

CYBER SECURITY DIVISION 2013 PRINCIPAL INVESTIGATORS'

Netalyzr NG: Monitoring DNS, DNSSEC, and TLS from the Edge

International Computer Science Institute Dr Nicholas Weaver

September 18th, 2013

Science and Technology

Team Profile

- The International Computer Science Institute
 - A non-profit (501(c)3) research lab affiliated with the University of California at Berkeley
- PI: Dr Nicholas Weaver
 - Network measurement, network security
 - Favorite paper title: "How to 0wn the Internet in Your Spare Time"
- Co-PI: Dr Christian Kreibich
 - Network measurement, network security
 - Favorite paper title: "Probe and Pray: Using UPnP for Home Network Measurements"
- Postdoctoral Researcher: Dr Narseo Vallina-Rodriguez
 - Network measurement, cellular networks
 - Favorite paper title:
 "Drocking for Communication Change
 - "Breaking for Commercials: Characterizing Mobile Advertising"

Customer Need: Can DNSSEC Work?

- DNS (the Domain name System): Turns "www.example.com" into addresses
- DNSSEC (DNS Security Extensions): Adds cryptographic integrity
- DNSSEC on the authority-server side is a *success*
 - Most major TLDs (top level domains, eg .com) support DNSSEC records
 - Thanks in no-small-part to DHS's mandates
 - Thus we now have perhaps the most interesting Public Key Infrastructure (PKI) available, deployed and just waiting to be used
 - Free to use! A constrained path of trust!
- DNSSEC on the recursive resolver is almost useless
- But can clients use DNSSEC?
 - Can the end host *directly or indirectly* receive DNSSEC-signed data?
 - Are there workarounds?
 - Do DNSSEC validators operate correctly?

Approach: Client Level Tests with Netalyzr

- DNSSEC to the recursive resolver provides only minor benefits
 - The recursive resolver is proven untrustworthy: It is the client which must validate DNSSEC
- If DNSSEC information needs to reach the client...
 - We must *comprehensively test* the client and recursive resolver
- Enter *Netalyzr*:
 - A widely used free network measurement and debugging tool that runs in the user's web browser:
 - Now almost 1M sessions to date

DNSSEC to the Client

- Netalyzr previously *proved* that the recursive resolver can't be trusted
 - Thus DNSSEC *must* be validated on the client
- Can the client get the necessary information to validate DNSSEC?
 - Can it get it directly from the Internet?
 - Ask the roots for key material etc
 - Can it get it from the recursive resolver?
 - Either by using the DO (I want DNSSEC) in requests or by a fallback mechanism of asking for RRSIGs
- Tests have now been integrated into Netalyzr

DNSSEC on the Recursive Resolver

- If the recursive resolver validates DNSSEC, does it validate DNSSEC *correctly?*
 - Is the clock accurate?
 - What algorithms are supported?
 - What is the fate of unsupported algorithms?
 - A whole host of corner cases...
- Building a *dynamic* DNSSEC server
 - Some tests can only be constructed by generating responses on the fly
- Coupled with new tests, should enable comprehensive examination of the recursive resolver

The (Well Deserved) Demise of Java in the Browser

- Java in the web browser is (deservedly) dying:
 - Java represents a massive security hole due to its sandboxed-structure:
 Many key APIs are effectively running "sudo"
 Any bug which enables a sandbox bypass -> P0wned user
- Fortunately, Android is Java
 - Netalyzr on Android offers even more visibility
 - Still get onto the wifi networks
 - Additional cellular visibility

Other Areas to Measure

- Measuring TLS (Transport Layer Security, aka "HTTPS") certificates:
 - Query several sites for the TLS certificates
 - Upload the certificates to our server
 - Check with the ICSI TLS Observatory to see if the Certificate Authority is known for that site
 - Effectively "Certificate pinning by observation"
- Cellular radio behavior
 - A hidden source of cellular network performance issues

Benefits: Fully Understanding DNSSEC to the Client

- Can clients receive DNSSEC information? If not, what workarounds?
 - For routing records: A/AAAA/MX etc:
 Bypass the recursive resolver if DNSSEC validation fails
 - If you want to use DNSSEC for key distribution in new protocols, *also* include the DNSSEC chain in the protocol as an option
- Also other security protocols:
 - How many clients are behind TLS proxies? Buggy web proxies?

Competition

- Academic research surveys using advertisements:
 - Can probe validation (based on "pass or fail" JavaScript)
 - "Measuring the Practical Impact of DNSSEC Deployment" by Lian et al
 - Limited by static DNSSEC configuration: Can't measure clock drift or failover
 - Can *not* probe the path needed for client-side validation
- Commercial bandwidth testers (e.g. speedtest.net)
 - Have the client base but a much more limited focus on "performance"
 - Have a much more difficult revenue model
 - As researchers we are "paid" in data...

Current Status

- Testing the DNSSEC to client path:
 - Full test suite deployed and operational for several months:
 - Many clients have an either/or problem: either they can't get DNSSEC from the Internet (common for hotels/coffee shops) or they can't get it from the recursive resolver (common for bad home gateways)
 - A few clients fail completely: >1% failure rate
- DNSSEC server status:
 - Domain is live, dynamically signing records
 - Need to add NSEC/NSEC3 support and then start building tests
- Android client: near release-ready
- Predict data release: Developing partial anonymization strategy, signing memorandum of understanding when revised MOU available

Next Steps

- Continue development:
 - DNSSEC server validation suite
 - Javascript version for advertisement-based testing
 - TLS certificate queries
 - Android release
- Technology transition: *keep running Netalyzr*
 - Developing Netalyzr requires substantial resources
 - Simply operating Netalyzr requires only a little EC2 time

Contact Information

- Nicholas Weaver
 - nweaver@icsi.berkeley.edu
 - PGP key: <u>http://www1.icsi.berkeley.edu/~nweaver/data/nwea</u> <u>ver_pub.asc</u>
 - International Computer Science Institute: 1947 Center Street suite 600
 Berkeley, CA, 94704
 (510)-666-2903