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Abstract

T2 is a bicriterion equilibrium traffic assignment model that accurately fore-
casts path choices and consequent total arc flows for a stochastically diverse
set of trips. Developed around a linear generalized cost model, T2 general-
izes classical traffic assignment by relaxing the value-of-time parameter from a
constant to a random variable with an arbitrary probability distribution. For
the case where arc time and/or cost are flow-dependent, this paper formulates
conditions and algorithms for stochastic bicriterion user-optimal equilibrium
arc flows, which reflect every trip’s exclusive use of a path that minimizes its
particular perception of generalized cost.
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1 Introduction

The old saw “time is money” connotes the very raison d’étre of transportation
systems. Every transportation plan evaluation includes a users’ value of time
(VOT), every modern mode-choice model hosts a VOT parameter, and every
congestion pricing [26] scheme wagers that some travelers take slower routes
to avoid tolls while others choose toll roads to save time.

Furthermore, it is a fact that each traveler has a different VOT, depending on
how much money or time he is. willing or able to spend on a particular trip.
Conventional transportation planning models, however, acknowledge this fact
poorly. Instead of using a realistic distribution of the VOT, these models use
an average VOT. As a consequence, they invariably produce large estimation
errors and inaccurate forecasts.

In a recent exception to this common practice, Professor Moshe Ben Akiva,
of M.I.T. estimated his logit mode choice model’s parameters by assuming a
distribution f() of the VOT o € A. That is, letting o be the VOT and m a
choice option, he fit the ezpected value:

eg(m,oz)

E[Prob[m]] =/ Wf(a)da

A
instead of the usual simpler formulation, which assumes all user have the same
VOT. His reward was an amazing improvement in goodness-of-fit [5].

This paper proposes a similar remedy to the same deficiency in classical traffic
assignment. It presents the basic theory and elementary algorithms of a traf-
fic assignment model that admits VOT distributions. Called T2, the model
is a bicriteria user-optimal equilibrium traffic assignment model, which gen-
eralizes classical traffic assignment, by relaxing the VOT parameter in the
generalized-cost function from a constant to a random variable with an arbi-
trary probability density function (PDF).

A traffic assignment model that is more robust than its conventional ances-
tor, T2’s potential-use:spans:awide spectrum:of current and difficult problems.
These include mode-route choice, parking policy planning, and congestion pric-
ing. T2 can model mode choice by assigning trips to paths in a multi-modal
(“hyper”) network, which combines walking, riding, transit and highway links.
It can selectively route auto trips to parking lots that are cheap but require
a long walk and to others that are closer to work but expensive. It is useful
model for determining where to place tolls and what prices to levy in order to
reduce congestion.
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1.1 Related Work

T2’s roots are in Quandt [25] and later Schneider [27]; however, this paper
develops the model very differently than theirs. Its mathematical program-
ming approach adds generality regarding the value-of-time probability density
function (PDF) and formulates and solves the bicriteria user-optimal traffic
equilibrium problem. It extends considerably the short note by Dial [9], which
addressed only path finding: Dafermos [7] addresses T2’s equilibrium problem:;
however, this paper makes no direct use of her results. Besides these earlier
papers, this paper builds on the variational inequality work of Magnanti and
Perakis [21] presented at.the:1994-ORSA/TIMS: conference in Boston, which
inspired algorithms T2-ETA and T1.5-ETA.

The insightful work of Leurent [17] merits special comment. Leurent’s formula-
tion is at once more and less general than T2’s. He deals with elastic demand,
while T2 assumes a fixed total trip matrix; however, Leurent only permits one
criterion, i.e., time, to be flow dependent, while T2 permits both. Moreover,
his Monte Carlo solution approach [28] brings sampling errors, greatly restricts
the VOT PDF and, compared to T2’s algorithm, converges glacially [30].

Finally, it has been claimed [3] that a heuristic that uses a “small set of

trip classes” to represent points on the PDF would accomplish T2’s purpose.

Frankly, such an approach would be an inefficient dead end. It is nothing more
than a gross distortion of the original problem to fit the confines of existing

software. To use it would risk fatal aliasing errors [17] that nullify the model’s

benefit. In addition, a naive application of this heuristic would save arc flow

by trip class, a waste of memory since these flows are not unique.

1.2 Overview of the T2 Model

Combined traffic assignment and mode choice serves as a concrete example
to introduce T2. Consider a trip from origin o to destination d. We wish to
estimate the mode choice for this trip. Assume for the moment it is possible
to enumerate all feasible paths for this trip and to know the time and cost of
each. Now plot each path .at a point.in: a graph according to its time and cost.

Figure 1 plots these time-cost points for fifteen feasible paths—ignore the
dashed line for now. The horizontal axis is path time; the vertical axis is path
cost. Each path label suggests its so-called “mode.” Helicopter is the fastest
and most expensive. Walking is the slowest and cheapest. Gondola is very
expensive and very slow.

This example begs three general questions:
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Figure 2: Efficient Frontier, Likely Path Probalilities




1. path-choice probability: what are the odds that a trip will choose each
of these paths?

2. path-finding algorithm: how can a computer find these paths without
enumerating all zillion feasible paths?

3. traffic equilibrium: how do we model the fact that path times depend
on path choices, and vice versa?

We introduce these questions now and answer them later in greater detail.

1.3 Path Choice Probability

Answering this first question requires knowing how the trip decides among its
feasible paths. Pretend for the moment that arc times and costs are not flow-
dependent. Assume that a trip chooses a path p that minimizes its perceived
generalized cost g,(«), where:

g(a) = ¢ +aty

¢, = out-of-pocket (“dollar”) cost of path p;

t, = time of path p;

a € [0,00) = value-of-time, a random variable.

The probability of a trip choosing a certain path depends on that path’s time
and cost compared to all others’—together with the trip’s particular VOT «a.

Referring again:to Figure 1, the dashed line represents the objective function,
which a trip with a VOT of $0.43/min aims to minimize. The slope of this
line is negative a. The generalized cost g,(c) of path p is the line’s intercept
with the cost axis. Therefore, for a given «, the best path is the first point
that this line touches as it translates from left to right. Figure 1 shows path 4,
“car/tollroad”, is a trip’s best choice if o = 0.43. If the dashed line had a
different slope, then path 4 might not be the best path.

Refer now to Figure 2. Whatever the slope a, the only paths with any chance
of selection are 1 through-6—those showndelimiting line segments. Among all
feasible paths; only these six have a-generalized cost (GC) that could be the
minimand of any linear function of . The line segments that connect such
path points, in decreasing sequence by path time, form the efficient frontier
(EF). Points where the EF changes direction are called eztreme points. As
we shall see momentarily, in the case of a continuous VOT PDF, only paths
forming extreme points represent rational path choices.

