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Although particle hopping models have been .introduced into traffic science in the 1950s, their -
systematic use has only started recently. Two reasons for this are, that they are advantageous
on modern computers, and that recent theoretical developments allow analytical understanding of
their properties and therefore more confidence for their use. In principle, particle hopping models
fit between microscopic models for driving and fluid-dynamical models for traffic flow. In this sense,
they also help closing the conceptual gap between these two. This paper starts out with building
connections between particle hopping models and traffic flow theory.

I. INTRODUCTION

Traffic jams have always been annoying. At least in the industrialized countries, the standard reaction has been
to expand the transportation infrastructure to match demand. During this phase of fast growth, relatively rough
planning tools were sufficient. However, in the last years most industrialized societies started to see the limits of such
growth. In densely populated areas, there is only limited space available for extensions of the transportation system;
and we face increasing pollution and growing accident frequencies as the downsides of mobility. In consequence,
planning is now turning to a fine-tuning of the existing systems, without major extensions of facilities. This is for
example reflected in the United States by the Clean Air Act and by the ISTEA (Intermodal Surface Transportation
and Efﬁc1ency Act) legislation. The former sets standards of air quahty for urban areas, whereas the latter forces

planning authorities to evaluate land use policies, intermodal connectivity, and enhanced transit service when planning
transportation.

In consequence, planning and prediction tools with a much higher reliability than in the past are necessary. Due to
the high complexity of the problems, analytical approaches are infeasible. Current approaches are simulation-based
(e.g. [1-4]), which is driven by necessity, but largely enhanced by the widespread availability of computing power
nowadays. Yet, also for computers one needs good simplified models of the phenomena of interest: Just coding a
perfect representation of reality into the computer is not possible because of limits of knowledge, limits of human
resources for coding all these details, and limits of computational resources.

Practical simulation has to observe trade-offs between resolution, fidelity, and scale [5]. Resolution refers to the
smallest entities (objects, particles, processes) resolved in a simulation, whereas fidelity means the degree of realism
in modeling each of these entities, and scale means the (spatial, temporal, ...) size of the problem. It is empirically
well known, for example from fluid dynamics, that to a certain extent a low fidelity high resolution model (lattice gas

automata [6,7]) can do as well as a high fidelity low resolution model (discretization of the Navier-Stokes-equations),
or in short: Resolution can replace fidelity.

Current state—of-the-art traffic modeling has a fixed unit of (minimal) resolution, and that is the individual traveler.
Since one is aiming for rather large scales (for example the Los Angeles area consists of approx. 10 million potential

travelers), it is rather obvious that one has to sacrifice fidelity to achieve reasonable computing times.
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One important part of transportation modeling is road traffic. For example in Germany, road traffic currently
contributes more than 81% of all passenger and 52.7% of all freight transportation (8]. And despite widespread
efforts, the share of road transportation is still increasing. For that reason, it makes sense to start with road traffic

when dealing with transportation systems.

Putting these arguments together, one thing which is needed for large scale transportation simulations is a minimal
_representation of road traffic. Particle hopping models clearly are candidates for this, and even if not, building a
minimal theory of road traffic is certainly the right starting point.

This paper shows how particie hopping models fit into the context of traffic flow theory. It starts out with a historical
overview of traffic flow theory (Section II), followed by a short review of fluid-dynamical models for traffic flow
(Section III) starting from the Navier-Stokes-equations. Section IV defines different particle hopping models which
are of interest in the context of traffic flow. The paper continues by showing connections between the fluid-dynamical
traffic flow models and particle hopping models. In some cases, these connections are exact and have long been
established, but have never been viewed in the context of traffic theory. These cases are shown in Section V. In other
cases, critical behavior of traffic jam clusters can be compared to instabilities in the partial differential equations.
This description is only precise for the so-called cruise control limit of the particle hopping models, where jams cannot
start spontaneously but have to be started by some external disturbance. This is described in Section VI. Section VII
explains in how far these results carry over to other models, in which jams initiate spontaneously due to fluctuations
of driver’s behavior. Summary and discussion conclude the paper.

This paper derives from [9], which discusses many of the issues of this paper on a more technical level.

II. HISTORICAL OVERVIEW

Vehicular traffic has been a widely and thoroughly researched area in the 1950s and 60s. For a review of traffic theory,
see, for example, one of [10-12].

Vehicular traffic theory can be broadly separated into two branches: Traffic flow theory, and car-following theory.

Traffic flow theory is concerned with finding relations between the three fundamental variables of traffic flow, which
are velocity v, density p, and current or throughput or flow ¢. Only two of these variables are independent since they
are related through ¢ = pv.

The first task of traffic flow theory historically was to search for time-independent relations between g, p and v, the so-
called fundamental diagrams. The form of such a relation- is, though, still debated in the traffic flow literature [13,14].
The problem stems mainly from the fact that reality measurements are done in non-stationary conditions. There,
only short time averages make sense, and they usually show large fluctuations. Near the end of this paper I will sketch
out how a dynamic, particle based description of traffic can account for these difficulties.

The second step of traffic flow theory was to introduce a dynamic, i.e. time-dependent description. This was achieved
in 1955 by Lighthill and Whitham [15]. That paper introduces a description based on the equation of continuity
plus the assumption that flow (or velocity) depend on the density only, i.e. there is no relaxation time (instantaneous ‘
adaption).

Prigogine, Herman, and coworkers developed a kinetic theory for traffic flow (16]. They derived the Lighthill-Whitham
situation as a limiting case of the kinetic theory. The kinetic theory anticipates many of the phenomena which come
up in later work, but probably because the mathematics of working in this framework is fairly laborious, this theory



has not been developed any further until recently [17].

Instead, in 1979, Payne replaced the assumption of instantaneous adaption in the Lighthill-Whitham theory by an
equation for inertia, which is similar to a Navier-Stokes-equation [18]. Kiihne, in 1984, added a viscosity term and

initiated using the methods of nonlinear dynamics for analyzing the equations [19-22].

In a parallel development, Musha and Higuchi proposed the noisy Burgers equation as a model for traffic and backed

that up by measurements of the power spectrum of traffic count data [23].
Ref. [9] puts these fluid-dynamical models into a common perspective.

Car-following theory regards traffic from a more microscopic point of view: The behavior of each vehicle is modeled
in relation to the vehicle ahead. As the definition indicates, this theory concentrates on single lane situations where
a driver reacts to the movements of the vehicle ahead of him. Many car-following models are of the form
v(t)™ .
t4+T) ox ——— - Av(t : 1

where “oc” means “proportional to”, and a constant with the appropriate units has to be added. a and v are the
acceleration and velocity, respectively, of the car under consideration, Az is the distance to the car ahead, Av is the
velocity difference to that car, and m and [ are constants. T is a delay time between stimulus and response, which

summarizes all delay effects such as human reaction time or time the car mechanics needs to react to input.

Other examples for car-following equations are v(t + T) o< Az [24,25] or a(t) ox V[Az(t)] — v(?) [26], where V[Az]

gives a preferred velocity as a function of distance headway.

Mathematically, parts of this theory are very similar to the treatment of atomic movements in crystals, and give

results about the stability of chains of cars (“platoons”) in follow-the-leader situations.

One of the achievements of traffic theory of that period was that relations between car-following models and static
flow-density-relations could be derived.

Car-following theory will not be treated any further in this paper.

