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Chapter 8 - Frequently used Symbols
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E(t)
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Var(t,)
Var(t)
Var (W)
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W,

W,

proportion of volume of movemenof the total volume on the shared lane

coefficient of variation of service times

total delay of minor street vehicles

average delay of vehicles in the queue at higher positions than the first

mean headway

the mean of the critical gap,

density function for the distribution of gaps in the major stream

number of minor stream vehicles which can enter into a major stream gap of size,
logarithm

number of movements on the shared lane

number of vehicles

increment, which tends to 0, wh¥ar(t,) approaches 0

increment, which tends to 0, wh¥ar(t) approaches 0

flow in veh/sec

capacity of the shared lane in veh/h

capacity of movemerit if it operates on a separate lane in veh/h

the entry capacity

maximum traffic volume departing from the stop line in the minor stream in veh/sec
major stream volume in veh/sec

time

critical gap time

follow-up times

the shift in the curve

variance of critical gaps

variance of follow-up-times

variance of service times

average service time. It is the average time a minor street vehicle spends in the first position of the queue neastitie interse
service time for vehicles entering the empty system, i.e no vehicle is queuing on the vehicle's arrival
service time for vehicles joining the queue when other vehicles are already queuing



8.
UNSIGNALIZED INTERSECTION THEORY

8.1 Introduction

Unsignalized intersections are the most common intersection
type. Although their capacities may be lower than other
intersection types, they do play an important part in the control
of traffic in a network. A poorly operating unsignalized

intersection may affect a signalized network or the operation of

driver and the pattern of the inter-arrival times a
important.

This chapter describes both of these aspects when there are t
streams. The theory is then extended to intersectioas with rr

an Intelligent Transportation System.

The theory of the operation of unsignalized intersections is
fundamental to many elements of the theory used for other
intersections. For instance, queuing theory in traffic engineering
used to analyze unsignalized intersections is also used to analyze
other intersection types.

8.1.1 The Attributes of a Gap
Acceptance Analysis Procedure

Unsignalized intersections give no positive indication or control
to the driver. He or she is not told when to leave the intersection.
The driver alone must decide when it is safe to enter the
intersection. The driver looks for a safe opportunity or "gap” in
the traffic to enter the intersection. This technique has been

than two streams.

8.1.2 Interaction of Streams at
Unsignalized Intersections

A third requirement at unsignalized intersections is that the
interaction between streams be recognized and respected. At all
unsignalized intersections there is a hierarchy of streams. Some
streams have absolute priority, while others have to yield to
higher order streams. In some cases, streams have to yield to
some streams which in turn have to yield to others. It is useful
to consider the streams as having different levels of priority or
ranking. For instance:

Rank 1 stream - has absolute priority and does not need to
yield right of way to another stream,

described as gap acceptance. Gaps are measured in time and are

equal to headways. At unsignalized intersections a driver must
also respect the priority of other drivers. There may be other
vehicles that will have priority over the driver trying to enter the
traffic stream and the driver must yield to these drivers.

All analysis procedures have relied on gap acceptance theory to
some extent or they have understood that the theory is the basis
for the operation even if they have not used the theory explicitly.

Although gap acceptance is generally well understood, it is

useful to consider the gap acceptance process as one that has two

basic elements.

®m  First is the extent drivers find the gaps or opportunities
of a particular size useful when attempting to enter the
intersection.
m Second is the manner in which gaps of a particular size are
made available to the driver. Consequently, the proportion
of gaps of a particular size that are offered to the entering

Rank 2 stream - has to yield to a rank 1 stream,

Rank 3 stream - has to yield to a rank 2 stream and in turn to
arank 1 stream, and

Rank 4 stream - has to yield to a rank 3 stream and in turn to
arank 2 stream and to a rank 1 stream.

8.1.3 Chapter Outline

Sections 8.2 discusses gap acceptance theory and this leads to
Section 8.3 which discusses some of the common headway
distributions used in the theory of unsignalized intersections.

Most unsignalized intersections have more than two interacting
streams. Roundabouts and some merges are the only examples
of two interacting streams. Nevertheless, an understanding of
the operation of two streams provides a basis to extend the
knowledge to intersections with more than two streams. Section
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8. UNSIGNALIZED INTERSECTION THEORY

8.4 discusses the performance of intersections with two
interacting streams.

Section 8.5 to 8.8 discuss the operation of more complex
intersections. Section 8.9 covers other theoretical treatments of
unsignalized intersections. In many cases, empirical approaches
have been used. For instance the relationships for AWSC (All
Way Stop Controlled) intersections are empirical. The time
between successive departures of vehicles on the subject
roadway are related to the traffic conditions on the other roadway
elements.

8.2 Gap Acceptance Theory

8.2.1 Usefulness of Gaps

The gap acceptance theory commonly used in the analysis of
unsignalized intersections is based on the concept of defining the
extent drivers will be able to utilize a gap of particular size or
duration. For instance, will drivers be able to leave the stop line
at a minor road if the time between successive vehicles from the
left is 10 seconds; and, perhaps how many drivers will be able
to depart in this 10 second interval ?

The minimum gap that all drivers in the minor stream are

assumed to accept at all similar locations is the critical gap.
According to the driver behavior model usually assumed, no
driver will enter the intersection unless the gap between vehicles
in a higher priority stream (with a lower rank number) is at least

equal to the critical gap, For example, if the critical gap was

4 seconds, a driver would require a 4osetgap between Rank

1 stream vehicles before departing. He or she will require the

The theory described in this chapter is influenced by the hun
factors and characteristics as described in Chapter 3, and ir
particular, Sections 3.13 and 3.15. The reader will also note

similarities between the material in this chapter and Chapte
dealing with signalized intersections. Finally, unsignaliz
intersections can quickly become very complicated and oftel
subject of simulation programs. The comments in Chapter

are particularly relevant here.

the remaining time is considered 'useable.' This 'useable’ time
divided by the saturation flow gives an estimate of the absorption
capacity of the minor stream. As shown below, the effect of this

different concept is negligible.

In the theory used in most guides for unsignalized intersections
around the world, it is assumed that drivers are both consistent
and homogeneous. A consistent driver is expected to behave the
same way every time at all similar situations. He or she is not
expected to reject a gap and then subsequently accept a smaller
gap. For a homogeneous population, all drivers are expected to
behave in exactly the same way. It is, of course, unreasonable to
expect drivers to be consistent and homogeneous.

The assumptions of drivers being both consistent and
homogeneous for either approach are clearly not realistic.
Catchpole and Plank (1986), Plank and Catchpole (1984),
Troutbeck (1988), and Wegmann (1991) have indicated that if

same 4 seconds at all other times he or she approaches the samedrivers were heterogeneous, then the entry capacity would be

intersection and so will all other drivers at that intersection.

Within gap acceptance theory, it is further assumed that a
number of drivers will be able to enter the intersection from a
minor road in very long gaps. Usually, the minor stream

vehicles (those yielding right of way) enter in the long gaps at
headways often referred to as the "follow-up time",

Note that other researchers have used a different concept for the
critical gap and the follow-up time. McDonald and Armitage
(1978) and SieglocHL@73) independently described a concept
where a lost time is subtracted from each major stream gap and

decreased. However, if drivers are inconsistent then the capacity
would be increased. If drivers are assumed to be both consistent
and homogeneous, rather than more realistically inconsistent and
heterogeneous, then the difference in the predictions is only a
few percent. That is, the overall effect of assuming that drivers
are consistent and homogeneous is minimal and, for simplicity,
consistent and homogeneous driver behavior is assumed.

It has been found that the gap acceptance parameterd,

may be affected by the speed of the major stream traffic (Harders
1976 and Troutbeck988). It also expected that drivers are
influenced by the difficulty of the maneuver. The more difficult
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8. UNSIGNALIZED INTERSECTION THEORY

a maneuveis, the longer are the critical gap and follow-up time
parameters. There has also been a suggestion that drivers
require a different critical gap when crossing different streams
within the one maneuver. For instance a turn movement across
a number of different streams may require a driver having a
different critical gap or time period between vehicles in each
stream (Fisk 1989). This is seen as a unnecessary complication
given the other variables to be considered.