Thus, for fixed arc times and costs, Figure 2 reveals how to compute the
probability of using a path. For example, consider path 4, the toll road in




Figure 3(a), detailing the neighborhood of path 4 in Figure 2. Assume that
the line segment connecting path 5 and path 4 has a slope of -2.8, and the
line segment connecting path 4 and path 3 has slope -1.2. Then, path 4 will
minimize any GC whose VOT is between 1.2 and 2.8. Hence, the probability
of selecting path 4 is the probability that the random variable « is between
these values.

For example, if the probability density of « for trips going from o to d is f,4(), -
then as Figure 3 shows, the probability of using path 4 is 0.63. In general,
because the:generalized. cost is a linear function of «, the probability of using
a path off the EF is-zero; while:for-a path p on the EF:

Problp] = / " £ i) da, (1)

where a,, is the slope of the line segment connecting p to its right neighbor on
the EF, and b, is the slope of the segment connecting p to its left neighbor.
Note that a, = 0 for the cheapest path, and b, = oo for the fastest path.

Any path that might be used we call likely; other paths we call unlikely. Tech-
nically, likely paths have a nonzero probability of use; unlikely paths have
probability zero. A likely path is always on the EF but being on the EF does
not guarantee a path is likely. For a continuous PDF, a likely path is always
an extreme point on the EF, and a path not having distinct bounding o’s is an
unlikely path—whether on the EF or not: for Prob[p] to be greater than zero,
b, must be strictly greater than a,. The table inset in Figure 2 lists the prob-.
abilities for Figure 2’s likely paths; all other, unlikely paths have probability
Z€ero.

In the case of a discrete PDF, other paths on the EF are equally likely, and
entropy considerations [16] dictate that any path with a minimum GC merits
an equal share of trips; we ignore this concern here; the “all-shortest-paths”
algorithm in [8] handles this condition. Furthermore, as will be seen later, if
path time is a function of arc flow, then these shares are not in general equal.

1.4 Path-Finding-Algorithm -

By considering likely paths only, we reduce an otherwise daunting challenge
to a practical chore: of all the paths connecting o to d, we need to find only
those few that shape the EF. Presuming that a path’s cost and time are the
sums of the cost and time of the path’s arcs, then the GC of a path is just
the sum of the GC of its arcs. Consequently, finding these likely paths can be
easy.
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Each likely path p on the EF minimizes g,(«) for some a. Let the GC of an
arc e be the sum of its cost plus o times time: g, = ¢, + at.. If we label each
arc with its g, for a fixed o and find the minimum GC path, that min-GC
path will be on the EF. Thus, to find the EF is equivalent to finding min-GC
paths for an appropriate set of o’s.

Remarkably, the computational complexity of an algorithm’that finds all likely
paths, is the same as one that finds a single min-GC path. This latter al-
gorithm is virtually a standard min-path routine—its only complication is
tie-breaking-—to guarantee:ertremespoint-paths on the EF. (Details for all al-
gorithms appear in Appendix A.)

1.5 Traffic Equilibrium

A traffic assignment model accumulates trips for all o-d pairs on each arc
comprising their connecting path. When all trips use a min-GC path, we
call the result a user-optimal traffic assignment. When arc times are fixed, a
single min-path (a.k.a., “all-or-nothing”) assignment performs this calculation
by assigning each trip to its min-GC path. However, arc times may change,
depending on how many trips use the arc—which in turn depends on arc times.
The solution to this circular problem has the name traffic equilibrium.

All classical assignment models permit only a single, fixed VOT «o: they pre-
sume the perceived GC of a path is to all trips identical. In contrast, T2 as-
sumes different trips perceive the same path as having different GCs by virtue
of different: VOTs. It represents these differences in o by user-supplied prob-
ability distributions. T2’s generalization of Wardrop’s principle [31], states
that each trip uses only paths that minimize their particular perceived GC. A
simple example makes this clear.

Figures 5-7 show an example of T2 equilibrium in a nine-node grid network,
a single o-d pair, and a simplistic three-spike VOT PDF. The network is in
Figure 4. All arcs are two-way and of length (d) one mile. The eight peripheral
arcs are free roads; the four interior arcs are toll roads costing $5.00. Figure
5 shows the:time-flow-(BPR) curves of the:network’s two arc types, toll arcs
having higher practical capacity (k) and speed limit (s) than free arcs.

Figure 6 is the VOT PDF, consisting of three spikes, at $0.10, $1.00, and $2.00
per minute and corresponding volumes of 800, 2400, and 800 trips. All trips
go from node 1 to node 9.
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Figure 7(a) shows the associated. T2 equilibrium flow. It labels each arc.with
an integer representing the total number of trips on the arc and a decimal
number indicating the arc traversal time. For example, arc (1,2) has 2000
trips and requires 34.00 mins.

Figure 7(b) shows an ezample of the component of the total flow that represents
trips with VOT of $0.10/min. The dashed lines indicate unused arcs. The
labels on the arc show trips and generalized cost. Note that all used paths
from node 1 to node 9 have the same generalized cost, which is less than that
of all unused paths: trips-with-VOT :$0.10/min are in equilibrium. As seen in
Figures 7(c) and (d), the same is true for the trips with VOT $1.00 and $2.00.
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Figures 7(b)-(d) sum to those in 7(a). Note however that unlike the latter,
these former flows are not unique: any reallocation of individual flows among
their min-GC paths that summed to the same total in Figures 7(a) would also
be in equilibrium for every individual VOT classes. For example, if in Figure
7(b) 413 trips shift from path 1-2-3-6-9 to path 1-4-7-8-9, while at the same
time in Figure 7(c), 413 trips make the opposite shift; the result is another
equilibrium flow. The total arc flows would be the same, but individual arc
flows for VOTs $.01 and $1.00 would differ greatly.

1.6 Remarks

We conclude this introductory section with two remarks and a brief description
of the organization of the remainder of this paper.

1.6.1 The VOT PDF

Continuous vs Discrete. T2 theory and algorithms developed below permit
each directed o-d pair can have it own PDF f;(), which can be continuous,
discrete or any mixture of either. The integral sign used in this paper always
means Riemann-Stieltjes integration [2]. Except in the simplistic case of a
PDF consisting of only a few discrete points, T2’s algorithms’ complexity is
unaffected.

Estimation. The best way to estimate a particular instance of the VOT
PDF is a worthwhile research topic. As a first cut, we could estimate it by
pairing likely paths with their observed probability of use, and fit a cumulative
distribution function (CDF).

Fortunately, likely paths are a function of the network only: they are indepen-
dent of the distribution of a. The path finding algorithm discussed later finds
every likely path p on the EF and the range [a,, b,) of o associated with each.

An observed value of the probability of using any likely path p is an estimate
of the CDF’s differential between a, and b,. That is, if Fyq() is the (unknown)
cumulative distribution function: of «;, then. .

Prob[p] = Probla, < a < by = F,4(b,) — Foa(ay).