A more recent addition to the development of vehicular traffic flow theory are particle hopping models. Imagine a
one-dimensional chain of boxes, each box either empty, or occupied by exactly one particle. Movement of particles is
achieved by particles jumping from one box to another according to specific movement rules. '

In the context of vehicular traffic, one can imagine a road represented by boxes which can fit exactly one car. A rough
representation of car movements then is given by moving cars from one box to another. Actually, the first proposition
of such a model for vehicular traffic is from Gerlough in 1956 [27] and has been further extended by Cremer and
coworkers [28,29]. ‘ |

These models are sometimes also called cellular automata (CA) models [30]. CA models use discrete representations
of space (cells) and time, and have a low number of allowed states per cell. For each cell, an updated state at time
t + 1 is calculated using only local information from time t. Local means that only a small number of neighboring
sites is considered. Note that this makes the update completely parallel, that is, once the complete state at time ¢ is
known, the states of all cells for time ¢ + 1 can be calculated independently from each other.

Particle hopping models and CA are not exactly the same, although the definitions are overlapping. Both model
classes use the discrete representation of space and time and the low number of allowed states per cell. But the CA
_ always has a parallel update, whereas for particle hopping models, other updates are possible (see below). In contrast,

particle hopping models are defined by the dynamics they are supposed to describe. For example, at least the simpler




of the particle hopping models observe mass conservation.
All CA models in this paper are particle hopping models; the inverse is true except for the ASEP (see below).

In 1992, CA models for traffic were brought into the statistical physics community. Biham and coworkers used
a model with maximum velocity one for one- and for two-dimensional traffic [31]. One-dimensional here refers to
roads etc., and includes multi-lane traffic. Two-dimensional traffic in the CA context usually means traffic on a 2-d
grid, as a model for traffic in urban areas. Nagel and Schreckenberg introduced a model with maximum velocity
five for one-dimensional traffic, which compared favorably with real world data [32]. Both approaches were further

analyzed and extended in a series of subsequent papers, both for the one-dimensional [9,33-58] (see also [59]) and the

two-dimensional (see, e.g., [60-62]) investigations.

The motivation here was twofold. The first was the aiming for computational speed, to make statistical analysis
possible. The second motivation is that the model is still simple enough to be treated analytically, but distinctively
different from other particle-hopping models. In addition, CA-methodology is planned to be used as a high-speed
option in traffic projects in Germany [2] and in the United States [1].

From a theoretical point of view, the methodology of CA is placed between fluid-dynamical and car-following theories,

and is helpful to further clarify the connections between these approaches. This paper aims at contributing to the

first part, i.e. understanding and clarifying the relations between particle-hopping models and fluid-dynamical models
for traffic flow.

III. FLUID-DYNAMICAL MODELS FOR TRAFFIC FLOW

In traffic flow theory, models can be roughly distinguished into two different classes: the ones which assume instanta-
neous adaption of velocity to density, and the ones where this adaption needs some time because it has to overcome
momentum. The first class is the simpler one; the basic equation here is

Gip+08:q=0, (2)

where p is the density, g is the flow or current or throughput, and 3; and J; are partial derivatives with respect to time
and space, respectively. The equation is just the equation of continuity, and it simply expresses mass conservation.
In order to make this work, one has to give the flow as a function of density, ¢ = f(p), for example ¢ o p(1 — P)

(which would be the Greenshield relation, see (11]),orgex 3 —fp— 14|

Physically, one finds behind these equations that velocity adapts instantaneously to the surrounding density, i.e.
v=gq/p= f(p)/p = F(p only) . ‘ (3)
This is exactly the well-known theory of Lighthill and Whitham [15], and a great deal is known how to handle these

equations,

Note that, following a theoretical physics tradition, some variables are made free of units before they are used. For
example, density here is renormalized so that it is between zero and one; in traffic one would achieve this by dividing
it by the jam density:

. preal [number of cars per km]
p [no unit] := ,
Pjam [number of cars per km]




where possible units are indicated in the brackets.

Extensions of the Lighthill-Whitham-equations (2, 3) are to add diffusion or noise on the right hand side of the

equation, for example

Oip+0:q=D8p+1,

where D is the diffusion coeficient and 7 is a noise term.

Models including momentum consist of a second equation describing the fact that velocity does in reality not adapt

ihstanta.neously to the density. An often used form of such a non-instantaneous velocity adaption term is [18,19]

dv 1 c2 5 )
a;—;[V(P)—vH—;azp-%-ua,v. (4)

The equation says that individual acceleration (left hand side) is proportional to the following three effects:

o difference between desired speed V(p) and actual speed v;
o gradient of the density: If traffic gets denser in the driving direction, one slows down; and

e a spatial smoothing effect. This effect can better be derived as dspace—a#eraging effect [9] and is thus not really

related to individual accelerations.

V(p) still has to be externally given, but the adaption to this value is now (neglecting the other RHS terms) exponen-

tially delayed, i.e. v(t) = V(p) — [V(p) — vo] e~*/". That means that actual velocity approaches the desired velocity
exponentially, with a time constant given by r. Note that the limit 7 — 0 makes this adaption infinitely fast, i.e.
returning to the instantaneous adaption case. Mathematically, one sees this by the fact that the 7 — 0 limit makes

the relaxation term much bigger than all the other terms of the velocity adaption equation (4).

Usually, for a fluid-dynamical picture, one concentrates on a description on fixed spatial coordinates instead of following
the vehicles; then, one replaces the Lagrangian (= individual) derivative dv/dt by the Eulerian (= local) equivalent

3sv + v 8, v, leading to

' 2
Sv+v0v= % V(p) —v] +%° .0+ v .

One uses this equation in conjunction with the equation of continuity and ¢ = pv.

A more comprehensive review of the fluid-dynamical equations needed here can be found, e.g., in [9].

IV. DEFINITIONS OF PARTICLE HOPPING MODELS

This section defines several particle hopping models which are candidate models for traffic flow. They all have in
common that they are defined on a lattice of, say, length L, where L is the number of sites, and that each site can be
either empty, or occupied by exactly one particle. Also, in all models particles can only move in one direction. The
number of particles, N, is conserved except at the boundaries.




The section starts out with the Stochastic Traffic Cellular Automaton (STCA), which has been proposed for traffic
flow by Nagel and Schréckenberg [32], and which is used as the basis for large scale traffic simulation projects both
in the United States [1] and in Germany [2]. The STCA includes strong randomness in the rules. Setting this
randomness to zero reduces the STCA to a much simpler, deterministic model, which, when restricting oneself to
maximum velocity vpmgp = 1, turns out to a well known cellular automaton model. In the third model of this section,
‘randomness is re-introduced, but in this case by changing the update algorithm: Whereas in the first two models all

particles are updated synchronously based in “old” information, in this third model, particles are selected in random
sequence for individual updates. '

A. The Stochastic Traffic Cellular Automaton (STCA)

The Stochastic Traffic Cellular Automaton (STCA), which has been treated in'a series of papers [9,40-53), is defined
as follows. Each particle (= car) can have an integer velocity between 0 and vmqez. The complete configuration at

time-step ¢ is stored, and the configuration at time-step ¢ + 1 is computed from that (parallel or synchronous update).
For each particle, the following steps are done in parallel:

¢ Find number of empty sites ahead (= gap) at time t.
¢ If v > gap (too fast), then slow down to v := gap. [rule 1]
¢ Else if v < gap (enough headway) and v < vmgz, then accelerate by one: v := v + 1. [rule 2]

¢ Randomization: If after the above steps the velocity is larger than zero (v > 0), then, with probabilif,y P,
reduce v by one. [rule 3]

* Particle propagation: Each particle moves v sites ahead. [rule 4]

The randomization condenses three different properties of human driving into one computational operation: Fluctu-
ations at maximum speed, over-reactions at braking, and retarded (noisy) acceleration.

Note that, because of integer arithmetic, conditions like v > gap and v > gap + 1 are equivalent.

