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Chapter 8 - Frequently used Symbols

b = proportion of volume of movement i of the total volume on the shared lanei

C = coefficient of variation of service timesw

D = total delay of minor street vehicles
D  = average delay of vehicles in the queue at higher positions than the firstq

E(h) = mean headway
E(t  ) = the mean of the critical gap, tc c

f(t) = density function for the distribution of gaps in the major stream
g(t) = number of minor stream vehicles which can enter into a major stream gap of size, t 
L = logarithm
m = number of movements on the shared lane
n = number of vehicles
� = increment, which tends to 0, when Var(t ) approaches 0c c

� = increment, which tends to 0, when Var(t ) approaches 0f f

q = flow in veh/sec
q = capacity of the shared lane in veh/hs

q = capacity of movement i, if it operates on a separate lane in veh/hm,i

q  = the entry capacitym

q = maximum traffic volume departing from the stop line in the minor stream in veh/secm

q = major stream volume in veh/secp

t = time
t = critical gap timec

t = follow-up timesf

t = the shift in the curvem

Var(t ) = variance of critical gapsc

Var(t ) = variance of follow-up-timesf

Var (W) = variance of service times
W = average service time. It is the average time a minor street vehicle spends in the first position of the queue near the intersection
W = service time for vehicles entering the empty system, i.e no vehicle is queuing on the vehicle's arrival1

W = service time for vehicles joining the queue when other vehicles are already queuing2  
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8.
UNSIGNALIZED INTERSECTION THEORY

8.1 Introduction

Unsignalized intersections are the most common intersection driver and the pattern of the inter-arrival times are
type.  Although their capacities may be lower than other important.
intersection types, they do play an important part in the control
of traffic in a network. A poorly operating unsignalized This chapter describes both of these aspects when there are two
intersection may affect a signalized network or the operation of streams.  The theory is then extended to intersections with more
an Intelligent Transportation System. than two streams.

The theory of the operation of unsignalized intersections is
fundamental to many elements of the theory used for other
intersections. For instance, queuing theory in traffic engineering
used to analyze unsignalized intersections is also used to analyze
other intersection types.

8.1.1 The Attributes of a Gap
Acceptance Analysis Procedure

Unsignalized intersections give no positive indication or control
to the driver.  He or she is not told when to leave the intersection.
The driver alone must decide when it is safe to enter the
intersection.  The driver looks for a safe opportunity or "gap" in
the traffic to enter the intersection.  This technique has been
described as gap acceptance.  Gaps are measured in time and are
equal to headways.  At unsignalized intersections a driver must
also respect the priority of other drivers.  There may be other
vehicles that will have priority over the driver trying to enter the
traffic stream and the driver must yield to these drivers.

All analysis procedures have relied on gap acceptance theory to
some extent or they have understood that the theory is the basis
for the operation even if they have not used the theory explicitly.

Although gap acceptance is generally well understood, it is
useful to consider the gap acceptance process as one that has two
basic elements.

� First is the extent drivers find the gaps or opportunities
of a particular size useful when attempting to enter the
intersection.

� Second is the manner in which gaps of a particular size are
made available to the driver.  Consequently, the proportion
of gaps of a particular size that are offered to the entering

8.1.2 Interaction of Streams at
Unsignalized Intersections

A third requirement at unsignalized intersections is that the
interaction between streams be recognized and respected.  At all
unsignalized intersections there is a hierarchy of streams.  Some
streams have absolute priority, while others have to yield to
higher order streams.  In some cases, streams have to yield to
some streams which in turn have to yield to others.  It is useful
to consider the streams as having different levels of priority or
ranking.  For instance:

Rank 1 stream - has absolute priority and does not need to
yield right of way to another stream, 

Rank 2 stream - has to yield to a rank 1 stream,

Rank 3 stream - has to yield to a rank 2 stream and in turn  to
a rank 1 stream, and

Rank 4 stream - has to yield to a rank 3 stream and in turn to
a rank 2 stream and to a rank 1 stream.

8.1.3 Chapter Outline

Sections 8.2 discusses gap acceptance theory and this leads to
Section 8.3 which discusses some of the common headway
distributions used in the theory of unsignalized intersections.

Most unsignalized intersections have more than two interacting
streams.  Roundabouts and some merges are the only examples
of two interacting streams.  Nevertheless, an understanding of
the operation of two streams provides a basis to extend the
knowledge to intersections with more than two streams.  Section
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8.4 discusses the performance of intersections with two The theory described in this chapter is influenced by the human
interacting streams. factors and characteristics as described  in  Chapter 3, and in

Section 8.5 to 8.8 discuss the operation of more complex similarities between the material in this chapter and Chapter 9
intersections.  Section 8.9 covers other theoretical treatments of dealing with signalized intersections.  Finally, unsignalized
unsignalized intersections.  In many cases, empirical approaches intersections can quickly become very complicated and often the
have been used.  For instance the relationships for AWSC (All subject of simulation programs.  The comments in Chapter 10
Way Stop Controlled) intersections are empirical.  The time are particularly relevant here.
between successive departures of vehicles on the subject  
roadway are related to the traffic conditions on the other roadway
elements.

particular, Sections 3.13 and 3.15.  The reader will also note

8.2  Gap Acceptance Theory

8.2.1  Usefulness of Gaps

The gap acceptance theory commonly used in the analysis of
unsignalized intersections is based on the concept of defining the
extent drivers will be able to utilize a gap of particular size or
duration.  For instance, will drivers be able to leave the stop line
at a minor road if the time between successive vehicles from the
left is 10 seconds; and, perhaps how many drivers will be able
to depart in this 10 second interval ?

The minimum gap that all drivers in the minor stream are
assumed to accept at all similar locations is the critical gap.
According to the driver behavior model usually assumed, no
driver will enter the intersection unless the gap between vehicles
in a higher priority stream (with a lower rank number) is at least
equal to the critical gap, t .  For example, if the critical gap wasc

4 seconds, a driver would require a 4 second gap between Rank
1 stream vehicles before departing. He or she will require the
same 4 seconds at all other times he or she approaches the same
intersection and so will all other drivers at that intersection.

Within gap acceptance theory, it is further assumed that a
number of drivers will be able to enter the intersection from a
minor road in very long gaps.  Usually, the minor stream
vehicles (those yielding right of way) enter in the long gaps at
headways often referred to as the "follow-up time", t .f

Note that other researchers have used a different concept for the
critical gap and the follow-up time.  McDonald and Armitage
(1978) and Siegloch (1973) independently described a concept
where a lost time is subtracted from each major stream gap and

the remaining time is considered 'useable.'  This 'useable' time
divided by the saturation flow gives an estimate of the absorption
capacity of the minor stream.  As shown below, the effect of this
different concept is negligible.

In the theory used in most guides for unsignalized intersections
around the world, it is assumed that drivers are both consistent
and homogeneous.  A consistent driver is expected to behave the
same way every time at all similar situations.  He or she is not
expected to reject a gap and then subsequently accept a smaller
gap.  For a homogeneous population, all drivers are expected to
behave in exactly the same way.  It is, of course, unreasonable to
expect drivers to be consistent and homogeneous. 

The assumptions of drivers being both consistent and
homogeneous for either approach are clearly not realistic.
Catchpole and Plank (1986), Plank and Catchpole (1984),
Troutbeck (1988), and Wegmann (1991) have indicated that if
drivers were heterogeneous, then the entry capacity would be
decreased.  However, if drivers are inconsistent then the capacity
would be increased.  If drivers are assumed to be both consistent
and homogeneous, rather than more realistically inconsistent and
heterogeneous, then the difference in the predictions is only a
few percent.  That is, the overall effect of assuming that drivers
are consistent and homogeneous is minimal and, for simplicity,
consistent and homogeneous driver behavior is assumed.

It has been found that the gap acceptance parameters t  and tc f

may be affected by the speed of the major stream traffic (Harders
1976 and Troutbeck 1988).  It also expected that drivers are
influenced by the difficulty of the maneuver.  The more difficult
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a maneuver is, the longer are the critical gap and follow-up time distribution of follow-up times and the critical gap distribution
parameters.  There has also been a suggestion that drivers independently.  Each group is discussed below.
require a different critical gap when crossing different streams
within the one maneuver.  For instance a turn movement across
a number of different streams may require a driver having a
different critical gap or time period between vehicles in each
stream (Fisk 1989).  This is seen as a unnecessary complication
given the other variables to be considered.

8.2.2 Estimation of the Critical
 Gap Parameters

The two critical gap parameters that need to be estimated are the
critical gap t  and the follow-up time .  The techniques used toc

estimate these parameters fit into essentially two different
groups.  The first group of techniques are based on a regression
analysis  of  the  number  of  drivers  that  accept  a  gap  against
the  gap  size.    The  other  group  of  techniques  estimates  the

Regression techniques.
If there is a continuous queue on the minor street, then the
technique proposed by Siegloch (1973) produces acceptable
results because the output matches the assumptions used in a
critical gap analysis.  For this technique, the queue must have at
least one vehicle in it over the observation period.  The process
is then:

� Record the size of each gap, t, and the number of
vehicles, n, that enter during this gap;

� For each of the gaps that were accepted by only n
drivers, calculate the average gap size, E(t) (See Figure
8.1);

� Use linear regression on the average gap size values
(as the dependent variable) against the number of
vehicles that enter during this average gap size, n; and

Figure 8.1
Data Used to Evaluate Critical Gaps and Move-Up Times 

(Brilon and Grossmann 1991).
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(8.1)

� Given the slope is t  and the intercept of the gap sizef

axis is t , then the critical gap t  is given by  o c

The regression line is very similar to the stepped line as shown
in Figure 8.2.  The stepped line reflects the assumptions made by
Tanner (1962), Harders (1976), Troutbeck (1986), and others.
The sloped line reflects the assumptions made by Siegloch
(1973), and McDonald and Armitage (1978).

Independent assessment of the critical gap and follow-up time
If the minor stream does not continuously queue, then the
regression approach cannot be used.  A probabilistic approach
must be used instead.