Given a set of these observations, we may estimate F,4() with special statistical
methods [29]. To forecast F,4() for other locations in space-time, its estimate
can be correlated to traveler characteristics such as income.
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1.6.2 Dynamic Traffic Assignment

The “bad news” is that the model presented here is static: T2 does not forecast
arc-flow time profiles. Static traffic assignment models cannot accurately fore-
cast congestion effects (i.e., travel time); therefore, they seriously compromise
a planner’s forecasts. This shortcoming is particularly enfeebling when plan-
ning tolls for congestion pricing, since—besides making inaccurate link time
estimates—the static model cannot forecast trips shifting their travel times to
avoid or reduce toll costs [6].

The “good news”is-that the temporal-dimension is literally orthogonal. All
the theory and algorithms presented in this paper support the development of
even more accurate dynamic models. For example, all of the algorithms can be
applied with minor modification to a discrete time-staged expanded network.
As classical static traffic assignment provided ground work for recent work in
dynamic traffic assignment [19] [13] [15], the results of this paper, by their
extension into the time domain, invite the development of a dynamic T2.
Although discussed no further in this paper, this extension is natural and its
development urgent.

1.6.3 Organization of this Paper

The next two sections of this paper provide theoretical justification and al-
gorithmic detail for the claims and procedures introduced above. Section 2
covers T2 min-path traffic assignment, which incorporates VOT as a random
variable. It develops a model and algorithm for loading trips with a stochastic
value of time on a network whose arc times and costs are fixed. Building on the
concepts introduced in prior sections, Section 3 develops mathematical theory
and algorithms for bicriteria equilibrium traffic assignment for trips with an
arbitrary VOT PDF, where the network’s arc costs and/or times vary with
flow. The final section briefly addresses a few proposed T2 R&D topics, then
ends the paper by acknowledging people who helped produce it.

12




2 T2 Min-Path Assignment

Given a set of paths connecting all origin-destination o-d node pairs and given
a trip matrix, which specifies the number of trips between each o-d pair, a
traffic assignment algorithm simply accumulates on each arc the trip volume
of every path using that arc. The output of a traffic assignment algorithm
is this vector of accumulated arc flows, which we call a “traffic assignment.”
Depending on the paths the trips use, this vector has many possible values. -
We call the set of all (feasible) traffic assignments for a fixed trip table the
ground set. Let :

R4+ = {positive real numbers}
N = {nodes in the network}
&€ = {arcs in the network}

v,¢ = (given) number of trips going from o to d
e = arc (e, Je), directed from node i, to node 7,
zo,e = flow on arc e that originated at node o.
z, = Z z,. = total flow on arc e
o0EN
T = (2o) € RAWIXIEl = o “raffic assignment.”

In classical min-path traffic assignment, Z is in the ground set iff it is a non-
negative solution to the following |A|*> equations in |€||A/| unknowns [1]:

Vog = Z Toe — Z Toe, for all o,d € N.

{e€&|je=d} {e€&lie=d}

2.1 T2 Ground Set X

T2 is analogous to the classical model; however, it introduces the random
variable «, which partitions arc and o-d flows by qualifying the variables and
augmenting the constraints given above as follows:?
A = {values of time (VOTs)} C R,
vod(@). = . number of trips going from o to d with VOT «
Toe(a) flow on e of trips that originated at o with VOT «

ze(a) = D z..(a) = total flow on arc e of trips with VOT a.
0EN

Thus for alle € £, 0,d € M, and o € A:
vod(a) = Z moe(a) - Z xoe(a)7 (2)
{e€&lje=d} {e€&lie=d}

1The infinitesimal notation voq(at)do, Toe(a)do, ze(a)de, etc. might seem a more rigorous notation,
but the visual burden exceeds its utility.
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where as discussed in Section 1,
Uod(a) = 'vod.fod(a)- (3)
Now letting

_f(a) = (moe(a)) € RL{lelgl
X = ((a)) € RIVXEXMAL (an “infinite vector”),

the ground set for T2 becomes

X = {X | equations (2) and (3) are satisfied}.

2.2 Total Generalized Trip Cost

In the case where arc costs and times are fized, a very useful statistic describing
a traffic assignment X € X is its total generalized trip cost, which is the sum
of products of each trip times the GC of the path it uses. For now, let these
costs and times be fixed at € = (c.) and ¢ = (¢.). For any traffic assignment
X € X, we define

G(xle,T) = /A Z;(ce-l—ate)we(a)da, (4)

which is the total generalized trip cost of the X.

2.3 T2 Min-Path Traffic Assignment

Clearly, if arc costs and times are fized then a T2 min-path traffic assignment
is a flow that reflects each trip taking its particular min-GC path, which would
minimize the total generalized trip cost (4):

Lemma 2.1 Flow ¥ € X is a T2 min-path traffic assignment iff

Y € arg ;3161;181-[4 ;(ce + at,)z.(a)da. (5)

Proof. (=): Because c. and t. are fixed, the right-hand side of (4) is separable
in &. A T2 min-path traffic assignment certainly results in minimizing each
integrand. Hence the integral is minimized. (<=): Proved by contradiction: if
the integral is minimized, so is each integrand; hence, each must be a min-path
assignment, which contradicts the hypothesis.
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2.4 T2 Min-Path Assignment Algorithm

Referring to Lemma 1 and recalling from Section 2.1 the definitions

¥ = #(@) = ((yee(a)))
Yo = / Z Yoe(@)da = / ye(a)da,
A 0EN A
we now present a simple algorithm for finding (y. ). That is, the algorithm pro-
duces only ¢otal arc flows on each arc—not flows for every VOT. The following
two subsections:are informal-descriptions; which summarize the formal defini-
tions in Figures Al and A2 of Appendix A. (Ignore for now all references to
variables v and u® and the function H(). They concern T2 equilibrium traffic
assignment, and Section 3 explains them.).

2.4.1 Algorithm T2-MPA (Appendix A, Figure A2)

Compared to the classical model, a min-path assignment algorithm for T2 is
more involved. Each o-d pair may have several distinct min-GC paths de-
pending on the value of . Each path must receive its fair share of trips, and
the sum of the flow on each path must be the given v,q. Algorithm T2-MPA
executed for each o-d pair yields a T2 min-path traffic assignment. It uses
algorithm LikelyPaths to find the paths to load.

To load the network with Voq trips going from o to d and having a VOT density
fod(), do the following:

1. [likely paths] Using Algorithm LikelyPaths, find all likely paths from o
to d.

2. [trip assignment] For each likely path p:

2.1 [a-ranges] associate with each likely path p its VOT range: a, <
a < by, for which p minimizes g,(«);

2.2 [path probability] compute the probability of each p:
bP
Prob[p] = Probla, <o < b,] = / Foa(e)das;

2.2 [path share] multiply v,y by Probl[p] to obtain p’s share of trips,

Up;

2.4 [arc load] add v, to the flow z. of each arc e on p.
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2.4.2 Algorithm LikelyPaths (Appendix A, Figure A3)

The following procedure finds all likely paths and determines the exclusive
range of a for which each path is optimal.

