emissions production estimates based 

on the types of commodities traded.  In doing so it traces both direct and indirect impacts of one 

industry on another, with the purchase of goods from industry A affecting not only the receiving 

industry B but also the industries supplying A, and so on. The resulting inter-industry accounting 

framework offers a cost effective, if necessarily more approximate, alternative to carrying out a 

complete LCA based on identifying the inputs and outputs at every step in a product‘s supply 

                                           

57
 http://www.transportation.anl.gov/modeling_simulation/GREET/ 

58
 http://www.ghgenius.ca/ 

59
It is worth noting here that a preliminary bus fleet GHG estimator based on the GREET software is also 

now available at: 

http://www.transportation.anl.gov/modeling_simulation/GREET/footprint_calculator.html 
60

 http://www.eiolca.net/   

http://www.transportation.anl.gov/modeling_simulation/GREET/
http://www.ghgenius.ca/
http://www.transportation.anl.gov/modeling_simulation/GREET/footprint_calculator.html
http://www.eiolca.net/
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chain (as is done by GREET and GHGenius for highway vehicle and fuels manufacture and 

delivery).   

 

The original rail fleet build cost and rebuild costs are added together and entered into the EIO-

LCA model to calculate the upstream manufacturing emissions resulting from the many 

industrial processes involved. These emissions are then divided by 40 years of estimated service 

life. Added to this are maintenance emissions, which are estimated to be 19 percent of the 

original manufacture emissions (distributed over an original 25 year service life). The sum of 

these estimates is a total vehicle-cycle GHG emissions estimate for one heavy rail vehicle (two 

car set) of 35.2 Mt CO2e.  

 

7.6 Footprint Summary 

 

Figure 7.4 shows the breakdown of Scope 1 and 2 ‗direct‘ operating emissions plus their 

associated Scope 3 upstream emissions, for each of the major emissions sources and combined 

emissions values listed in Table 7.1. 

  

Figure 7.4  MARTA Direct plus Upstream GHG Emissions for 2008     
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 Upstream or ―indirect‖ emissions represent between 25% and 30% of total operating plus 

upstream emissions. Such indirect emissions are necessarily approximate given current data 
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sources and an agency can refine them on the basis of detailed vehicle manufacturing and facility 

design data in particular.
61

 

 

7.7 GHG Emissions Displaced by Transit 

 

The option of public transportation mobility within a metropolitan area can offer GHG savings 

opportunities in three major categories (see APTA, 2009): 

 

1. Modal shift benefits: Avoided low occupancy private vehicle trips  

 

2. Congestion relief benefits: Reduced congestion due to fewer automobiles in the traffic 

stream leading to less idling and stop-go traffic movement.  

 

3. Land-use multiplier benefits: Reduced car use through transit-enabled dense land-use 

patterns that promote shorter trips, and walking and cycling. 

 

Of these benefits, mode shift benefits are the easiest to compute. Congestion relief benefits are 

less easily determined and depend a great deal on the levels of congestion experienced by the 

region‘s highways, and how persistent this congestion is over the course of a day. Land use 

multiplier effects are even more difficult to assess with certainty, and there is no consensus 

agreement at the present time on how to compute them: although recent evidence (Bailey, 

Mohktarian and Little, 2008) suggests that they are quite large and should not be ignored in 

regions such as metropolitan Atlanta, where there is a significant public transit presence.  

 

The mode shift, congestion relief, and land-use multiplier GHG emissions benefits described 

were calculated for MARTA‘s 2008 operations in accordance with APTA Recommended 

Practice (see APTA, 2009). Below is a description of the calculation procedures and results.   

 
Mode Shift:  Calculation of the GHG emissions reductions achieved through a mode shift to 

transit is based largely on the calculation of a mode shift factor. The mode shift factor may be 

calculated by three alternative tiers, ordered by decreasing levels of specificity: Tier A – Model-

based; Tier B – Survey-based; and Tier C – Default by agency type. The mode shift calculations 

presented here follow the Tier B – Survey-based approach. APTA (2009) suggests use of the 

following formula for Tier B and C calculations of the mode shift factor: 

 

Mode shift factor = % of transit riders stating they would drive alone 

         + % stating that someone else would drive them 

         + % shifting to taxi 

                                           

61
 As a check on our estimates, the vehicle- and fuel-cycle emissions were also generated for the bus and 

automobile modes using Argonne National Laboratory‘s GREET and GREET Fleet
61

 life cycle analysis 

software  (,http://www.transportation.anl.gov/modeling_simulation/GREET/)  with closely comparable 

results in terms of the percentages achieved. 