The follow-up time is the mean headway between queued
vehicles which move through the intersection during the longer
gaps in the major stream.  Consider the example of two major
stream vehicles passing by an unsignalized intersection at times
2.0 and 42.0 seconds.  If there is a queue of say 20 vehicles
wishing to make a right turn from the side street,  and  if  17  of

these minor street vehicles depart at 3.99, 6.22, 8.29, 11.13,
13.14, and so on, then the headways between the minor street
vehicles are 6.22-3.99, 8.29-6.22, 11.13-8.29 and so on.  The
average  headway  between  this  group  of  minor stream
vehicles is 2.33 sec.  This process is repeated for a number of
larger major stream gaps and an overall average headway
between the queued minor stream vehicles is estimated.  This
average headway is the follow-up time, t .  If a minor streamf  

vehicle was not in a queue then the preceding headway would
not be included.  This quantity is similar to the saturation
headway at signalized intersections.

The estimation of the critical gap is more difficult.  There have
been numerous techniques proposed (Miller 1972; Ramsey and
Routledge 1973; Troutbeck 1975; Hewitt 1983; Hewitt 1985).
The difficulty with the estimation of the critical gap is that it
cannot be directly measured.  All that is known is that a driver's
individual critical gap is greater than the largest gap rejected and
shorter than the accepted gap for that driver.  If the accepted gap
was shorter than the largest rejected gap then the driver is
considered to be inattentive.  This data is changed to a value just
below the accepted gap.  Miller (1972) gives an alternative
method of handling this inconsistent data which uses the data as
recorded.  The difference in outcomes is generally marginal.

Figure 8.2
Regression Line Types.
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(8.2)

(8.3)

(8.4)

(8.5)

(8.6)

(8.7)

Miller (1972), and later Troutbeck (1975) in a more limited
study, used a simulation technique to evaluate a total of ten
different methods to estimate the critical gap distribution of
drivers.  In this study the critical gaps for 100 drivers were
defined from a known distribution.  The arrival times of priority
traffic were simulated and the appropriate actions of the
"simulated" drivers were noted.  This process was repeated for
100 different sets of priority road headways, but with the same
set of 100 drivers.  The information recorded included the size
of any rejected gaps and the size of the accepted gap and would
be similar to the information able to be collected by an engineer
at the road side.  The gap information was then analyzed using
each of the ten different methods to give an estimate of the
average of the mean of the drivers' critical gaps, the variance of
the mean of the drivers' critical gaps, mean of the standard
deviation of the drivers' critical gaps and the variance of the
standard deviation of the drivers' critical gaps.  These statistics
enabled the possible bias in predicting the mean and standard
deviation of the critical gaps to be estimated.  Techniques which
gave large variances of the estimates of the mean and the
standard deviation of the critical gaps were considered to be less
reliable and these techniques were identified.  This procedure
found that one of the better methods is the Maximum Likelihood
Method and the simple Ashworth (1968) correction to the
prohibit analysis being a strong alternative.  Both methods are
documented here.  The Probit or Logit techniques are also
acceptable, particularly for estimating the probability that a gap
will be accepted (Abou-Henaidy et al. 1994), but more care
needs to be taken to properly account for flows.  Kyte et al
(1996) has extended the analysis and has found that the
Maximum Likelihood Method and the Hewitt (1983) models
gave the best performance for a wide range of minor stream and
major stream flows.

The maximum likelihood method of estimating the critical gap
requires that the user assumes a probabilistic distribution of the
critical gap values for the population of drivers. A log-normal is
a convenient distribution.  It is skewed to the right and does not
have non-negative values.  Using the notation:

a = the logarithm of the gap accepted by the ith driver,i

a  = � if no gap was accepted,i

r = the logarithm of the largest gap rejected by the ithi

driver,
r  = 0 if no gap was rejected,i

µ and
  ) are the mean and variance of the logarithm of the2

individual drivers critical gaps (assuming a log-
normal distribution), and

f( ) and
  F( ) are the probability density function and the

cumulative distribution function respectively for
the normal distribution.

The probability that an individual driver's critical gap will be
between r  and a  is F(a ) – F(r ).  Summing over all drivers, thei i i i

likelihood of a sample of n drivers having accepted and largest
rejected gaps of (a , r ) isi i

The logarithm, L,  of this likelihood is then

The maximum likelihood estimators, µ and ) , that maximize L,2

are given by the solution to the following equations.

and

Using a little algebra,
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(8.8)

(8.9)

(8.10)

(8.11)

(8.12)

This then leads to the following two equations which must be first gap offered without rejecting any gaps, then Equations 8.8
solved iteratively.  It is recommended that the equation and 8.9 give trivial results.  The user should then look at

should be used to estimate µ given a value of ) .  An initial value2

of )  is the variance of all the a  and r  values.  Using this2
i i

estimate of µ from Equation 8.8, a better estimate of )  can be2

obtained from the equation,

where  is an estimate of µ. 

A better estimate of the µ can then be obtained from the
Equation 8.8 and the process continued until successive
estimates of µ and )  do not change appreciably.2

The mean, E(t  ), and the variance, Var(t  ), of the critical gap normal function is used, then E(t ) and Var(t ) are values givenc c

distribution is a function of the log normal distribution by the generic Equations 8.10 and 8.11.  This is a very practical
parameters, viz: solution and one which can be used to give acceptable results in

and

The critical gap used in the gap acceptance calculations is then
equal to E(t  ).  The value should be less than the mean of thec

accepted gaps.

This technique is a complicated one, but it does produce
acceptable results.  It uses the maximum amount of information,
without biasing the result, by including the effects of a large
number of rejected gaps.  It also accounts for the effects due to
the major stream headway distribution.  If traffic flows were
light, then many drivers would accept longer gaps without
rejecting gaps. On the other hand, if the flow were heavy, all
minor stream drivers would accept shorter gaps.  The
distribution of accepted gaps is then dependent on the major
stream flow.  The maximum likelihood technique can account for
these different conditions.  Unfortunately, if all drivers accept the

alternative methods or preferably collect more data.

Another very useful technique for estimating the critical gap is
Ashworth’s (1968) procedure.  This requires that the user
identify the characteristics of the probability distribution that
relates the proportion of gaps of a particular size that were
accepted to the gap size.  This is usually done using a Probit
analysis applied to the recorded proportions of accepted gaps.
A plot of the proportions against the gap size on probability
paper would also be acceptable.  Again a log normal distribution
may be used and this would require the proportions to be plotted
against the natural logarithm of the gap size.  If the mean and
variance of this distribution are E(t ) and Var(t ), thena a

Ashworth’s technique gives the critical gap as

where q  is the major stream flow in units of veh/sec.  If the logp

a a

the office or the field.

8.2.3  Distribution of Gap Sizes

The distribution of gaps between the vehicles in the different
streams has a major effect on the performance of the
unsignalized intersection.  However, it is important only to look
at the distribution of the larger gaps; those that are likely to be
accepted.  As the shorter gaps are expected to be rejected, there
is little point in modeling these gaps in great detail.

A common model uses a random vehicle arrival pattern, that is,
the inter-arrival times follow an exponential distribution.  This
distribution will predict a large number of headways less than 1
sec.  This is known to be unrealistic, but it is used because these
small gaps will all be rejected.

This exponential distribution is known to be deficient at high
flows and a displaced exponential distribution is often
recommended.  This model assumes that vehicle headways are
at least t  sec.m
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(8.13)

(8.14)

(8.15)

(8.16)

Better models use a dichotomized distribution.  These models In this chapter, the word "queues" is used to refer to a line of
assume that there is a proportion of vehicles that are free of stopped vehicles.  On the other hand, a platoon is a group of
interactions and travel at headways greater than t . These traveling vehicles which are separated by a short headway of t .m

vehicles are termed "free" and the proportion of free vehicles is When describing the length of a platoon, it is usual to include a
�.  There is a probability function for the headways of free platoon leader which will have a longer headway in front of him
vehicles.  The remaining vehicles travel in platoons and again or her.  A platoon of length one is a single vehicle travelling
there is a headway distribution for these bunched vehicles.  One without any vehicles close-by.  It is often useful to distinguish
such dichotomized headway model is Cowan's (1975) M3 model between free vehicles (or platoon leaders) and those vehicles in
which assumes that a proportion, �, of all vehicles are free and the platoon but behind the leader.  This latter group are called
have an displaced exponential headway distribution and the 1-� bunched vehicles.  The benefits of a number of different headway
bunched vehicles have the same headway of only t .m

m

models will be discussed later.

8.3  Headway Distributions Used in Gap Acceptance Calculations

8.3.1  Exponential Headways

The most common distribution is the negative exponential
distribution which is sometimes referred to as simply the
"exponential distribution".  This distribution is based on the
assumption that vehicles arrive at random without any
dependence on the time the previous vehicle arrived.  The
distribution can be derived from assuming that the probability of
a vehicle arriving in a small time interval (t, t+
t) is a constant.
It can also be derived from the Poisson distribution which gives
the probability of n vehicles arriving in time t, that is:

where q is the flow in veh/sec.  For n = 0 this equation gives the
probability that no vehicle arrives in time t.  The headway, h,
must be then greater than t and the probability, from Equation If the flow was 1440 veh/h or 0.4 veh/sec then the number of
8.13 is headways less than 0.1 seconds is then   or

The cumulative probability function of headways is then

The probability distribution function is then be considered to be the space around a vehicle that no other

This is the equation for the negative exponential distribution.
The parameter q can be estimated from the flow or the reciprocal
of the average headway.  As an example, if there were 228
headways observed in half an hour, then the flow is 228/1800 i.e.
q = 0.127 veh/sec.  The proportion of headways expected to be
greater than 5 seconds is then

P(h>5) =  e –q t

  =  e – 5*0.127

 =  0.531

The expected number of headways greater than 5 seconds
observed in half an hour is then 0.531&228 or 116.

56 per hour.  This over-estimation of the number of very short
headways is considered to be unrealistic and the displaced
exponential distribution is often used instead of the negative
exponential distribution.