1. [cheapest path] Let a° = 0 and solve this min-GC path problem; this
finds the cheapest path—path 1 in Figure 2.

2. [fastest path] Let a®° = oo and solve this min-GC path problem; this
finds the fastest path—path 6 in Figure 2.

3. [between:paths] Let:a? betheslope-ofithe line connecting paths 1 and 6,
and solve this min-GC path problem; this finds path 4. Now consider the
two line segments connecting path 1 with 4, and path 4 with 6; their
slopes find paths 5 and 3. Continue recursively until unable to find any
more likely paths.

Caveat. Algorithm T2-MPA is elementary, intending only to demonstrate
T2’s solvability. For example, subroutine LikelyPaths() is a reasonably efficient
path algorithm: its complexity is comparable to a single min-path algorithm.
However, its enumeration of min paths renders Algorithm T2-MPA impractical
for solving real-world problems—popular claims of limitless free computer time
not withstanding. A practical T2-MPA algorithm would not enumerate paths.
Such an algorithm is the subject of a future paper.
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3 T2 Equilibrium Assignment

Up to now, our technical discussion has addressed only the simple case, where
the arc costs and times are fixed—i.e., do not depend on the arc flow. This
section moves on to flow-dependent arc costs and times. Accordingly, we
augment the notation ¢, and t, to allow for functions as well as scalars:

ce(z.) = cost to use arc e when arc’s total flow is z. .

te(z.) = time to traverse arc e when arc’s total flow is z..

3.1 T2 Adaptation of ‘Wardrop’s Principle (T2-WP)
Wardrop’s principle [31] extends readily to the stochastic-a case:

In a bicriterion equilibrium traffic assignment, where the VOT is a
random variable ¢, no trip (with its particular ) has another path
with a smaller GC, i.e., g,(a) = ¢, + at, than the one which it is
using.

That is, a T2 equilibrium traffic assignment (T2-ETA) is the vector of arc
flows T* € X reflecting a traffic assignment that puts every trip on a path hav-
ing minimum generalized cost with respect to that trip’s particular VOT «.
This generalization of classical traffic equilibrium admits a large, usually infi-
nite, number of categories of trips in simultaneous equilibrium.

3.2 T2 Equilibrium Traffic Assignment Theorem

All the above conditions reduce to a simple fact:

T2-WP implies that a T2 equilibrium traffic assignment has the same
total generalized cost as a T2 min-path traffic assignment with the
arc costs and times fixed at the level implied by the equilibrium flow.

We restate this fact as the
T2-ETA Theorem. The flow X* € X is a T2 equilibrium flow iff
G [®[e,T] = G [yle", T (6)

where the fixed arc cost and time vectors are fixed at ¢ = (ce(z¥)) and
T" = (te(z)), and as before:

G(x[e",T) = /A S(¢ + otz (a)da

— . — | 2k 'i'*.
Y € argminGlzie’, 7]
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Proof. We first state and prove a lemma regarding equilibrium for trips of a
single given VOT a° € A:

Lemma 3.1 Define a X(a) as a “projection” of X:
X(a) = {feasible assignments of trips with VOT «}
y(a) € arg min, G(X[e, 1).

Now consider a single VOT «° and assume that for all the remaining o €
A — {0}, the flows:X(a) €:X(e)’s are equilibrium flows for their respective
a’s . Then the partial traffic assignment X(a°) € X(c°) is in equilibrium iff

Gx(®)e,T] = Gy (e”)[e, T]. (7)

Proof. Obvious: By definition, this is just the classical single fixed-a« case:
at equilibrium, all trips with the same o-d use a paths with same, minimum
generalized cost.

We now prove Theorem T2-ETA. (=): Follows from Lemma 3.1. (<): Follows
from the fact that the left-hand side of (7) can never be smaller than its right-
hand side. Assume (6) is true and (7) is false for one or more o’s; that is,
one or more of the sums on the right are less than their partner on the left.
‘Then the integral of the left-hand side of (7) has to be greater than that on
the right-hand side: a contradiction.

Corollary 3.1 The T2-ETA Theorem and Lemma 2.1 imply that the flow
X* € X is a T2-ETA, i.e. all trips for all VOT's are simultaneously in equilib-
rium, iff

| Sleu(al) +atu(aai(@)da = [T [e(z) + ate(e)] ve(@)de

o e€€ o €eEE

3.3 T2 Equilibrium Traffic Assignment Algorithm

T2-ETA entails the simultaneous equilibration of an infinite number of trip
classes. Fortunately; only: the:total flow: z;:-on each arc is interesting, since as
seen in Section 1, the individual class arc flows z.(c) are not unique. This
permits the construction of an efficient solution algorithm.

Notation. For purposes of symmetry, we effectively rename X* as X° and ¥
as X. More precisely, the T2-ETA algorithm generates a sequence of X°’s ap-
proaching X* and in doing so, solves a series of T2 min-path traffic assignment
problems—each solution being called X.
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Lemma 3.2 fz° € X and

U= (te(22)), @ = (ce(2?))

X in G[¥le°, T° 8
anJrg;_gg} [¥le’, ] (8)

ul = /A azl(a)da, u, = /A az.(a)da (9)
Az, =2, — 27, Aue = ue — ul;
then »
Gx[e,T°] — GO, 1] = ) [c.(22) Aze + to(22)Au] .
ee€
Proof.

GIRIE, T = [ 3 leele?) + ate(a2)] zo(e)de

o e€E€

= Y ce(mZ)we(a)da—i-/ate(xg)xe(a)da}

e€f |

= Z -ce(mg)/xe(a)da-l—te(wg)/axe(a)da]

L (¢4 (2

> lee(zg)ze + te()ue] (10)

G[x[e, '] - GX°|2°, ] = Zg [ce(z2)(ze — 22) + te(2) (ue — )]
= z; [ce(22) Az, + to(2°) Au] . (11)

Corollary 3.2 The T2-ETA Theorem says when the right-hand side of (11)
vanishes, X° is a T2-ETA.