Despite its simplicity, this model is astonishingly successful in reproducing realistic behavior such as start-stop-waves
and realistic fundamental diagrams [32]

When the maximum velocity of this model is set to one (vmaz = 1), then the model becomes much simpler: For each
particle, do in parallel:

o If site ahead was free at time ¢, move, with probability 1 — p, to that site.

Since the STCA shows different behavior for Umaz 2 2 than for vpmez = 1, I will distinguish them using STCA/1 and
STCA/2, respectively.

Due to the given discretization of space and time, proper units are often omitted in the context of particle hopping or
cellular automata models. Proper units here would be: [9ap] = number of cells, [v] = number of cells per time step,
[t] = number of time steps, etc. For that reason, it is possible to write something like v < gap, which properly

‘would have to be v < gap/(time step). Note that one still needs conversion factors to convert, say, velocity from the




particle hopping model to a real world velocity, e.g. given in kilometers per hour. One should note, though, that every
computer program does such a thing. Numbers in computer programs are always unitless, and a proper conversion

to real world numbers has to be put in by the program designer.

B. The deterministic 1imit of the STCA (CA-184)

One can take the deterministic limit of the STCA by setting the randomization probability p equal to zero, which
Jjust amounts to skipping the randomization step. It turns out that, when using maximum velocity vmqr = 1, this
is equivalent [63] to the cellular automaton rule 184 in Wolfram’s notation {30], which is why I use the notation
CA-184/1 and CA-184/2. '

Much work using CA models for traffic is based on this model. Biham and coworkers [31] have introduced it for traffic
flow, with v,z = 1. Other authors base further results on it [33-35,38—40]. Others [36,37] use it with higher vm,z.
It is also the basis of the two-dimensional CA models for traffic (e.g. [31,60-62]).

C. The Asymmetric Stochastic Exclusion Process (ASEP)

The probably most-investigated particle hopping model is the Asymmetric Stochastic Exclusion Process (ASEP)
(e.g. [63-68]). It is defined as follows:

¢ Pick one particle randomly. [rule 1]

o If the site to the right is free, move the particle to that site. [rule 2]

The ASEP is closely related to CA-184/1 and STCA/1 (both with maximum velocity one). The main difference is
the update schedule: Instead of doing something with all particles simultaneously, one picks one particle at a time.

In contrast, in CA-184/1, one picks all particles synchronously and moves them according to rule 2 of the ASEP. In
order to make this work, one has to use “old” information (i.e. from iteration t) to decide if the site to the right is free
(i.e. if the particle can be there at time ¢ + 1). For the ASEP, this distinction between “old” and “new” information

is not necessary because one only picks one particle at a time and all others do not move.

In STCA/1 (with p = 1/2), one picks randomly half of all particles synchronously and moves them according to rule 2
of the ASEP.

In order to compare the ASEP with the other, synchronously updated models, one has to note that, in the ASEP,
on average each particle is updated once after N single-particle updates. A time-step (also called update-step or

iteration) in the ASEP is therefore completed after N single-particle updates (= N attempted hops).

It was already noted earlier [63] that going from ASEP to CA-184/1, i.e. changing the update from asynchronous
to synchronous, produces very different dynamics. In this paper, I will in addition show that re-introducing the
randomness via the randomization (rule 3) in the STCA again leads to different results.



V. PARTICLE HOPPING MODELS, FLUID DYNAMICS, AND CRITICAL EXPONENTS

'Writing about both particle hopping and fluid-dynamical models for traffic flow does not make much sense as long
as one cannot compare them. Fortunately, such a comparison is possible and will turn out to be quite instructive.
Actually, for some of the mentioned particle hopping models, fluid-dynamical limits are known exactly. By fluid-
dynamical limits one technically means the limit where the grid size Az goes to zero, both the number of grid points,
n, and the number of particles, N, go to infinity, while one keeps the system size, L = n - Az and the density p = N, /n
both constant. |

More intuitively, a fluid-dynamical description of a particle hopping model is a description where one averages over
enough particles so that the granularity of the original system is no longer visible. As a consequence, phenomena on
the level of a few particles cannot expected to be correctly described, but larger scale phenomena can.

The cases for which the ﬂuld-dyna.mlcal limits are known will be presented in this section. In many cases, though,
such as for the STCA, these limits are not known. In these cases, the concept of critical exponents still helps to
classify the models and to make comparisons to fluid-dynamical models. In order to prepare for this exercise, I will
already talk about critical exponents in this section.

The most straightforward way to put the concept of critical exponents into the context of traffic flow is to consider
“disturbances” (i.e. jams) of length z and ask for the time ¢ to dissolve them. For example, one would intuitively
assume that a queue of length  at a traffic light which just turned green would need a time ¢ proportional to z until
everybody is in full motion. By this argument, the dynamic exponent z, defined by t ~ z?, should be one.

Yet, there can be more complicated cases. Imagine again a queue at a traffic light just turned green but this time also
some fairly high inflow at the end of the queue. The j Jam-queue itself will start moving backwards, clearing its initial
position in time ¢t ~ z. However, the dissolving of the jam itself may be governed by different rules. An example of
this will be given below, '

Both for the ASEP/1 and for the CA-184/1, fluid-dynamical limits and critical exponents are well known (see, e.g.,
[63—66]), and this section will therefore describe these two cases plus the generalization which leads to CA-184/5.
Note that, compared to the introduction of the particle hopping models in the last section, we start “backwards”:
Much is known about some of the sub-cases or variations of the STCA, yet much less about the STCA itself.

A. ASEP/1

The classic stochastic asymmetric exclusion process corresponds to the noisy Burgers equation. More precisely, the
ASEP particle process corresponds to a diffusion equation 0;p+08;¢ = D 82p+n with a current [63,67] of ¢ = p (1-p).

. Interestingly, this is exactly the Lighthill- Whitham case, specialized to the Greenshields flow relation, with terms added
for noise and diffusion. In other words, the ASEP/1 particle hopping process and the Lighthill-Whitham-theory (plus
noise plus diffusion), specialized to the case of the Greenshields flow-density relation, describe the same behavior.

In consequence, many phenomena of this particle hopping process can be understood using the Lighthill-Whitham
theory.

Inserting yields

Oip+0:p—8:p°=D02p+1. : (5)




In the steady state, this model shows kinematic waves (= small jams), which are produced by the noise and damped
by diffusion (Fig. 1). These non-dispersive waves move forwards (wave velocity ¢ = dg/dp =1-2p > 0) for p < 1/2
“and backwards (¢ < 0) for p > 1/2. At p = 1/2, the wave velocity is exactly zero (¢ = 0), and this is the point
of maximum throughput [68]. If trafic were modeled by the ASEP; then one could detect maximum traffic flow by
standing on a bridge: Jam-waves moving in flow direction indicate too low density (cf. Fig. 1), jam-waves moving

against the flow direction indicate too high density.

The ASEP is one of the cases where clearing a site follows a different exponent than dissolving a disturbance.! As long

as p # 1/2, a disturbance of size z moves with speed ¢ # 0 and therefore clears the initial site in time t ~ ¢-z ~ z1, i.e.
with dynamical exponent z = 1. In order to see how the disturbance itself dissolves, one transforms into the coordinate
system of the wave velocity. One conventionally does that by first separating between the average density (p)r and

the fluctuations p’. By inserting p = (p)r + ¢’ one obtains
8o +(1=2(p)L)0zp' — 29" 0:p' = DBZp +17. ‘ (6)
When transforming this into the moving coordinate system z’ = z + (1 — 2{p)L) - t, one obtains

O —2p 8,0 =D +1,

which is the classic noisy Burgers equation [63].