 

http://www.transportation.anl.gov/modeling_simulation/GREET/
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         + % stating they would carpool / average carpool occupancy 

 

The 2001-2 Regional On-Board Transit Survey, published by the Atlanta Regional Commission, 

provided the estimates of how MARTA transit riders would respond to a loss of transit service 

(ARC, 2001: see Table 7.3). The survey data exceeds the five-year age limit specified by APTA; 

however the data provides a more specific characterization of transit mode in the Atlanta region 

than does a Tier C default approach. A 2009-10 Regional On-Board Transit Survey is currently 

underway in the Atlanta region, and the results of this survey can be used to update the mode 

shift factor calculation. 

 

         Table 7.3 Data Used to Compute Transit Mode Shift Factor 

 

If bus or rail service was not available, how would you

MAKE THIS TRIP? Bus Rail

% who would drive alone 16.6 48.7

% who would take a taxi 13.7 6.5

% who would ride with someone* 30.7 20.8

% who would walk 14.0 6.3

% who would bicycle 2.0 1.2

% who would not make the trip 23.0 16.5

default carpool occupancy 2.5 2.5

% stating they would carpool / average carpool occupancy 12.3 8.3
* interpreted as carpooling

 
    

Unlike the Tier C default data, the transit survey data enables calculation of separate mode shift 

factors for bus and rail transit, and also allowed the results to be weighted by weekday versus 

weekend travel. The calculated bus and rail mode shift factors used in this study are 0.426 and 

0.635 respectively. That is, 42.6% of buses riders and 63.5% of rail riders are estimated to travel 

by private automobile should public transit service not be available to them. These percentages 

were based on the following (weekday and weekend weighted average)
62

 responses to the ARC 

2001-2 On-Board Transit Survey of MARTA riders: 

 

The bus and rail mode shift factors in this case are computed using the above formula as:  

 

Mode shift factor (bus) = 16.6 + 13.7 +(30.7/2.5) = 13.6 + 13.7 + 12.3 = 42.6% 

 

Mode shift (rail) = 48.7 + 6.5 + (20.8/2.5) = 48.7 + 6.5 + 8.3 =  63.5%  

 

                                           

62
 The weights used here were derived from data reported in the 2007 NTD, which reports an average 

daily  PMT split of 83.7% on weekdays versus 16.3% on weekends for rail riders, and a daily PMT split 

of  85.9% weekday versus 14./1% weekends for bus and paratransit combined.  
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With no equivalent data for the paratransit van operations, this service was assumed to have the 

same responses as those obtained from the system‘s bus riders. 

 

Following APTA (2009, page 34), with no detailed data on trip lengths by mode/service types, 

and using the assumption ―that one passenger mile on transit is equivalent to one passenger mile 

in a private auto — i.e., that the distances are comparable‖ leads to the following formula: 

 

(CO2 metric tons ) mode = (# passenger miles by transit)mode x (mode shift factor) x   

(CO2Kg/gallon)* (1/mpg for an average automobile)      (7.11) 

 

For  rail trips this yields the following result: 

 

CO2 rail emissions savings =  593,419,400 passenger miles *  0.635 mode shift factor * 8.81  

kgCO2/gallon * (1/17 mpg)  *(1/0000) =  195,371 metric tons  of CO2e 

 

Formulas similar to (12) are also used for CH4 and N2O emissions; but here the emission factors 

are based on vehicle distance rather than vehicle fuel economy, and a GWP is multiplied by the 

result.  For example, 

 

CH4 bus emissions savings =  213,459,600 passenger miles *  0.426 mode shift factor *  

0.0000147 Kg CH4/gallon * (1/0000) * a GWP of 21   =  1,336 metric tons of CO2e 

 

Note the for methane (CH4) emissions, and also for N2O emissions rates per mile are used (for 

N2O this rate was 0.000069 Kg/mile).   