Corollary 3.3 T2-ETA conditions can be stated as a variational inequality: .
The flow flow X* € X is T2-ETA iff

> lee(@?)(we — 27) + te(@7) (e — uz)] 2 02 (12)

ecé

Proof. Define (for this proof only) X° as

X° € arg min G[X[¢*, ). (13)
xXeX

2Letting §() = (2(),#()) and ¥ = (%, %) gives (12) a more familiar VI look: g(%) - A% > 0.
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That is, for all X € X,

Zg [ce(2e)ze + te(ze)ue] — z; [ce(zg)ze + te(27)ue] 2> 0. (14)

By the Corollary 3.2, the flow X* is T2-ETA iff
> lee(?)a? + te(a)ug] = 3 lee(h)a} + to(at)ui] = 0. (15)

e€l e€€

Adding (14) and (15) yields
D lee(@2)ze + te(@d)ue] = 3 lee(a?)we + te(f)ui] > 0. (16)
ecf e€€

Or,

Z;; [ee(@?)(ze — 27) + te(?) (ue — u7)] 2 0. (17)

Thus, the T2-ETA problem reduces to a variational inequality problem in only
two state variables per arc, z. and u.. This permits its solution with existing
VIP algorithms. One such algorithm is Magnanti and Perakis’s Generalized
Frank-Wolfe algorithm (GFW), which they have shown to converge if the vari-
ation’s Jacobian is symmetric [20]. The following elementary algorithm adapts
GFW to T2. Although the Jacobian of (17) is not necessarily symmetric, all
my tests tend to converge—if slowly. (Later, in Section 3.5, we provide another
algorithm, for a slightly easier problem, which always converges.)

3.4 Algorithm T2-ETA (Appendix A, Figure A4)

This algorithm starts with X° being a T2 min-path assignment for ¢° = 2(0)
and #° = 7(0), then modifies it to drive (11) towards 0.

0. [initialization] Do a T2 min-path assignment to obtain:

X° € arg min G[X[e®, ]
Xe&

T — /Axe(a)da, ul /Aa:ve(a)da.
1. [ascent direction] Fix-all arc costs-and times:
ce e ce(2l), 10— te(=)
and perform a T2 min-path assignment to obtain:

X in G[y|e°, t°
X € arg min G{y[e*, ]
Az, <—/ ze(a)da — 22,  Au, — /Aaa:e(a)da — ul.
A
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2. [termination test] Let:
LX, (ze), (ue)] = D [ee(22 + AMAze)ze + te(22 + Az )u,] .
ee&

If
L[0,(Az.), (Aue)]

< €,
L[0, (z¢), (ue)]
quit: (z2) implies an (e-approximate) T2-ETA; else go to Step 3.

3. [step size:] Determine step.size A*: Let.

1 | if L[1,(Az,), (Au.)] <0
A" arg L[\ (Az,),(Au,)] =0 otherwise.
A€(0,1)

4. [improved solution] Update all z° and u?:
Zg — To + N Aze,  ul — ul + A*Au,

and return to Step 1.

3.4.1 The Calculation of u,

The calculation of the integral u, (9) warrants comment. Recall that for each o-
d pair, the likely paths induce a partitioning on the range of «, associating with
each likely path p the exclusive range of o for which that p is a min-GC path.
Because there are a finite number of likely paths, this partitioning permits the
exact calculation of the u,. integral as the sum of discrete quantities. Let:

foi(e) = VOT PDF for trips from o to d

vog = total trips from o to d

o, = path p’s origin node

d, = path p’s destination node

P. = set of likely paths that use arc e

a, = lower limit of VOT’s for which path p is optimal

b, - = upper limit.of VOT’s for which path p is optimal
Tep(e) = trips with VOT « assigned to path p € P,
{ Vopdp fopdy (@) if ap < < by
0 otherwise.

When Algorithm T2-MPA assigns a path’s flow to its arcs, it knows these
values. This permits an alternative expression for w.:

U, = /Aame(a) da
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= > /Aaa:ep(a) da

p€EPe

bP
= ¥ [T avafapay () da

PEP.

E Vopdy /bP afopdp(a) da. (18)

pEP. ap

This last summand is the product of a known origin-destination trip volume
times the first.moment of . from.a, to.b,. Computing (u.) is, therefore, merely
to accumulate:“link loads? of this:summand: This explains the reference to u,
in the procedure loadPath() and shows how to obviate storing any z.(c).

3.4.2 Example 1: Algorithm T2-ETA

Figure 8 poses an example simple enough for manual calculation. The network
has only two arcs: the upper arc is free and has a time equal to its flow; the
lower arc has a fixed cost of 1 unit and has a time equal to twice its flow. Ten
trips go from node 1 to node 2; their VOT PDF is triangular between zero
and one.

frz(@)
2.0 —
1.0 —
0.0 T T T I o
0.0 0.5 1.0
fiz(e) = 2c
Figure 8(a): Two-Arc Network Figure 8(b): VOT PDF

Figure 8: Two-Arc Equilibrium Example: Input

Figures 9(a-c);show three:iterations:of Algorithm T2-ETA applied to the input
data in Figures 8(a-b). Each iteration is described with four figures: The
leftmost figure shows the beginning state of the algorithm: z°, w° and #(z°) (c
is constant). The next figure is the efficient frontier implied by the arc times
and costs at the beginning state: the dot on the t-axis represents the upper
arc and the dot on the c-axis the lower arc. The slope of the line connecting
these two dots give a,, the threshold VOT at which trips shift from the upper
arc to the lower. The third figure shows the PDF (not the CDF, hence its
range is [0,2]) and the fraction of trips that the ascent direction assigns to
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the upper arc (the remainder goes to the lower arc.) The fourth figure is the
ascent direction, its arc flows z and moments u. Note that, in this simple
example with only two arcs and one triangular PDF, there are easy formulae
for the decision variables:

Ty = v12/ oflz(a) da =10 /ao 20 do = 1002,
0 0

Ty = 10 — Ty
[ Qo 2

Uy = ma/ afis(a) da = xa/ 202 da = Zz,03,
0 0 3

up = 6.7 —u,.

Furthermore, since € = (0,1) and t = (z,,2z;), the solution to

Z [ce(zl + A" Aze)Aze + te(z + A*Aze)Aue] =0

e€€
is simply
ToAug + Azy + 2Aupzy

A= —
Au, Az, + 2AusAzy

The subtitle shows the relative disequilibrium of the iteration’s beginning state
and the optimal fraction A* for combining the beginning state with the ascent
direction to obtain an improved beginning state for the next iteration.

For example, the first iteration starts with all 10 trips on the upper arc, im-
plying arc times of 10 and 0 (with fixed costs of 0 and 1) for the upper and
lower arc respectively, and producing points (10,0) and (0,1) on the EF. A line
connecting these points yields a threshold o, = 0.1. Thus, the ascent direction

has

z, = 10a2=0.1
Ty, = 10—:17,1:9.9

total trips on the upper and lower arc respectively. Similarly,

U, = -z—:caag =0.0
up, = 6.7—u, =6.7

o _10(=6.7) +9.9 + 2(6.7)(9.9)

6)(—99) 1267 (99) 2"
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By adding 0.287A7T to 7° and 0.287A% to u°, we obtain the beginning state of
Iteration 2, whose relative error of 0.03 is significantly lower than the 5.69 of
Iteration 1.

fia(2)
2 =10 t, =10 2
1 Y
up=0._~" . .0 o
29 =0 t, =0 0.0 0.5 1.0
L(0,2°,u°) = 66.7 EF 10 f7*° f(a)de = 0.10  L(0,z,u) = 10.0

Figure 9(a): Iteration 1: s = 5.69; A* = 0.287

c frz2(e)

