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Issues in the Representation of Traffic Using
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Christopher L. Barrett, Steven Eubank, Kai Nagel,
Steen Rasmussen, Jason Riordan, and Murray Wolinsky

TSA Division, Los Alamos National Laboratory
Los Alamos, New Mexico 87545

1.0 Introduction

A cellular automata (CA) approach to traffic simulation is potentially useful in order to
achieve a very high computational rate in mircoscopic simulation (e.g. on the level of the
individual vehicles), and to facilitate distributed computing. '

There are many obvious reasons for this, for example
* the rule set that describes the update of each vehicle is very small;
* different pieces of roadway are represented in identical or nearly-identical ways;

* the update schedule, being completely parallel, is extremely simple.

And there is one additional, more subtle reason for the high speed of the CA: much of the
behavioral model of the vehicles is computed implicitly. Thatis, behavioral properties
arc arranges to occur during an update, but are not computed explicitly and do not existin
the code. Driver reaction times, for example, are the times that vehicles take from the
occurrence of an event until the event is responded to. These times are represented in the
CA by arranging an interaction among the spatial scaling of the CA, the acceleration logic,
and the update scheduling method; they do not appear in any explicit way in the driving
logic rules. We will demonstrate the implicit incorporation of these terms later in this
paper.

The implication of this is that if we want to translate the basic CA approach to a more gen-
eral setting, we first have to know what it involves implicitly, in addition to the explicit
rule sets, scheduling algorithms, etc... We may, for instance, want to create a new CA that
has a different lattice structure but produces the same dynamics as the original CA. Butin
writing down the update rules for the new CA, we cannot just translate the old rules to
take account of the new lattice structure. Instead, we have to consider all that is imple-
mented explicitly and implicitly in the old CA, and implement it either explicitly or
implicitly in the new CA. . :
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In other words, the implicit characteristics of a CA approach make it necessary to “retune”
the simulation if anything is changed. The beneficial aspect of using implicit computa-
tion, however, is that it minimizes the computation and thereby increases speed.

If we proceed to use a multi-resolution cellular automata approach to representing traffic
in simulation, we must consider this general issue of implicit characteristics, which encap-
sulates a number of particular issues like driver reaction time delays. This paper is
intended to motivate these issues, and introduce some approaches to creating multi-resolu-
tion cellular automata with this issue in mind.

One natural outgrowth of this issue is what to do about connecting segments of different
resolutions. We investigate this issue here also, and demonstrate some of the difficulties
involved. It will turn out that the most important aspect of this issue is to connect seg- -
ments of different resolutions at intersections only, since these connections introduce areas
of low throughput, which are present in intersections anyway. '

The rest of this paper is organized as follows:

In Section 2 we examine the Nagel-Schreckenberg CA traffic rules and point out some of

the emergent properties that these rules are capabie of producing. Then we show how one
can calibrate the CA representation with reality, using experimental data from traffic sys=
‘tems, and discuss the effectiveness of these calibration arguments in urban traffic regimes.
We are then in a position to answer the question: What exactly is the purpose of the CA
with regard to the types of real-world phenomena that it is capable of reproducing? We
close this section by elucidating some featiires of the CA computation that are done
implicitly. '

In Section 3, we address how the resolution of the CA can be changed, pointing out two
distinct approaches that one could take towards this goal. The first approach, which we
call Refinement, is capable of producing dynamics that reduces to the original dynamics
under certain parameter choices. The second approach, which we call Subdivision,
involves many other intricate issues and raises unique questions of its own. We also dis-
cuss some of the issues raised by having simulations of different resolutions in the same
road network.

In Section 4, we invoke universality and minimalism arguments to demonstrate that the
CA should be thought of as a model of a driving model. We present here a stochastic dif-
ferential equation approach that serves, in part, to illustrate this point, and also to show the
difficulties involved in moving to smaller scales.

Finally, in Section 5, we summarize our conclusions in a practical manner.
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2.0 Overview of the fixed-resolution CA representation

2.1 The CA is defined by simple, local rules

The basic computational model (Nagel and Schreckenberg, 1992) is defined on a one-
~ dimensional array of sites. This could, for example, be an edge in a road network. Each
site is either occupied by a single vehicle, or empty.

Each vehicle has an integer velocity ¥ (in units of lattice spacings per time step). This
velocity can take values between 0 and Voaz» iNClUSIVE, '

-The position on the grid (in units of lattice spacings) of the front bumper of a vehicle is
denoted by x, and the number of empty sites in front of a vehicle (also in units of lattice
spacings) by gap. Atany time ¢ we have

8ap(t) = (%,,54(8) = 1) ~x(1),

where x,, ., denotes the front-bumper position of the vehicle immediately ahead, and the
subtracted 1 accounts for the space this vehicle occupies.

For any configuration of the system, one update consists of the following four consecutive
steps, which are performed in parallel for all vehicles: ‘

* Acceleration.: If the velocity v is small compared to gap, the speed is increased by one,
up to a maximum speed v : '

max *

* Interaction: If the next vehicle is too close (if the velocity is large compared to the
gap), the speed is reduced to gap.

* Randomization: With probability p, the velocity of each vehicle is decreased by one,
down to a minimum speed of zero.! '

» Motion: Each vehicle is advanced v sites.

Technically, this amounts to the following:

FOR all vehicles DO IN PARALLEL
gap (1) « (xahead (0 -1) -x()

IF(v() <gap(r) -1 ) THEN s Acceleration
v(+1) e~minfv(t) +1, L
ELSEIF (v(t) 2gap (1) +1 ) THEN ; Interaction

1. This randomness actually condenses four different behavioral patterns into one computational rule: fluc-
tuations at maximum speed ( Pfre. )- retarded acceleration (p,, ., ). over-reactions at braking (p brake ) 20d

fluctuations in car following ( Pjolton )- These can be distinguished in the CA for greater realism, without
a serious slowdown in computational speed.
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vit+1) < gap (1)

ENDIF »
WITH PROBABILITY » DO ; Randomization
v(t+1) emax[0,v{t+1) -1]
x(+1) —x() +v(t+1) ; Motion
ENDFOR

Weuse « todenote assignment. Two different time levels ¢ and ¢+1 are used to indi-
cate that only old information from time ¢ is used for each individual car’s update.