. For this equation it is well known that the dynamical exponent is z = 3/2. In other words, in the original coordinate
system a disturbance four times as big as another one, =’ = 4z, needs ¢’ ~ ' = 4z ~ 4t, i.e. four times as much time
to clear the site, but ¢/ ~ z/3/2 = (42)%2 ~ 8t, i.e. 8 times as much time until the jam-structure itself is no longer
visible in the noise. A precise treatment of this uses, e.g., correlations between tagged particles [64].

~The drawback of this model with respect to traffic flow is that it does neither have a regime of laminar flow nor “real”,
big jams (see also Fig. 1). Because of the random sequential update, vehicles with average speed 7 fluctuate severely

around their average position given by T¢. As a result, they always “collide” with their neighbors, even at very low
densities, leading to “mini-jams” everywhere. This is clearly unrealistic for light traffic.

Actually, this fact is also visible in the speed-density-diagram. Using the Greenshields flow-density relation, one
obtains

q .
v=-x1l—-p. 7
Lo1-p | M

This is in contrast to the observed result that, at low densities, speed is nearly independent of density (practically no

interaction between vehicles).

B. CA-184

Using a maximum velocity higher than one does not change the general behavior of CA-184. It therefore makes sense
to directly discuss the general case.

INote that technically, all these remarks are only valid for small disturbances. The problem is that if one is no longer close
to the steady state, one sees transient behavior which may be different (63]. s

9



As explained above, the CA-184/1 is the deterministic counterpart of the ASEP/1. But taking away the noise from
the particle update completely changes the universality class (i.e. the exponent z) [63]. The model now corresponds

to the non-diffusive, non-noisy equation of continuity

dp+q 0p=0 ®)
with a (except at p = pymasr) linear flow
i _ 99 _ [ vmez for p < pymacz 9)
= dp ~ | -1 for p> pymac-

The intersection point of the fundamental diagram divides two phenomenological regimes: light traffic (p < Pgmaz)

and dense traffic (p > pymaz).

A typical situation for light traffic is shown in Fig. 2 (with vpmez = 5). After starting from a random initial condition,
the traffic relaxes to a steady state, where the whole pattern just moves ymsr = 5 positions to the right in each
iteration. Cars clearly have a tendency of keeping a gap of > vpnmaz = 5 between each other. As a result, the current,
g, in this regime is

< = P Umaz . (10)

The velocity of the kinematic waves in this regime is ¢« = g% = Umaz. This means that disturbances, such as holes,

Just move with the traffic, as can also be seen in Fig. 2.

Dense traffic is different (Fig. 3). Again starting from a random initial configuration, the simulation relaxes to a
steady state where the whole pattern moves one position to the left in each iteration. Note that cars still move to
the right; if one follows the trajectory of one individual vehicle, for this car regions of relatively free movement are
alternating with regions of high density and slow speed. Although in a too static way, this captures some of the
features of start-stop-traffic. The average speed in the steady state equals the number of empty sites divided by the
number of parﬁcles: (v)r = (L — N)/N; the current is g5 = p-{(v)r, or, with p = N/L,

>=1-p. (11)

This straight line intersects with the one from light traffic at p = 1/(1 + Umaz), Which is therefore the density
corresponding to maximum throughput Imaz = Umaz /(1 + Umaz)- '

The velocity of the kinematic waves in the dense regime is ¢§ = —1, which corresponds to the backwards moving
pattern in Fig. 3. ' ‘

Since the second term of Eq. 8 (with 9) is (except at p = pymas) linear in the density, these are linear Burgers

equations, and the dyn_amic exponent z is equal to 1 [63].

More precisely, the following happens: The outflow of a Jam in this model always operates at flow goutr = masr
and density poy; = Pgmaz- The time ¢ until a jam of length z dissolves therefore obeys the average relation ¢ o

z/(gmaz — qin), Where g;, is the average inflow to the jam. Since ¢  p for p < Pgmaz, ODe can write that as

DL R— )
Pgmaz = P(Qin)

10



This means that for p < pymaz, the critical exponent z is indeed one, but at p = pymaz, t diverges. This effect is
also visible when disturbing the system from its stationary state: The transient time tirqn, until the system is again

stationary scales as [36]

1
tirans ~ — . (13)

Pgmaz — P

The scaling law (13) is actually also true for p > pgmaz, albeit for a different reason with a slightly more complicated

phenomenology. See [36] for more details.
Two observations are important at this point:

(i) Many papers in the physics literature [31,33-38,40] use this model for their investigations. Also the 2d-grid models

(see, e.g., [60-62]) essentially use this driving model, although the two-dimensional interactions seem to change the '
flow-density relationship [69]. The CA-184 model lacks at least two features which are, as I will argue later, important
with respect to reality: (a) Bi-stability: Laminar flow above a certain density becomes instable, but can exist for long
times. (b) Stochasticity: CA-184 is completely deterministic, i.e. a certain initial condition always leads to the same
dynamics. Real traffic, however, is stochéstic, that is, even identical initial conditions will lead to different outcomes,

and a model should be capable of calculating some distribution of outcomes (by using different random seeds).

(ii) The fluid-dynamical model behind the so-called cell transmission model [70], which is a discretization of the
Lighthill-Whitham-theory, is similar to Eq. 8 with 9, especially with respect to the range of physical phenomena
which are represented. The only difference is that the g-p-relation of Ref. [70] has a flat portion at maximum flow
instead of the single peak of Eq. 9. That means that in the cell transmission model low density and high density
traffic behave similarly to CA-184, but traffic at capacity has a regime where waves do not move at all.

Using other g-p-relations in discretized Lighthill-Whitham-models (e.g. [71,72]), will lead to other relations for the
wave speeds, but the range of physical phenomena (backwards or forwards moving waves) which can be represented
will always resemble CA-184; especially, neither the bi-stability nor the stochasticity can be represented.

VI. CRUISE CONTROL LIMITS

No fluid-dynamical limits for the other particle hopping models are known. Yet, one can still gain further insight
by looking into the traffic jam dynamics of the different models. In order to separate out the traffic jam dynamics
from other effects, as a first step one would like to modify the models in such a way that always only one jam at a
time exists. This is achieved by introducing the “cruise control limit”. Here, fluctuations at free driving (i.e. when
U = Umae and gap > Ymaz) are set to zero. The result is that traffic in these models, once all vehicles are in the free
driving regime, remains deterministic and laminar for all times. A single jam can then be initiated by perturbing one
single car by, say, stopping it and letting it re-accelerate. In general, many different choices for the local perturbation
give rise to the same large scale behavior. The pertufbed car eventually re-accelerates back to maximum velocity.
In the meantime, though, a following car may have come too close to the disturbed car and has to slow down. This

initiates a chain reaction — an emergent traffic jam.
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A. CA-184-CC

Takayasu and Takayasu [39] introduced a model which amounts to a deterministic cruise control situation for CA-
184/1. This may not be obvious from the rules, but it will become clear from the dynamic behavior. Since they use

only maximum velocity vmaz = 1, the rules are short: For all particles do in parallel:

¢ A particle with velocity one i5 moved one site ahead when the site ahead is free (gap > 1).

* A particle at rest (v = 0) can only move when gap > 2.