1.0 2

0.5 o, = 0.67 1

0.0 t o0 3
0.6 5 10 0.0 0.5 1.0

L(0,z°,u®) = 47.7 EF 10 fy" f(a)da =453 L(0,z,u) = 46.3

Figure 9(b): Iteration 2: s = 0.03; A* = 0.066

c frz(a)
1.0 2
0.5 a, =10 1
0.0 t-0
00§ 10 0.0 0.5 1.0
L(0,2°,u°) = 47.6 EF 10 [y f(@)da =100 L(0,z,u) = 46.6

Figure 9(c): Iteration 3: s = 0.02; A* = 0.053

Figure 9: Ex. 1: Three Iterations of Algorithm T2-ETA
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Table 1 below shows the results of the first ten iterations of this example in
Figure 9. Equilibrium occurs at z, = 7.06—which can be verified by noting
that at the corresponding arc times, arc a is used by all trips with o < 0.84;
and when o = 0.84, 100? = 7.06 = z, = t,. Thus, the algorithm converges
quickly to within a few percent of the right answer, but then begins to ”tail.” .
This is a common problem with the Frank-Wolfe algorithm. I have had the
same experience:running:Algorithm T'2-ETA on larger networks.

xS oz | ud uw | L(0,z%u0) | & & t2 ty

n |z, o | u w | L(0,z,u) o s A*

11100 0.0|6.7 0.0 66.7 0 1 10.0 0.0
01 99|00 6.7 10.0 0.10 5.69 0.287

2172 28|48 1.9 47.7 0 1 7.2 5.7
45 5520 4.6 46.3 0.67 0.03 0.066

3 |70 3.0|46 21 47.6 0 1 70 6.0
100 0.0 6.7 0.0 46.6 1.00 0.02 0.033

4 171 2947 20 47.6 0 1 71 57
48 52|22 44 46.4 0.69 0.03 0.070

5|70 3.0|45 22 47.5 0 1 7.0 6.0
10.0 0.0 {6.7 0.0 46.6 1.00 0.02 0.050

6 | 71 29|46 20 47.6 0 1 7.1 5.7
51 49|24 4.2 46.5 0.71 0.02 0.077

7170 30145 22 47.5 0 1 7.0 6.0
10.0 0.0|6.7 0.0 46.5 1.00 0.02 0.048

8 |71 29146 2.1 47.5 0 1 7.1 5.8
54 46126 4.0 46.6 0.73 0.02 0.087

970 30i44 23 47.4 0 1 70 6.1
10.0 0.0 6.7 0.0 46.5 1.00 0.02 0.047

101 71 29145 22 474 0 1 7.1 5.8
5.6 4428 3.8 46.6 0.75 0.02 0.102

Table 1: Ten Iterations of T2-ETA (Two-Arc Example) w
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3.4.3 Example 2: Sampled Iterations of T2-ETA

To give a sense of Algorithm T2-ETA’s behavior, Figure 10 shows the results
of a sampling of four iterations of the algorithm applied to the example in
Figures 5 and 4 in Section 1. Notice that the error in Figure 10(d): Iteration
10 is about 4 percent of the precise equilibrium flows in Figure 7(a). Due
to the infamous “tailing problem” to duplicate them would require several
more iterations. Fortunately, approximate equilibria suffice for most practical
applications.

3200 o~ 3200 1699  ,~ 1699
© 167.29 2 16729 ® @ 2251 Y 2251 ®
10.61|800 5.45]0 167.29|3200  52.02]2301 5.45(0 22.5111699
. 800 A~ 800 L 800 A 425
© 557 T 57 ® ® 557 T 546 ©
10.00{0 5.4510 394.00 (4000  17.61]1501 5.46|375 40.54 12124
N 0 PN 0 p 1501 A 1876
® 1000 ¥ 000 O) @ 761 S 057 O
s =17.17 A* = 0.469 s=0.53 \* = 0.152

Figure 10(a): Iteration 1: Flow and Time = Figure 10(b): Iteration 2: Flow and Time -

1931 .~ 1352 2026 .~ 1243
@ 3084 Y1501 ® ‘ @ 3527 Y358 ®
37.51 (2069 5.49 579 15.01 1352 32.77 (1974 5.56 | 783 13.58 {1243

~ 750 Ve
- 555 ©

()

L 91T A 650 L 909
® 566 O 551 ® ® 5.65

12.65}1153 © = 5.607845 © -..34.09.{2002 . ° 11.93.]1065 5.68 942 33.6811993

~N 1153 o\ 1998 Ve N 1065 = 2007 Ve
@ 12.65 & 33.91 @ @ 11.93 & 34.33 \9)
s =0.08 \*=0.038 s =0.04 \*=0.020

Figure 10(c): Iteration 6: Flow and Time Figure 10(d): Iteration 10: Flow and Time

Figure 10: Ex. 2: Sampled Iterations of Algorithm T2-ETA
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3.5 T1.5 Equilibrium Traffic Assignment

Because the proof of convergence of Algorithm T2-ETA is outside the scope
of this paper, we offer for the skeptic an alternative algorithm, which solves
a simpler problem, but whose convergence is readily proved. This simpler
problem allows only arc ¢imes to vary with flow; arc costs are fized; furthermore
VOTs are strictly positive. Due to the major restriction on arc costs and
minor constraint on- «, the model is not quite bicriterion; so, we call it T1.5
equilibrium traffic assignment—or T1.5-ETA.

Lemma 3.3 If0 <a € AthenX*is aT1.5-ETA iff for all X € X,
b [ce +.(a2) ] (@) — 22(a)] dav. > 0. (19)
Y €€
Proof. Corollary 3.1 implies equilibrium occurs at % iff
[ 3 [2 4] (e - sif@lda=o. (20)
e

Where
VAS argmlnjz [ + t(2}) ] z.(a)do

ie,forallXe X

[ [% + 1o (2el0) (o)) dar 2 0 (21)

o €€E
Adding (20) and (21) proves the lemma.
T1.5-ETA Theorem (Leurent [17]). Flow X* is a T1.5-ETA if
X € arg min Q(X),

where
QX)) = ;6 [ce/A %da + _/Owe t(v)dv] (22)

Proof. Suppose inequality (19) were the directional derivative of Q() at X* in
the direction X — X*; then if () were convex in X, (19) would be a necessary
and sufficient for X* to be Q()’s global minimand. Inequality (19) is Q()’s
specified derivative if [4]

0Q c
m =3 + te(ze),
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which is clearly the case:

52%) B ax?(a) (Z [/A “oda /Ozet(v)dvD

e€€

_ ax?( 5 < /A cem;(a)da> + ax?(a) ( /O - t(v)dv>

c 0 Te Oz ¢ .
= =4 (/0 t(v)dv) Fola) ~ @ + te(z).