8.2.2 Estimation of the Critical
Gap Parameters

The two critical gap parameters that need to be estimated are the
critical gapt. and the follow-up time; . The techniques used to
estimate these parameters fit into essentially two different
groups. The first group of techniques are based on a regression
analysis of the number of drivers that accept a gap against
the gap size. The other group of techniques estimates the

distribution of follow-up times and the critical gap distribution
independently. Each group is discussed below.

Regression techniques.
If there is a continuous queue on the minor street, then the
technique proposed by Siegloch (1973)darces acceptable
results because the output matches the assumptions used in a
critical gap analysis. For this technique, the queue must have at
least one vehicle in it over the observation period. The process
is then:
m  Record the size of each gap,and the number of
vehicles,n, that enter during this gap;

For each of the gaps that were accepted by only
drivers, calculate the average gap SE{¢), (See Figure
8.1);

Use linear regression on the average gap size values
(as the dependent variable) against the number of
vehicles that enter during this average gap sizand

Number of vehicles

10

X average values

EL . n)

—TT

]
Gap,

o0 25 30

5
t (sec)

— regression t=f (n)
t0= 50,t,=35,t~6.8

Figure 8.1
Data Used to Evaluate Critical Gaps and Move-Up Times
(Brilon and Grossmann 1991).
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®m  Given the slope i§ and the intercept of the gap size
axis ist,, then the critical gap is given by

t, =ty + /2 (8.1)

The regression line is very similar to the stepped line as shown
in Figure 8.2. The stepped line reflects the assumptions made by
Tanner (1962), Harders (1976), Troutbeck (1986), and others.
The sloped line reflects the assumptions made by Siegloch
(1973), and McDonald and Armitage (1978).

Independent assessment of the critgzb and follow-up time

If the minor stream does not continuously queue, then the
regression approach cannot be used. A probabilistic approach
must be used instead.

The follow-up time is the mean headway between queued
vehicles which move through the intersection during the longer
gaps in the major stream. Consider the example of two major
stream vehicles passing by an unsignalized intersection at times
2.0 and 42.0 seconds. If there is a queue of say 20 vehicles
wishing to make a right turn from the side street, and if 17 of

these minor street vehicles depart at 3.99, 6.22, 8.29, 11.13,
13.14, and so on, then the headways between the minor street
vehicles are 6.22-3.99, 8.29-6.22, 11.13-8.29 and so on. The
average headway between this group of minor stream
vehicles is 2.33 sec. This process is repeated for a number of
larger major stream gaps and an overall average headway
between the queued minor stream vehicles is estimated. This
average headway is the follow-up time, If a minor stream
vehicle was not in a queue then the preceding headway would
not be included. This quantity is similar to the saturation
headway at signalized intersections.

The estimation of the critical gap is more difficult. There have
been numerous techniques proposed (Migr2; Ramsey and
Routledge 1973; Troutbeck 1975; H&vt983; Hevitt 1985).

The difficulty with the estimation of the critical gap is that it
cannot be directly measured. All thakigown is that a driver's
individual critical gap is greater than the largest gap rejected and
shorter than the accepted gap for that driver. latieepted gap

was shorter than the largest rejected gap then the driver is
considered to be inattentive. This data is changed to a value just
below the accepted gap. Millet972) gives an alternative
method of handling this inconsistent data which uses the data as
recorded. The difference in outcomes is generally marginal.

o
o
e
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o)
-‘..

Number of vehicles

Gap (sec)

Figure 8.2
Regression Line Types.




8. UNSIGNALIZED INTERSECTION THEORY

Miller (1972), and later Troutbeck (1975) in a more limited
study, used a simulation technique to evaluate a total of ten
different methods to estimate the critical gap distribution of
drivers. In this study the critical gaps for 100 drivers were
defined from a known distribution. The arrival times of priority
traffic were simulated and the appropriate actions of the

"simulated” drivers were noted. This process was repeated for

100 different sets of priority road headways, but with the same
set of 100 drivers. The information recorded included the size

of any rejected gaps and the size of the accepted gap and would

be similar to the information able to be collected by an engineer

at the road side. The gap information was then analyzed using

each of the ten different nietds to give an estimate of the

average of the mean of the drivers' critical gaps, the variance of

the mean of the drivers' critical gaps, mean of the standard
deviation of the drivers' critical gaps and the variance of the
standard deviation of the drivers' critical gaps. These statistics

enabled the possible bias in predicting the mean and standard

deviation of the critical gaps to be estimated. Techniques which

gave large variances of the estimates of the mean and the
standard deviation of the critical gaps were considered to be less

reliable and these techniques were identified. This procedure
found that one of the better rhetls is the Maximum Likelihood
Method and the simple Ashworth (1968) correction to the
prohibit analysis being a strong alternative. Both methods are
documented here. The Probit or Logit techniques are also
acceptable, particularly for estimating the praligiithat a gap

will be accepted (Abou-Henaidy et 41994), but more care
needs to be taken to properly account for flows. Kyte et al
(1996) has extended the analysis and lasd that the
Maximum Likelihood Method and the Hewitt$83) models

gave the best performance for a wide range of minor stream and

major stream flows.

The maximum likelihood method of estimating the critical gap

requires that the user assumes a probabilistic distribution of the

critical gap values for the population of drivers. A log-normal is
a convenient distribution. It is skewed to the right and does not
have non-negative values. Using the notation:

the logarithm of the gap accepted byithedriver,

« if nO gap was accepted,

the logarithm of the largest gap rejected by the ith
driver,

0 if no gap was rejected,

-
I n

q
1

p and
g are the mean and variance of the logarithm of the
individual drivers critical gaps (assuming a log-
normal distribution), and
f()and
F() are the probability density function and the

cumulative distribution function respectively for
the normal distribution.

The probability that an individual driver's critical gap will be
betweerr, anda, is F(a) — F(r). Summing over all drivers, the
likelihood of a sample af drivers having accepted and largest
rejected gaps of(, r,) is

n

H [F(a,)-F(r)] (8.2)
The logarithmL, of this likelihood is then
L = gln[F(aj)fF(ri)] (8.3)

The maximum likelihood estimators, p asfgdthat maximize.,
are given by the solution to the following equations.

g—t =0 (8.4)
and
% =0 (8.5)
Using a little algebra,
GELX) = (%) (8.6)
a;)z() - 2 (8.7)
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This then leads to the following two equations which must be
solved iteratively. It is recommended that the equation

i f(r) f(a)

& Fa) Fr) 88)

should be used to estimate p given a valu.ofAn initial value

of o2 is the variance of all the, andr, values. Using this
estimate of pu from Equation 8.8, a better estimaté ofn be

obtained from the equation,

0 () £0)-(a - ()
2T Fa) )

-0 (8.9)

whergl is an estimate of .

A better estimate of the yu can then be obtained from the
Equation 8.8 and the process continued until successive
estimates of u anef do not change appreciably.

The meanE(t, ), and the variancé/ar(t, ), of the critical gap
distribution is a function of the log normal distribution
parameters, viz:

E(t) - e"o™’ (8.10)

and

var(t,) = E(t.)? (e°-1) (8.11)

The critical gap used in the gap acceptance calculations is then
equal toE(t, ). The value should be less than the mean of the
accepted gaps.

This technique is a complicated one, but it does produce
acceptable results. It uses the maximurowamhof information,
without biasing the result, by including the effects of a large
number of rejected gaps. It also accounts for the effects due to
the major stream headway distribution. If traffic flows were
light, then many drivers would accept longer gaps without
rejecting gaps. On the other hand, if the flow were heavy, all
minor stream drivers would accept shorter gaps. The
distribution of accepted gaps is then dependent on the major
stream flow. The maximum likelihood technique eaoount for
these different conditions. Unfortunately, if all drivers accept the

first gap offered without rejecting any gaps, then Equations &
and 8.9 give trivial results. The user should then look
alternative methods or preferably collect more data.