The important new feature of this model is a bi-stability [39]. This bi-stability occurs for p,; = 1/3 < (p)1 := N/L <
pe2 = 1/2, where some initial conditions lead to laminar flow but others lead to traffic including jams. (.)z means the
average over the whole (closed) system. of length L: Takayasu and. Takayasu found the following:

(i) Starting with maximally spaced partxcles and mxtla.l velocxty one, one finds stable coi&ﬁguratzons with ﬂow (@) =
(P)L - Ymaz = (p)L for low densities (oL < 1/2 = pea. For ‘high densmes (p)z, > Pe2, aJa.m phase appears for all
initial conditions since not all particles can keep gap > 1. Oice a jam-has been created, all-particles in the outflow of
this jam have gap = 2. For t — oo; this dynamics reorganizes the system into jammed regions with density one and

zero current, and laminar outflow regions with Pout = 1/3 and qoy: =1 / 3. Slmple geometric arguments then lead, for
the whole system, to (q)L =(1- (p)L)/2 and (v )L = (1/(p)L - 1)/2

(u) Startmg, however, wn;h an initial condition where all partlcles are clustered in a jam, this j Jam is-only sorted out
up to (p)z < 1/3 =: pey, leading to (g)z = (P}t and (v) = 1. For {p)1 > pe1, the initial jam survives forever, yielding
(Pr=(1- (p)L)/2 and (v)r = (1/{p)L ~ 1)/2. One observes that for pey < ( VL < pe2, this initial condition leads
to a different final flow state than the initial conditions in @i). — Note that pc; is equal to the outflow density poy:.

(iil) Starting from an arbitrary initial condition, the density-velocity relation converges to one of the above two types.

Note thatup to before this section, all relations between q, v, and p were also locally correct, which is why averaging
brackets were omitted. Now, this is no longer true. For example densities slightly above p.» do not really exist on a
local level; they are only possible as a global composmon of regions with local densities p Pe1 plus others with local
densities p = 1.

Since the model is deterministic, one can calculate the behavior from the lmtlal conditions. For any particle i with
initial velocity zero one can determmeithe influence that particle has on following particles i+1,i+2,.... For particle
i+ k to be the first one not to be involved in the jam caused by i, one needs the average gap between iand k to
be larger than two. This corresponds to.a densxty ‘between i .and k of pir < 1/(gap+ 1) = 1/3 = p.;. The sequence
(9api+;j); describes a random walk, which is positively (negatively) biased for p > pe1 (p < pe1), and unbiased at the
critical point p = p; [39].

B. STCA-CC/1

The cruise control limit of the STCA algorithmically amounts to the following: For all cars do in parallel:

¢ A vehicle is stationary when it travels at ma.xxmum velocity vmar and has free headway: gap > vmaz. Such a
vehicle just maintains its velocity.
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¢ Else (i.e. if a vehicle is not stationary) the standard rules of the STCA are applied.

Both acceleration and braking still have a stochastic component. The stochastic component of braking is realistic,
but it is irrelevant for the results presented here.

‘The cruise control limit of the STCA is in some sense a mixture between the CA-184 and the full STCA. Since the
STCA-CC has no fluctuations at free driving, the maximum flow one can reach is with all cars at maximum speed and

gap = Umaz. Therefore, one can manually achieve flows which follow, for p < p.s, the same g-p-relationship as the CA-
184, where p.2 now denotes the density of maximum flow of the deterministic model CA-184, i.e. pc2 = 1/(vmaz + 1).

Above a certain p.;, these flows are unstable to small local perturbations. This density will turn out to be a “critical”

density; for that reason I will use p. = p.;.

Now assume that a single jam has been initiated in an infinite system of density po. It is straightforward to see [49]
that n(t), the number of cars in the jam, follows a usually biased, absorbing random walk, where n(t) = 0 is the
absorbing state (jam dissolved): Every time a new car arrives at the end of the jam, n(t) increases by one, and this
happens with probability ¢in = vmaz - po, Which is the inflow rate. Every time a car leaves the jam at the outflow side,
n(t) decreases by one, and this happens with probability gour. When gin = out, n(t) follows an unbiased absorbing
random walk. ¢in # qour introduces a bias or drift term & (gin — qout) - L.

This picture is consistent with Takayasu and Takayasu’s observations for the CA-184-CC model. The main difference
is that now both the inflow gaps and the outflow gaps form a random sequence. Another difference is conceptually:
Takayasu and Takayasu have looked at the transient time starting from initial conditioné, whereas Nagel and Paczuski
look at jams starting from a single disturbance. The latter leads to a cleaner picture of the traffic jam dynamics because

it concentrates on the transition from laminar to start-stop-traffic which is observed in real traffic.

The statistics of such absorbing random walks can be calculated exactly. For the unbiased case one finds that
() ~t",  Pur(t) ~t % and  (w(t))sure ~ 1", (14)

where Py, is the survival probability of a jam until time ¢, w(t) means the width of the jam, i.e. the distance between
the leftmost and the rightmost car in the jam. (.) means the ensemble average over all jams which have been initiated,
and (.)sury means the ensemble average over surviving jams. For the critical exponents, one finds as well from theory

as from numerical simulations § = 1/2 and 5 = 0.
1 = 0 re-confirms that, at the critical density p., jams in the average barely survive (unbiased random walk).

If one now uses ¢;, as order parameter, and, say, P,ury(t) as control parameter, then we have a second order phase

transition, where

=0 for gin < gout and t — o0,
Pyyry(t){ ~t~%  for gin = gour and t — oo, and (15)
= const for ¢in > qou: and t — co. .

For that reason, we call g, := gou: the critical flow, and the dssociated density p. := p(g.) the critical density.

It is important to note that @in > Qou: as a stable, longtime state is only possible due to the particular definition
of the cruise control limit and in an open (or infinite) system. If one would use a closed system, the outflow of the
Jam would eventually go around the loop .and turn into the inflow of the jam (see Fig. 4), leading to the situation

" in = Qout; if one would go away from the cruise control limit, eventually other jams would form upstream of the one
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under consideration, and the outflow of these Jams would eventually be the inflow of the jam under consideration,

again leading to ¢in = gour.

All this is true for an open éystem, or a system which is large enough and where times are short enough so that the
closed boundaries are not felt. In a closed system, the jams ultimately absorb all the excess density pescess = p — pe;
as a result, all traffic between jams operates at P-

Average measurements of the long time behavior of traffic flow can therefore show at most ¢, = qouz.

This picture is consistent with recent results both in fluid-dynamical models and mathematical car-following models
for traffic flow.

In Ref. [73], traffic simulations using a fluid-dynamical model starting from nearly homogeneous conditions eventually
form stable waves. The fluid-dynamical model one can, by usual linearization, find the parameters for the onset of
instability. What is (n(t)) ~ " in the particle hopping model becomes the amplitude A(t) ~ et ’i‘n the fluid-dynamical
model, and at the onset of instability A = const is similar to (n(t)) = const (since n = 0). Therefore, the wave in the

fluid-dynamical model corresponds to the average jam-cluster in the particle-hopping model.

Bando and co-workers [26] also find the separation of traffic into laminar and jammed phases in a deterministic

continuous mathematical car-following model.

C. STCA-CC/2

Replacing maximum velocity vmaz = 1 by Umaz > 2 does not change the critical behavior, but it adds a complica-
tion [49]. Now, jam clusters can branch, with large jam-free holes in between branches of the jam (see Fig. 5). As a
_result,.space-time plots of such jams now appear to show fractal properties, and in simulations at the critical density,
w(t) does not follow any longer a clean scaling law, whereas n(t) and P,yury still do. For further details, see [49].

VIL. RETURNING TO THE STOCHASTIC TRAFFIC CA (STCA)
A.STCA/1

For the STCA at vy, = 1, frorh i/isual inspection (Fig. 6) one finds that distinguishable jams do not exist here.
Instead, the space-time plot looks much more like one from the ASEP. ‘

This is confirmed by theoretical analysis. One technical possibility to find g-p relations for a given particle hopping
- model is the n-cluster method. The essential idea here is to derive transition probabilities for transitions from one local
system configuration to another. Since a configuration of length I at time ¢ + 1 causally derives from a configuration
of length I + 2umqz at time ¢, one has to make some approximations to close the upcoming equations.

