

CYBER SECURITY DIVISION 2013 PRINCIPAL INVESTIGATORS'

Hardware Support for Malware Defense and End-to-End Trust

IBM Research Dimitrios Pendarakis Research Staff Member and Manager, Secure Systems Group dimitris@us.ibm.com

Date: September 18, 2013

Team Profile

- Team make-up
 - Sameh Assad
 - Rick Boivie
 - Eknath Ekanadham
 - Kenneth Goldman
 - Eric Hall
 - Guerney Hunt
 - Mohit Kapur
 - Dimitrios Pendarakis, PI
 - David Safford
- Group has a long history of research leadership and transition into products, standards and open source in areas:
 - Operating systems, networking systems, NSFNET
 - Network security protocols, network scalability
 - Secure co-processors like the IBM 4758, 4764, ...
 - Trusted Computing and Linux Security
 - Secure Processors

Customer Need

Despite increased investment in security, cybersecurity attacks are increasing Need to protect all computing infrastructure: servers, mobile platforms, embedded and cyber-physical systems

9/13/2013 CY

CYBER SECURITY DIVISION 2013 PRINCIPAL INVESTIGATORS' MEETING

Technical Approach: Problem

- Software verification hard, especially for large code bases
 - Trusted Computing Base (TCB) in modern systems is large and increasing
 - Firmware, OS, hypervisor, JVM, ...
 - Increasingly networked devices (e.g., control systems) multiply risks
- Objective: hardware trust anchors that allow TCB size reduction
 - End-to-End applicability: from low-end embedded to cloud servers
 - Trust: Protect secrets, confidentiality & integrity of code and sensitive data
 - Introduce techniques to **containerize sensitive applications/software**
 - Protect "applications" from each other, including OS/Hypervisor, firmware, privileged software, etc.
 - Perform continuous monitoring and analysis for anomaly detection
- Technology deployment considerations
 - Minimize required enhancements in software stacks to utilize new capabilities
 - Allow existing applications to run unmodified
 - Cost effective introduction of hardware and firmware changes

Application to Server Environment: Secure Blue++ w. Access Control Monitor

- Observation: large number of attacks involve unauthorized access of an applications' memory and/or files
 - While application is "at rest", in the file system and throughout execution
 - Hence, it is important to control access to memory and (non-volatile) storage resources: through both access control and cryptographic means
- We are developing a subsystem to enforce isolation and controlled sharing across the end-to-end lifecycle
 - Secure Blue++ w. Access Control Monitor (SB++/ACM)
 - Applicable at different granularities: processes, VMs, ...
- Objective: subsystem contains *just enough* controls to
 - Provide "isolation" of data for secure processes
 - Provide "sharing" of data when permitted by the owner and policy
 - Require no new address translations or changes to resource scheduling
 - Without trusting other subsystems (OS or Hypervisor)
 - Maintain backwards compatibility with "non-secure" processes

IBM Proprietary

Concept of Security Domains

- Security Domains are disjoint collections of processes; in particular all OS processes could be in one domain
- Must enforce data Isolation and Sharing across domains ("data" connotes both instruction and data pages)
 - Private data in one domain cannot be accessed by another domain
 - Designating and sharing of specific data across domains is permitted by explicit sharing-control primitives
- OS continues to do resource scheduling (cpu and memory) for all processes in all domains, and OS can employ conventional techniques of address mapping to accomplish isolation and sharing of data/inst among processes within a domain

Current Embedded BIOS Integrity (NIST-SP800-155 and -147, UEFI 2.3.1) – Sample Devices

Functionality requirements

- Measure firmware (prevent supply chain attacks...)
- Lock firmware (protect from online modification)
- Safely update firmware (physical presence)
- Authenticate firmware ("secure boot")

Vendor constraints

- Zero additional cost
- Zero additional switches/buttons

Device		Measure BIOS	Protect BIOS	Signed/Local Updates	Secure Boot
Pogoplug		Yes - SATA	No	No	No
D-Link DIR-505	B	No	No	No	No
TP-Link MR3020	(related)	No	No	No	No
Linksys WRT54G		Yes - JTAG	No	No	No

BIOS Integrity with Zero Cost Modifications

Device		Measure BIOS	Protect BIOS (lock firmware)	Signed/Local Updates (physical presence)	Secure Boot
Pogoplug		Yes - SATA	Yes - HPM	Yes – power latch	Yes – RSA signature
D-Link DIR-505	Parin P	Yes - buspirate	Yes - HPM	Yes –switch or button	Yes – RSA signature
TP-Link MR3020	TPLINK	Yes - buspirate	Yes - HPM	Yes - button	Yes – RSA signature
Linksys WRT54G		Yes - JTAG	Yes - HPM	Yes - button	Yes – RSA signature

* HPM: Hardware Protection Mode locking

Benefits

- Protect sensitive applications and data from "other" software, including OS, hypervisor & malware w. root privileges
- Allow applications to be deployed w. pre-configured secrets
- Can help secure cloud computing environments
- Backward compatibility w. existing application software
- Fairly limited impact on hardware/firmware and required software stack updates
- Integration of new containerization technologies w. Trusted Computing Architecture
- Very low-cost platform modifications can protect the integrity of both embedded Linux devices and sensors/actuators
 - "Trust Dust" demonstration for sensors and actuators shown separately

Competition (optional)

• Current Hardware – based approaches

- Dedicated hardware crypto cards are expensive and harder to use with general applications/VMs – typically used for "crown jewels"
- Trusted computing verifies provenance of system software, but does not protect from vulnerable and malicious software

• Software – only approaches

- Cannot provide the same level of trust as hardware-based security
 - Rootkits and stealth malware can evade & subvert security software
 - Supply chain concerns make trusting platform and firmware hard
- Malware signatures (blacklists) do not scale well, cannot keep up with attackers
 - Number of types of malware proliferating
 - Self modifying malware code may make it extremely hard to look for "signatures"

Current Status

Accomplishments so far

- Embedded security prototypes and technical papers
 - "*Embedded Linux Integrity*", David Safford, to be presented at Linux Security Summit (LSS), September 19-20 2003, New Orleans, USA
 - "Trust Dust" prototype demonstrated in the PI meeting
- Proposed architecture for enhanced server security that combines SecureBlue++ with Access Control Monitor (ACM) and trusted computing
 - Corresponds to deliverable for end-to-end architecture at 12 months from project start
- Simulation environment for testing proposed processor changes in progress

Next Steps

- Complete architecture for enhanced server security
 - Including initial evaluation of both hardware complexity and software impact
- Experimentation w. enhanced server architecture performance and effectiveness using simulator environment
- Development of a secure mobile environment prototype
- Technology Transition Activities?
 - Exploring commercialization of technologies within IBM and/or partners
 - Advance relevant standards
 - In particular in the embedded security space

Contact Information

Principal Investigator and Programmatic Technical Point of Contact:

Dimitrios Pendarakis, PhD Research Staff Member and Manager, Secure Systems Group 914-945-1286, dimitris@us.ibm.com

Administrative Contact:

Tyrone Worsley, Jr. 914-945-1363, tjworsley@us.ibm.com