

CYBER SECURITY DIVISION 2013 PRINCIPAL INVESTIGATORS'

Deploying Efficient Internet Topology Primitives

Naval Postgraduate School Robert Beverly

September 18, 2013

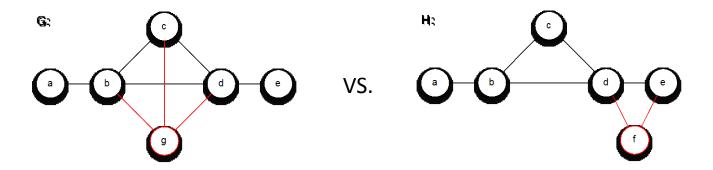
Team Profile

Naval Postgraduate School:

- US Navy's Research University
- Located in Monterey, CA
- 1500 students (all 5 services, civilians, foreign military)

- PI: Robert Beverly
- Faculty: Geoffrey Xie (NPS CS), Ralucca Gera (NPS Math), Arthur Berger (Akamai)
- Students: Guillermo Baltra, Billy
 Brinkmeyer, Daryl Lee, Sam Trassare

Customer Need

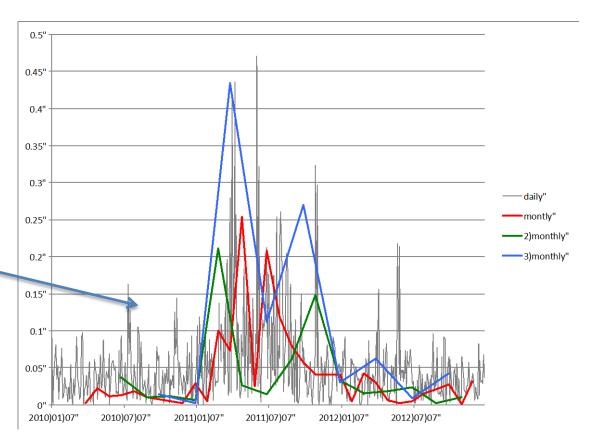

- Internet-scale Topology Mapping
- Need:
 - Topology of Internet remains poorly understood
 - Critical infrastructure protection: robustness, vulnerability, correlated failures, IPv4/IPv6 interdependence, etc.
 - DHS BAA: "...identify infrastructure components in greatest need of protection."
 - Researchers: modeling, prototyping new protocols, cleanslate designs, Internet evolution, etc.
- Production systems, e.g. Ark, iPlane:
 - Require O(weeks) to map
 - Induce significant load
 - Can miss short-lived events (which may be of most interest)

Approach Summary

- Started with theory primitives we proposed in [BBX10]
- Key Insights:
 - Utilize available <u>external knowledge</u>
 - Maintain state over prior rounds of probing
 - Adaptively sample to <u>discover subnet structure</u>
 - Maximize probing efficiency and information gain:
 - Which destinations to probe
 - How/where to perform the probe
- Implement in production on CAIDA's Archipelago (Ark)
- Gather performance metrics