Another very useful technique for estimating the critical gap is
Ashworth’s (1968) procedure. This requires that the user
identify the characteristics of the probability distribution that
relates the proportion of gaps of a particular size that were
accepted to the gap size. This is usuddlge using a Probit
analysis applied to the recorded proportions of accepted gaps.
A plot of the proportions against the gap size on probability
paper would also be acceptable. Again a log normal distribution
may be used and this would require the proportions to be plotted
against the natural logarithm of the gap size. If the mean and
variance of this distribution ard(t) and Vag(t), then
Ashworth’s technique gives the critical gap as

E(t) - E(ty)-q, Var(t,) (8.12)

whereq, is the major stream flow in units of veh/sec. If the log
normal function is used, tiigt)) andVar(t,) are values given
by the generic Equations 8.10 and 8.11. This is a very practice
solution and one which can be used to give acceptable results in
the office or the field.

8.2.3 Distribution of Gap Sizes

The distribution of gaps between the vehicles in the different
streams has a major effect on the performance of the
unsignalized intersection. However, it is important only to look

at the distribution of the larger gaps; those that are likely to be
accepted. As the shorter gaps are expected to be rejected, there
is little point in modeling these gaps in great detail.

A common model uses a random vehicle arrival pattern, that is,
the inter-arrival times follow an exponential distribution. This
distribution will predict a large number of headways less than 1
sec. Thisis known to be unrealistic, but it is usechlse these
small gaps will all be rejected.

This exponential distribution is known to be deficient at high
flows and a displaced exponential distribution is often
recommended. This model assumes that vehicle headways are
at least, sec.
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8. UNSIGNALIZED INTERSECTION THEORY

Better models use a dichotomized distribution. These models

assume that there is a proportion of vehicles that are free of

interactions and travel at headways greater tharThese
vehicles are termed "free” and the proportion of free vehicles is
a. There is a probability function for the headways of free
vehicles. The remaining vehicles travel in platoons and again

there is a headway distribution for these bunched vehicles. One

such dichotomized headway model is Cowan's (1975) M3 model
which assumes that a proportion of all vehicles are free and
have an displaced exponential headway distribution andd¢he 1-
bunched vehicles have the same headway oftQnly

In this chapter, the word "queues" is used to refer to a line
stopped vehicles. On the other hand, a platoon is a grou
traveling vehicles which are separated by a short headtyay of
When describing the length of a platoon, it is usualdo includ
opfeleader which iV have a longer headway in front of him
or her. A platoon of length one is a single vehicle travelli
without any vehicles close-by. It is often useful shdistingu
between free vehiclesgorlp&ters) and those vehicles in
the platoon but behind the leader. This latter group are callec
bunched vehicles. The benefits of a number of different headway
models will be discussed later.

8.3 Headway Distributions Used in Gap Acceptance Calculations

8.3.1 Exponential Headways

The most common distribution is the negative exponential

distribution which is sometimes referred to as simply the

"exponential distribution”. This distribution is based on the

assumption that vehicles arrive at random without any
dependence on the time the previous vehicle arrived. The
distribution can be derived from assuming that the probability of
a vehicle arriving in a small time interv@l t+ Jt) is a constant.

It can also be derived from the Poisson distribution which gives
the probability ofh vehicles arriving in timg, that is:

e
P(n) = (a)" — (8.13)

whereq is the flow in veh/sec. For n = 0 this equation gives the
probability that no vehicle arrives in tinhke The headwayh,
must be then greater thaand the probability, from Equation
8.13is

P(h>t) = e (8.14)

The cumulative probability function of headways is then

P(h<t) = 1-e™% (8.15)

The probability distribution function is then

d[P(h<1)]

= e‘qt
dt a

f(t) = (8.16)

This is the equation for the negative exponential distribution.
The parameteg can be estimated from the flow or the reciprocal
of the average headway. As an example, if there were 228
headways observed in half an hour, then the fla22&/1800 i.e.
g=0.127 veh/sec. The proportion of headways expected to be
greater than 5 seconds is then
P(h>5) = et

e—5*0.127

= 0.531
The expected number of headways greater than 5 seconds
observed in half an hour is then 0.5328 or 116.

If the flow wa440 veh/h or 0.4 veh/sec then the number of
headways less than 0.1 seconds is thefP(h>0.1)] + 3600 or
56 per hour. This over-estimation of the number of very short
headways is considered to be unrealistic and the displaced
exponential distribution is often used instead of the negative
exponential distribution.

8.3.2 Displaced Exponential Distribution
The shifted or displaced exponential distribution assumes that

there is a minimum headway between vehigjesThis time can
be considered to be the space around a vehicle that no othe
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vehicle can intrude divided by the traffic speed. If the flog is
veh/h then in one hour vehicles will pass and there dye g
seconds lost while these vehicles pass. The remaining time must
then be distributed randomly after each vehicle and the average
random component is (} g)/g seconds. The cumulative
probability distribution of headways is then:

F(h) = 1-¢ ™" (8.17)
where,
R
Ttg (8.18)

There, the terms, andt,, need to be evaluated. These can be
estimated from the mean and the variance of the distribution.
The mean headwalk¢(h), is given by:

E(h) - 1/q
t + X (8.19)

moA

The variance of headways istl/ These two relationships can
then be used to estimateandt, .

This distribution is conceptually better than the negative
exponential distribution but it does not account for the
platooning that can occur in a stream with higher flows. A
dichotomized headway distribution provides a better fit.

8.3.3 Dichotomized Headway Distributions

In most traffic streams there are two types of vehicles, the first
are bunched vehicles; these are closely following preceding
vehicles. The second group are free vehicles that are travelling
without interacting with the vehicles ahead. There have been a
number of dichotomized headway distributions developed over
time. For instance, Schull955) proposed a distribution

p(h<t) = l—oce_t/ﬁf+(l—oc)e_(t_t"‘)/(ﬁb_t") (8.20)

where there are vehicles that are free (not in platoons);

there are (1es) bunched vehicles;

hy is the average headway for free vehicles;

_ is the average headway for bunched or constrained
h,  vehicles;

t is the shift in the curve.

Other composite headway models have been proposed by
Buckley (1962; 1968). However, a better headway model for
gap acceptance is the M3 model proposed by Coh@ns(.

This model does not attempt to model the headways between the
bunched vehicles as these are usually not accepted but rather
models the larger gaps. This headway model has a cumulative
probability distribution:

ph< 1) - 1-ae ™ for t >t (8.21)

and

p(h<t) = 0 otherwise.

Wherel is a decay constant given by the equation

R —
(1-t.0)

(8.22)

Cowan's headway model is rather general. To obtain the
displaced exponential distribution seto 1.0. For the negative
exponential distribution, setto 1.0 and,, to 0. Cowan's model

can also give the headway distribution used by Tanner (1962) by
settinga to 1+, however the distribution of the number of
vehicles in platoons is not the same. This is documented below.

Brilon (1988) indicated that the proportion of free vehicles could
be estimated using the equation,

7ale] b

@ =-e (8.23)

where A values ranged from 6 to 9. Sullivan and Troutbeck
(1993) bund that this equation gave a good fit to data, from
more than 600 ofiours of data giving in excess 460,000
vehicle headways, on arterial roads in Australia. They also
found that the A values were different for different lanes and for
different lane widths. These values are listed in Table 8.1.
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Table 8.1
“A” Values for Equation 8.23 from Sullivan and
Troutbeck (1993).

Median All other
Lane lanes
Lane width < 3.0 meters 7.5 6.5 I
3.0 < Lane width < 3.5 meters | 7-5 5.25
|

Typical values of the proportion of free vehicles are given in
Figure 8.3.

The hyper-Erlang distribution is also a dichotomized headway
distribution that provides an excellent fit to headway data. It is
useful in simulation programs but has not been used in traffic

theory when predicting capacity or delays. The hyper-Erlang
distribution given by Dawson (1969) is:

p(h<t) = 1- oce_(t_t”‘/ﬁf_t"‘)

k titmb X
ol (8.24)
+ (l—(x)e_(t_tml!hb_tml)z Ltmb
x=0 X!