Note that, because of integer arithmetic, the expression v (1) sgap (1) -1 from the first IF
condition is equivalent to v(s) <gap (1) . Similarly, the expression v(r) 2gap (1) +1 from the
ELSE IF condition is equivalent to v () > gap (1) .

Since this model operates on discrete space and discrete time, has only a small number of

discrete states per site, and has a completely local and parallel update, this is. fbrmally a
cellular automaton.

2.2 Nontrivial and realistic behavior emerges from these rules

‘Already this simple model shows nontrivial and realistic emergent behavior, including a
realistic fundamental diagram, and jam behavior that has the same qualitative features as
that found in real traffic systems. More specifically:

* Space-time plots show the characteristi¢ start-stop waves seen in real traffic (N agel and
Schreckenberg, 1992; Nagel, 1994b).

* Short-time averages, taken from simulation in the same way that they are taken in real-
- ity, result in a data cloud pattern typical for real-world fundamental diagrams (Nagel
and Schreckenberg, 1992; Nagel, 1994b).

* In agreement with others (Bando et al, 1994; Bando et al, 1995; Kerner and Konh#user,
1993; Kerner and Konhuser, 1994; Montroll, 1962), traffic flow above a certain den-
sity is no longer completely laminar, but has jammed portions interdispersed in laminar
parts (Nagel, 1994a; Nagel, 1994b; Nagel and Paczuski, 1995; Nagel, 1995). It is these

. jammed portions which are recognized as start-stop waves by drivers. '

* Itis possible to quantitatively characterize the size distribution of traffic jams as a func-
 tion of average overall density. It turns out that, exactly at average maximum flow, the

expectation value for the life-time of a traffic jam diverges, i.e. becomes infinite (Nagel
and Paczuski, 1995). '

* In addition, there are large ﬂuctuaﬁons of average travel time at maximum flow (Nagel
and Rasmussen, 1994), which have been confirmed using a much more realistic simula-
tion setup (Wolinsky et al., 1995)..
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- 2.3 Calibrating the CA to reality

With the rules above, the variables of the CA (i.e. positions, velocities) are all in units of
lattice spacings. It is relatively easy to determine what this unit must correspond to in
reality. ’

2.3.1 Jam density

The CA represents a lane as an array of boxes, each of equal length L, where L is the aver-
age space a vehicle occupies in a jam. If we assume that a vehicle’s front bumper is at one
edge of the box, then the vehicle extends a length 7 into the box, and is followed by some
empty space to the next vehicle, 89Pjom>and L = I+gap,, .

As a consequence, if one knows the average vehicle density at a complete standstill,
then the CA box size L is given by

1
Piam

1
pjam

L=

Note that this quantity is thus given by the real world, and cannot be adjusted at conve- -
nience, - :

2.3.2 Maximum speed

There is one constant in the above CA rules that must be determined-- the maximum vehi-
cle speed v, . It should be noted that this value does not represent the maximal mechan- .

ical speed of each car, but rather a maximum speed as attainable in reality (i.e. as restricted
by speed limits or by preferences of the driver). We can determine this constant by cali-

- brating to an important feature of the flow-density fundamental diagram; namely, the den-

sity of maximum flow.

The parameter Vmax Foughly determines the density at which maximum flow occurs, and so
we can use this density to set Vmas - AS aTule of thumb, increasing the maximum speed
value shifts the density of maximum flow to lower densities.

1. This is also denoted Pj» k. or k;,  in the literature.

jam
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The following table gives some approximate values for the above rules with p=05(pis
the random deceleration probability).

TABLE 1. Approximate depsities at which maximum flow occurs under varying values of v
with p = 05.

max?

maximum flow occurs

max at density
1 p=(05p,,)
3 p~(02-p,)
5 p~ (0.08°p,,,)
o p=0 (1

Vmaz = 3 1S approximately realistic for traffic which consists entirely of fast cars (ie. free-
way traffic without trucks). '

But this is not the entire picture-- in a mixture of cars of varying v, at maximum flow,

the slow cars dominate the dynamics (in both reality and simulation). This means that the
Ymaz Of the slow cars determines the density of maximum flow. If only 10% of the care are

“slow”, with v, = 3, the maximum flow occurs at a much higher density than in uni-
formly “fast” traffic (Rickert, 1994). This is a realistic result, /

2.3.3 Time step

Nowhere in this kind of simulation will one find a v- &r calculation-- there are no explicit
units other than number of cells. That is, time is entirely implicit. The implicit time scale

is derived from some knowledge of the traffic being simulated (e.g. length of cars, or
achievable maximum speed), as follows.

If L is the real length that corresponds to the CA box size, since Vaae ~P 1S the average

number of boxes a car goes at maximum velocity per update!, then - (Vpnax-P) 1s thereal .

distance a vehicle goes per update, and therefore the time step

1. Imagine a vehicle driving at Vmax With 0o need to slow down due to the Interaction rule. This is the case

if the vehicle in front is far enough ahead. Since the vehicle is already at maximum velocity, it is not sub-
ject to the Acceleration rule; itis only subject to the Randomization step. As aresult, the velocity after
the update is v__ with probability 1 - p, and V..ax— | With probability p .

If the vehicle's velocity is Vmax — 1 after the update, however, it immediately accelerates back to Ve 0

ax

the Acceleration step of the next update. It is again subject to the Randomization step, and so the velocity
after the second update (and all updates thereafter) is again v, with probability 1-p, and Viar— L

with probabilivty p.

a.
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L- (vrriax—p)
Te R,

Vm ax

where v_ ™ s the reality maximum velocity, e.g. given in km/h.

For a homogenous system of fast cars, an appropriate value to use for v is 120 km/
h, or 75 mph. Using the values L = 7.5m,v___ =5 and p = 05, as above, we get a time step
of 1.0125 seconds, which we approximate as 1 second for the rest of this paper.

This inherent 1 second scale allows implicit representation of driver/vehicle reaction time
delays and minimum following times. These will be discussed below. ’

It is instructive to look at the units of the time step +. L is in units of meters. V... and p
are CA variables, and are in units of lattice spacings per update, or “cells” per update.

Voes is in units of meters per second. The result is that + has units of cell seconds per
~ update.

2.3.4 Calibration and urban networks

In any network of roads and intersections, the network flow is bottlenecked by areas of
low maximum flow interspersed in areas of higher maximum flow.