 

The assumption being made is that each transit passenger mile equals, on average, an automobile 

passenger mile. An alternative computation based on regional knowledge of average transit 

passenger trip lengths may provide a better answer (since transit passenger miles of travel 

statistics reported in the NTD are themselves approximations).  The following example shows 

how different the results can be, based on average transit ride trip lengths derived from the 

Atlanta Regional Commission‘s (ARC) 2001 survey of MARTA riders, as derived (in two draft 

report) by the Georgia Regional Transportation Authority (GRTA, 2009a, 2009b).  Using this 

data the following more elaborate GHG emissions formula is employed, making use of NTD 

reporting of number of unlinked passenger trips in each modal category. This approach can be 

stated succinctly as: 

 

 (CO2 metric tons) =  (avoided automobile miles -  automobile miles used to access transit for 

these mode shifted trips) * automobile emissions per passenger mile     (7.12) 

 

A close approximation to this result can be computed as follows: 

 

(CO2 metric tons) = [(# unlinked passenger trips by transit mode) * (mode shift factor)] * 

[(average avoided miles/trip) – [(proportion of transit trips with an access and/or egress auto 

trip to/from transit) * (average access/egress auto miles per transit trip)]]  * [(CO2Kg/gallon) * 

(1/mpg for an average automobile) *(1/1000)]              (7.13) 
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To use this approach data is required on the average ‗avoided‘ automobile miles per trip, the 

proportion of transit trips that use automobile as and access and/or egress mode, and the average 

automobile miles associated with this access/egress activity. According to the Georgia Regional 

Transportation Authority‘s draft report of MARTA Rail Emissions Benefits (which is based on 

the 2001-2 Regional On-Board Transit Survey), the heavy rail transit values for these variables 

are 17.9 miles, 0.537, and 6.3 miles respectively (GRTA, 2008a). The number of unlinked trips 

is taken from the 2008 NTD. For example: 

 

CO2 rail emissions savings = 82,940,000 unlinked trips * [(0.635 mode shift factor * 17.9 

average avoided miles per trip)  - [(0.537 auto trips to/from transit per trip * 6.3 auto miles 

to/from transit per trip)] * [8.81 kgCO2/gallon * (1/17 mpg) *  (1/1000)] = 343,552 metric tons  

Similarly,  

 

CH4 bus emissions savings = 67,519,400 unlinked trips * [(0.426 mode shift factor * 12.6 

average avoided miles per trip) –  (0.106 auto trips to/from transit per trip * 6.3 average auto 

miles to/from transit per trip)]  * (0.0000147 KgCH4mile)* (1/1,000 grams)  = 4.66 metric tons  

* a GWP of 21 =   4,661 metric tons of CO2e   

 

assuming that 10.6% of all bus transit trips involve an auto access/egress trip that averages 6.3 

highway miles,  and that on average an avoided auto trip has a distance of 12.6 highway miles. 

The following results summarize the results from both approaches, and assuming that paratransit 

trips have the same 12.6 miles per avoided trip as bus trips, with none of these trips requiring 

auto access/egress: 

 

Estimated Annual CO2e Emissions Savings from Mode Shifts:     

 

    Approach 1      Approach 2  

Bus (MB)    47,332 metric tons     165,126 metric tons 

Paratransit (DR)     1,202 metric tons        1,144 metric tons 

Heavy Rail (HR)  196,294 metric tons    345,174 metric tons 

Total:   244,819 metric tons    511,445 metric tons 

 

Clearly, very different results can be generated based on both the automobile avoided and, if to a 

lesser extent, also on the automobile access/egress trip lengths used.  In what follows the results 

from the more conservative ‗Approach 1‖ are used, as they appear to reflect a more reasonable 

treatment of urban bus emissions savings, if on the low side.  It is likely that this approach also 

underestimates the effects of riding rail transit on resulting emissions savings.  

 

Congestion Relief: Ideally, an estimate of regional congestion relief should be generated by 

running a regional transportation planning model (i.e. a model simulation) and comparing a base 

case 2008 traffic flow scenario with one in which the transit system riders have been allocated to 

their respective second choice modes of transport. This is in line with APTA‘s (2009) preferred 

or Tier A approach. In this study the GHG emissions reductions from MARTA-supported 

congestion reduction are instead calculated in accordance with APTA‘s much more approximate 

Tier B approach, which is based on data for the Atlanta region reported in the Texas 

Transportation Institute‘s (TTI) Urban Mobility Report.     
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Twenty-six years of historical data for the Atlanta metropolitan area, spanning the period 1982 to 