8.3.4 Fitting the Different Headway
Models to Data

If the mean headway is 21.5 seconds and standard deviation is
19.55 seconds, then the flow is 1/21.5 @485 veh/seands

(167 vehiiour). A negative exponential curve that would fit this
data is then,

p(hé t) _ 1*8_0'0465

 as 1
2
:2 Vivde kerh anes
o 06 9
fa 1]
: ‘1’
-
o
5 049 Ayrraqe kort lanes
-
;l 4
|- 8
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o 02 7 Median [anes
N&rraw kerb lanes
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1000 1500

Lane flow (vatvyh)

Figure 8.3
Typical Values for the Proportion of Free Vehicles.
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To estimate the parameters for the displaced exponential
distribution, the difference between the mean and the standard
deviation is the displacement, that jss equal to 21.49 — 19.55
or 1.94 seconds. The constarised in Equation 8.21 is the

reciprocal of the standard deviation. In this casis,equal to

1/19.55 or 0.0512 veh/sec. The appropriate equation is then:

p(h<t) - 1-g-0-0512(-1.94)

The data and these equations are shown in Figure 8.4 which

indicates the form of these distributions. The reader should not
make any conclusions about the suitability of a distribution from
this figure but should rather test the appropriateness of the model

to the data collected.

In many cases there are a substantial number of very short
headways and a dichotomized headway distribution performs

better. As only the larger gaps are likely to be accepted by
drivers, there is no point in modeling the shorter gaps in great
detail. An example of Cowan’s M3 model and headway data

from an arterial road is shown in Figure 8.5. Figure 8.6 gives

the same data and the hyper-Erlang distribution.

Cumulative proportion

and the variance by

Under these conditions the mean platoon size is

P(n) = (1-a)" (8.25)
n- L (8.26)
o
Var(n) = 1%" (8.27)
44

Another distribution of platoons used in the analysis of
unsignalized intersections is the Borel-Tanner distribution. This
platooning distribution comes from Tanned9§2) assumptions
where the major stream gaps are the outcome of a queuing
process with random arrivals and a minimum inter-departure
time oAlthough the distribution of these ‘revised' major
stream gaps is given by Equation 8.21 withqual to 1+ q,

1.0 -
-t
0.87 . -
Exponential "

) distribution
0.6 ;
0.4+ Displaced

exponential

0.2+
0.0 . T T T —T T T -

0 10 20 30 40 50 60

Headway (sec)

Figure 8.4

Exponential and Displaced Exponential Curves

(Low flows example).
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} Cowan M3 o
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Figure 8.5
Arterial Road Data and a Cowan (1975) Dichotomized Headway Distribution
(Higher flows example).
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Arterial Road Data and a Hyper-Erlang Dichotomized Headway Distribution
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the distribution of the platoon length is Borel-Tanner (Borel
1942; Tanner 1953; 1961; and Haight and Bra®&0). Again,

g is the flow in veh/sec. The Borel-Tanner distribution of
platoons gives the probability of a platoon of sizs

e (nt, )"

(8.28)
n!

P(n) =

wheren is an integer.

8.4 Interaction of Two Streams

For an easy understanding of traffic operations at an unsignalized
intersection it is useful to concentrate on the simplest case first
(Figure 8.7).

All methods of traffic analysis for unsignalized intersections are
derived from a simple queuing model in which the crossing of
two traffic streams is considered. A priority traffic stream
(major stream) of the volunag (veh/h) and a non-priority traffic
stream (minor stream) of the volumg(veh/h) are involved in
this queuing model. Vehicles from the major stream can cross
the conflict area without any delay. Vehicles from the minor
stream are only allowed to enter the conflict area, if the next
vehicle from the major stream is stjll t seconds awaig the
critical gap), otherwise they have to wait. Moreover, vehicles
from the minor stream can only enter the intersedtiseconds
after the departure of the previous vehitleig the follow-up
time).

8.4.1 Capacity

The mathematical derivation of the capacjfyfor the minor
stream is as follows. Leg(t) be the number of minor stream
vehicles which can enter into a major stream gap of duration
The expected number of these t-gaps per h@60€x, f(t)
where,

(t)

statistical density function of the gaps in the
major stream and
volume of the major stream.

O
S
1

Haight and Brei$&0) bund the mean platoon size to be

1/(1-t,q) or 1k and the variance to bé q/ (1 —tmq)3or

€14, For the same mean platoon size, the Borel-Tanner
distribution has a larger variance and predicts a greater number
of longer platoons than does the geometric distribution.
Differences in the platoon size distribution does not affect an
estimate of capacity but it does affect the average delay per
vehicle as shown in Figure 8.13.

Therefore, the amount of capacity which is provided-ggps
per hour 36000, f(t) g(t)

To get the total capacity, expressed in veh/second, we have to
integrate over the whole range of major stream gaps:

o = G, | 10 g0 (8.29)

where,
g,= maximum traffic volume departing from the
stop line in the minor stream in veh/sec,
g, = major stream volume in veh/sec,
f(t) = density function for the distribution of gaps in
the major stream, and
g(t) = number of minor stream vehicles which can

enter into a major stream gap of size,

Based on the gap acceptance model, the capacity of the simple
2-stream situation (Figure 8.7) can be evaluated by elementary
probability theory methods if we assume:

(a) constant, andt; values,

(b) exponential distribution for priority stream headways
(cf. Equation 8.15), and

(c) constant traffic volumes for each traffic stream.
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Figure 8.7
lllustration of the Basic Queuing System.

Within assumption (a), we have to distinguish between two

different formulations for the terg(t). These are the reason for p.(0) - {1 for to+(n-1)t<t<t +nty
two different families of capacity equations. The first family 0 elsewhere

assumes a stepwise constant functiory{or(Figure 8.2):

glt) = X np,(t) (8.30) The second family of capacity equations assumes a continuous
n=0 linear function foig(t) . This is an approach which has first been
used by Siegloch (1973) and later also by McDonald and
Armitage (1978).

where,
p,(t)= probability that n minor stream 0 fort <t
vehicles enter a gap in the major stream gt) =1t 1 for t > (8.31)
of durationt, Tt > T

f
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where, Both approaches fgy(t) produce useful capacity formulae where
¢ the resulting differences are rather small and can normally be
ty = tcf—f ignored for practical applications (cf. Figure 8.8).
2

If we combine Equations 8.29 and 8.30, we get the capacity

equation used by Drew (1968), Major and Buckley (1962), and
Once again it has to be emphasized that both in Equations 8.30 by Harders (1968), which these authors however, derived in a

and 8.31t andt are assumed to be constant values for all different manner:
drivers.
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Figure 8.8
Comparison Relation Between Capacity (q-m) and Priority Street Volume (q-p)
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e bl

P17

Uy = O (8.32)

If we combine Equations 8.29 and 8.31 we get Siegloch's (1973)
formula,

On = =€ (8.33)

These formulae result in a relation of capacity versus conflicting
flow illustrated by the curves shown in Figure 8.8.

The idealized assumptions, mentioned above as (a), (b), (c),
however, are not realistic. Therefore, different attempts to drop
one or the other assumption have been made. Siegloch (1973)
studied different types of gap distributions for the priority stream
(cf. Figure 8.9) based on analytical methods. Similar studies
have also been performed by Catchpole and Plank (1986) and
Troutbeck (1986). Grossmant©@1) investigated these effects

by simulations. These studies showed

1200

If the constant, andt; values are replaced by realistic
distributions (cf. Grossmann 1988) we get a decrease
in capacity.

Drivers may be inconsistent; i.e. one driver can have
different critical gaps at different times; A driver might
reject a gap that he may otherwise find acceptable. This
effect results in an increase of capacity.

If the exponential distribution of major stream gaps is
replaced by more realistic headway distributions, we
get an increase in capacity of about the same order of
magnitude as the effect of using a distributiort f@and

t; values (Grossmann 1991 and Troutbeck 1986).