8.3.2  Displaced Exponential Distribution

The shifted or displaced exponential distribution assumes that
there is a minimum headway between vehicles, t .  This time canm
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(8.17)

(8.18)

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

vehicle can intrude divided by the traffic speed.  If the flow is q
veh/h then in one hour q vehicles will pass and there are t & qm

seconds lost while these vehicles pass. The remaining time must
then be distributed randomly after each vehicle and the average
random component is (1-t & q)/q seconds.  The cumulativem

probability distribution of headways is then:

where,

There, the terms, � and t  need to be evaluated.  These can bem

estimated from the mean and the variance of the distribution.
The mean headway, E(h), is given by:

The variance of headways is 1/� .  These two relationships can2

then be used to estimate � and t .m

This distribution is conceptually better than the negative
exponential distribution but it does not account for the
platooning that can occur in a stream with higher flows.  A
dichotomized headway distribution provides a better fit.

8.3.3  Dichotomized Headway Distributions

In most traffic streams there are two types of vehicles, the first
are bunched vehicles; these are closely following preceding
vehicles.  The second group are free vehicles that are travelling
without interacting with the vehicles ahead.  There have been a
number of dichotomized headway distributions developed over
time.  For instance, Schuhl (1955) proposed a distribution

where there are � vehicles that are free (not in platoons);

there are (1–�) bunched vehicles;

is the average headway for free vehicles;

is the average headway for bunched or constrained
vehicles;

   t   is the shift in the curve.m

Other composite headway models have been proposed by
Buckley (1962; 1968). However, a better headway model for
gap acceptance is the M3 model proposed by Cowan (1975).
This model does not attempt to model the headways between the
bunched vehicles as these are usually not accepted but rather
models the larger gaps.  This headway model has a cumulative
probability distribution:

and
p(h� t)  =  0 otherwise.

Where � is a decay constant given by the equation

Cowan's headway model is rather general.  To obtain the
displaced exponential distribution set � to 1.0.  For the negative
exponential distribution, set � to 1.0 and t  to 0.  Cowan's modelm

can also give the headway distribution used by Tanner (1962) by
setting � to 1–t q, however the distribution of the number ofm

vehicles in platoons is not the same.  This is documented below.

Brilon (1988) indicated that the proportion of free vehicles could
be estimated using the equation,

where A values ranged from 6 to 9.  Sullivan and Troutbeck
(1993) found that this equation gave a good fit to data, from
more than 600 of hours of data giving in excess of 400,000
vehicle headways, on arterial roads in Australia.  They also
found that the A values were different for different lanes and for
different lane widths.  These values are listed in Table 8.1.  
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Table 8.1 theory when predicting capacity or delays.  The hyper-Erlang
“A” Values for Equation 8.23 from Sullivan and
Troutbeck (1993).

Median All other
Lane lanes

Lane width < 3.0 meters 7.5 6.5

3.0 � Lane width � 3.5 meters 7.5 5.25

Lane width> 3.5 meters 7.5 3.7

Typical values of the proportion of free vehicles are given in
Figure 8.3.

The hyper-Erlang distribution is also a dichotomized headway
distribution that provides an excellent fit to headway data.  It is
useful in simulation programs but has not been used in traffic 

distribution given by Dawson (1969) is:

8.3.4 Fitting the Different Headway
Models to Data

If the mean headway is 21.5 seconds and standard deviation is
19.55 seconds, then the flow is 1/21.5 or 0.0465 veh/seconds
(167 veh/hour).  A negative exponential curve that would fit this
data is then,

Figure 8.3
Typical Values for the Proportion of Free Vehicles.
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(8.26)

(8.27)

To estimate the parameters for the displaced exponential
distribution, the difference between the mean and the standard
deviation is the displacement, that is t  is equal to 21.49 – 19.55m

or 1.94 seconds.  The constant � used in Equation 8.21 is the
reciprocal of the standard deviation.  In this case, � is equal to
1/19.55 or 0.0512 veh/sec.  The appropriate equation is then:

The data and these equations are shown in Figure 8.4 which
indicates the form of these distributions.  The reader should not
make any conclusions about the suitability of a distribution from
this figure but should rather test the appropriateness of the model
to the data collected.

In many cases there are a substantial number of very short
headways and a dichotomized headway distribution performs
better.  As only the larger gaps are likely to be accepted by
drivers, there is no point in modeling the shorter gaps in great
detail.  An example of Cowan’s M3 model and headway data
from an arterial road is shown in Figure 8.5.  Figure 8.6 gives time of t .  Although the distribution of these 'revised' major
the same data and the hyper-Erlang distribution.

Under these conditions the mean platoon size is 

and the variance by

Another distribution of platoons used in the analysis of
unsignalized intersections is the Borel-Tanner distribution.  This
platooning distribution comes from Tanner's (1962) assumptions
where the major stream gaps are the outcome of a queuing
process with random arrivals and a minimum inter-departure

m

stream gaps is given  by Equation 8.21 with � equal to 1–t q, m 

Figure 8.4
Exponential and Displaced Exponential Curves

(Low flows example).
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Figure 8.5
Arterial Road Data and a Cowan (1975) Dichotomized Headway Distribution 

(Higher flows example).

Figure 8.6 
Arterial Road Data and a Hyper-Erlang Dichotomized Headway Distribution

(Higher Flow Example).
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(8.29)

the distribution of the platoon length is Borel-Tanner (Borel Haight and Breuer  (1960) found the mean platoon size to be 
1942; Tanner 1953; 1961; and Haight and Breuer 1960).  Again,
q is the flow in veh/sec.  The Borel-Tanner distribution of (1- �) /� .  For the same mean platoon size, the Borel-Tanner
platoons gives the probability of a platoon of size n as

where n is an integer.

1 / (1 -  t q ) or 1/� and the variance to be orm 
3 

distribution has a larger variance and predicts a greater number
of longer platoons than does the geometric distribution.
Differences in the platoon size distribution does not affect an
estimate of capacity but it does affect the average delay per
vehicle as shown in Figure 8.13.

8.4  Interaction of Two Streams

For an easy understanding of traffic operations at an unsignalized
intersection it is useful to concentrate on the simplest case first
(Figure 8.7).

All methods of traffic analysis for unsignalized intersections are
derived from a simple queuing model in which the crossing of
two traffic streams is considered.  A priority traffic stream
(major stream) of the volume q  (veh/h) and a non-priority trafficp

stream (minor stream) of the volume q  (veh/h) are involved inn

this queuing model.  Vehicles from the major stream can cross
the conflict area without any delay.  Vehicles from the minor where,
stream are only allowed to enter the conflict area, if the next
vehicle from the major stream is still t  seconds away (t  is the stop line in the minor stream in veh/sec,c c

critical gap), otherwise they have to wait.  Moreover, vehicles
from the minor stream can only enter the intersection t  secondsf

after the departure of the previous vehicle (t  is the follow-up the major stream, andf 

time).

8.4.1  Capacity

The mathematical derivation of the capacity q  for the minorm

stream is as follows.  Let  g(t)  be the number of minor stream
vehicles which can enter into a major stream gap of duration t.
The expected number of these t-gaps per hour is 3600q  f(t) p

where,
f(t) = statistical density function of the gaps in the

major stream and
q = volume of the major stream.p

Therefore, the amount of capacity which is provided by t-gaps
per hour is 3600 q  f(t) g(t).p

To get the total capacity, expressed in veh/second, we have to
integrate over the whole range of major stream gaps:

q = maximum traffic volume departing from them

q = major stream volume in veh/sec,p

f(t) = density function for the distribution of gaps in

g(t) = number of minor stream vehicles which can
enter into a major stream gap of size, t .

Based on the gap acceptance model, the capacity of the simple
2-stream situation (Figure 8.7) can be evaluated by elementary
probability theory methods if we assume:

(a) constant t  and t  values,c f

(b) exponential distribution for priority stream headways
(cf. Equation 8.15), and

(c) constant traffic volumes for each traffic stream.
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(8.30)

(8.31)

Figure 8.7
Illustration of the Basic Queuing System.

Within assumption (a), we have to distinguish between two
different formulations for the term g(t).  These are the reason for
two different families of capacity equations.  The first family
assumes a stepwise constant function for g(t) (Figure 8.2):

where,
p (t)= probability that  n  minor streamn

vehicles enter a gap in the major stream
of duration t,

The second family of capacity equations assumes a continuous
linear function for g(t) . This is an approach which has first been
used by Siegloch (1973) and later also by McDonald and
Armitage (1978).
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where,

Once again it has to be emphasized that both in Equations 8.30
and 8.31, t  and t  are assumed to be constant values for all different manner:c f

drivers.

Both approaches for g(t) produce useful capacity formulae where
the resulting differences are rather small and can normally be
ignored for practical applications (cf. Figure 8.8).

If we combine Equations 8.29 and 8.30, we get the capacity
equation used by Drew (1968), Major and Buckley (1962), and
by Harders (1968), which these authors however, derived in a

Figure 8.8
Comparison Relation Between Capacity (q-m) and Priority Street Volume (q-p) .
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(8.32)

(8.33)

If we combine Equations 8.29 and 8.31 we get Siegloch's (1973)
formula,

These formulae result in a relation of capacity versus conflicting
flow illustrated by the curves shown in Figure 8.8.

The idealized assumptions, mentioned above as (a), (b), (c),
however, are not realistic. Therefore, different attempts to drop
one or the other assumption have been made.  Siegloch (1973)
studied different types of gap distributions for the priority stream
(cf. Figure 8.9) based on analytical methods.  Similar studies
have also been performed by Catchpole and Plank (1986) and
Troutbeck (1986).  Grossmann (1991) investigated these effects
by simulations.  These studies showed

� If the constant t  and  values are replaced by realisticc

distributions (cf. Grossmann 1988) we get a decrease
in capacity.

� Drivers may be inconsistent; i.e. one driver can have
different critical gaps at different times; A driver might
reject a gap that he may otherwise find acceptable. This
effect results in an increase of capacity.