In the case of the ASEP, it turns out that already the simplest of these approximations, called 1-cluster or mean field
‘ approximation, leads to the exact result, that is, all higher order corrections are zero. In the case of the STCA/ 1,
 the 1-cluster approximation is not exact, indicating more complicated dynamics than for the ASEP, but the 2-cluster
approximation is. The difference between the ASEP and the STCA/1 in this analysis is that in the STCA/1 one finds
an effective repulsive force of range one between particles, caused by the parallel update. This helps to keep particles
more equidistant than in the ASEP case, thus leading to a higher flow. For further details, see [51,53).
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B. STCA/2

For vmar > 2; the n-cluster analysis does no longer lead to an exact solution, indicating that a different dynamical
regime has now completely taken over. (In practice, though, the n-cluster analysis is already fairly close to simulation
results for n ~ 5.) Visual inspection of space-time plots (Fig. 7) confirms that the dynamics now is much more similar
to the cruise control limit, i.e. to STCA-CC/2 (Fi 5) tha.n to the ASEP (Frg 1).

The important difference is that jams: now starr ane L 3 and mdependently of other Ja.ms because vehlcles flue-

(in the average) long-hved, q,,, < qw, nQ Qin = Hes: i aut a;nd pc pout, where traffic
jam clusters in the average barefy sur s e.g. ed by (n(t) L

in a situation like in Fig. 7, one can measure arb matmns of “"‘ercntrcal lammar traffic, critical laminar

traffic, jams, or traffic during acceleration or slow g down, See Flg 8 for a.:Zompanson between short-time (300 time

steps) averages and a schematic picture. Data po : ng the (a) bra.nch helong to stable and lamlnar traffic. Data
points along the (c) branch belong to still Ia.nunar, but only meta.—stable tra@c Data points along the (d) branch
belong to creeping high density traffic. o

All other data points are mixtures between regxmes,r here two or more regimes have been captured durmg the
300 iterations interval. Essentially, these data pomts should lie between point (b) and branch (d), yet, due to. high
fluctuations and due to the effects of acceleration and brakmg, whxch arenot captured in the steady state arguments,
we see huge fluctuations. For example, yhen a car is just leavi ;g,a. Jam, the: densxtx decreases, but the velocity
adaption is lagging somewhat behind, Therefore, the" car has?‘ﬁeo Ipw speed for the given densxty, leading to too low

a flow value.

This picture also makes precise the hyst.erems argumenﬁ QE,Tre!terer:ané cﬂ@vorkers [75], also conﬁrmed later [76,77].
These measurements confirm the idea that the traffic den51ty can go “above the critical point while still being laminar,
similar to the gas which can be super-cooled by increasing the density. Yet both for traffic and for super-cooled gases,
this state is only meta-stable and eventually leads to a phase;epa.ratlon into jams and laminar flow. Quantrtatwe

evidence of this will be given in a separate paper (m prepa.ra i

VIII. SUMMARY AND DISCUSSION

At a first glance, particle hopping models seem a somewhat crude approximation of real world traffic. Yet, they
produce surprisingly realistic dynamics, for example with respect to start-stop wave formation and with respect to
fundamental diagrams. The reason for this is that even when the microscopic dynamics is only crudely represented,
the macroscopic behavior can still be very realistic. This has already been known for some time and in some cases
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even been proven for example for the lattice gas methods for Navier-Stokes-equations [6]. More interesting in the
context of traffic flow theory are results for one-dimensional systems, and they turn out to be even more instructive

than expected.

This paper starts with the definition of a certain particle hopping model (called STCA for Stochastic Traffic Cellular
Automaton) where the crude driving rules have been taken directly from reality. After that, sub-cases or variations
of this model are discussed, which make it arguably less realistic, but have the advantage that these cases are well
understood. It turns out that two of these models are described by cextain cases of the Lighthill-Whitham theory,
which has been used in the traffic context for about 40 years now. And in addition, the way in which the STCA goes
beyond these models (by including momentum) is exactly the same way in which recent work goes beyond Lighthill-
Whitham theory. Moreover, one can show that certain important aspects of the traffic jam dynamics of the STCA
are phenomenologically the same as in the modern fluid-dynamical models. Yet, the STCA goes even beyond that at
least with respect to fluctuations, which the STCA includes but the ﬂuid»dynamica.l theories do not.

Thus, one learns that particle hopping models, crude as they_‘_‘aré on the microscopic level, are “good” enough to lead
to reasonable behavior on the fluid-dynamical level. Usually;ione expects particle hopping madels still to be realistic
also for somewhat smaller scales than the fluid-dynamical seale. R

In consequence, if one is for example interested in mostly mbé\ii:rqscopic quantities which c;n}d e obtained in principle
by a fluid-dynamical model, but needs microscopic ingredients such as individual tr’ip plaﬁs, '(some) different vehicles
classes, or — most importantly ~ some information about fluctuations, then particle hopping models seem to be the

best way to go, especially if one wants to save computational resources. |

And here it is where we come back to the starting point in the introduction: Since current progress in the traffic
forecasting process is heading towards the regional scale using microscopic models, this is exactly the problem which
was posed: How can we model the individual vehicle as part of the simulation process without using up too many of

the computational resources on the one hand and without becoming too unrealistic on the other hand?
vy

nnnnn

It is, though, clear that there are limits to how well particle ﬁbﬁping models will be able to represent microscopic
properties of traffic. Sometimes, it will be possible to expand:the particle hopping model, for example by choosing

esort to a higher fidelity model. Nevertheless, the

a higher resolution [78], but often enough, it will be necessary
body of theory which is already available or currently being de@él'oped for particle hopping models puts them into a
special position here: Understanding what a model does is the best way of knowing what it cannot do.

ACKNOWLEDGMENTS

I thank A. Bachem, P. Bak, C. Barrett, S. Esipov, J. Lee, M. Leibig, H.J. Herrmann, M. Paczuski, S. Rasmussen,
M. Rickert, J. Schifer, M. Schreckenberg, and D.E. Wolf for discussions, hints and encouragement.

A discussion group at TSA-DO/SA (LANL) about microscopic traffic modeling, consisting of Chris Barrett, Steven
Eubank, Steen Rasmussen, Jay Riordan, Murray Wolinsky, and me, helped clarify many issues.

Most of the ideas with respect to simulation are based on discussions with Chris Barrett and Steen Rasmussen,
reflecting work in progress which is only to a small part published in [79].

16



[1] TRANSIMS—The TRansportation ANalysis and SIMulation System project, TSA-DO/SA, Los Alamos National Lab-
oratory, U.S.A. -

[2] Cooperative research project “Verkehrsverbund NRW?”, c¢/o Center for Parallel Computing, University of Cologne, Ger-
many.

[3] B.J.N. Wylie, D. McArthur, and M.D. Brown, PARAMICS parallelisation schemes, Report EPCC-PARAMICS-CT.10,
Edingburgh Parallel Computing Centre, University of Edingburgh, Edingburgh EH9 3JZ, Scotland, 1992.

[4] TRAF User xeference gmde, Pubhca.txon No F HWA-RD-92 060 LU S. Depa.rtmen_t‘ of Tragsportatxon, Federa.l nghway
Administration, 1992) ’ o SN

[5] C. Barrett (personal commumcatmn)

(1986)
[7] D. Stauffer, Computer sunulatxougmf ce]lula.r automat

[14] F.L. Hall, BL. Aue_n_, an¢ f‘
197 (1986)

281 (1955)
M. J. Lighthill and G. B. Wlntham, On kmemanc waves: II A t.heory of trafﬁc ﬂow on long crowded roads, Proc R Soc.
Lond. A229, 317 (1955) .