Many unsignalized intersections have complicated
driver behavior patterns, and there is often little to be
gained from using a distribution for the variabiesnd

t, or complicated headway distributions. Moreover,
Grossmann could show by simulation techniques that
these effects compensate each other so that the simple
capacity equations, 8.32 and 8.33, also give quite
realistic results in practice.

1000
8001
600} i 3
400 |

g-m veh/h

200

0 300 600

g-p (vehth)

1200 1500

Note:  Comparison of capdies for different types of headway distributions in the main street traffic floy for t ofdse@nd

t.= 3 seconds. For this examplg, t has been set to 2 seconds.

Figure 8.9
Comparison of Capacities for Different Types of
Headway Distributions in the Main Street Traffic Flow.
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More general solutions have been obtained by replacing the equation:
exponential headway distribution used in assumption (b) with a
more realistic one e. g. a dichotomized distribution (cf. Section

8.3.3). This more general equation is: qp.e‘qp'“c“m)
Oy = (10t — (8.36)
1-e %'
At t,)
aqge
Oy = ——— (8.34)
l-e ™

If the linear relationship fog(t) according to Equation 8.37 is
used, then the associated capacity equation is

where g e
Oy = — - (8.37)
ocqf tf
= 8.35
T, (6.39)
or
This equation is illustrated in Figure 8.10. This is also similar (@-gty)e (8.38)
to equations reported by Tanner (1967), Gipps (1982), I = t; '
Troutbeck (1986), Cowan (1987), and othersc: i set to 1
andt_ to O, then Harders' equation is obtaineda 1§ set to
I—qp = 1., then this equation reduces to Tanner's (1962) This was proposed by Jacobs (1979) .

)
-
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]

Tanner’s formula

N
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o
1
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o
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Conflicting priority volume (veh/h)

Figure 8.10
The Effect of Changing « in Equation 8.31 and Tanner's Equation 8.36.
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Tanner (1962) analyzed the capacity and delay at an intersection
where both the major and minor stream vehicles arrived at
random; that is, their headways had a negative exponential
distribution. He then assumed that the major stream vehicles
were restrained such that they passed through the intersection at
intervals not less thap sec after the preceding major stream

vehicle. This allowed vehicles to have a finite length into which where,
other vehicles could not intrude. Tanner did not apply the same E(C)
constraint to headways in the minor stream. He assumed the C
same gap acceptability assumptions that are outlined above. G
Tanner considered the major stream as imposing 'blocks' and B
‘anti-blocks' on the minor stream. A block contains one or more T
consecutive gaps less tharsec; the block starts at the first z(t)

vehicle with a gap of more tharsec in-front of it and ends
sec after the last consecutive gap less thasec. Tanner's

1+2G-t )]

Oy = ———7— (8.41)

E(C)E(Lk)

mean length of a "major road cycle" C,
G + B,

gap,

block,

probability G > t), and

expected number of departures within
the time interval of duration.

equation for the entry capacity is a particular case of a more  Since these types of solutions are complicated many researchers
general equation. have tried to find realistic capacity estimations by simulation

studies. This applies especially for the German method (FGSV
An analytical solution for a realistic replacement of assumptions  1991) and the Polish nieid.

(a) and (b) within the same set of formulae is given by Plank and
Catchpole (1984):

qoe 8.4.2 Quality of Traffic Operations
O = B——r (8:39) _ _

1-e %N In general, the performance of traffic operations at an
intersection can be represented by these variables (measures of
effectiveness, MOE):

where (a) average delay,
1 4 Var(t,) (b) average queue lengths,
B = 1+E-qp Var(tc)+T MMy (8.40) (c) distribution of delays,
(e™"-1) (d) distribution of queue lengths (i.e number of vehicles

gueuing on the minor road),

) N (e) number of stopped vehicles and number of
Var(t,) = variance of critical gaps, accelerations from stop to normal velocity, and
Var(t) = variance of follow-up-times, () probability of the empty systerpy).
M. = increment, which tends to 0, whear(t,
) approaches 0, and Distributions can be represented by:
1) = increment, which tends to 0, whear(t
) approaches 0. m  standard deviations,

®  percentiles, and
= the whole distribution.

Wegmann (1991) developed a universal capacity formula which

could be used for each type of distribution for thgoced gap, for To evaluate these measures, two tools can be used to solve the
the follow-up time and for each type of the major stream  problems of gap acceptance:

headway distribution.

m  queuing theory and
®m  simulation.
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Each of these MOEs are a functiorgplnddg,; the proportion

of "free” vehicles and the distribution of platoon size length in
both the minor and major streams. Solutions from queuing
theory in the first step concentrate on average delays.

A general form of the equation for the average delay per vehicle
is

+EX
D = Dmin( 1+ Y )

T (8.42)

where vy ande are constants
xis the degree of saturatiorg=/q,,
andD,,, has been termed Adams' delay after Adams (1936).

Adams' delay is the average delay to minor stream vehicles when
minor stream flow is very low. It is also the minimum average
delay experienced by minor stream vehicles.

Troutbeck (1990) gives equations fare andD,,,, based on the
formulations by Cowan (1987). If stream 2 vehicles are
assumed to arrive at random, theis equal to 0. On the other
hand, if there is platooning in the minor stream, théngreater
than 0.

For random stream 2 arrivaisis given by
e = eqptf7qpf 7l+qp(eq°tf’l)D
gy(e™"-1)D

min

(8.43)

min

Note that is approximately equal to 1.@,,, depends on the
platooning characteristics in stream 1. If the platoon size
distribution is geometric, then

- 2
o - A L1 Aty -2t +2t o

mn aq, LY 2(t A +ar)

(8.44)

(Troutbeck 1986).

Tanner's (1962) model has a different equation for Adams' delay,
because the plabn size distribution in stream 1 has a Borel-
Tanner distribution. This equation is

et 1, qpt,f](Ztmqp—l)

Dpin = 8.45
™oo@AtE)d, o4 2(1-t,g.)? (8.45)

Another solution for average delay has been given by Harders
(1968). Itis not based on a completely sophisticated queuing
theory. However, as a first approximation, the following
equation for the average delay to non-priority vehicles is quite
useful.

1-e ~(ate+aty)
- thf
q,/3600-q,

(8.46)

with g, calculated using Equation. 8.34 or similar.

M/G/1 Queuing Systera A more sophisticated queuing theory
model can be developed by the assumption that the simple two-
streams system (Figure 8.7) can be represented by a M/G/1
gueue. The service counter is the first queuing position on the
minor street. The input into the system is formed by the vehicles
approaching from the minor street which are assumed to arrive
at random, i.e. exponentially distributed arrival headways (i.e.
"M"). The time spent in the first position of the queue is the
service time. This service time is controlled by the priority
stream, with an unknown service time distribution. The "G"is
for a general service time. Finally, the "1" in M/G/1 stands for
one service channel, i.e. one lane in the minor street.

For the M/G/1 queuing system, in general, the Pollaczek-
Khintchine formula is valid for the average delay of customers in
the queue

2
_W+G,) (8.47)
9 2(1-x
where

W = average service time. It is the average
time a minor street vehicle spends in the
first position of the queue near the
intersection

C, =  coefficient of variation of service times
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c - vVvar(W)
W w

variance of service times

Var (W) =
The total average delay of minor street vehicles is then

D = D,+W.

In general, the average service time for a single-channel queuing
system is: l/capacity. If we derive capacity from Equations 8.32
and following and if we include the service tiM&n the total
delay, we get

D = q—lm(1+ X C) (8.48)

1-x

where

1+CV§
2

Up to this point, the derivations are of general validity. The real
problem now is to evalua@ Only the extremes can be defined
which are:

®  Regular service: Each vehicle spends the same time in the
first position. This give¥ar(W) =0,C,2= 0, andC =
0.5

This is the solution for the M/D/I queue.
®  Random service: The times vehicles spend in the first
position are exponentially distributed. This gives
Var(W) =E(W) C2= 1,andC = 1.0
This gives the solution for the M/M/1 queue.
Unfortunately, neither of these simple solutions applies exactly
to the unsignalized intersection problem. However, as an
approximation, some authors recommend the application of
Equation 8.48 witlC = 1.