� If the exponential distribution of major stream gaps is
replaced by more realistic headway distributions, we
get an increase in capacity of about the same order of
magnitude as the effect of using a distribution for t  andc

t  values (Grossmann 1991 and Troutbeck 1986).f

� Many unsignalized intersections have complicated
driver behavior patterns, and there is often little to be
gained from using a distribution for the variables t  andc

t  or complicated headway distributions.  Moreover,f

Grossmann could show by simulation techniques that
these effects compensate each other so that the simple
capacity equations, 8.32 and 8.33, also give quite
realistic results in practice.

Note: Comparison of capacities for different types of headway distributions in the main street traffic flow for t = 6 seconds andc 

t = 3 seconds.  For this example, t  has been set to 2 seconds.f m

Figure 8.9
Comparison of Capacities for Different Types of 

Headway Distributions in the Main Street Traffic Flow.
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(8.34)

(8.35)

(8.36)

(8.37)

(8.38)

More general solutions have been obtained by replacing the  equation:
exponential headway distribution used in assumption (b) with a
more realistic one e. g. a dichotomized distribution (cf. Section
8.3.3).  This more general equation is:

where

This equation is illustrated in Figure 8.10.  This is also similar
to equations reported by Tanner (1967), Gipps (1982),
Troutbeck (1986), Cowan (1987), and others.  If � is set to 1
and t  to 0, then Harders' equation is obtained.  If � is set tom

l– , then this equation reduces to Tanner's (1962) This was proposed by Jacobs (1979) .

If the linear relationship for g(t) according to Equation 8.37 is
used, then the associated capacity equation is

or

Figure 8.10
The Effect of Changing �� in Equation 8.31 and Tanner's Equation 8.36.
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(8.39)

(8.40)

(8.41)Tanner (1962) analyzed the capacity and delay at an intersection
where both the major and minor stream vehicles arrived at
random; that is, their headways had a negative exponential
distribution.  He then assumed that the major stream vehicles
were restrained such that they passed through the intersection at
intervals not less than t  sec after the preceding major streamm

vehicle.  This allowed vehicles to have a finite length into which where,
other vehicles could not intrude.  Tanner did not apply the same
constraint to headways in the minor stream.  He assumed the
same gap acceptability assumptions that are outlined above.
Tanner considered the major stream as imposing 'blocks' and
'anti-blocks' on the minor stream.  A block contains one or more
consecutive gaps less than t  sec; the block starts at the firstc

vehicle with a gap of more than t sec in-front of it and ends c 

sec after the last consecutive gap less than t   sec.  Tanner'sc

equation for the entry capacity is a particular case of a more
general equation.

An analytical solution for a realistic replacement of assumptions
(a) and (b) within the same set of formulae is given by Plank and
Catchpole (1984):

where

Var(t  ) = variance of critical gaps,c

Var(t  ) = variance of follow-up-times,f

� = increment, which tends to 0, when Var(tc c

) approaches 0, and
� = increment, which tends to 0, when Var(tf f

) approaches 0.

Wegmann (1991) developed a universal capacity formula which
could be used for each type of distribution for the critical gap, for
the follow-up time and for each type of the major stream
headway distribution.

E(C) = mean length of a "major road cycle" C,
C = G  +  B,
G = gap,
B = block,
- = probability (G  >  t ), andc

z(t) = expected number of departures within
the time interval of duration  t.

Since these types of solutions are complicated many researchers
have tried to find realistic capacity estimations by simulation
studies.  This applies especially for the German method (FGSV
1991) and the Polish method.

8.4.2 Quality of Traffic Operations

In general, the performance of traffic operations at an
intersection can be represented by these variables (measures of
effectiveness, MOE):

(a) average delay,
(b) average queue lengths,
(c) distribution of delays,
(d) distribution of queue lengths (i.e number of vehicles

queuing on the minor road),
(e) number of stopped vehicles and number of

accelerations from stop to normal velocity, and
(f) probability of the empty system (p  ).o

Distributions can be represented by:
 
� standard deviations,
� percentiles, and
� the whole distribution.

To evaluate these measures, two tools can be used to solve the
problems of gap acceptance:

� queuing theory and
� simulation.
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(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

Each of these MOEs are a function of q  and q ; the proportionp n

of "free" vehicles and the distribution of platoon size length in
both the minor and major streams.  Solutions from queuing
theory in the first step concentrate on average delays.

A general form of the equation for the average delay per vehicle
is

where � and J are constants
x is the degree of saturation = q /qn m

and D  has been termed Adams' delay after Adams (1936).min

Adams' delay is the average delay to minor stream vehicles when
minor stream flow is very low.  It is also the minimum average
delay experienced by minor stream vehicles.

Troutbeck (1990) gives equations for �, J and D  based on themin

formulations by Cowan (1987).  If stream 2 vehicles are
assumed to arrive at random, then � is equal to 0. On the other
hand, if there is platooning in the minor stream, then � is greater
than 0.

For random stream 2 arrivals, J is given by

Note that J is approximately equal to 1.0.  D  depends on themin

platooning characteristics in stream 1.  If the platoon size
distribution is geometric, then

(Troutbeck 1986).

Tanner's (1962) model has a different equation for Adams' delay,
because the platoon size distribution in stream 1 has a Borel-
Tanner distribution.  This equation is

Another solution for average delay has been given by Harders
(1968).  It is not based on a completely sophisticated queuing
theory.  However, as a first approximation, the following
equation for the average delay to non-priority vehicles is quite
useful.

with q  calculated using Equation. 8.34 or similar.m

M/G/1 Queuing System -   A more sophisticated queuing theory
model can be developed by the assumption that the simple two-
streams system (Figure 8.7) can be represented by a M/G/1
queue.  The service counter is the first queuing position on the
minor street.  The input into the system is formed by the vehicles
approaching from the minor street which are assumed to arrive
at random, i.e. exponentially distributed arrival headways (i.e.
"M").  The time spent in the first position of the queue is the
service time. This service time is controlled by the priority
stream, with an unknown service time distribution.  The "G" is
for a general service time.  Finally, the "1" in M/G/1 stands for
one service channel, i.e. one lane in the minor street.

For the M/G/1 queuing system, in general, the Pollaczek-
Khintchine formula is valid for the average delay of customers in
the queue

where
W = average service time. It is the average

time a minor street vehicle spends in the
first position of the queue near the
intersection

C = coefficient of variation of service timesw
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(8.48)

(8.49)

(8.51)

    Var (W) = variance of service times

The total average delay of minor street vehicles is then

D = D  + W.q

In general, the average service time for a single-channel queuing
system is: l/capacity.  If we derive capacity from Equations 8.32 critical gap parameters t  and  and  the headway distributions.
and following and if we include the service time W in the total However, C, �, and � values are not available for all conditions.
delay, we get

where

Up to this point, the derivations are of general validity.  The real
problem now is to evaluate C.  Only the extremes can be defined
which are:

� Regular service: Each vehicle spends the same time in the
first  position.  This gives Var(W)  = 0, C  =  0, and C  = w

2

0.5

This is the solution for the M/D/l queue.

� Random service: The times vehicles spend in the first
position are exponentially distributed. This gives 
Var(W)  = E(W), C  =  1, and C  =  1.0w

2

This gives the solution for the M/M/1 queue.

Unfortunately, neither of these simple solutions applies exactly
to the unsignalized intersection problem.  However, as an
approximation, some authors recommend the application of
Equation 8.48 with C = 1.

Equation 8.42 can be further transformed to

where � and � are documented in Troutbeck (1990).

This is similar to the Pollaczek-Khintchine formula (Equation
8.48).  The randomness constant C is given by (�+�)/(l+�) and
the term 1/D *(l+�) can be considered to be an equivalentmin

'capacity' or 'service rate.'  Both terms are a function of the

c

For the M/G/1 system as a general property, the probability p  ofo

the empty queue is given by

p  = 1 - x (8.50)o

This formula is of sufficient reality for practical use at
unsignalized intersections.

M/G2/1 queuing system - Different authors found that the
service time distribution in the queuing system is better
described by two types of service times, each of which has a
specific distribution:

W = service time for vehicles entering the empty system, i.e1

no vehicle is queuing on the vehicle's arrival
 
W = service time for vehicles joining the queue when other2  

vehicles are already queuing.

Again, in both cases, the service time is the time the vehicle
spends waiting in the first position near the stop line.  The first
ideas for this solution have been introduced by Kremser (1962;
1964) and in a comparable way by Tanner (1962), as well as by
Yeo and Weesakul (1964).

The average time which a customer spends in the queue of such
a system is given by Yeo's (1962) formula:

where,
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(8.53)

(8.54)

D  = average delay of vehicles in the queue atq

higher positions than the first,
E(W ) =  expectation of W ,1 1

E(W ) = expectation of (W *W )1 1 1
2

E(W ) = expectation of W ,2 2

E(W ) = expectation of (W * W ),2 2 2
2

v = y  + z,
y = 1 –q  E(W ), andn 2

z = q  E(W ).n l

The probability p  of the empty queue iso

p = y/v (8.52)o

The application of this formula shows that the differences against
Equation 8.50 are quite small ( < 0.03).  Refer to Figure 8.11.

If we also include the service time ( = time of minor street
vehicles spent in the first position) in the total delay, we get 

(Brilon 1988):Formulae for the expectations of  W  and  W1 2

respectively have been developed by Kremser (1962):

Figure 8.11
Probability of an Empty Queue: Comparison of Equations 8.50 and 8.52.
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Kremser (1964), however, showed that the validity of these regarded as approximations and only apply for
equations is restricted to the special case of  t  = t , which isc f  

rather unrealistic for two-way-stop-control unsignalized
intersections.  Daganzo (1977) gave an improved solution for
E(W ) and E(W ) which again was extended by Poeschl (1983).2 2

2

These new formulae were able to overcome Kremer's (1964)
restrictions.  It can, however be shown that Kremer's first
approach (Equation 8.56) also gives quite reliable approximate
results for t  and t  values which apply to realistic unsignalizedc f

intersections.  The following comments can also be made about
the newer equations.