2007, were extracted from the Excel data tables found on the Urban Mobility Report website.
63

  

These data were used to create the following time series of values: 

 

Highway VMT = Freeway daily vehicle-miles of travel + Arterial daily vehicle-miles of travel 

Highway Lane-miles = Freeway lane-miles + Arterial lane-miles 

Traffic Density = Highway VMT /Highway lane-miles 

Excess Fuel Consumed in Congestion (total gallons) (also supplied as a TTI data product) 

 

Figure 7.5 Relationship Between Traffic Density and Excess Fuel Consumption due to 

Congestion, based on TTI data for Atlanta 
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Fitting the traffic density to excess fuel relationship using the GROWTH function in Excel 

produced the statistical relationship between traffic density (vehicle miles of travel /highway lane 

miles of capacity) graphed in Figure 7.5. 

 

Adding the almost 1.3 million extra vehicle miles of travel from the estimated transit mode shift 

to the rest of these daily vehicle miles produced an estimated additional fuel consumption of just 

under 49 million gallons in 2008. These fuel savings in turn yielded the 431,627 metric tons in  

annual emissions reduction benefits (in CO2 only)
64

, summed over all three of the agency‘s 

transit modes (i.e. over heavy rail, fixed route bus and paratransit services), again using an 

emissions rate of 8.81 kilograms of CO2 per gallon of gasoline equivalent fuel consumed:  

 

                                           

63
 http://mobility.tamu.edu/ums/congestion_data/tables/complete_data.xls. 

64
 APTA (2009) recommends omitting N2O or CH4 emissions computation s here since the relationship between  

congestion and emissions on a per-mile basis is unclear at the present time. 

http://mobility.tamu.edu/ums/congestion_data/tables/complete_data.xls
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Land-Use Multiplier Effects: The long term impacts of a significant public transit service on a 

region‘s residential, commercial and industrial land development pattern can be significant (see 

Bailey, Mokhtarian and Little, 2008; TRB, 2009). In particular, mass transit systems are believed 

to encourage reduced vehicle trip frequencies as well as shorter trip lengths (APTA, 2009), by  

encouraging higher-density and mixed use land development that supports cycling and walking 

in place of vehicular trips, while also allowing more efficient multi-stop vehicle travel based trip 

chaining. Over time such non-or limited vehicle use-based accessibility may also encourage 

households to reduce their vehicle ownership. For a region as large and complex as the Atlanta 

MSA, which also operates other, if much smaller regional bus transit services, obtaining a 

transit-induced land use impact on tripmaking from MARTA services is a challenging task that 

requires the application of a regional land use and transportation planning model. Lacking the 

resources in the present project for running such a model we choose to exclude this effect here.  

 
7.8 Savings Estimates and Summary Net Benefits Table  

 

Table 7.4 summarizes the emissions production versus emissions savings attributed to MARTA 

in 2008 based on the above described calculations. 

 
Table 7.4 MARTA Annual Emissions Savings vs. Emissions Produced, 2008 CO2e 

Estimates 

 

    Emissions Benefits      Emissions  Produced

Mode
     in metric tons    by Transit Operations

Mode Shifts

Congestion 

Relief

Scopes 1 & 2  

Only

Scopes 1 & 2, +3 

(Partial)

Bus (MB) 47,322  75,565 98,628

Paratransit (DR) 1,202  7,094 11,536

Heavy Rail (HR) 196,294  64,284 84,771

Non-Revenue Vehicles na na 3,611 8,735

Stationary Sources na na 76,275 88,750

Total 244,819 431,627 226,829 292,420
 

 

The results indicate that the regionwide GHG emissions reductions benefits from keeping transit 

riders out of their automobiles exceeds MARTA‘s current vehicle operating emissions from bus, 

rail and paratransit trips by between 2-to-1 and 3-to-1. The following emissions benefits/ 

emission production ratios tell the story, noting that a very conservative estimate has been 

produced of the mode shift benefits associated with MARTA‘s heavy rail service. 

 

Total emissions benefits /Agency Scope 1 and 2 emissions only = 676,446 / 226,829 =  2.98 

 

Total emissions benefits/ Agency Scope 1, 2, and 3 (partial) emissions = 676,446 / 292,417 = 

2.31 
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On a modal service basis, both rail and bus operations offer significant emissions reductions. 