That Q() is:convex in:X is also clear.:Its: Hessian is zero everywhere except on
its main diagonal, which has t(z.) as element (e, e). Assuming #() is nonde-
creasing and twice differentiable for (z.(a)) > 0, the Hessian is symmetric and
positive semidefinite, making Q() convex in X'[4]. This completes the proof.

3.6 Algorithm T1.5-ETA (Appendix A, Figure A5)

Since Q)() is convex, we can find its minimand using the well-know Frank-Wolfe
(FW) algorithm [12] [18] [23]. However, let us use an indirect approach that
reuses Algorithm T2-ETA. As before, rename X* as X° and ¥ as X, but now
redefine u, as:

E—‘3—(i)da.
A «
In the manner of Lemma 3.2, we can easily prove that z° is a T1.5-ETA iff

> leeAue + to(22)Az,] = 0.
e€é

Ue =

Changing the definitions of the procedures L() and H() in Section 3.4 (and
Figure A4, Appendix A to those in Figure A5, Appendix A), and changing
(18) to read:
b f,
Ue = Z 'Uopdp/ fpdp(a) da
pEPe p @

we can run this slightly revised Algorithm T2-ETA to perform in effect the
appropriate FW.,

Algorithm T1.5-ETA is an instance of what Perakis and Magnanti [20] [21]
[22] call Generalized Frank-Wolfe (GFW), which solves variational inequalities
directly, obviating a formula for a function being minimized. If the Jacobian
of the GFW functional (i. e., Hessian of the FW objective) is symmetric, GFW
is equivalent to FW.

Note that T1.5-ETA’s ascent direction is the negative of FW’s descent direc-
tion, and that its line search minimizes Q(X° + AAX) by finding a zero for its.
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derivative for A € (0,1):
o 0

e T DX HAAR)
_ di* (gg [Ce /A x:(a)+2*Awe(a)da+ /0 zgwéme t(v)dv])
- zeg [ce /A A—“";@daw(xgu*me)me]
= Z [coAue +1(22 + X Az.)Az] -
_ Tov) 0.

T1.5-ETA Convergence Theorem. Algorithm T1.5-ETA, in Figure A5 of
Appendix A, converges to an equilibrium traffic assignment (in perhaps an
infinite number of iterations).

Proof. Follows directly from Lemma 3.3 and the T1.5-ETA Theorem. Since
Algorithm T2.5-ETA uses GFW in a case where GFW and FW are equivalent, -
it behaves like FW.
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4 Conclusion

4.1 Summary

This paper covered the basic theory and elementary algorithms for a bicrite-
rion user-optimal equilibrium traffic assignment model dubbed T2. It defined
T2’s behavioral assumptions, derived its mathematical formulation, and de-
signed its solution procedures. Specifically, it extended Wardrop’s Principle to
include a stochastic value-of-time, produced a simple equation that reflected
an equilibrium state, and presented four novel and space-efficient, but slow,
algorithms:

e a bicriterion parametric min-GC path algorithm, LikelyPaths,
e 2 bicriterion min-GC path assignment algorithm, T2-MPA,

® a bicriterion equilibrium assignment procedure, T2-ETA, that solved prob-
lems where both arc time and cost are flow-dependent, and

e a one-and-a-half-criterion equilibrium procedure, T1.5-ETA, that permits
only time to depend on flow.

T2-ETA is more robust than T1.5-ETA but lacks the latter’s proof of con-
vergence. LikelyPaths and T2-MPA provide support for either of these two
equilibrium assignment procedures, which produce estimates of the total arc
flow accruing when each trip uses its particular min-GC path

4.2 Additional Research and Development

Besides dynamic assignment and VOT PDF estimation, which were mentioned
in Section 1.6, several other problem areas come to mind for T2-related addi-
tional research and development.

Algorithm T2-ETA Convergence Proof. The convergence of Algorithm
T1.5-ETA’s was easy to prove; however, it is beyond this writer’s ability to
prove that T2-ETA converges. Accordingly, I trust that a later paper will
prove it or some.variant: does—as-my tests:would indicate.

Algorithm Speedup. Intended merely to show that T2 makes sense and
has an accessible solution, the algorithms presented here are “elementary;”
they are unsuitable for real-world applications. Accordingly their performance
received no discussion.

The complications attending more sophisticated algorithms appropriate for
“productions code” would obscure this paper’s aim. Speedups from sophis-
ticated algorithms are.the subject of a future paper. For example, to find a
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feasible descent direction, Algorithm T2-MPA enumerates likely paths, as op-
posed to using an approach base on min-path trees. T2 can, however, be can
be implemented with a parametric tree building algorithm [24]. This improve-
ment not withstanding, the descent direction will still consume more computer
cycles than the simpler classical model; therefore, T2 implementation must try
to obviate steepest descent’s tailing problem.

Upper Bounds on Arc Flows. If T2’s model and algorithm incorporated
prespecified upper bounds on arc flows in the manner proposed by Hearn [14],
it would greatly:improve its. unique suitability for analyzing congestion pricing
and, most especially; parking policy. -

Nonlinear Generalized Cost. Every interesting result in this paper depends
on the generalized cost of a path being a linear function of its cost and time.
When GC is nonlinear, the GC of a path is no longer the sum of its arcs’ GCs,
making its min-path algorithm an interesting and worthy challenge.

Elastic Demand. T2 ignores the fact that the total trips v,y between an
o-d pair usually depend on the generalized cost of the trip, which in T2 is a
random variable. Speaking theoretically, the inverse to this demand function
maps v,4(c) into g,q4(); and the expected value of this inverse provides the
expected generalized cost E[g,q|v,q] among all trips from o to d. Hence, at
equilibrium

Z E[Qﬁlx:]mz = ZE[geIx:]ye = ZE[god!v:d]v:da
e [ od

where y € arg min, G[z|c(z*),t(z*)]. These equations could be solved with
a two-stage algorithm using T2-ETA. Built upon the work of Evans [10] and
Leurent [17], the resulting algorithm would, for example, yield simultaneous
destination-mode-route choice equilibrium.