79, p. 8 (nghway Research Board Natlon kS esea.rch Councxl Wasluhgton, D C 196’4)
[16] L. Pngogme and R. Hetma.n, Kmetlc theo:y of ve}ucu]a.t tra.ﬂ'ich (Elsemr, New YQrk 1971)

System Operatlons, a.tmna.l Aca,demy oi Scxences, Washmgton D C 1979)

H. J. Payne, A criticaf review of a

: voscoplc freewa.y model, in. Pro¢. Conf. on Reseatcb d}tectzons in computer control

of urban traffic systems, 19795 =by W, .S. Levine, E‘Llebeﬁan, and J. .L ‘Fearnsides (Amenca.n Society of Civil

Engineers, New York, 1979), p. 251.
[19] R. Kihne, Traffic patterns in unstable traffic flow on freeways, in Highway Capacity and Level of Service, edited by

U. Brannolte, (Balkema, Rotterdam, 1991)

R. Kithne, Freeway Speed Distribution and Acceleration Noise — Calculations from a stochastic continuum theory and

comparison with measurements, in Proc. Int. Symp. on Transpn. and Traffic Theory (MIT press, Cambridge, 1987)

R. Kiihne, Macroscopic freeway model for dense traffic stop-start waves and incident detection, 9th Int. Symp. Transpn.

"Traffic Theory (VNU Science Press, 1984)

R. D. Kuehne and R. Beckschulte (1993) Non-linearity stochastics of unstable traffic flow Proceedings of 12th Int. Sym-

17



posium on the Theory of Traffic Flow and Transportation 367-386, Elsevier, Amsterdam, The Netherlands.

[20] R. Kiihne, Verkehrsablauf auf FernstraBen, Physikalische Blatter 47(3), 201 (1991). -

[21] B. Sick, Dynamische Effekte bei nichtlinearen Wellengleichungen mit Anwendungen in der VerkehrsfluBtheorie, Master
Thesis, University of Ulm, 1989.

{22] M. Rédiger, Chaotische Lésungen nichtlinearer Wellengleichungen mit Anwendungen in der Verkehrsflufitheorie, Master
Thesis, University of Miinster, 1990.

[23] T. Musha and H. Higuchi, The 1 /f fluctuation of traffic current on an expressway, Jap. J. Appl Phys 15, 1271 (1976)
T. Musha and H. Higuchi, Jap. J. Appl. Phys. 17(5), 811 (1978).

[24] G.F. Newell, Oper. Res. 9, 209 (1961). :

[25] G.B. Whitham, Exact solutions for a discrete system arising in traffic flow, Proc. Royal Society London A428, 49 (1990).

[26] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama, Structure stability of congestlon in traffic dyna.xmcs
Japan Journal of Industrial and Applied Mathematics 11(2), 203 (1994)
M. Bando, K. Hasebe, A. N akayama, A. Shibata, and Y. Sugiyama, Dynamical model of traffic congestion and numerical
simulation, Phys. Rev. E 51(N2), 1035 (1995)

M. Bando, K. Hasebe, K. Nakamslu A Na.kayama, A. Sluba.ta, and Y. Sugiyama, Phenomenological study of dyna.rmca.l
model of traffic flow (preprint 1995). " '

[27] D. L. Gerlough, Simulation of ﬁeeway traﬂic by an electromc computer, in Proc. 35th Annual Meeting (Highway Research
Board, Washington, D.C., 1956).

[28] M. Cremer and J. Ludwig, A fast simulation model for traffic flow on the basis of Boolean operations, Mathematics and
Computers in Simulation 28, 297 (1986).

[29] B. Schiitt, Entw1cklung und Erprobing eines sehr schnellen, bitorientierten Verkehrssunulatlonssystcms fiir Straflennetze,
Schriftenreihe der AG Automatlswrungstechmk TU Hamburg-Harburg No. 6, 1991.
[30] S. Wolfram, Theory and Applications of Cellular Automata, (World Scientific, Singapore, 1986).

(31] O. Biham, A. Middleton, and D. Levine, Self-otga.mzatxon and a dynamical transition in traffic-flow models, Phys. Rev. A
46, R6124 (1992).

[32] K. Nagel and M. Schreckenberg, A cellular automaton model for freeway traffic, J. Phys. I France 2, 2221 (1992)

[33] K. H. Chung and P. M. Hui, Traffic flow problems in one-dimensional inhomogeneous media, J. Phys. Soc. Japan 63(N 12),
4338 (1994).

[34] T. Nagatani, Bunching of cars in asymmetnc exclusion models for freeway traffic, Phys. Rev. E 51(N2), 922 (1995)

T. Nagatani, Self-organized criticality in 1D traffic flow model with inflow or outflow, J. Phys. A: Math. Gen. 28, L119
(1995).

[35] S. Yukawa, M. Kikuchi, and S. Tadaki, Dynamical phase transition in one dimensional traffic flow model with blockage, 1.
Phys Soc. Japan 63(N10), 3609 (1994).

[36] K. Nagel and H.J. Herrmann, Deterministic models for traffic Jams, Physica A 199, 254 (1993).

[37] L.C.Q. Vilar and A.M.C. de Souza Cellular automata models for general traffic conditions on a line, Physica A 211(1),
84 (1994).

[38] T. Nagatani, Self-organization and phase transition in traffic-flow model of a two-lane roadway, J. Phys. A 26, L781-L787
(1993)

T. Nagatani, Traffic jam and shock formation in stochastic traffic-flow model of a two-lane roadway, 1. Phys. Soc. Japan
63(1), 51 (1994)

T. Nagatani, Dynamical j Jammmg transition induced by a car accident in traffic-flow model of a two-lane roadway, Physica
A 202, 449 (1994).

~ [39] M. Takayasu and H. Takayasu, Phase transition and 1/f type noise in one dimensional asymmetric particle dynamics,
Fractals 1(4), 860 (1993).

[40] Z. Csahék and T. Vicsek, Traffic models with dlsorder J. Phys. A: Math. Gen. 27, L591 (1994)

18




[41] A. Baldus, Simulation von Zellular-Automaten-Modellen fir Verkehrsfluf mit offenen Randbedingungen, Master Thesis,
University of Cologne, 1993.

[42] G. Csinyi and J. Kertész, Scaling behaviour in discrete traffic models, J. Phys. A Letter (in press).

[43] H. Emmerich and E. Rank, Investigating traffic jams by cellular automata, Physica A (submitted).

[44] K. Nagel, Life-times of simulated traffic jams, Int. J. Mod. Physics C 5(3), 567 (1994).

[45] K. Nagel and S. Rasmussen, Traffic at the edge of chaos, in Artificial Life IV: Proceedings of the Fourth International
Workshop on the Synthesis and Simulation of Living Systems, edited by R. A. Brooks and P. Maes (MIT Press, Cambridge,
MA, 1994), p. 222. .

[46] K. Nagel and A. Schleicher, Microscopic traffic modeling on parallel high performance computers, Parallel Computing 20,
125 (1994). .