For intersections, however, the flow in any éiven direction is pfacticallj; always lower than
that of the adjacent segments. This is because of red light phases, for example, or traffic
building up behind a vehicle slowing down to turn (Axhausen, personal communication).

In an urban network, then, the network flow will be determined by the intersections. To
obtain the correct maximum flow over the network, a correct calibration of the intersec-

tion fundamental diagrams is much more important than a correct calibration for the seg-
ments.

One way to partially overcome this problem is to make intersections 2-level. That is, to
remove all impediments in the “straight” directions. A bottleneck remains, however, for
the “turning” directions (Nagatani, 1993). Another option is to add enough lanes for each
direction through the intersection. '

2.4 Minimalism and calibration

The CA approach described above is intended to be a minimal model with respect to an
accurate fundamental diagram and realistic jam dynamics. That is, it is designed to be the
simplest possible model that exhibits these emergent properties. We can imagine that
other models, like an event-driven simulation with complex objects, also exhibit these
properties, but with a much greater strain on computational resources.

Issues in the Representation of Traffic Usin g Multi-Resolution Cellular Automata 7




Considering the calibration arguments above, however, one finds that the CA must be
restricted exactly to the computed calibrations (e.g. L, ©) if it is to remain a model of real-
world traffic. Hence, it is not possible to use the CA “as is” to resolve a simulation at a
finer length-scale detail than the grid spacing L, or at a finer time-scale detail than the time
step t.

In fact, above we have calibrated the CA using a macroscopic property: namely, the fun-
damental diagram. We did not calibrate to any sort of micro-statistical property (i.e. any
property at the length scale of the lattice spacing, or at the time scale of a time step). For
this reason, we could expect the micro-statistics of the simulated system to be significantly
different compared to the micro-statistics of a real traffic system, while the macroscopic
properties exhibit a close correspondence.

Another factor that has a similar effect is the sheer discontinuity of the CA rules. All
actions occur at order £ in length and order = in time. Vehicles in the real world, however,
certainly trace out continuous paths in space-time. To see somewhat continuous paths in
simulation, then, we have to look at scales of higher orders of magnitude.

As a consequence of all this, it is clear that the CA approach is incapable of answering
questions about small-scale dynamics. The trade-off, however, is a very fast, optimized.
simulation, perfectly capable of reproducing the large-scale dynamics of interest.

One may, however, need to discern the small-scale dynamics in simulation, in which case
there are two options. The first is to create a full-blown event-driven simulation with
high-fidelity objects, regardless of the computer resources required. The second approach
is to create a minimal model that resolves detail at all length-scales equal to and greater
than the desired level of resolution-- to create, for instance, some generalization of the CA

that can be calibrated to a smaller length and/or time scale so that finer detail can be
resolved.

The issues raised by the latter approach are the topic of the rest of this paper. -

2.5 Some things aren’t so obvious in the CA

If an attempt is made to build a higher resolution model, then it immediately becomes
apparent that the CA contains some implicit features which are not obvious. These
include :

* driver reaction times, which are the times a driver/vehicle combination requires to
respond to a situation;

-+ following time's, or the preferred times for a vehicle to follow behind another vehicle,
which can easily be converted into preferred following distances;

* jam spacings, or the amount of space between vehicles in standstill jam situations.

2.5.1 Time delays in the update scheduling

The rule in the CA for car following and for braking essentially is

Issucs in the Representation of Traffic Using Multi-Resolution Cellular Automata . 8




v(t+1) e« gap(r),
which is the /nteraction rule with the assumption that the IF condition is fulfilled.
Translating from CA units to real units, using the calibration above, gives

a real trul
yret (rm‘l +1s)<—g i Ts ,

In words this means that a driver sees a certain distance to a car ahead at time ™" , and he

real ‘ real ’
tries to adjust the velocity such that at time (™ + 15 he has reached velocity 222 lst .

In a more general way, this can be written as

a real’ tml
y! (r'“l +Td) -
Ty

where T, is the delay time the driver/vehicle combination needs to observe the situation,

determine the action, and accomplish the action. Note that the environment at time ¢
produces actions only after a time ™ +7,. T, is a following time. If a vehicle drives at’

constant speed according to the above rule, then at time ¢~ + T, its front bumper is where

the rear bumper of the car ahead was at time ¢

Assuming identical braking characteristics,'it is fairly straightforward to see that for acci-
dent free driving, 7,>T,. In reality, T, and T, are, at least to the order of magnitude, com-
parable times.

2.5.2 Implicit following distances in the cell definition

In this section, we will consider all variables to be in real units, rather than CA units.
Thus, gap (1) and x() are in units of meters, rather than lattice spacings.

In a standstill jam, there is still some distance between a vehicle’s front bumper and the
rear bumper of the vehicle ahead. Yet, the CA sets gap = 0 in this case and assumes that
there is some additional separating space, gap;,,. , since the box is longer than the car.

Along with the vehicle length, this can be made explicit by decomposing the front-
bumper-to-front-bumper distance, Xihead (1) =% (1) mAx () . We decompose this into 89D} 0 s
the standstill-jam value (i.e. the minimum separation between vehicles); the variable
remaining space, represented by gap, .., (1) ; and the length of the vehicle ahead, Lo head -

Then '
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dx(r) = gapaddilional (0 + gapjam + Iahead '

89D dditional

~agap jam>
—-— lahead e
- &x ~-

FIGURE 1. Decomposition of the front-bumper-to-front-bumper spacing

We note that the gap () of the CA rules corresponds to gap, ..., (0 (but in the CA units
of lattice spacings). Then we have, in a jam situation, gap = 0. Note that gap, ;.. (1)

denotes the distance a vehicle has available in front of it to move into, whereas the
summed value gap,,,.. (1) +gap jam denotes the actual space ahead of a vehicle.

We can use these two expressions to create a gap computation step that makes these values
explicit. The new step is, quite simply,

gap (1) < Ax(0) - (gap,, +1, ).

Jjam

2.5.3 The CA rules themselves are not an entire description of the dynamics N

The considerations of this section demonstrate that we cannot consider the CA rules them-
selves to be a full description of the simulation dynamics. Rather, we must think of the CA
as a package consisting of the update rules, a scheduler (here, a parallel scheduler), and a |
(here discrete) representation of states. Then we can make explicit the implicit character-
istics that result from the interplay of these three components.