Only MARTA‘s paratransit services produce significant net GHG emissions. 

 

Acknowledgements 
 

Compilation of data for this GHG footprint was made possible through the knowledgeable 

support of MARTA and MARTA‘s consultant S.L. King Technologies, Inc.  

 

7. 9 References 
 

ARC (2002) 2001-2002 On-Board Regional Transit Survey. Atlanta Regional Commission, 

Atlanta, GA.   

 

APTA (2009) Recommended Practice for Quantifying Greenhouse Gas Emissions from Transit.  

American Public Transportation Association, Climate Change Standards Working Group APTA 

CC-RP-001-09 8/14/09. 

 

Bailey, L., P.L. Mokhtarian, et al. (2008). The Broader Connection between Public 

Transportation, Energy Conservation and Greenhouse Gas Reduction. ICF International. Fairfax, 

VA. 

 

Chester, M. and A. Horvath. (2008) Environmental Life-cycle Assessment of Passenger 

Transportation:  A Detailed Methodology for Energy, Greenhouse Gas and Criteria Pollutant 

Inventories of Automobiles, Buses, Light Rail, Heavy Rail and Air v.2. eScholarship Repository, 

University of California, Berkeley, CA. 

http://repositories.cdlib.org/its/future_urban_transport/vwp-2008-2 

 

EPA (2006) Greenhouse Gas Emissions for the U.S. Transportation Sector 1990-2003. 

Environmental Protection Agency. Washington, D.C. EPA 420 R 06 003. 

 

FTA (2009) National Transit Database. Federal Transit Administration, Washington D.C. 20590.   

http://www.ntdprogram.gov/ntdprogram/data.htm 

 

GRTA (2008a) MARTA Rail Emissions Benefits. Georgia Regional Transportation Authority. 

Atlanta, GA. Draft. 

 

GRTA (2008b) MARTA Bus Emissions Benefits. Georgia Regional Transportation Authority. 

Atlanta, GA. Draft. 

 

Hendrickson, C. T., Lave, L. B., Matthews, H. S.  (2006).  Environmental Life Cycle Assessment 

of Goods and Services:  An Input-Output Approach.  Resources for the Future Press.   

http://www.eiolca.net/Method/references.html 

 

http://repositories.cdlib.org/its/future_urban_transport/vwp-2008-2
http://www.ntdprogram.gov/ntdprogram/data.htm
http://www.eiolca.net/Method/references.html


 

 

114 

TCR (2008) General Reporting Protocol Version 1.1 for the Voluntary Reporting Program. The 

Climate Registry. May 2008. http://www.theclimateregistry.org/resources/protocols/general-

reporting-protocol/ 

 

TRB (2009) Driving and the Built Environment: The Effects of Compact Development on 

Motorized Travel, Energy Use, and CO2 Emissions.
 
Transportation Research Board Special 

Report 298, Washington D.C. 

 

TTI (2009) 2009 Urban Mobility Report. Texas Transportation Institute. Texas A&M 

University. College Station, Texas http://mobility.tamu.edu/ums/  

 

Weigel, B.A., Southworth, F.  and Meyer, M.D. (2010) Calculators for estimating greenhouse 

gas emissions from public transit agency vehicle fleet operations. Transportation Research  

Record (Forthcoming). 

http://www.theclimateregistry.org/resources/protocols/general-reporting-protocol/
http://www.theclimateregistry.org/resources/protocols/general-reporting-protocol/


 

 

115 

APPENDIX TO CHAPTER 7: DATA SOURCES 

Fuel Consumption and VMT Data:  

Provided by MARTA and reported in the Federal Transit Administration‘s 2008 National transit 

Database (NTD). Facility electricity and natural gas consumption data provided by MARTA and 

S.L. King Technologies, Inc. 