Equation 8.42 can be further transformed to

+€ X
00, rof1:220.21)

T (8.49)

wheree andy are documented in Troutbeck (1990).

This is similar to the Pollaczek-Khintchine formula (Equation

8.48). The randomness const@ris given by {+€)/(I+y) and

the term 1/0),, *(I4y) can be considered to be an equivalent

‘capacity’ or 'service rate." Both terms are a function of the
critical gap paratpetets and the headway distributions.

HowevelC, v, ande values are not available for all conditions.

For the M/G/1 system as a general property, the probatjlitly
the empty queue is given by
p,=1-x (8.50)

This formula is of sufficient reality for practical use at
unsignalized intersections.

M/G2/1 queuing system Different authors found that the
service time distribution in the queuing system is better
described by two types of service times, each of which has a
specific distribution:

W, = service time for vehicles entering the empty system, i.e
no vehicle is queuing on the vehicle's arrival
W, = service time for vehicles joining the queue when other

vehicles are already queuing.

Again, in both cases, the service time is the time the vehicle
spends waiting in the first position near the stop line. The first
ideas for this solution have been introduced by Kremser (1962;
1964) and in a comparable way by Tand€62), as well as by
Yeo and Weesakul (1964).

The average time which a customer spends in the queue of such
a system is given by Yeo's (1962) formula:

(8.51)

2 2 2
Dq:%*( E(W) -E(W,) . E(Wz))

\Y

where,
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D, = average delay of vehicles in the queue at
higher positions than the first, EWD) g ( y+E(W)+z+E(WY)
E(W,) = expectation oV, D= Vl + 7”*( 1\/* 2 ) (8.53)
E(W?) = expectation of{V;* W,) y
E(W,) = expectation of\,,
E(W?) = expectation of\(,* W,),
Vv =y +z, (Brilon 1988):Formulae for the expectations @, and W
y = 1-gq,E(W,) and respectively have been developed by Kremser (1962):
z = q,EW)
i - EW) = —(e%
The probabilityp, of the empty queue is 1 a, (8.54)
=yl 8.52 %o
po yV ( ) E(Wz) _ evr (17e qptf)
o . . . q
The application of this formula shows that the differences against X > P . o%te -
Equation 8.50 are quite small ( < 0.03). Refer to Figure 8.11. EW,) = q—(eq“—l—qptc)( 3 +H-t) +t - tg
p p
If we also include the service time ( = time of minor street PYCES
vehicles spent in the first position) in the total delay, we get E(W22) = e2 (qutC—qptc)(lfe_thf)—qptf-e_
%
0 i A
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Figure 8.11
Probability of an Empty Queue: Comparison of Equations 8.50 and 8.52.
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Kremser (1964), however, showed that the validity of these
equations is restricted to the special casé, eft, , which is
rather unrealistic for two-way-stop-control unsignalized
intersections. Daganzo (1977) gave an improved solution for
E(W,)andE(W?)which again was extended by Poeschl (1983).
These new formulae were able to overcome Kremer's (1964)
restrictions. It can, however be shown that Kremer's first
approach (Equation 8.56) also gives quite reliable approximate
results fort, andt, values which apply to realistic unsignalized
intersections. The following comments can also be made about
the newer equations.

m  The formulae are so complicated that they are far from
being suitable for practice. The only imaginable application
is the use in computer programs.

m  Moreover, these formulae are only valid under assumptions
(a), (b), and (c) in Section 8.4.1 of the paper. That means
that for practical purposes, the equations can only be

regarded as approximations and only apply fc
undersaturated conditions and steady state conditions.

Figure 8.12 gives a graphical comparison for some of the delay
formulae mentioned.

Differences in the platoon size distribution affects the average
delay per vehicle as shown in Figure 8.13. Here, the critical gap
was 4 seconds, the follow-up time was 2 seconds, and the
priority stream flow was 1000 veh/h. To emphasize the point,
the average delay for a displaced exponential priority stream is
4120 seonds, when the minor stream flow w&B0 veh/h. This

is much greater than the values for the Tanner and exponential
headway examples which were around 11.5ms@€ for the same
major stream flow. The average delay is also dependent on the
average platoon size as shown in Figure 8.14. The differences
in delays are dramatically different when the platoon size is
changed.
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Figure 8.12
Comparison of Some Delay Formulae.
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Figure 8.14
Average Steady State Delay per Vehicle by Geometric
Platoon Size Distribution and Different Mean Platoon Sizes.




8. UNSIGNALIZED INTERSECTION THEORY

8.4.3 Queue Length calculated from these equations directly. Therefore, Wu (1994)

developed another set of formulae which approximate the above
In each of these queuing theory approaches, the average queue Mentioned exact equations very closely:
length () can be calculated by Little's rule (Lit1®61): p(0) = 1-x2

1) 8.58
L= q b (8 55) p(n) _ p(o),xa(b(n 1)+1) ( )
Given that the proportion of time that a queue exists is equal to - ) _
the degree of saturation, the average queue length when there is p(n) = probability than vehicles are queuing on the
L, =9,D/x =q,D (8.56)
where,
The distribution of queue length then is often assumed to be X = &
geometric. U
However, a more reliable derivation of the queue length x = degree of saturatiom( according to Equation
distribution was given by Heidemann (1991). The following 8.33).
version contains a correction of the printing mistakes in the
original paper (there: Equations 8.30 and 8.31). a - 1
t.-t,
p(0) = h-hy(a,+q,) (8.57) 1+045- == q,
f
p(1) = p(0)hyq,[e*~(t.-t)-hy] g, hyhy
151
b t
t
2p(n) = p(nfl)-h3-qn[eq"ff(tcftf)-hz] 1+ 0.68- TC -,
n- f
t —t-g )™ —at n‘m.eqntf
*h3‘2 p(m)|:h2(c f qn) T ( qnf)
M0 (n-m)! te-(n-m-1)!
For the rather realistic approximatign= 2 t,, we get :
_ o . : a - 1 b - 151
p(n)_ = probability thah vehicles are queuing on the 1045 a q —l+l.36q
minor street P P

From Equation 8.58 we get the cumulative distribution function
h, = e'q°t°+(e'q°tf—l)&

F(n) = p(L<n) = 1-xCD (8.59)
h2 — qpe_qptc_qn(tc_tf)
hi = hz-qn-e'qptf For a given percentilss, (e.g.S=F(n) = 0.95) this equation

w

can be solved fan to calculate the queue length which is only
exceeded during ($*100 percent of the time (Figure 8.15).
For practical purposes, queue length can be calculated with
These expressions are based on assumptions (a), (b), and (c) in sufficient precision using the approximation of the M/M/1
Section 8.4.1. This solution is too complicated for practical use. ~queuing system and, hence, Wu's equation. The 95-percentile-
Moreover, specific percentiles of the queue length is the desired dueue length based on Equation 8.59 is given in Figure 8.15.
output rather than probabilities. This however, can not be
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The parameter of the curves (indicated on the right side) is the degree of saturation ( x ).

Figure 8.15
95-Percentile Queue Length Based on Equation 8.59  (Wu 1994).

8.4.4 Stop Rate follow-up timet, , increases from some minimum valeé0 t),
to 1 as the degree of saturation increases from 0 to 1.

The proportion of drivers that are stopped at an unsignalized ) ) _
intersection with two streams was established by Troutbeck ~The proportion of drivers stopped for more than a short period
(1993). The minor stream vehicles were assumed to arrive at . P(X,t) is given by the empirical equation:
random whereas the major stream headways were assumed to
have a Cowan (1_975) M3 distribution. Chang_es of speed are P(xt) = P(04)+AlL-PO)ix+(1-A)L-PO1)x>2
assumed to be instantaneous and the predicted number of " (1-AV(1-R)(1- (8.61)

) Lall f (1-A)(1-B)(1-x)x
stopped vehicles will include those drivers who could have
adjusted their speed and avoided stopping for very short periods.