For instance, the two-time-rule of (2.5.1), with 7, and Ty, is implemented in the original
CA by an implicit interplay between the scheduler and rule set. T, is implemented by a

parallel scheduler, which insures that the next time the state is accessed after an update is - ' |
exactly one time step later. In other words, it is the scheduler that insures that by changing
the value of v at a site, the update is effectively setting v (s + T)) . T, is implemented by

equating directly v and gap, which actually have different units, so that the units are
implicitly rectified by a conversion factor. Since v is in units of lattice spacing per time

step, and gap is in units of lattice spacing, this conversion factor is one time step, which is
N . . . i
- again given by the calibration above.

If a different scheduler is used (e.g. a random-order sequential update), the dynamics is

completely different (Nagel, thesis) since the Interaction rule is no longer implemented as
in(2.5.1).

This is an example of the general issue of differences between continuous mathematics
and discrete computation. We often think of a discretization as a model of a continuous
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system, and try to minimize any effect of the discretization (i.e. by minimizing “error

terms” in a numerical integration of a differential equation). But we are in a different sce-

nario here, since we are beginning with a discrete model and attempting to find a continu-
ous model that reduces to the discrete model under particular parameter choices. And in
this endeavor, we have to explicitly model the effects of the discretization. An analogy
would be that we have to determine the “error terms” of a numerical integration, and place
them explicitly into a continuum representation.

3.0 Changing the resolution of the CA

3.1 Why change it?

As pointed out in the last section, we méy need to rectify a simulation to a level of detail
too small for the original CA, and thus may need to develop a discrete model capable of

producing realistic dynamics at smaller length and time scales. In particular, we may look

to a more detailed CA '

* torectify the dynamics at the level of car-following, so that one can observe a realistic
time-series in the objects states, perhaps to detect problem situations involving two cars
(e.g. situations that could more easily cause an accident), or to use this information for
another modeling purpose (e.g. emissions and air quality modeling).

* to model more complex vehicles whose characteristics are not compatible With. the CA
granularity; for example, vehicle lengths which are not a multiple of the calibrated L ;

or maximal velocities that are not a multiple of % .

* to model more refined spatial structures whose characteristics are not compatible with
the CA; for example, roadway segments that are not simple multiples of L.

Also, there is no a priori reason why a more coarse approach couldn’t be found that recti-
fies the dynamics at larger length and time scales. The obvious reason to do this would be
the increase in computational speed for areas where the small-scale dynamics can be

ignored. What makes this approach more difficult is that we must allow for the possibility

that there is more than one car in a site. For this reason, this approach has intricacies and
problems of its own, and we do not address it here. '

3.2 Approaches to the refining the spatial resolution of the CA

There are basically two ways to refine the spatial resolution of the existing CA:

* Refinement: The new grid has a site length that is an integer quotient of the length of
the sites on the original grid. That is,

where » is an integer.
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* Subdivision: The new grid has a site length that is less than that of the original grid,
though not necessarily an integer quotient.

We will find that each of these approaches has its own intricacies and raises its own issues.
3.3 Refining the spatial resolution with no change in behavior

3.3.1 Rewriting the CA rules for a refinement of the original grid

It is straightforward to rewrite the original traffic CA for a refinement of the original grid.
Consider the rules of (2.1), taking v, =5,

ma

Now consider two vehicles on the CA grid (L = 7.5m>, T = ls) at two consecutive time |
steps. Assume that the vehicle on the left (shown in black) has an initial velocity of 5 in

CA units, or 5 I;‘ in reality units. Also assume that the vehicle on the right (shown in

gray) has an initial velocity of zero.

- q\} q\}

t=1

FIGURE 2. Two vehicles at two successive moments on theoriginal 7.5 meter grid

Look at the rules for the black car on the left (and temporarily ignore the vehicle on the
right). The gap is computed to be 3. The Acceleration condition is not met. The Interac-
tion condition, however, is met, and v(r+ 1) takes the value 3 (from gap). We’ll assume no
effect from the Randomization step. '

The rules for this case give a final velocity of 3 and a motion of 3 cells.
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We want to examine the motion of the same vehicles on a finer grid. The figure below
shows the original grid but divided into pieces of one-fifth the length. It is obvious that the
situation above can be portrayed on the finer grid without difficulty.

‘ ll\ g

t=1

' IRERENANAE

FIGURE 3. The same two vehicles at the same times on a 1.5 meter refinement of the original grid

The new rules are obtained from the old ones by multiplying all length and velocity con-
stants by 5:

FOR all vehicles DO IN PARALLEL
8ap (1) ¢ (x,;,,4(0) -5) -x(r) '
IF(v(¢)<gap(r)-5 ) THEN , Acceleration
v+ 1) emax[v() +5,5 (v, 0]
ELSEIF ( v(r) 2gap (1) +5 ) THEN ; Interaction
v(t+1) e-gap (1) ) :
ENDIF

WITH PROBABILITY » DO s Randomization
v(t+1) e max[0,v(t+1) -5]

T(t+1) «x() +v(t+1) _» Motion
ENDFOR

Recognize that the gap is measured in the smaller units, so that the gap for the vehicle on
the left, originally 3, is now 15. Similarly, velocity is measured in cells per time step, so

that the initial velocity of the vehicle on the left, originally 5, is now 25. The final veloc-

ity, by the rules above, is 15 and-there is a motion of 15 cells,

It is evident that this procedure can be carried out for any integral refinement of the origi-
nal grid and that, if corresponding initial conditions are employed, then identical results

will be obtained. It should also be obvious that nothing is accomplished by this refinement
except the (mis-)use of additional storage and time to compute exactly the same dynamics.

However, the finer grid opens up new representational possibilities and suggests exten-
sions of the original model. One such extension will be considered shortly. Before doing
$0 it is convenient to look at how to connect grids with differing spacing.
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3.3.2 Coupling between mixéd-resolution grids

We can imagine very simple grid couplers which simply transfer vehicles from an original
grid to a finer version and from the finer version back to the original grid.