Table 7A- 1:  GHG Coefficient Data Sources 

GHG Coefficient Source 

Decatherms/DGE Atlanta Gas Light, (http://www.atlantagaslight.com/) 

Metric tons of CO2/Decatherm EIA http://www.eia.doe.gov/oiaf/1605/coefficients.html) 

GWP(CH4) Table B.1 TCR GRP (2008)* 

GWP(N2O) Table B.1 TCR GRP (2008) 

GramsCO2/Gallon of Diesel Table 13.1 TCR GRP (2008) 

Grams CO2/Gallon of Gasoline Table 13.1 TCR GRP (2008) 

GramsCH4/VMT (diesel, gasoline) Table 13.4 TCR GRP (2008) 

GramsN2O/VMT (diesel, gasoline) Table 13.4 TCR GRP (2008) 

GramsCH4/gal (diesel, non-

highway) 

Table 13.6 TCR GRP (2008) 

GramsN2O/gal (diesel, non-

highway) 

Table 13.6 TCR GRP (2008) 

lbs CO2/MWh of Electricity EIA  State Electricity Profiles (2007)** 

lbs CO2/MWh of Electricity U.S. EPA eGRID (2005) 

CH4/MWh of Electricity U.S. EPA eGRID (2005)*** 

lbs N2O/MWh of Electricity U.S. EPA eGRID (2005) 

kg CO2/MMBtu of Natural Gas Table 12.1 TCR GRP (2008) 

kg CH4/MMBtu of Natural Gas Table 12.9 TCR GRP (2008) 

kg N2O/MMBtu of Natural Gas Table 12.9 TCR GRP (2008) 

http://www.atlantagaslight.com/
http://www.eia.doe.gov/oiaf/1605/coefficients.html
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* TCR GRP (2008) = The Climate Registry (TCR) General Reporting Protocol, May, 2008  

http://www.theclimateregistry.org/downloads/GRP.pdf 

*** U.S. EPA eGRID 2007 Version 1.1  (Year 2005 Data) 

http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html 

** EIA  State Electricity Profiles (Year 2007 Data) 

http://www.eia.doe.gov/cneaf/electricity/st_profiles/e_profiles_sum.html 

 

Scope 3 Upstream Emissions 

Buses, Paratransit and Automobile Vehicles:  

 Fuel Production Cycle and Emissions:  

GHGenius Version 3.15        

 http://www.ghgenius.ca/ 

Vehicle Manufacture Cycle Emissions: 

  GHGenius Version 3.15         

  http://www.ghgenius.ca/ 

Heavy Rail Vehicles: 

 

Electricity Production Cycle and Emissions:  

 

Scope 3 upstream GHG emission rates associated with electrical power generation 

for heavy rail vehicle propulsion were derived from GHGenius Version 3.15 

(http://www.ghgenius.ca/), Table 53c. Upstream GHG emission rates were 

multiplied by state-level electrical feedstock ratios and total propulsion power 

consumption. 

 

 Vehicle Manufacture Cycle Emissions: 

 

Scope 3 upstream GHG emissions rates associated with  heavy rail vehicle 

manufacture and rebuild were derived using the Economic Input-Output Life 

Cycle Assessment (EIO-LCA) on-line software found at http://www.eiolca.net/ , 

using the US 2002 Benchmark I-O data tables, and deriving GHG emissions per 

dollar expenditure rates from the ―railroad rolling stock manufacturing‖ economic 

subsector. Railcar manufacture expenditures are based on average expenditure 

data from APTA and rebuild expenditures are based on data from MARTA. 

http://www.theclimateregistry.org/downloads/GRP.pdf
http://www.epa.gov/cleanenergy/energy-resources/egrid/index.html
http://www.eia.doe.gov/cneaf/electricity/st_profiles/e_profiles_sum.html
http://www.ghgenius.ca/
http://www.ghgenius.ca/
http://www.ghgenius.ca/
http://www.eiolca.net/
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Vehicle service life (in years and miles) are estimated from MARTA vehicle 

inventory data. See table A-2 below. 

Facilities: 

 

Electricity Production Cycle and Emissions: 

 

Scope 3 upstream GHG emission rates associated with electrical power generation 

for facility operations were derived from GHGenius Version 3.15 

(http://www.ghgenius.ca/), Table 53c. Upstream GHG emission rates were 

multiplied by state-level electrical feedstock ratios and total facility electrical 

power consumption. 

 

Natural Gas Production Cycle and Emissions: 

 

Scope 3 upstream GHG emission rates associated with natural gas production for 

facility operations were derived from GHGenius Version 3.15 

(http://www.ghgenius.ca/), Tables 55a, 55b, and 55c, ―NG to commerce‖ data. 

Upstream GHG emission rates were multiplied by facility natural gas 

consumption data and appropriate GWP factors. 

 

 

 

 

http://www.ghgenius.ca/
http://www.ghgenius.ca/