� The formulae are so complicated that they are far from
being suitable for practice. The only imaginable application
is the use in computer programs.

� Moreover, these formulae are only valid under assumptions
(a), (b), and (c) in Section 8.4.1 of the paper.  That means
that  for  practical  purposes,  the  equations  can  only  be

undersaturated conditions and steady state conditions.

Figure 8.12 gives a graphical comparison for some of the delay
formulae mentioned.

Differences in the platoon size distribution affects the average
delay per vehicle as shown in Figure 8.13.  Here, the critical gap
was 4 seconds, the follow-up time was 2 seconds, and the
priority stream flow was 1000 veh/h.  To emphasize the point,
the average delay for a displaced exponential priority stream is
4120 seconds, when the minor stream flow was 400 veh/h.  This
is much greater than the values for the Tanner and exponential
headway examples which were around 11.5 seconds for the same
major stream flow.  The average delay is also dependent on the
average platoon size as shown in Figure 8.14.  The differences
in delays are dramatically different when the platoon size is
changed.

Note: For this example; q  = 600 veh/h,  t  = 6 sec , and t  = 3 sec.p c f

Figure 8.12
Comparison of Some Delay Formulae.



8.  UNSIGNALIZED INTERSECTION THEORY

8 - 22

Figure 8.13
Average Steady State Delay per Vehicle 

Calculated Using Different Headway Distributions.

Figure 8.14
Average Steady State Delay per Vehicle by Geometric 

Platoon Size Distribution and Different Mean Platoon Sizes.
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(8.57)

(8.58)

(8.59)

8.4.3  Queue Length

In each of these queuing theory approaches, the average queue
length (L) can be calculated by Little's rule (Little 1961):

L  =  q  D (8.55)n

Given that the proportion of time that a queue exists is equal to
the degree of saturation, the average queue length when there is
a queue is:

L   =  q  D/x  = q  D (8.56)q n m

The distribution of queue length then is often assumed to be
geometric.

However, a more reliable derivation of the queue length
distribution was given by Heidemann (1991). The following
version contains a correction of the printing mistakes in the
original paper  (there: Equations 8.30 and 8.31).

p(n)   =  probability that n vehicles are queuing on the              
   minor street

These expressions are based on assumptions  (a), (b), and (c)  in
Section 8.4.1.  This solution is too complicated for practical use.
Moreover, specific percentiles of the queue length is the desired
output rather than probabilities.  This however, can not be

calculated from these equations directly.  Therefore, Wu (1994)
developed another set of formulae which approximate the above
mentioned exact equations very closely:

p(n)   =  probability that n vehicles are queuing on the       
           minor street

where,

x   = degree of saturation (q   according to Equationm

8.33).

For the rather realistic approximation  t  � 2 t , we get :c f

From Equation 8.58 we get the cumulative distribution function

For a given percentile, S,  (e.g. S = F(n) = 0.95) this equation
can be solved for n to calculate the queue length which is only
exceeded during (1-S)*100 percent of the time (Figure 8.15).
For practical purposes, queue length can be calculated with
sufficient precision using the approximation of the M/M/1
queuing system and, hence, Wu’s equation.  The 95-percentile-
queue length based on Equation 8.59 is given in Figure 8.15.
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(8.60)

(8.61)

(8.62)

The parameter of the curves (indicated on the right side) is the degree of saturation ( x ).

Figure 8.15
95-Percentile Queue Length Based on Equation 8.59  (Wu 1994). 

8.4.4  Stop Rate

The proportion of drivers that are stopped at an unsignalized
intersection with two streams was established by Troutbeck
(1993).  The minor stream vehicles were assumed to arrive at
random whereas the major stream headways were assumed to
have a Cowan (1975) M3 distribution.  Changes of speed are
assumed to be instantaneous and the predicted number of
stopped vehicles will include those drivers who could have
adjusted their speed and avoided stopping for very short periods.

The proportion stopped, P(x,0), is dependent upon the degree of
saturation, x, the headways between the bunched major stream
vehicles, t , the critical gap, t . and the major stream flow, q .m c p

The appropriate equation is:

where � is given by �q /(1-t q ).  The proportion of driversp m p

stopped for more than a short period of t, where t is less than the

follow-up time t  , increases from some minimum value, P(0,t),f

to 1 as the degree of saturation increases from 0 to 1.

The proportion of drivers stopped for more than a short period
t, P(x,t), is given by the empirical equation:

where

 and



P(0,t) 
 1	 (1	tmqp�qpt�)e
	�(ta	tm)

T > 1

qm	 qn

2
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or

If the major stream is random then a  is equal to 1.25 and for0

bunched major stream traffic, it is 1.15.  The vehicles that are
stopped for a short period may be able to adjust their speed and
these vehicles have been considered to have a “partial stop."
Troutbeck (1993) also developed estimates of the number of
times vehicles need to accelerate and move up within the queue.

8.4.5  Time Dependent Solution

Each of the solutions given by the conventional queuing theory
above is a steady state solution.  These are the solutions that can
be expected for non-time-dependent traffic volumes after an
infinitely long time, and they are only applicable when the degree
of saturation  x  is  less  than  1.   In practical terms, this means,
the  results  of  steady  state  queuing   theory   are   only   useful

approximations if T is considerably greater than the expression
on the right side of the following equation.

with T  = time of observation over which the average delay
should be estimated in seconds,

after Morse (1962).

This inequality can only be applied if q  and q  are nearlym n

constant during time interval  T.  The threshold given by
Equation 8.63 is illustrated by Figure 8.16. The curves are given
for time intervals T of 5, 10, 15, 30, and 60 minutes.  Steady
state conditions can be assumed if  q  is below the curve for then

corresponding T-value.  If this condition (Equation 8.63) is not
fulfilled, time-dependent solutions should be used.
Mathematical solutions for the time dependent problem have
been  developed  by  Newell  (1982)  and now  need to be made

Note: The curves are given for time intervals T of 5, 10, 15, 30, and 60 minutes.  Steady state conditions can be assumed if  q  isn

below the curve for the corresponding T-value.

Figure 8.16
Approximate Threshold of the Length of Time Intervals For the Distinction

Between Steady-State Conditions and Time Dependent Situations. 
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more accessible to practicing engineers.  There is, however, a This delay formula has proven to be quite useful to estimate
heuristic approximate solution for the case of the peak hour delays and it has  a quite reliable background particularly for
effect given by Kimber and Hollis (1979) which are based on the temporarily oversaturated conditions.
ideas of Whiting, who never published his work.

During the peak period itself, traffic volumes are greater than ordinate transfer method.  This is a more approximate method.
those before and after that period.  They may even exceed The steady state solution is fine for sites with a low degree of
capacity.  For this situation, the average delay during the peak saturation and the deterministic solution is satisfactory for sites
period can be estimated as: with a very high degree of saturation say, greater than three or

q = capacity of the intersection entry during them

peak period of duration T,
q = capacity of the intersection entry before andmo

after the peak period,
q  = minor street volume during the peak period ofn

duration T, and
q = minor street volume before and after the peakno

period

(each of these terms  in veh/sec;  delay in sec).

C is again similar to the factor C mentioned for the M/G/1
system, where

C = 1 for unsignalized intersections and
C = 0.5 for signalized intersections (Kimber and Hollis

1979).

A simpler equation can be obtained by using the same co-

four.  The co-ordinate transfer method is one technique to
provide estimates between these two extremes.  the reader
should also refer to Section 9.4.

The steady state solution for the average delay to the entering
vehicle is given by Equation 8.42.  The deterministic equation
for delay, D , on the other hand isd

x > 1 (8.65)

and D   =  0d

otherwise,

where L is the initial queue,0 

T is time the system is operating in seconds, and
q  is the entry capacity.m

These equations are diagrammatically illustrated in Figure 8.17.
For a given average delay the co-ordinate transformation method
gives a new degree of saturation, x  , which is related to thet

steady state degree of saturation, x , and the deterministic degrees 

of saturation, x  , such thatd

x  – x  =  1 – x   =  a (8.66)d t s

Rearranging Equations 8.42 and 8.65 gives two equations for xs

and x  as a function of the delays  and .  These twod

equations are:



xd 

2(Dd	Dmin)	2L0/qm

T
� 1

xt 

2(Dd	Dmin)	2L0/qm

T
	

Ds	Dmin	�Dmin

Ds	Dmin�JDmin

Dt 

1
2

A2
�B	A

A 


T(1	x)
2

	

L0

qm

	 Dmin(2	J)

B 
 4Dmin
T(1	x)(1��)

2
�

Tx(J��)
2

	(1	J)
L0

qm

�Dmin

8.  UNSIGNALIZED INTERSECTION THEORY

8 - 27

(8.68)

(8.69)

(8.70)

(8.71)

(8.72)

Figure  8.17
The Co-ordinate Transform Technique.

and

Using Equation 8.66, x  is given by:t

Rearranging Equation 8.69 and setting D = D = D , x = x gives:s d J 

where

and

Equation 8.66 ensures that the transformed equation will
asymptote to the deterministic equation and gives a family of
relationships for different degrees of saturation and period of
operation from this technique (Figure 8.18).

A simpler equation was developed by Akçelik in Akcelik and
Troutbeck (1991).  The approach here is to rearrange Equation
8.42 to give:
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(8.74)

(8.75)

(8.76)

Figure 8.18
A Family of Curves Produced from the Co-Ordinate Transform Technique.

and this is approximately equal to: The average delay predicted by Equation 8.74 is dependent on

If this is used in Equation 8.66 and then rearranged then the
resulting equation of the non-steady state delay is:

A similar equation for M/M/1 queuing system can be obtained
if J is set to 1, � is set to zero, and D  is set to 1/q ; the resultmin m

is:

the initial queue length, the time of operation, the degree of
saturation, and the steady state equation coefficients. This
equation can then be used to estimate the average delay under
oversaturated conditions and for different initial queues.  The use
of these and other equations are discussed below.