L 9

Y | | v
[ 1 L

Finer-to-coarser

Coarser-to-finer

FIGURE 4. The naive grid couplers

Conceptually (though perhaps not practically) these couplers can be used as depicted
below. Shown is a mixed-resolution grid consisting of a section of 15 cells of fine resolu-
tion, followed by 3 cells of coarse resolution and then 10 additional cells of fine resolu-

tion. A vehicle, moving with fixed speed of 2 cells per time step (coarse resolution) is
depicted. '

Mixed-resolutiongrid E
L=
Ve
0 1 2 ‘// \/ 3
1 N ’1& L
i .
et
//
| ¢~
| 2a

FIGURE 5. Coupling grids of different resolutions

From time 0 to time 1 the vehicle is on the fine grid. Between time 1 and time 2 it must

move from the fine grid to the coarse grid. One mechanism for doing so places a coupler

before the coarse grid segment and transfers the vehicle instantaneously to the coarse grid,

then moves the vehicle on the coarse grid to the position marked 2. Between times 2-and 3

the vehicle must move off the coarse grid and back to the fine grid. One can regard this as
-motion on the coarse grid, followed by a coupling back to the fine grid.
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Although the details of this transfer process require some care, it is clear that there are no
conceptual problems involved. The transfers can be done smoothly with no change to

vehicle dynamics. However, all this nice behavior breaks down immediately when we try
to enhance the model.

3.4 A new dynamics is introduced by accessing the new states

By accessing the new states (i.e. new positions, velocities) that aren’t present in the 7.5

meter representation, the dynamics of the 1.5 meter grid exhibits some different character-
istics.

-Consider the 1.5 meter grid, but with the initial condition (as above) where all cars are
aligned at position multiples of 7.5 meters. With the rules as they stand now, we have not

gained anything in representation in this case, since the dynamics is exactly equivalent to
that of the 7.5 meter grid.

There are many ways to access the new states. Effectively, the new granularity makes
possible a finer representation of all length variables in the simulation, and hence all
velocity and acceleration variables also. One obvious way to take advantage of this new
granularity, then, is to set up the initial conditions at the new, finer scale, ]

An instructive example, however, would be to take a minimal advantage of the new state
representation, and look at the manifest effects of such a minimal change. This is what is

done in the next section, where we introduce a distribution of vehicle lengths (where the
lengths are in multiples of 1.5 meters) to the 1.5 meter refined grid.

3.4.1 How only making different length vehicles changes things

A simple approach to allowing varying vehicle lengths begins by parameterizing the gap
computation equation. The number 5 in the existing assignment, :

8ap (1) & (%,,,,4(0) =5) -x(),
is made variable as in (2.5 .2), and hence we have the new gap computation equation
| 88D (1) = Diypong (1) = (80D, + 1y )] 205 -
The 1.5 meter CA, as it stands now, sets
89Pjam + lapeaa = 5,
and does not distinguish differences in two values, as long as the sum is 5.

If we change 8ap;,,, and I, . so that their sum remains equalto 5, we recover the exact
same dynamics. But this is not the natural thing to do. Instead, one is tempted to do
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something like set gap,,, = 1 regardless of the vehicle and then allow liheaq to vary from
vehicle to vehicle.

Do we need to change any of the rules in our 1.5 meter rule set to account for these differ-
ent vehicle lengths? More specifically, since we changed the hard-wired vehicle length of
5 lattice spacings, do we need to modify any of the other 5’s that are floating around in our
1.5 meter rules? This turns out to be a surprisingly intricate issue and the answer depends
on the precise form we use to write the rules as well as on what we decide is the “intent” of
the rules.

We must certainly change the Interaction rule, however, if we are to keep collisionless
dynamics. This rule immediately leads to velocities which are no longer multiples of 5
units. Of itself, that is not problematic; rather, it is commendable, for it is what allows us
to access states that were previously unaccessible. However, the inequality in this rule no
longer catches all possible collisions. The simplest change is to rewrite it as

ELSETIF ( v(r) 2gap (1) +1 ) THEN ; Interaction
v({t+1) egap (0
ENDIF.

Now if the sum of gap jam 80 .., is set equal to 5 and if the same initial conditions are

kept, then the new model agrees with the previous one. Otherwise it no longer necessarily
does. :

It is clear that if vehicles remain 5 units lon;g, the jam densities for the new rule set are less
than those original, since at jams vehicles will be spaced gap,,,, units apart rather than

being allowed to go bumper-to-bumper. Of course, the rectification of this problem is in
the fact that the effect of 89pju, 1 modeled implicitly in the original CA, while we make it

explicit in the 1.5 meter refinement.

34.2 'The new coupling between mixed-resolution grids

It is also clear that the naive method for transferring vehicles from the fine grid to the ini-

tial grid breaks down. The coupler is no longer guaranteed that a vehicle arrives in pre-
cisely the correct cell to be transferred. By itself this may appear to be only a nuisance.
But two different vehicles might arrive on the fine side of the coupler during the same time
step and both need to be transferred simultaneously. Since vehicles can not be superim-
posed, this is disastrous.

The breakdown of the naive coupling mechanism is intimately tied to the fact that the
- dynamics with varying vehicle lengths is no longer the same as the original dynamics.
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3.5 Effects induced by changes of the model in simulated traffic

3.5.1 Introduction

Assume two different models, A and B. Since maximum throughput is an emergent quan-
tity of the models (i.e. a quantity which can only be adjusted indirectly, as opposed to, e.g.
maximum speed), models A and B will have different maximum throughput, if even by a
tiny amount. As a result, there can be a calculation induced traffic jam at the position
where the two models connect. -

Such effects are well known, e. g. from nested-grid meteorological models. Yet, they look
unrealistic; for that reason alone one should connect different resolutions only at positions
where the formation of jams would make sense anyway, e.g. at intersections, or ata
decrease of the speed limit,

3.5.2 Coarse to fine grain spatial resolution

In this case, additional problems arise. For instance, after a change to higher resolutio_n, '
the vehicles do not automatically explore every state available to them. Rather, they begin
on the states that were present in the coarse resolution.

As an example, consider a change from a grid spacing of 7.5 meters to one of 1.5 meters,
As the vehicles enter the 1.5 meter grid, they first occupy the positions that were present in
the old grid; namely, those of multiples of 7.5 meters. It will take some time before the
System accesses the other newly available states, and we call this time the adaption time.

We can use this time to form an equivalent length, the adaption length, which is the aver-
~age length a vehicle must travel before it is adapted to tHe finer grid.

The point of all this is that there is some finite length and time that the vehicle must travel
in a higher-resolution simulation to experience the effects of that resolution. If sensors are
placed in a high-resolution area but before this length and time is reached, then having the
high-resolution area there will have no effect. That is, going to high resolution just before
sensors will result in low resolution traffic patterns at the sensor location.