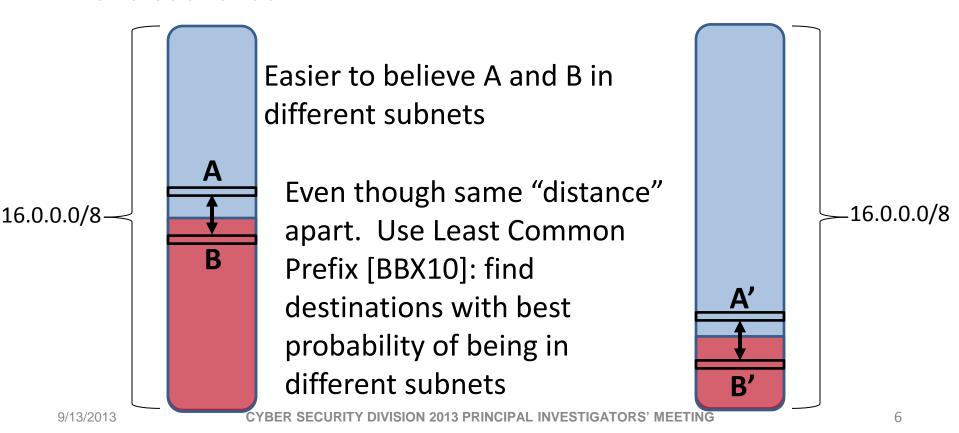
A Performance Metric

- Hard: how to evaluate "quality" of inferred topologies?
- Developed *edge/vertex symmetric difference (esd/vsd)* metric:
 - Intuitive (0-100%) difference between two topologies
 - Fast, scalable



$$vsd(G,H) = \frac{|V(G) \setminus V(H)| + |V(H) \setminus V(G)|}{|V(G)| + |V(H)|} = \frac{1+1}{6+6} = 16.7\%$$

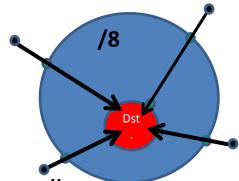
Edge Symmetric Difference


Example using VSD, applied to archived topology data:

Temporal analysis of Egyptian ASes in Ark (2010-2013). VSD reveals onset of Egyptian revolution, and instability during.

Utilize External Knowledge

- System input is set of global BGP prefixes (e.g. routeviews)
- Use knowledge of how networks are commonly provisioned and subnetted:


Adaptive Probing

- Binary search each prefix, prune leaves that do not returning new topology
- Maintain set of interfaces discovered within the AS advertising the target prefix
- If new interfaces discovered by a probe, subdivide prefix and probe sub-prefix
- Design based on real-world challenges implementing primitive in [BBX10]:
 - No edit distance (distorted by load balancing)
 - Not pair-wise, no longer memoryless
 - Permits different vantage point for each probe, thus enabling integration with vantage point spreading

Maintain State

- We find 50% of prefixes probed by only ~10 monitors
- Thus, the choice of vantage point matters

- Developed and implemented Ingress Point Spreading:
 - Examine the set of ingresses into the target network discovered during prior rounds of probing
 - Rank order vantage points per target network to exploit ingress diversity
 - Expansion to "notional ingresses" permits any number of vantage points to be rank ordered intelligently
 - Prevents premature termination of adaptive sampling algorithm

Benefits

- Probing 50,000 randomly chosen BGP prefixes
- Compared to state-of-the-art Ark system
- More topology with half the load and time

Metric	RSI+IPS	Ark
Vertices	520,105	465,788
Edges	1,034,228	934,326
Probes	2,073,988	4,042,521
Ingresses	38,787	31,110
Time	18h 33m	53h 48m

Current Status

- Implemented primitives on Ark:
 - Worked with CAIDA to debug, refine Ark interface
 - Integration into cohesive system
 - Operational experience gathering real topologies (amid load balancing, etc) using CAIDA's topo-on-demand
- Have met year 1 milestones and deliverables
- Topology publication output:
 - PAM2013: "IPv6 Alias Resolution via Induced fragmentation"
 - IMC2013: "Speedtrap: Internet-scale IPv6 Alias Resolution"
 - IMC2013: "Internet Nameserver IPv4 and IPv6 Address Relationships"
 - MILCOM2013: "A Technique for Network Topology Deception"

Next Steps

- Probe whole Internet (rather than 50K subset)
- Begin multi-cycle probing using combined primitives
- Better quantify load savings and running time
- Begin gathering, analyzing, and reducing topologies to router and AS-level
- Tech transfer:
 - Working closely with CAIDA and Akamai
 - CAIDA will deploy an implementation of our primitives, beginning with IPv6 (to lower risk)
 - Planned activity for years 2 and 3

Contact Information

- Center for Measurement and Analysis of Network Data
 @NPS: http://www.cmand.org
- Contact:

Robert Beverly

Assistant Professor

http://rbeverly.net/research

rbeverly@nps.edu

831-656-2132