The proportion stoppe®(x,0), is dependent upon the degree of ~ Where
saturationy, the headways between the bunched major stream it -

: i - B-1 (1-Ha Moty
vehicles;t,, the critical gapt.. and the major stream floyy,. =1-( ’?)( ’tmqp)e
The appropriate equation is: _Mft 4

A=1lae ™" m
P(x0) = 1- (1-)(1-t,g)e ™™  (8.60)
and

_ _ Mg ty)
where is given byaq,/(1-t,q). The proportion of drivers POy = P(0.0) Gptoce (8.62)
stopped for more than a short period, efheret is less than the
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or

P(OY) = 1- (lftmqp+qptoc)e'ma't")

If the major stream is random thegpis equal to 1.25 and for
bunched major stream traffic, it is 1.15. The vehicles that are
stopped for a short period may be able to adjust their speed and
these vehicles have been considered to have a “partial stop.”
Troutbeck (1993) also developed estimates of the number of
times vehicles need to accelerate and move up within the queue.

8.4.5 Time Dependent Solution

Each of the solutions given by the conventional queuing theory

approximations ifl is considerably greater than the expression
on the right side of the following equation.

> 1

oy

(8.63)

with T = time of observation over which the average delay

should be estimated in seconds,

after Morse (1962).

This inequality can only be applieddf, andgq are nearly
constant during time intervalT. The threshold given by
Equation 8.63 is illustrated by Figure 8.16. The curves are given
for time intervalsT of 5, 10, 15, 30, and 60 minutes. Steady

above is a steady state solution. These are the solutions that can State conditions can be assumedjis below the curve for the

be expected for non-time-dependent traffic volumes after an
infinitely long time, and they are only applicable when the degree
of saturationx is less than 1. In practical terms, this means,

the results of steady state queuing theory are only useful

1000

correspondind-value. If this condition (Equation 8.63) is not
fulfilled, time-dependent solutions should be used.
Mathematical solutions for the time dependent problem have
been developed by Newell (1982) and now need to be made
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below the curve for the corresponding T-value.

The curves are given for time intervals T of 5, 10, 15, 30, and 60 minutes. Steady statmsaan be assumed if, q is

Figure 8.16
Approximate Threshold of the Length of Time Intervals For the Distinction
Between Steady-State Conditions and Time Dependent Situations.
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more accessible to practicing engineers. There is, however, a
heuristic approximate solution for the case of the peak hour
effect given by Kimber and Hollid©79) which are based on the
ideas of Whiting, who never published his work.

During the peak period itself, traffic volumes are greater than
those before and after that period. They may even exceed
capacity. For this situation, the average delay during the peak
period can be estimated as:

D1+E+i

m

D, - %(mfF)

1 [T h
F - —=(@,a )y+C(y+—)}+E
qmofqno:2 mor m
G - ﬂc&—(qm—qn)lz] (8.64)
Uno Onot  Gm
E - &
qmo(qmofqno)
h = U Aot Uno
y-121
On
g, = capacity of the intersection entry during the
peak period of duratiom,
0., = capacity of the intersection entry before and
after the peak period,
g, = minor street volume during the peak period of
durationT, and
g, = minor street volume before and after the peak

period
(each of these terms in veh/sec; delay in sec).

C is again similar to the factd€ mentioned for the M/G/1
system, where

C = 1 for unsignalized intersections and
C = 0.5 for signalized intersections (Kimber and Hollis
1979).

This delay formula has proven to be quite useful to estin
delays and it has a quite reliable background particularly
temporarily oversaturateditions.

A simpler equation can be obtained by using the same co-
ordinate transfer method. This is a more approximate meth
The steady state solution is fine for sites with a low degre
saturation and the deterministic solution is satisftegory for s
with a very high degree of saturation say, greater than three ¢
four. The co-ordinate transfer method is one technique to
provide estimates between these two extremes. the reader
should also refer to Section 9.4.

The steady state solution for the average delay to the entering

vehicle is given by Equation 8.42. The deterministic equation
for delay,D,, on the other hand is

2L, +(Xg~1)q,, T
'

Dd = I:)min qu x>1 (865)
and D,=0
otherwise,
where L,is the initial queue,

T is time the system is operating in seconds, and
g, is the entry capacity.

These equations are diagrammatically illustrated in Figure 8.17.
For a given average delay the co-ordinate transformation method
gives a new degree of saturation, which is related to the
steady state degree of saturatignand the deterministic degree

of saturationy, , such that

X—% =1-x = a (8.66)
Rearranging Equations 8.42 and 8.65 gives two equatiors for
and x, as a function of the delay®, and D, . These two
equations are:

« - Ps Prin~"Brin
° I:)stminJrSD i

min

(8.67)
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Figure 8.17
The Co-ordinate Transform Technique.
and
2(D,-D,;) 2Ly a-T0% Lo in(27€) (8.71)
— L) - min .
X = —— i1 (868 2 m

Using Equation 8.66, is given by:

X, - Z(Ddemin)szO/qm B Dstminfmein (8.69)
T I:)stminJrSD i .

min

Rearranging Equation 8.69 and setiihg D,= D ,, X = X, gives:

1
D, - E{ A2+BfA} (8.70)

where

and

8 - 4D ,{T(lfx)(lw) TXery)
min 2

- (1@[& " Dmin} }

m

(8.72)

Equation 8.66 ensures that the transformed equation will
asymptote to the deterministic equation and gives a family of
relationships for different degrees of saturation and period of
operation from this technique (Figure 8.18).

A simpler equation was developed by Akgelik in Akcelik and
Troutbeck (1991). The approach here is to rearrange Equation
8.42 to give:
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Figure 8.18
A Family of Curves Produced from the Co-Ordinate Transform Technique.

Dmin(YJrsXs)
e D - qi%{(xly\l@} (8.75)

and this is approximately equal to: The average delay predicted by Equation 8.74 is dependent o
D, (¥ +€X) the init_ial gueue length, the time of ope_ration, thg _degree qf
a~ _m' "¢ (8.73) saturation, and the steady state equation coefficients. This

D Dyin equation can then be used to estimate the average delay under

oversaturated conditions and for different initial queues. The use
of these and other equations are discussed below.

If this is used in Equation 8.66 and then rearranged then the

resulting equation of the non-steady state delay is:

8.4.6 Reserve Capacity

D-D_. = 1 i+ﬂ Independent of the model used to estimate average delays, the
™ 2gq, 4 reserve capacity]) plays an important role
(8.74)
[ LO (X*l)Tj|2 TDmin(SXJrY)
+ —t +
2., 4 2
R = Gemax 0 (8.76)

A similar equation for M/M/1 queuing system can be obtained
if € is set to 1y is set to zero, ard,;, is set to 1d,, the result
is:

8-28
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1

as the measure of effectiveness. This is based on the fact that p-
average delays are closely linked to reserve capacity. This close
relationship is shown in Figure 8.19. In Figure 8.19, the average
delay,D, is shown in relation to reserve capadiy, The delay
calculations are based on Equation 8.64 with a peak hour
interval of durationT= 1 hour. The parameters00, 500, and

1000 vehttour) indicate the traffic volumey,, on the major

street. Based on this relationship, a good approximation of the
average delay can also be expressed by reserve capacities. What
we also see is that - as a practical guide - a reserve capacity

In the 1985 eitlon of the HCM but not the 1994 HCM, it is used {

R> 100 pcu/h generally ensures an average delay T

below 35 seconds. On =
q, =

Brilon (1995) has used a coordinate transform technique for the R -

"Reserve Capacity” formulation for average delay with L _
0

oversaturated conditions. His set of equations can be given by

szBJr‘le + b (877) an =
where

L
B%( bR- —0) (8.78)

quRf

Lo;RfT (li) _ ;_:J}i (8.79)

Ro Ry
g - 100 : 3600 .50
Lo% - q”‘fQORO (8.81)

duration of the peak period

capacity during the peak period

minor street flow during the peak period

reserve capacity during the peak period

= Oemax— dn

average queue length in the period before and
after the peak period

minor street flow in the period before and after
the peak period

capacity in the period before and after the peak
period

reserve capacity in the period before and after the
peak period

o
(=)

Average delay (sec)
E:N
Q

N
Q

Q

0 50 160 150
Reserve capacity, R (veh/h)

Figure 8.19

200

Average Delay, D, in Relation to Reserve Capacity R.
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All variables in these equations should be used in units of
seconds (sec), number of vehicles(veh), and veh/sec. Any
capacity formula to estimaig, and q,,, from Section 8.4.1 can

be used.