Further trouble can arise when we have cars with different lengths in the simulation. That
means that we probably have cars that are longer than one coarse box, which are “stuffed”
into only one coarse box because of rounding. When, say, doubling the resolution, these
vehicles can expand into 3 boxes. If you have several cars of this type in a queue, this
might become a problem because in the higher resolution they occupy much more space
than in the lower resolution.

3.5.3 Fine to coarse grain spatial resolution

The analog is true for fine to coarse resolution: compact cars, which do not occupy much
space in the high resolution model, have to expand to full box sizes for the coarse grain
spatial resolution. - ‘
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3.5.4 Recommendation

For all these reasons, we recommend to connect different resolutions only at intersections.
Intersections cause jams anyway; and the intersection object should also anyway have a
mechanism of how to deal with vehicles of different lengths.

3.6 Subdivision

3.6.1 Versus refinement

Refining a grid, as above, splits the original grid into an integral number of smaller pieces.
In doing so, the representational capability of the grid increases without loss: new things
can be represented on the finer grid that couldn’t be represented on the original grid and
anything that could be represented previously can still be represented. However, grid
refinement leads to a severely limited number of additional possible cell lengths; namely,
only those that are an integer quotient of the original CA spacing.

This sections discusses the issues raised if we decide to represent traffic flows using a grid
spacing that is not an integer quotient. That is, issues raised by considering a general sub-
division. '

3.6.2 The 3.0 meter grid problem

A cell size of 3.0 meters does not represent a refinement of the original grid, but a subdivi-
sion. As we will immediately see, the différence is not merely semantic. '

Let us then take cells of 3.0 meters. We expect to have increased our representational pow-
ers by going to a smaller spacing: we believe we should be able to represent new things.
And, of course, we can represent more things than before, on average. But we also lose the
ability to represent certain things. In particular, we can no longer represent vehicles uni-
formly spaced at 7.5 meters! ' ’

The original 7.5 meter grid
= w o o o 4 o u

I 'I I I I I l
I I I | l 1

1 1 !

rEr | (o (W i

The subdivided 3.0 meter grid

ml

FICURE 6. An unsuccessful attempt to place vehicles on the 3.0 meter grid using their positions
on the 7.5 meter grid

Issues in the Representation of Traffic Using Multi-Resolution Cellular Automata » 18



On average, on the 3.0 meter grid, vehicles are spaced 7.5 meters apart, but half are 6.0
meters apart and the other half are 9.0 meters apart.

3.6.3 “Enhancing” the 3.0 meter grid fails to solve the problem

There are two general strategies for dealing with this problem. The first strategy insists
that a grid with smaller spacing should have greater representational power than a grid
with larger spacing; therefore the 3.0 meter grid must be capable of representing anything
that the 7.5 meter grid does. This strategy leads to an “enhanced” 3.0 meter grid on which
the original spacing can be represented, by adding a variable to the cell state that indicates
whether the vehicle is at the left or right of the cell. It soon becomes obvious that this solu-
tion is a Pyrrhic victory. That is, this strategy only leads to a clumsy emulation of the 1.5
meter grid refinement. If one can use the 1.5 meter spacing one should do so. If there is a

reason to resolve to 3.0 meters but not to 1.5 meters, then the “enhancement” strategy
fails.

e

Bl il [ Bl [d [ B[ o

The enhanced, subdivided 3.0 meter grid.

Cells can either be empty or they can be occupied in two different
states (shown as black and gray).

FIGURE 7. The (ultimately) unsuccessful enhancement strategy

So we must turn to the second strategy.

3.6.4 Accepting the limits of the 3.0 meter grid leads to a search for a continuum
model . :

If we are persuaded by the argument above, then we must accept the limitations of the 3.0
meter grid, and in particular, its inability to represent things such as a row of vehicles uni-

formly spaced at 7.5 meters. A simple argument now leads directly to the need for a con-
tinuum representation. '

‘Since we do not want a change in grid spacing to change the predictions of our traffic
model, we would like the predictions of the 3.0 meter grid model to agree with those of the
original grid whenever possible. In general we want the predictions of any subdivision of
a grid to agree with those of the original grid whenever possible. But it is already clear that
agreement must be found only in some statistical sense: the best we might hope for is that
the underlying probability distributions of different outcomes are unchanged for grids of
different spacings. '
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We must therefore look at the nature of the probability distributions for different outcomes
as a function of grid spacing. If we know that these distributions are of a particular form,
characterized by certain parameters, then changes to grid spacing must preserve the
parameter settings of the original grid. o

Generally, however, we do not know the underlying probability distributions; but we can
specify them by their means and higher-order moments. We want the probability distribu-
tion for a grid subdivision to preserve all moments of the original distribution. But, in gen-
eral, each new moment represents additional information and requires a new parameter to
determine it. :

So, in general, we can’t match the new distribution to the old one if we only have a finite
number of parameters to twiddle.

There is really only one way out: we need to know the form of the probability distribution
so that we know how many parameters are required. But, there is an approximation to this
situation which is more realistic. Namely, if our CA models are derivable from a contin-
uum model, then we can determine the probability distribution in the limit and we can
expect our CA's to approximate this distribution more closely as the lattice spacing is
changed. The subdivisions will not, in all likelihood, give the same probability distribu-~
tion as the original grid, but any differences will be understandable and controllable.

3.6.5 Subdivision presents a simpler,but not simple, arena for studying coarsening

The general problem of subdivision is difficult but not especially interesting. If we wanta
smaller grid, we can confine ourselves to a refinement and avoid studying subdivisions.
However, the problem of coarsening (going to larger grids for increased performance) is
interesting. Although coarsening involves many concerns beyond those we’ve touched
upon, subdivision provides a fertile domain for studying coarsening. Specifically, since a
general subdivision can be viewed as a grid refinement followed by a coarsening, then if
we knew how to subdivide, we would have a good clue as how to coarsen. ’

4.0 The CA should be thought of as a model of a driving model

4.1 Minimalism and universality

When judging the realism of a model, one should keep in mind that the CA is intended to
be a minimal microscopic description, with regard to jam dynamics and a fundamental
diagram.