8.4.6 Reserve Capacity

Independent of the model used to estimate average delays, the
reserve capacity (R) plays an important role
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(8.80)

In the 1985 edition of the HCM but not the 1994 HCM, it is used
as the measure of effectiveness.  This is based on the fact that
average delays are closely linked to reserve capacity.  This close
relationship is shown in Figure 8.19.  In Figure 8.19, the average
delay, D, is shown in relation to reserve capacity, R.  The delay
calculations are based on Equation 8.64 with a peak hour
interval of duration T= 1 hour.  The parameters (100, 500, and
1000 veh/hour) indicate the traffic volume, q , on the majorp

street.  Based on this relationship, a good approximation of the
average delay can also be expressed by reserve capacities.  What
we also see is that - as a practical guide - a reserve capacity

R > 100 pcu/h  generally ensures an average delay

below 35 seconds. 

Brilon (1995) has used a coordinate transform technique for the
"Reserve Capacity" formulation for average delay with
oversaturated conditions. His set of equations can be given by 

where

T = duration  of the peak period
q = capacity during the peak periodm

q = minor street flow during the peak periodn

R = reserve capacity during the peak period 
= q – qemax  n

L = average queue length in the period before and0

after the peak period
q = minor street flow in the period before and aftern0

the peak period
q = capacity in the period before and after the peakm0

period
R = reserve capacity in the period before and after the0

peak period

Figure 8.19
Average Delay, D, in Relation to Reserve Capacity R.
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All variables in these equations should be used in units of depart according to the gap acceptance mechanism.  The
seconds (sec), number of vehicles(veh), and veh/sec.  Any effect of limited acceleration and deceleration can, of
capacity formula to estimate  q   and  q   from Section 8.4.1 canm m0

be used.

The numerical results of these equations as well as their degree
of sophistication are comparable with those of Equation 8.75.

8.4.7   Stochastic Simulation

As mentioned in the previous chapters, analytical methods are
not capable of providing a practical solution, given the
complexity and the assumptions required to be made to analyze
unsignalized intersections in a completely realistic manner.  The
modern tool of stochastic simulation, however, is able to
overcome all the problems very easily.  The degree of reality of
the model can be increased to any desired level.  It is only
restricted by the efforts one is willing to undertake and by the
available (and tolerable) computer time.  Therefore, stochastic
simulation models for unsignalized intersections were developed
very early (Steierwald 1961a and b; Boehm, 1968).  More recent
solutions were developed in the U. K. (Salter 1982), Germany
(Zhang 1988; Grossmann 1988; Grossmann 1991), Canada
(Chan and Teply 1991) and Poland (Tracz 1991).  

Speaking about stochastic simulation, we have to distinguish two
levels of complexity:

1) Point Process Models - Here cars are treated like points,
i.e. the length is neglected.  As well, there is only limited
use of deceleration and acceleration. Cars are regarded as
if  they  were "stored"  at  the stop line.   From  here  they

course, be taken into account using average vehicle
performance values (Grossmann 1988).  The advantage of
this type of simulation model is the rather shorter computer
time needed to run the model for realistic applications.
One such model is KNOSIMO (Grossmann 1988, 1991).
It is capable of being operated by the traffic engineer on
his personal computer during the process of intersection
design.  A recent study (Kyte et al , 1996) pointed out that
KNOSIMO provided the most realistic representation of
traffic flow at unsignalized intersections among a group of
other models.

KNOSIMO in its present concept is much related to
German conditions.  One of the specialities is the
restriction to single-lane traffic flow for each direction of
the main street.  Chan and Teply (1991) found some easy
modifications to adjust the model to Canadian conditions
as well.  Moreover, the source code of the model could
easily be adjusted to traffic conditions and driver behavior
in other countries.

2) Car Tracing Models - These models give a detailed
account of the space which cars occupy on a road together
with the car-following process but are time consuming to
run.  An example of this type of model is described by
Zhang (1988).

Both types of models are useful for research purposes.  The
models can be used to develop relationships which can then be
represented by regression lines or other empirical evaluation
techniques.  

8.5  Interaction of Two or More Streams in the Priority Road

The models discussed above have involved only two streams; a single lane with the opposing flow being equal to the sum of
one being the priority stream and the second being a minor the lane flows.  This results in the following equation for
stream.  The minor stream is at a lower rank than the priority capacity in veh/h:
stream.  In some cases there may be a number of lanes that must
be given way to by a minor stream driver.  The capacity and the
delay incurred at these intersections have been looked at by a
number of researchers.  A brief summary is given here.

If the headways in the major streams have a negative exponential
distribution then the capacity is calculated from the equation for where q is the total opposing flow.
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(8.86)

(8.87)

(8.88)

(8.88a)

(8.88b)

(8.90)

Tanner (1967) developed an equation for the capacity of an
intersection where there were n major streams.  The traffic in
each lane has a dichotomized headway distribution in which
there is a proportion of vehicles in bunches and the remaining
vehicles free of interaction.  All bunched vehicles are assumed
to have a headway of t  and the free vehicles have a headwaym

equal to the t  plus a negative exponentially distributed (orm

random) time.  This is the same as Cowan's (1975) M3 model.
Using the assumption that headways in each lane are
independent, Tanner reviewed the distribution of the random
time periods and estimated the entry capacity in veh/h as:

where � = �  + � + . . . . . + � (8.84)1 2 n

� = �q / (1-t  q ) (8.85)i i i m i

q  is the flow in the major stream i in veh/sec.i

�  is the proportion of free vehicles in the major stream i.i

This equation by Tanner is more complicated than an earlier
equation (Tanner 1962) based on an implied assumption that the
proportion of free vehicles, � , is a function of the lane flow.i

That is

�   =  (1-t  q)i m i

and then � reduces to q.  Fisk (1989) extended this earlier worki i

of Tanner (1962) by assuming that drivers had a different critical
gap when crossing different streams.  While this would seem to
be an added complication it could be necessary if drivers are
crossing some major streams  from the left before merging with
another stream from the right when making a left turn.  

Her equation for capacity is:

where q = q  + q + . . . . . + q1 2 n

8.5.1 The Benefit of Using a
Multi-Lane Stream Model

Troutbeck (1986) calculated the capacity of a minor stream to
cross two major streams which both have a Cowan (1975)
dichotomized headway distribution.  The distribution of
opposing headways is:

and

where

or after a little algebra,

and
�' = �  + � (8.89)1 2

As an example, if there were two identical streams then the
distribution of headways between vehicles in the two streams is
given by Equations 8.87 and 8.88.  This is also shown in figures
from Troutbeck (1991) and reported here as Figure 8.20.

Gap acceptance procedures only require that the longer
headways or gaps be accurately represented.  The shorter gaps
need only be noted.  

Consequently the headway distribution from two lanes can be
represented by a single Cowan M3 model with the following
properties:
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(8.92)

(8.93)

Figure 8.20
Modified 'Single Lane' Distribution of Headways (Troutbeck 1991).

and otherwise F(t) is zero.  This modified distribution is also
illustrated in Figure 8.20.  Values of �* and t  must be chosenm

*

to ensure the correct proportions and the correct mean headway
are obtained.  This will ensure that the number of headways
greater than t, 1–F(t), is identical from either the one lane or the
two lane equations when t is greater than t .m

*

Troutbeck (1991) gives the following equations for calculating
�* and t  which will allow the capacity to be calculated usingm

*

a modified single lane model which are identical to the estimate
from a multi-lane model.  

The equations

and

are best solved iteratively for t  with  t  being the ith estimate.m m,i

The appropriate equation is

�* is then found from Equation 8.93.

Troutbeck (1991) also indicates that the error in calculating
Adams' delay when using the modified single lane model  instead
of the two lane model is small.  Adams' delay is the delay to the
minor stream vehicles when the minor stream flow is close to
zero.  This is shown in Figure 8.21.  Since the modified
distribution gives satisfactory estimates of Adams' delay, it will
also give satisfactory estimates of delay.

In summary, there is no practical reason to increase the
complexity of the calculations by using multi-lane models and a
single lane dichotomized headway model can be used to
represent the distribution of headways in either one or two lanes.
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Figure 8.21
Percentage Error in Estimating Adams' Delay Against the 

Major Stream Flow for a Modified Single Lane Model (Troutbeck 1991).

8.6  Interaction of More than Two Streams of Different Ranking

8.6.1 Hierarchy of Traffic Streams at a
Two Way Stop Controlled Intersection

At all unsignalized intersections except roundabouts, there is a
hierarchy of streams. Some streams have absolute priority
(Rank 1), while others have to yield to higher order streams.  In
some cases, streams have to yield to some streams which in turn
have to yield to others.  It is useful to consider the streams as
having different levels of priority or ranking.  These different
levels of priority are established by traffic rules.  For instance, 

Rank 1 stream has absolute priority and does not need to
yield right of way to another stream,

Rank 2 stream has to yield to a Rank 1 stream, 

Rank 3 stream has to yield to a Rank 2 stream and in turn to
a Rank 1 stream, and

Rank 4 stream has to yield to a Rank 3 stream and in turn to
Rank 2 and Rank 1 streams (left turners from
the minor street at a cross-intersection).

This is illustrated in Figure 8.22 produced for traffic on the right
side.  The figure illustrates that the left turners on the major road
have to yield to the through traffic on the major road.  The left
turning traffic from the minor road has to yield to all other
streams but is also affected by the queuing traffic in the Rank 2
stream.

8.6.2  Capacity for Streams of
    Rank 3 and Rank 4

No rigorous analytical solution is known for the derivation of the
capacity of Rank-3-movements like the left-turner from the
minor street at a T-junction (movement 7 in Figure 8.22, right
side).  Here, the gap acceptance theory uses the impedance
factors p  as an approximation.  p  for each movement is the0 0

probability that no vehicle is queuing at the entry.  This is given
with sufficient accuracy by Equation 8.50 or better with the two
service time Equation 8.52.  Only during the part p  of the0,rank-2

total time, vehicles of Rank 3 can enter the intersection due to
highway code regulations.
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Note: The numbers beside the arrows indicate the enumeration of streams given by the Highway Capacity Manual (1994,
Chapter 10).

Figure 8.22
Traffic Streams And Their Level Of Ranking.