{47] K. Nagel, Fast low fidelity microsimulation of vehicle traffic on supercomputers, Paper No. 94 09 01, Transportation

Research Board Meeting Jan. 1994, Washington, D.C.
48] K. Nagel, M. Schreckenberg, Traffic jam dynamics in stochastic cellular antomata, Paper No. 95ATS089, to be published
g

in: Proceedings of 28th ISATA (18th-22nd Sep 1995 in Stuttgart, Germany), Los Alamos Unclassified Report 95-2132.
[49] K. Nagel and M. Paczuski, Emergent Traffic Jams, Phys. Rev. E 51, 2909 (1995). \ )
[50] K. Nagel, High-speed microsimulations of traffic flow, Ph.D. thesis, University of Cologne, 1995. ‘
[51] A. Schadschneider and M. Schreckenberg, Cellular automaton models and traffic flow, J. Phys. A 26, L679 (1993).
[52] M. Schreckenberg and K. Nagel, Physical modelling of traffic with stochastic cellular automata, Paper No. 95ATS094, to
be published in: Proceedings of 28th ISATA (18th-22nd Sep 1995 in Stuttgart, Germany), Los Alamos Unclassified Report

95-2160.
[53] M. Schreckenberg, A. Schadschneider, K. Nagel, and' N. Ito, Discrete stochastic models for traffic flow, Phys. Rev. E 51,

2939 (1995).
[54] A. Latour, Simulation von Zellularautomaten-Modellen fir Mehrspurverkehr, Master Thesis, University of Cologne, 1993.
[55] M. Rickert, Simulationen zweispurigen Autobahnverkehrs mit Zellularautomaten, Master Thesis, University of Cologne,

1994.
[56] M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour, Two lane traffic simulations using cellular automata (in prepara-

tion).

[57] E. Ben-Naim, P. L. Krapivsky, and S. Redner, Kinetics of clustering in traffic flows, Phys. Rev. E 50(N2), 822 (1994).

[58] S. Migowsky, T. Wanschura, and P. Rujin, Competition and cooperation on a toy Autobahn model, Z. Physik B Cond.
Mat. 95(N3), 407 (1994).

[59] V. Blue, Freeway flow, nonlinear dynamics, and chaos (bluev@rpi.edu, unpublished).

[60] F.C. Martinez, J.A. Cuesta, J.M. Molera, and R. Brito, Random versus deterministic 2-dimensional traffic flow models,
Phys. Rev. E 5§1(N2), R835 (1995).

[61] T. Nagatani, Jamming transition in the traffic-flow model with two-level crossings, Phys. Rev. E 48(5), 3290 (1993).

[62] J. Freund and T. Péschel, A statistical approach to vehicular traffic, Physica A (in press).

[63] J. Krug and H. Spohn, Universality classes for deterministic surface growth, Phys. Rev. A 83(8), 4271 (1988).

(64] S.N. Majumdar and M. Barma, Tag diffusion in driven systems, growing interfaces, and anomalous fluctuations, Phys.
Rev. B 44(10), 5306 (1991).

[65] S.A. Janowsky and J.L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process,
Phys. Rev. A 45, 618 (1992). :

[66] P.-M. Binder, M. Paczuski, and M. Barma, Scaling of fluctuations in one—dunensmna.l interface a.nd hoppmg models, Phys.
Rev. E 49(2), 1174 (1994).

(67] B. Derrida, E. Domany, and D. Mukamel, An exact solution of a one dimensional asymmetric exclusion model with open
boundaries, J. Stat. Phys. 69, 667 (1992) '

B. Derrida, M.R. Evans, Exact correlation functions in an asymmetric exclusion model with open boundaries, J. Phys.

19



(Paris) 1 3, 311 (1991). _

(68] J. Krug, Steady state selection in driven difusive systems, in Spontaneous formation of space-time structures and criticality,
edited by T. Riste and D. Sherrington {Kluwer Academic Publishers, Netherlands, 18813, p. 37.

[69] I.M. Molera, F.C. Martinez, and J.A. Cuesta, Theoretical approach to two-dimensional traffic low models (preprint 1994).

[70] C.F. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic
theory, Transportation Research B 28B(4), 269 (1994).

[71] H.S. Mahmassani, T. Hu, and R. J aykrishnan, Dynamic traffic assignment and simulation for advanced network informatics
(DYNASMART), Proceedings of the 2nd International Capri Seminar on Urban Traffic Networks, Capri, Italy, July 1992.

[72] M. Hilliges, R. Reiner, and W. Weidlich, A simulation model of dynamic traffic flow in networks, in Proc. 1993 European
Simulation Multiconference, edited by A. Pave (1993), 505. ‘

{73] B. S. Kerner and P. Konhiuser, Cluster effect in initially homogenous traffic flow, Phys. Rev. E 48(4), R2335 (1993)
B. S. Kerner and P. Konh3iuser, Structure and parameters of clusters in traffic flow, Phys. Rev. E 50(1) 54 (1994).

[74] E.M. Lifschitz and L.P. Pitajewski, Physikalische Kinetik, L.D. Landau, E.M. Lifschitz, Lehrbuch der ‘theozetischen Physik,

~ Vol. 10 (Akademie-Verlag, Berlin, 1983).

[75] J. Treiterer, Traffic control characteristics of urban freeways, in Proc. Int. Road Federation World Meeting (1973), p. 181
J. Treiterer and J.A. Myers, The hysteresis phenomenon in traffic flow, in 6th Int. Symp. Transpa. Traffic Theory, edited
by D.J. Buckley (A.H. & A.W. Reed Pty Ltd., Artarmon, New South Wales, 1974).

[76] B.N. Persaud and F.L. Hall, Catastrophe theory and patterns in 30-second freeway traffic data—Implications for incident
detection, Transpn. Res. A 23A(2), 103 (1989).

[77] F. L. Hall, A. Pushkar, and Y. Shi, Some observations on speed-flow and flow-occupancy relationships under congested

/ conditions, Transportation Research Record 1398, 24 (1993).

[78] C. L. Barrett, S. Eubank, K. Nagel, M. W. Olesen, S. Rasmussen, J. Riordan, and M. Wolinsky, Issues in the representation

of traffic using multi-resolution cellular automata, in preparation.
[79] S. Rasmussen and C.L. Barrett, Towards a Theory of Simulation, Santa Fe Institute WP-95-04-040, 1995, in ECAL 95,

Lecture Notes in Computer Science (Springer, in press).

FIG. 1. Space-time plot for random sequential update, ¥maz = 1 (ASEP/1), and p = 0.3. Clearly, the kinematic waves are
moving iorwards. For p > 1/2, the kinematic waves would be moving backwards.

FIG. 2. Space-time plot for CA-184/5 and subcritical density.
FIG. 3. Space-time plot for CA-184/5 and supercritical density.

FIG. 4. Space-time plot for STCA-CC/1, at supercritical density, with one disturbance. The jam first grows according ‘to
n(t) ~ (Jin - Jout) - t. Eventually, via the pericdic boundary conditions, the outflow reaches the jam as inflow, and n(t) follows
a random walk (apart from finite size effects). : ‘ ‘

_ FIG. 5. Space-time plot for parallel update (cruise control limit), vmaz = 5, p = 0.09, i.e. slightly above critical. The flow
is started in a deterministic, supercritical configuration, but from a single disturbance separates into a jam and a region of
exactly critical density.—This is phenomenologically the same plot as Fig. 4 except that vmaesr = 5. v

FIG. 6. Space-time plot for parallel update, Umaz = 1.

20



FIG. 7. Space-time plot for parallel update, vmaz = 5, p = 0.09 (i.e. slightly above p(gmaz)), starting from ordered initial
conditions. The ordered state is meta-stable, i.e. “survives” for about 300 iterations until is spontaneously separates into
jammed regions and into regions with p = p(gmaxz)-

FIG. 8. Flow-density fundamental diagrams for the STCA. Top: Simulation output from the STCA. Short-time averages
are taken over 300 simulation steps and thus mimic the 5-minute averages often taken in reality. Bottom: Schematical view.
(a) is the subcritical branch, (b) is the critical point, (c) is the supercritical branch, and (d) is the branch where traffic only
creeps. 5-minute averages at densities between p. at (b) and the creep branch are mixtures between the dynamical regimes.
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