4.1.1 Universal exponents and jams

The theory of critical phenomena can be used to describe the behavior of traffic jams in
the CA model near average maximum flow-- exactly where the most interesting jam
behavior occurs. '
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Using this theory, it can be shown that the traffic jams follow certain critical exponents.
Often in critical phenomena, it rungs out that critical exponents are universal, i.e. do not
depend on the exact microscopic characteristics of the model. Since we also have a theory
for the critical exponents we find, and this theory makes use of only the most basic proper-
ties of traffic flow (such as the conservation of cars and “drive slower when traffic is
dense”), we conjecture that all car following models fall into this common universality
class and are therefore equivalent in this respect.

It should be noted that such arguments are only valid in the thermodynamic limit, i.e. for
infinitely large system sizes and for infinitely long time averages. Usually, finite size
behavior gets more and more distorted in some way with smaller scales, and one would
have to check for which scales or which questions that actually matter.

4.1.2 Only a few characteristics have an effect on the fundamental diagram

There are only a few characteristics of the CA model which have an effect on the funda-
mental diagram:

* As mentioned in (2.3.2), v, controls the density of maximum flow. More technically,

it controls the slope of the flow-density fundamental diagram in the limit p —0 (when
the calibration of the time step is kept fixed). This is because the velocity in this limit is
determined solely by the maximum velocity of the vehicles (since interactions are
effectively nonexistent). '

* The level of maximum flow is determined by acceleration at low speeds; higher accel-
eration produces a higher maximum flow. In the CA, the acceleration at low speeds in
determined by the slow-down probability p, or, more specifically, the effect of this slow
down probability when the vehicle is accelerating (p, .., in the context of the footnote

of (2.1))..

* Time-to-breakdown, the time thata homogenous system above the critical density takes
to break into distinct laminar and jammed regions, is determined by fluctuations at
maximum speed. In the CA, this is also determined by the p (or, more precisely, Pfree )-

4.1.3 The intent of the CA is to capture these essential features

The intent of the CA approach is to capture the features that are essential in realistic jam
dynamics and in producing an accurate fundamental diagram in a minimal way, in that no
simpler microscopic model does the same.

In this respect, the CA can be thought of as a model of driving models. Other driving mod-
els may contain these features and more, and may reduce to the CA model in special cases.

In the next section we give an example of a stochastic differential equation approach that
reduces to the CA under appropriate parameter values. Also, in the neighborhood of these
parameter values, the stochastic differential equation below produces CA-like dynamics
that are in accord with the considerations of the two sections above. In this sense, the CA
models the stochastic differential equation model. '
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4.2 A stochastic differential equation generalization of the CA

In a certain sense, to be explicated below, the original CA model is equivalent to the sys-
tem of stochastic differential equations (SDEs)

dx(t) = v(t)dt
dv(f) = alv(r), gap (t)]dt+bdW

where 4 represents white noise, and a and » are given by

[ p if((v(r) <E@) A= V,,,ax))
1-p if((v(!) <g_a&) Av(n) <Vmax))
;‘._(&%E..v)-p if(v(:)>3i"”T(—'))

0 otherwise

b=.Jp(l-p).

The discrete-time approximation to the SDEs, using an Euler discretization, is given by

alv(0,gap()] = 1

V(er) = v () +1a(v (1), gap () + 51 (1) SR
X(t+7) =x(0) +v () -

where n (¢ is any random process with mean zero and unit variance, We will find that,
with < = 1, and with the appropriate choice of the process 1, these equations become iden-
tical with the CA model.

The above equations for dx are intuitively plausible. The equations for dv require some
explanation, which we proceed to supply. It is convenient to start by looking at the Ran-
domization step of the CA model. :

- 4.2.1 -Modeling the Randomization step

This step has interesting implications for the continuous-time limit. It either preserves the
velocity at time ¢, with probability 1-p, or lowers it by one unit, with probability p
(where we have temporarily neglected the boundary condition that the velocity cannot
become negative).

Consider an ensemble of vehicles, all of which have the same initial velocity and with are
subject only to the Randomization step. There are two effects of the randomization. The
first effect is to add noise to the distribution: the initially sharp velocity distribution is
blurred; equivalently, the velocity diffuses. The second effect is that the mean of the
velocity distribution decreases by p velocity units per time step: the velocity distribution
drifts downward.

If we separate out the effect on the mean (the drift term) from the noise effect (the diffu-
sion term) we can imagine carrying out the randomization step in two parts. We first prop-
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agate the velocity v at time ¢ to the velocity v-p attime r+1. Next we add noise; +p
(positive noise bringing the velocity back up ta v) with probability 1-p, and -(1 - p) (neg-
ative noise bringing the velocity down to v-1) with probability p. :

t+1
v ! v
l-p
p| * VP
n v-l

FIGURE 8. Drift and diffusion reformulation of CA Randomization step

Note that the added noise has two key properties: it has zero mean and variance Jp(i-p).
The vanishing of this variance at p = 0 and p = 1 is a result of the fact that these two val-
ues represent pure determinism.

A noise process with this mean and vaﬁaﬁce, and with a downward drift of -p, is modeled
directly by the stochastic differential equation

dv = (-p)dt+ Jp(l-p)dW.

The first term represents the drift term: there is a loss (on average) of p units of velocity
per unit of time. The second term is the noise term. We imagine a Wiener, or Brownian
motion, process, W, corresponding to a random walk with zero mean and unit increase in

variance per unit time. We take an increment of that random walk, 4w, to get the second
term. R

This model has all of the properties of the original Randomization step with two excep-
tions.- First, it does not yet take into account the boundary condition at zero. Second, the

velocity noise term is not restricted to amounts of p for positive noise and -(1-p) for neg-

ative (downward) noise. We will return to these matters later.
We should point out that the equation above leads to a discrete-time model of the form

av = -pt+p(I-pIn(n) S5

where « is the time-step interval and n (1) is a random number generated at time ¢ in any
manner which realizes the properties of independence (no correlation between numbers

generated at different times), zero-mean, and unit variance. An example of an appropriate
random number generator is S
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—2 with probability 1 - p
Jp(1-p)

=U-P)  ith probabili
probability p
Jp(l-p)

This choice of random number generator fulfills the second requirement above for the
velocity noise (namely, that the noise be restricted to a particular value in the positive
direction, and a particular value in the negative direction). Another example of an appro-
priate random number generator, but one that does not fill the above requirement for the

velocity noise, is one which generates +.,2 with equal probabilities.

n-=&() =

At this stage we have accomplished several things. We have derived the form of the noise
term for both the SDE and its associated discrete approximation, and we have derived the

value of b = /5 (1-p) used above.