Therefore, for Rank-3-movements, the basic value q  for them

potential capacity must be reduced to p  #  q  to get the real0 m

potential capacity q :e

q  =  p   q (8.94)e,rank-3 0,rank-2 m,rank-3
.

For a T-junction, this means

q  =  p   qe,7 0,4 m,7
.

For a cross-junction, this means

q  =  p   q (8.95)e,8 x m,8
.

q  =  p   q (8.96)e,11 x m,11
.

with

p   =  p   px 0,1 0,4
.

Here the index numbers refer to the index of the movements
according to Figure 8.22. Now the values of p  and p  can be0,8 0,11

calculated according to Equation 8.50.

For Rank-4-movements (left turners at a cross-intersection), the
dependency between the p  values in Rank-2 and Rank-3-0

movements must be empirical and can not be calculated from
analytical relations.  They have been evaluated by numerous
simulations by Grossmann (1991; cf. Brilon and Grossmann
1991).  Figure 8.23 shows the statistical dependence between
queues in streams of Ranks 2 and 3.

In order to calculate the maximum capacity for the Rank-4-
movements (numbers 7 and 10), the auxiliary factors, p  andz,8

p , should be calculated first:z,11

diminished to calculate the actual capacities, q .  Brilon (1988,e

cf. Figures 8.7 and 8.8) has discussed arguments which support
this double introduction.

 The reasons for this are as follows:
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Figure 8.23
Reduction Factor to Account for the Statistical Dependence 

Between Streams of Ranks 2 and 3.

� During times of queuing in Rank-2 streams (e.g. left � Even if no Rank-2 vehicle is queuing, these vehicles
turners from the major street), the Rank-3 vehicles (e.g. influence Rank-3 operations, since a Rank-2 vehicle
left turners from the minor street at a T-junction) cannot
enter the intersection due to traffic regulations and the
highway code. Since the portion of time provided for
Rank-3 vehicles is p , the basic capacity calculated from Grossmann (1991) has proven that among the possibilities0

Section 8.4.1 for Rank-3 streams has to be diminished by considered, the described approach is the easiest and quite 
the factor p  for the corresponding Rank-2 streams0

(Equations 8.95 to 8.99).

approaching the intersection within a time of less than tc
prevents a Rank-3 vehicle from entering the intersection.

realistic in the range of traffic volumes which occur in practical
applications.

8.7  Shared Lane Formula

8.7.1  Shared Lanes on the Minor Street

If more than one minor street movement is operating on the same
lane, the so-called "shared lane equation" can be applied.  It
calculates the total capacity q  of the shared lane, if the capacitiess

of the corresponding movements are known. (Derivation in
Harders, 1968 for example.)

q = capacity of the shared lane in veh/h,s

q = capacity of movement i, if it operates on am,i

separate lane in veh/h,
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(8.104)

b = proportion of volume of movement i of the totali

volume on the shared lane, those streams. The factors p * and p * indicate the probability
m = number of movements on the shared lane.

The formula is also used by the HCM (1994, Equation 10-9).

This equation is of general validity regardless of the formula for
the estimation of q  and regardless of the rank of priority of them

three traffic movements.  The formula can also be used if the
overall capacity of one traffic stream should be calculated, if this
stream is formed by several partial streams with different
capacities, e.g. by passenger cars and trucks with different
critical gaps.  Kyte at al (1996) found that this procedure for
accounting for a hierarchy of streams, provided most realistic i = 4, j = 5  and k = 6 (cf. Figure 8.22)
results.

8.7.2  Shared Lanes on the Major Street

In the case of a single lane on the major street shared by right-
turning and through movements (movements no. 2 and 3 or 5
and 6 in Figure 8.22), one can refer to Table 8.2.

If left turns from the major street (movements no. 1 and 4 in
Figure 8.22) have no separate turning lanes, vehicles in the
priority l movements no. 2 and 3, and no. 5 and 6 respectively 

in Figure 8.21 may also be obstructed by queuing vehicles in

0,1   0,4

that there will be no queue in the respective shared lane.  They
might serve for a rough estimate of the disturbance that can be
expected and can be approximated as follows (Harders 1968):

where: i = 1, j = 2  and k = 3 (cf. Figure 8.22)

or

q =  volume of stream j in veh/sec,j

q =  volume of stream k in veh/sec, and  k

     t  andt =  follow-up time required by a vehicle in stream jBj  Bk  

    or k (s).
(1.7 sec < t  < 2.5 sec, e.g. t    =  2 sec)B B

In order to account for the influence of the queues in the major
street approach lanes on the minor street streams no. 7, 8, 10,
and 11, the values p  and p  ,  according to Equation 8.47 have0,1 0,4

to be replaced by the values p * and p * according to Equation0,1 0,4

8.101. This replacement is defined in Equations 8.95 to 8.97.

8.8 Two-Stage Gap Acceptance and Priority

At many unsignalized intersections there is a space in the center the basis of an adjustment factor �.   The resulting set of
of the major street available where several minor street vehicles equations for the capacity of a two-stage priority situation are:
can be stored between the traffic flows of the two directions of
the major street, especially in the case of multi-lane major traffic
(Figure 8.24).  This storage space within the intersection enables
the minor street driver to cross the major streams from each
direction at different behavior times.  This behavior can
contribute to an increased capacity. This situation is called two-
stage priority. The additional capacity being provided by these
wider intersections can not be evaluated by conventional
capacity calculation models.

Brilon et al. (1996) have developed an analytical theory for the
estimation of capacities under two-stage priority conditions. It is
based on an earlier approach by Harders (1968). In addition to
the analytical theory, simulations have been performed and were

for  y g 1

for y = 1
c = total capacity of the intersection for minor through trafficT  

(movement 8)



y

c(q1�q2)	c(q1�q2�q5)

c(q5)	q1	c(q1�q2�q5)
a
1–0.32exp(	1.3# k)
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Table 8.2
Evaluation of Conflicting Traffic Volume q  p

Note:  The indices refer to the traffic streams denoted in Figure 8.22.

Subject Movement No. Conflicting Traffic Volume qp

Left Turn from Major Road 1

7

q  + q5 6
3)

q  + q2 3
3)

Right Turn from Minor 6
Road

12

q  + 0.5 q2 3
2) 1)

q  + 0.5 q5 6
2) 1)

Through Movement from 5
Minor Road

11

q  + 0.5 q  + q  + q  + q  + q2 3 5 6 1 4
1) 3)

q  + q  + q  + 0.5 q ) + q  + q2 3 5 6 1 4
3) 1

Left Turn from Minor Road 4

10

q  + 0.5 q  + q  + q  + q  + q  + q2 3 5 1 4 12 11
1) 4)5)6) 5)

q  + 0.5 q  + q  + q  + q  + q  + q5 6 2 1 4 6 8
1) 4)5)6) 5)

Notes
1) If there is a right-turn lane, q  or  q  should not be considered.3 6

2) If there is more than one lane on the major road, q  and q  are considered as traffic volumes on the right2 5

lane.
3) If right-turning traffic from the major road is separated by a triangular island and has to comply with a

YIELD- or STOP-Sign, q  and q  need not be considered.6 3

4) If right-turning traffic from the minor road is separated by a triangular island and has to comply with a
YIELD- or STOP-sign, q  and q  need not be considered.9 12

5) If movements 11 and 12 are controlled by a STOP-sign, q  and q  should be halved in this equation.11 12

Similarly, if movements 8 and 9 are controlled by a STOP-sign, q  and q  should be halved.8 9

6) It can also be justified to omit q  and q  or to halve their values if the minor approach area is wide.9 12

where

q   = volume of priority street left turning traffic at part I1

q   = volume of major street through traffic coming from the2

left at part I
q   = volume of the sum of all major street flows coming5

from the right at part II.

�  =  1 for k=0

for k > 0 (8.105)

Of course, here the volumes of all priority movements at part II
have to be included.  These are: major right (6, except if this
movement is guided along a triangular island separated from the
through traffic) , major through (5), major left (4); numbers of
movements according to Figure 8.22.
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Note: The theory is independent of the number of lanes in the major street.

Figure 8.24
Minor Street Through Traffic (Movement 8) Crossing the Major Street in Two Phases.

c(q q ) = capacity at part I 1 + 2

c(q ) = capacity at part II5

c(q +q +q ) = capacity at a cross intersection for1 2 5

minor through traffic with a major
street traffic volume of q +q +q1 2 5

(All of these capacity terms are to be calculated by any useful
capacity formula, e.g. the Siegloch-formula, Equation 8.33)

The same set of formulas applies in analogy for movement 7. If
both movements 7 and 8 are operated on one lane then the  total
capacity of this lane has to be evaluated from c  and c  usingT7 T8

the shared lane formula (Equation 8.95).  Brilon et al. (1996)
provide also a set of graphs for an easier application of this
theory.

8.9 All-Way Stop Controlled Intersections

8.9.1  Richardson’s Model

Richardson (1987) developed a model for all-way stop
controlled intersections (AWSC) based on M/G/1 queuing
theory.  He assumed that a driver approaching will either have

a service time equal to the follow-up headway for vehicles in this
approach if there are no conflicting vehicles on the cross roads
(to the left and right).  The average service time is the time
between successive approach stream vehicles being able to
depart.  If there were conflicting vehicles then the conflicting



sn 
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(8.108)

(8.116)

vehicles at the head of their queues will depart before the
approach stream being analysed.  Consequently, Richardson
assumed that if there were conflicting vehicles then the average
service time is the sum of the clearance time, T , for conflictingc

vehicles and for the approach stream.