Tn: Beyond Two Criteria. While time and cost are paramount, they
certainly do not comprise all path-choice criteria. In various applications, other
determinants of discomfort and inconvenience are influential, e.g., schedule
reliability, number: of  transfers,:safety, etc.: Even the simplest mode-choice
model would probably require time, cost, and inconvenience. Such a “T3”
model uses two parameters: a value-of-time o and a value-of-inconvenience S.
A path’s GC becomes g, = ¢, + at, + d,, where d, is path p’s inconvenience
measure. For each o-d pair, T3 uses a joint PDF f,4(c,3). The efficient
frontier is a triangulated convex surface, with each vertex representing a path..
The path-choice probability is the double integral of f,4(c, B) over the values
of o and f that define the vertex’s subgradient. T2’s extension to handle more
than two criteria is a fruitful subject for research.
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Applications. The use of T2 and/or Tn to solve actual transportation
planning problems presents many interesting potentialities for applications—
oriented research and development. Four examples are the following:

¢ Road pricing is the most obvious application of T2. To plan toll roads,
T2 could be used with an auto-driver trip table to determine traffic volume
on arcs at various toll levels. It is the tool necessary to apply congestion
pricing: using cost as a flow-dependent variable, an arc’s “toll” can be
related to the marginal cost of an additional trip; thus, users would pay
an amount that reflected not only the direct cost to themselves but also
the delay they cause other:users.: = - -

e Parking receives simplistic treatment in the traditional approach to
transportation planning, which ignores the fact that auto trips begin and
end with a walk to and from a parking place. In most cities, there are
several different opportunities to park, each with a different cost and walk
time. The choice among these opportunities depends on the trip maker’s
value-of-time with respect to that trip. Besides walk links, T2 would al-
low links representing parking spaces with various costs and capacities.
(An elastic parking costs, which increased with demand, could forecast
a particular parking cost.) It would, then reasonably route a trip that
parks and then walks to its destination.

e Mode choice, as already mentioned, could become more streamlined by
using a T3 model with time, cost and inconvenience. The VOT PDF
could be correlated with origin-destination parameters to provide neces-
sary socio-demographic sensitivity. The model would be run as a com-
bined mode-choice traffic assignment, which would expedite processing
and assure continuity of travel time estimates. It would be interesting to
compare the results of this simple model with a conventional logit model.

e Land use forecasts typically use a gravity-model approach. It is well
known that a gravity model can be integrated into an equilibrium traffic
assignment model[10]. These forecasts would likely improve if they used
T2’s path finding for determining the ezpected cost, time, and generalized
cost separating zones:Furthermore; the:cost of “settling” in a zone could
be made elastic, depending on zone’s attraction potential, and T2-ETA
would solve this equilibrium problem.
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Appendix A: Formal T2 Algorithms

type Net data describing network
Node Set N nodes in network
Arc Set & arcs (¢,7) in network

type Path data for min path p* (for VOT «)

vVoT a value-of-time used to find p*
Cost c cost of min path: cp«
Time t time of min path: ¢,
GC g GC of min path: g,» = ¢+ + oty
type T'rips Set: data describing trip matrix
Node 0 origin
Node d destination
Real v number of trips from o to d
type FlowPair Vector a traffic assignment (or differential)
Real Array[|£]] arc total-flow vector (e.g, T, Z°, AZ)
Real Array{|£]|] arc first-moment vector (e.g, @, u°, Au)

Figure Al: Data Types for All Algorithms

FlowPair T2M PA(Net n,Trips V,Real Function Array H)
@) « (7))
(7.7)  (0,0)
for (o,d,v) €V
(k,a) «— (likelyPaths(n,o,d), 0) (see Figure A3)
form e {1,...,k}
b (¢p, — Com1 )/ (tpm_y — tom)
loadPath(n,o,d,a,, _,,a,b,v)
a b
loadPath(n,o,d, a,,, a,00,v)
return (7, u)

loadPath(Net-ny;Node 0,d;VOT «;a,b,Real v)

minPath(n,o,d, a) (see Figure A3)
e— qd
while e # 0
(@es Ue, €) — (ze + vEF4(a,b), ue + vH,q(a,b), ¢.)
return.

Figure A2: Algorithm T2-MPA
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Integer likelyPaths(Net n, Node o,d, Path Array p)

k— 1; (count of likely paths)
P« minPath(n,o,d, o) (fastest path)

p1 < munPath(n,o,d,0) (cheapest path)
midPaths(n,o,d,p,p, k) (likely paths between)
return(k + 1) (count of p found)

midPaths(Net n, Node o,d, Path p, Path Array p, Integer ref k)

a — (¢ —¢p,)/(tp, —t5) (slope of connecting line)

P — minPath(n,o,d, ) (find path in between)

if g5 < ¢ + at; (check if done)
midPaths(n,o,d,p,p, k) (paths between)
midPaths(n,o0,d,p,p, k) (paths between)

elsek —k+1 (bump path count)

PE— P (stash p in its spot)

Path minPath(Net (N, E), Node o,d, VOT a)

forie N g; — o0 (i is cost to node 7)

(€ort01 90,90, S) «— (0,0,0,0, {o}) (t; is cost to node 7)

for:e S (g; is GC to node 7)
fore=(:,7) €& (¢; is ¢’s predecessor arc)

(.6,67 i\) - (gz + Ce + ate(xg)a & + Ce, ti + te)
if§<ng(§:gj/\é<cj)V(ﬁzngé:chf<cj)
: (gjrcja'tijaS)'(—f (97 é) t: €, Sn {]})
return («, ¢, 4, ga)-

Figure A3: Algorithm LikelyPaths
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FlowPair T2ETA(Net n,Trips V, Real )

(z°,w°) « (0,0) (start with zero flow)
(z°,u°) « T2MPA(n,V, H) (T2 min-path assignment, Fig. A2)
do .
(z,u) — T2MPA(n,V,H) (T2 min-path assignment, Fig. A2)
(AT, A7) — (Z—7°, & —7u°) (ascent direction)
S« % (relative error)
ife<s (if not done, get step size)
if L(1,A%Z,Au) <0
A1
else A — arg L(\,AZ,Au) =0
Ae(01)
(z°,7°) « (Z° + AAT, w° + AAu) (and update flows)
until s < e (quit when rel. error small)
return (z°,7°). (send back updated flow)

Real L(Real A\, z,u)
return (Z [ce(22 + AAze)ze + te(22 + )\A:ce)ue]) .
eef

Real H,4(VOT a,b)
b
return ( [a fod(a)da) }

Real F,y(VOT a,b) (Prob[a € [a,b)] )
return (fb fod(a)da> .

Figure A4: Algorithm T2-ETA
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FlowPair T2ETA(Net n,Trips V, Real ¢)

(z°,w°) « (0,0) (start with zero flow)
(z°,u°) « T2MPA(n,V,H) (T2 min-path assignment, Fig. A2)
do
(z,w) — T2MPA(n,V,H) (T2 min-path assignment, Fig. A2)
(AZ,Au) « (T—7°, ©—7u°) (ascent direction)
5 % | (relative error)
ife<s (if not done, get step size)
if L(1,A%,Au) <0
Ae—1
else A — arg L(AAZ,Au) =0 |
A€(0,1)
(z°,@°) « (Z° + AAT, u° + AAu) (and update flows)
until s < e (quit when rel. error small)
return (Z°,u°). (send back updated flow) !
Real L(Real ),7,7) (different from Algo T2-ETA)
return (%:5 [Cette + te(z + /\Axe):ve]) .
Real H,;(VOT a,b) (differnt from Algo T2-ETA)
b

return (f a“lfod(a)da) .

Real F,4(VOT a,b) (Probla € [q,b)] )
return (fb fod(a)da>.

Figure A5: Algorithm T1.5-ETA
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