4.2.2 Modeling the Acceleration step

We will examine the applicability condition and the action item of the Acceleration rule
separately. It is convenient to rewrite the applicability condition, v (1) <gap() -1, as

v(n) <gap(f) .

The simplest approach to translating this term to the continuum limit is to introduce a
parameter T with dimension of time and the value unity and rewrite the above condition as

V(t)f<gap @,
which is now dimensionally correct. It is also intuitively plausible, since it represénts a
driver who is attempting to maintain a following time of T behind the vehicle in front, but
is travelling too slowly. In fact, it is equivalent to the following time 7, of (2.5.1).
The action item,

v(t+T) «max[v(s) +1,vm“] .

represents an acceleration of one unit of velocity per unit of time, assuming that the vehi-
cle is not at its maximum velocity. So our continuum representation of this step is simply

IF (v())T<gap (1) ) THEN
{0 ifv=vm“
a(t) « .
1 if (vev,,.)

which is represented in the expression for acceleration given previously, corrected by add-
ing -p from the Randomization step.
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4.2.3 Modeling the Interaction step

- The applicability condition is corrected an interpreted exactly as above, but applies to the
complementary possibility, namely the vehicle is traveling too fast. The action item,
v—>gap, is a slowing down so that the vehicle arrives at the end of the present gap T units
of time later. It is easy to derive the acceleration which is required to do so; however, the
equations which result do not become identical to those of the CA. There is an alternative
interpretation, though, for which exact equivalence does follow.

We write the action item as

v(e+T) (_g_g;;w(_l)

and interpret it as providing an updated velocity of &;-'.2 after an elapsed time T. The

acceleration required to change an initial velocity v into the velocity 3%‘,2 after time T is

simply

).

so that the continuum representation of this step is simply

ELSEIF (v()T>gap(r) ) THEN
a(s) e-%(&‘-’-PT(—')-v(:))
ENDIF

which is again corrected in the expression above for the acceleration because of the Ran-
domization step.

4.2.4 How the SDE and CA agree, and how they don’t

One finds that upon substituting + = 1 in the discrete-time approximation to the SDE it
become identical to the original CA. However, there are two minor quibbles with this
equivalence and one major flaw. '

The minor quibbles have to do with the noise. There is nothing in the formulation which
requires the noise to be of the proper amplitude to maintain the velocity discretization.
However, if one chooses a specific model for the random noise process 1 (¢) , namely the
§(n process given above, then this model, for < = 1 , does so. It should be observed that
this specific requirement goes beyond the SDE. A second quibble with the exact equiva-
lence has to do with the boundary condition on the velocity at zero. It is not correctly
encapsulated by the SDEs and should be imposed as an additional boundary condition.

Also, to exactly reproduce the CA with « = 1, we must also impose the initial condition
that all velocities and positions start out with discrete, integer values.
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However, the major flaw of the model is that it agrees exactly with the CA! This is bad
because the equivalence depends crucially on selecting = = 1. For any other time step,
there will not be agreement. For significantly different time steps, even the large-scale,
macroscopic behavior will be significantly different!” This is because the implicit control
terms, some of which were outlined in (2.5), have not been incorporated, but are incorpo--
rated implicitly when = = 1, and are incorporated implicitly in an approximate way when
T~l,

5.0 Conclusions, observations, and rules of thumb

5.1 Control terms that are implicit in the original CA must be made
explicit in other models

There are a number of implicit rules in the CA, which result from the interplay of the rule
set, the scheduler, and the state space representation. It is another research project to elu-
cidate these terms, and incorporate them into some of the alternative modeling approaches
outlined in this paper (e.g. into a variable time step model, or into a stochastic differential
equation model). ’ '

5.2 As the scale gets small, a continuum model becomes more efficient

Our current estimates say that the CA is approximately a factor of 20 faster than car fol-
lowing models which are also time-stepped based on a 1 second basis but which have con-
tinuous spatial resolution. Enhancing the resolution of the CA leads to slower computing
speed, since the state space expands and previously implicit control terms must be made
explicit, and eventually a continuous model will both become faster and more straightfor-
ward. :

5.3 Going to larger scales is not addressed here

1
jam
tion, i.e. box sixes larger than this means that one has to deal with multiple cars in one
box. When one goes far enough in this direction (box sizes of 150 meters or more), one
would use a fluid-dynamical approximation as is indeed used by several models. This is
very different from what has been said in this paper, and we recommend not implementing
this currently.

In this paper, we only address box sizes of L =

and smaller. Going in the other direc-.

5.4 Connect multiple-scale segments at nodes only

As explained in the text, connecting segments with different resolutions may lead to
inconsistencies. To circumvent this problem, we recommend to change resolution at inter-
sections only. Intersections should be designed in a way that they can absorb and emit
vehicles from and to models of arbitrary resolution. -
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5.5 Intersection buffers have similar problems of mediating between
resolutions

Note that intersection objects will ultimately face the same problems of mediating
between resolutions as mentioned in the text. However, instead of designing connectors

between all kind of resolutions, which would be of order O(Nz) connectors if we had
O(N) different resolutions, connecting at intersections means that we only have to design
connectors between the intersection resolution and all other resolutions, which means only
O (N) connectors. v '

5.6 Intersections act as spatial buffers

1
pjam
density of vehicles in a jam (or fractions of this for higher resolution CAs). It is therefore
given externally and cannot be used to adjust if link lengths are not multiples of the box
size. '

We also explained in the text that the box size of the CA is given by »Where p, . is the

We recommend to include additional spatial “slack” into the design of intersections to deal
with these problems. ' :

5.7 In urban contexts, the intersection calibration is most important

Remember for calibration that in an urban context, intersections actually have the domi-
nant influence on throughput and are therefore much more important than calibration of
the CA for homogenous freeways.

5.8 Pick your questions carefully

The CA design has been chosen for high computational speed while retaining a micro-
scopic resolution. It is clear that this involves compromises with regard to fidelity. Asa
consequence, the CA version of the TRANSIMS microsimulation will mostly be useful
for questions which are as large scale (network size, number of travelers, necessary com-
puting time) as we can handle. Questions where we don’t reach these limits might benefit
from higher fidelity microsimulation.
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