For simplicity, Richardson considered two streams; northbound
and westbound. Looking at the northbound drivers, the
probability that there will be a conflicting vehicle on the cross
road is given by queuing theory as ' .  The average service timew

for northbound drivers is then

s   =  t  (1–' ) + T  ' (8.106)n m w c w

A similar equation for the average service time for westbound
drivers is

s   =  t  (1–' ) + T  ' (8.107)w m e c e

where,
 '  is the utilization ratio and is q  s,i i i

q  is the flow from approach i,i

s is the service time for approach ii

t  is the minimum headway, andm

T  is the total clearance time.c

These equations can be manipulated to give a solution for s  asn

If there are four approaches then very similar equations are
obtained for the average service time involving the probability
there are no cars on either conflicting stream.  For instance,

s   =  t  (1–' ) + T  ' (8.109)n m ew c ew

s   =  t  (1–' ) + T  ' (8.110)s m ew c ew

s   =  t  (1–' ) + T  ' (8.111)e m ns c ns

s   =  t  (1–' ) + T  ' (8.112)w m ns c ns

The probability of no conflicting vehicles being 1–'  given byns

1–'   =  (1–' ) (1–' ) (8.113)ns s n

hence,

'   =  1 – (1–q  s ) (1–q  s ) (8.114)ns n n s s

and
'   =  1 – (1–q  s ) (1–q  s ) (8.115)ew e e w w

Given the flows, q , q , q , and q   and using an estimate ofn s e w

service times, p  and p   can be estimated using Equationsns ew

8.114 and 8.115.  The iterative process is continued with
Equations 8.109 to 8.112 providing a better estimate of the
service times, s , s , s , and s .n s e w

Richardson used Herbert’s (1963) results in which t  was foundm

to be 4 sec and T  was a function of the number of cross flowc

lanes to be crossed.  The equation was

and T  is the sum of the t  values for the conflicting and thec c

approach streams.

The steady-state average delay was calculated using the
Pollaczek-Khintchine formula with Little’s equation as:

or

This equation requires an estimate of the variance of the service
times.  Here Richardson has assumed that drivers either had a
service time of h  or T .  For the northbound traffic, there werem c

(1–' ) proportion of drivers with a service time of exactly tew m

and '  drivers with a service time of exactly T .  The varianceew c

is then



Var(s)n 
 t 2
m(1	'ew)�T2

c'	s2
n
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(8.117)

(8.118)

(8.119)

and

This then gives

for the northbound traffic.  Similar equations can be obtained for
the other approaches.  An example of this technique applied to

 a four way stop with single lane approaches is given in Figure
8.25.  Here the southbound traffic has been set to 300 veh/h.
The east-west traffic varies but with equal flows in both
directions.  In accordance with the comments above, t  was 4 secm

and T  was 2*t  or 7.6 sec. c c

Richardson's approach is satisfactory for heavy flows where most
drivers have to queue before departing.  His approach has been
extended by Horowitz (1993), who extended the number of
maneuver types and then consequently the number of service
time values.  Horowitz  has also related his model to Kyte’s
(1989) approach and found that his modified Richardson model
compared well with Kyte’s empirical data.

Figure 8.25 from Richardson's research, gives the performance
as the traffic in one set approaches (north-south or east-
west)increases.  Typically, as traffic flow in one direction
increases so does the traffic in the other directions.  This will
usually result in the level of delays increasing at a more rapid
rate than the depicted in this figure.

  

Figure 8.25
Average Delay For Vehicles on the Northbound Approach.
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8.10  Empirical Methods

Empirical models often use regression techniques to quantify an or even other characteristic values of the intersection layout by
element of the performance of the intersection. These models, by another  set of linear regression analysis (see e.g. Kimber and
their very nature, will provide good predictions. However, at Coombe 1980).
times they are not able to provide a cause and effect The advantages of the empirical regression technique compared
relationships. to gap acceptance theory are:

Kimber and Coombe (1980), of the United Kingdom, have � there is no need to establish a theoretical model.
evaluated the capacity of the simple 2-stream problem using � reported empirical capacities are used.
empirical methods.  The fundamental idea of this solution is as � influence of geometrical design can be taken into account.
follows: Again, we look at the simple intersection (Figure 8.7) � effects of priority reversal and forced priority are taken into
with one priority traffic stream and one non-priority traffic account automatically.
stream during times of a steady queue (i.e. at least one vehicle is � there is no need to describe driver behavior in detail.
queuing on the minor street).  During these times, the volume of
traffic departing from the stop line is the capacity.  This capacity The disadvantages are:
should depend on the priority traffic volume q  during the samep

time period.  To derive this relationship, observations of traffic
operations of the intersection have to be made during periods of
oversaturation of the intersection.  The total time of observation
then is divided into periods of constant duration, e.g. 1 minute.
During these 1-minute intervals, the number of vehicles in both
the priority flow and the entering minor street traffic are counted.
Normally, these data points are scattered over a wide range and
are represented by a linear regression line. On average, half of
the variation of data points results from the use of one-minute
counting intervals.  In practice, evaluation intervals of more than
1-minute (e.g. 5-minutes) cannot be used, since this normally
leads to only few observations.

As a result, the method would produce linear relations for q :m

q   =  b - c  q (8.120)m p
.

Instead of a linear function, also other types of regression could
be used as well, e.g.

q   =  A  e . (8.121)m
. -Bx    

Here, the regression parameters A and B could be evaluated out
of the data points by adequate regression techniques.  This type
of equation is of the same form as Siegloch's capacity formula
(Equation 8.33).  This analogy shows that A=3600/t .f

In addition to the influence of priority stream traffic volumes on
the minor street capacity, the influence of geometric layout of the
intersection can be investigated.  To do this, the constant values
b and c  or  A  and  B can be related to road widths or visibility

� transferability to other countries or other times (driver
behavior might change over time) is quite limited: For
application under different conditions, a very big sample
size must always be evaluated.

� no real understanding of traffic operations at the intersection
is achieved by the user.

� the equations for four-legged intersections with 12
movements are too complicated.

� the derivations are based on driver behavior under
oversaturated conditions.

� each situation to be described with the capacity formulae
must be observed in reality.  On one hand, this requires a
large effort for data collection. On the other hand, many of
the desired situations are found infrequently, since
congested intersections have been often already signalized.

8.10.1  Kyte's Method

Kyte (1989) and Kyte et al. (1991) proposed another method for
the direct estimation of unsignalized intersection capacity for
both AWSC and TWSC intersections.  The idea is based on the
fact that the capacity of a single-channel queuing system is the
inverse of the average service time.  The service time, t , at theW

unsignalized intersection is the time which a vehicle spends in
the first position of the queue.  Therefore, only the average of
these times (t ) has to be evaluated by observations to get theW

capacity.

Under oversaturated conditions with a steady queue on the minor
street approach, each individual value of this time in the first
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position can easily be observed as the time between two
consecutive vehicles crossing the stop line.  In this case,
however, the observations and analyses are equivalent to the
empirical regression technique .

Assuming undersaturated conditions, however, the time each of
the minor street vehicles spends in the first position could be
measured as well.  Again, the inverse of the average of these
times is the capacity.  Examples of measured results are given by
Kyte et al. (1991).

From a theoretical point of view, this method is correct.  The
problems relate to the measurement techniques (e.g. by video
taping).  Here it is quite difficult to define the  beginning and the
end of the time spent in the first position in a consistent way.  If
this problem is solved, this method provides an easy procedure
for estimating the capacity for a movement from the minor street
even if this traffic stream is not operating at capacity.

Following a study of AWSC intersections, Kyte et al. (1996)
developed empirical equations for the departure headways from
an approach for different levels of conflict.

h   =  h  + h  P  + h  P  + h  P (8.122)i b-i LT-adj LT RT-adj RT HV-adj HV

where:

h  is the adjusted saturation headway for thei

degree of conflict case i;
h  is the base saturation headway for case i;b-i

h  LT-adj

and h  are the headway adjustment factors for leftRT-adj

and right turners respectively;

P  and P  are the proportion of left and right turners;LT RT

h  is the adjustment factor for heavy vehicles; andHV-adj

P  is the proportion of heavy vehicles.HV

The average departure headway, , is first assumed to be four
seconds and the degree of saturation, x , is the product of the
flow rate, V and  . A second iterative value of   is given by
the equation:

where  P(C ) is the probability that conflict C occurs.  Thesei i

values also depend on estimates of   and the h  values.  Thei

service time is given by the departure headway minus the move-
up time.

Kyte et al. (1996) recognizes that capacity can be evaluated from
two points of view.  First, the capacity can be estimated
assuming all other flows remain the same.  This is the approach
that is typically used in Section 8.4.1.  Alternatively capacity can
be estimated assuming the ratio of flow rates for different
movements for all approaches remain constant.  All flows are
incrementally increased until one approach has a degree of
saturation equal to one.  

The further evaluation of these measurement results corresponds
to the methods of the empirical regression techniques.  Again,
regression techniques can be employed to relate the capacity
estimates to the traffic volumes in those movements with a
higher rank of priority. 

8.11 Conclusions

This chapter describes the theory of unsignalized intersections has been extended to predict delays in the simpler
which probably have the most complicated intersection control conditions.
mechanism.  The approaches used to evaluate unsignalized
intersections fall into three classes. (b) Queuing theory in which the service time attributes are

(a) Gap acceptance theory which assumes a mechanism for driver departure patterns.  The advantages of using
drivers departure.  This is generally achieved with the queuing theory is that measures of delay (and queue
notion of a critical gap and a follow on time.  This lengths) can be more easily defined for some of the more
attributes of the conflicting stream and the non priority complicated cases.
stream are also required.  This approach has been
successfully used to predict capacity (Kyte et al. 1996) and

described.  This is a more abstract method of describing
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(c) Simulation programs.  These are now becoming more Research in these three approaches will undoubtably continue.
popular.  However, as a word of caution, the output from New theoretical work highlights parameters or issues that should
these models is only as good as the algorithms used in be considered further.  At times, there will be a number of
the model, and some simpler models can give excellent counter balancing effects which will only be identified through
results.  Other times, there is a temptation to look at the theory.
output from models without relating the results to the
existing theory.  This chapter describes most of the The issues that are likely to be debated in the future include the
theories for unsignalised intersections and should assist extent that one stream affects another as discussed in Section
simulation modelers to indicate useful extension to 8.6; the similarities between signalized and unsignalized
theory. intersections; performance of oversaturated intersection and

variance associated with the performance measures.
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