The numerical results of these equations as well as their degree
of sophistication are comparable with those of Equation 8.75.

8.4.7 Stochastic Simulation

As mentioned in the previous chapters, analytical methods are
not capable of providing a practical solution, given the
complexity and the assumptions required to be made to analyze
unsignalized intersections in a completely realistic manner. The
modern tool of stochastic simulation, however, is able to
overcome all the problems very easily. The degree of reality of
the model can be increased to any desired level. It is only
restricted by the efforts one is willing to undertake and by the
available (and tolerable) computer time. Therefore, stochastic
simulation models for unsignalized intersections were developed
very early (Steierwald 1961a and b; Boeli®68). More ecent
solutions were developed in the U. K. (Salter 1982), Germany

(Zzhang 1988; Grossmann 1988; Grossmann 1991), Canada 2)

(Chan and Teply 1991) and Polandgdz1991).

Speaking about stochastic simulation, we have to distinguish two
levels of complexity:

1) Point Process ModelsHere cars are treated like points,
i.e. the length is neglected. As well, there is only limited

depart according to the gap acceptance mechanism. °

effect of limited acceleration and deceleration can,
course, be taken into account using average vehicle
performance values (Grossmann 1988). The advantage of
this type of simulation model is the rather shorter computer
time needed to run the model for realistic applications.
One such model is KNOSIMO (Grossmann 1988, 1991).
It is capable of being operated by the traffic engineer on
his personal computer during the process of intersection
design. A recent study (Kyte et d996) pointed out that
KNOSIMO provided the most realistic representation of
traffic flow at unsignalized intersections among a group of
other models.

KNOSIMO in its present concept is much related to
German conditions. One of the specialities is the
restriction to single-lane traffic flow for each direction of
the main street. Chan and Teply (199)nfd some easy
modifications to adjust the model to Canadian conditions
as well. Moreover, the source code of the model could
easily be adjusted to traffic conditions and driver behavior
in other countries.

Car Tracing Models -These models give a detailed
account of the space which cars occupy on a road together
with the car-following process but are time consuming to
run. An example of this type of model is described by
Zhang (1988).

Both types of models are useful for research purposes. The
models can be used to develop relationships which can then be

use of deceleration and acceleration. Cars are regarded as "ePresented by regression lines or other empirical evaluation

if they were "stored" at the stop line. From here they

techniques.

8.5 Interaction of Two or More Streams in the Priority Road

The models discussed above have involved only two streams;
one being the priority stream and the second being a minor
stream. The minor stream is at a lower rank than the priority

stream. In some cases there may be a number of lanes that must

be given way to by a minor stream driver. The capacity and the
delay incurred at these intersections have been looked at by a
number of researchers. A brief summary is given here.

If the headways in the major streams have a negative exponential
distribution then the capacity is calculated from the equation for

a single lane with the opposing flow being equal to the sun
the lane flows. This results in the following equation fc
capacity in veh/h:

3600z
Oemax = 701_% (8.82)
1-e

whereq is the total opposing flow.
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Tanner (1967) developed an equation for the capacity of an
intersection where there wememajor streams. The traffic in
each lane has a dichotomized headway distribution in which
there is a proportion of vehicles in bunches and the remaining
vehicles free of interaction. All bunched vehicles are assumed
to have a headway ¢f and the free vehicles have a headway
equal to thet, plus a negative exponentially distributed (or
random) time. This is the same as Cowal®55) M3 model.
Using the assumption that headways in each lane are
independent, Tanner reviewed the distribution of the random
time periods and estimated the entry capacity in veh/h as:

3600A(1-t 1-t e(1-t e Mt
lemax ~ q ( mlql)( mzqit ( mlql) ] (883)
l1-e™f
where A= AgHAgt A, (8.84)
b= ed/ (1 q) (8.85)

g, is the flow in the major streanin veh/sec.
«; is the proportion of free vehicles in the major stream

This equation by Tanner is more complicated than an earlier
equation (Tanner 1962) based on an implied assumption that the
proportion of free vehiclesy, is a function of the lane flow.
That is

o = (14,9)

and therk, reduces tg;. Fisk (1989) extended this earlier work
of Tanner (1962) by assuming that drivers had a different critical
gap when crossing different streams. While this would seem to
be an added complication it could be necessary if drivers are
crossing some major streams from the left before merging with
another stream from the right when making a left turn.

Her equation for capacity is:

n
360 1-t_g)e W n
) H (1-tma) (8.86)
qemax B lfe_qtf
where q=0,+0,*..... +q,

8.5.1 The Benefit of Using a
Multi-Lane Stream Model

Troutbeck (1986) calculated the capacity of a minor stream to
cross two major streams which both have a Cowan (1975)
dichotomized headway distribution. The distribution of
opposing headways is:

00t
F(t) = for t<t 8.87
(%) n (887)
and
F) - 1-o/e W for t>t (8.88)
where
o - o0y (1-Gtyy) +t,05(1 -0ty (8.882)
(q1+Q2) .

or after a little algebra,

oq - M1 (1-qt,) (8.88b)
i1

and

A=+ A, (8.89)

As an example, if there were two identical streams then the
distribution of headways between vehicles in the two streams is
given by Equations 8.87 and 8.88. This is also shown in figures
from Troutbeck (1991) and reported here as Figure 8.20.

Gap acceptance procedures only require that the longer
headways or gaps be accurately represented. The shorter gaps
need only be noted.

Consequently the headway distribution from two lanes can be
represented by a single Cowan M3 model with the following
properties:

FO) - 1-axe W t>t;  (8.90)
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Figure 8.20

Modified ‘Single Lane' Distribution of Headways (Troutbeck 1991).

and otherwisd=(t) is zero. This modified distribution is also
illustrated in Figure 8.20. Values®@f andt, must be chosen

to ensure the correct proportions and the correct mean headway
are obtained. This will ensure that the number of headways

greater thaty 1-+(t), is identical from either the one lane or the
two lane equations whetis greater that),”.

Troutbeck (1991) gives the following equations for calculating
a* andt, which will allow the capacity to be calculated using
a modified single lane model which are identical to the estimate
from a multi-lane model.

The equations
* * At x b
(Ltothtoae” ™ = (L-t,q)(L tag)e’ ™ (8.91)

and

A" / }”/tm

axe’" ™= gle (8.92)

are best solved iteratively forwith t_ ; being theth estimate.
The appropriate equation is

Mt

1-(1-ta)@-t.a)e

thi+l =
" 070

(8.93)

a* is then found from Equation 8.93.

Troutbeck (1991) also indicates that the error in calculating
Adams' delay when using the modified single lane model instead
of the two lane model is small. Adams' delay is the delay to the
minor stream vehicles when the minor stream flow is close to
zero. This is shown in Figure 8.21. Since the modified
distribution gives satisfactory estimates of Adams' delay, it will
also give satisfactory estimates of delay.

In summary, there is no practical reason to increase the
complexity of the calculations by using multi-lane models and a
single lane dichotomized headway model can be used to
represent the distribution of headways in either one or two lanes.
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Figure 8.21
Percentage Error in Estimating Adams' Delay Against the
Major Stream Flow for a Modified Single Lane Model (Troutbeck 1991).

8.6 Interaction of More than Two Streams of

8.6.1 Hierarchy of Traffic Streams at a
Two Way Stop Controlled Intersection

At all unsignalized intersections except roundabouts, there is a
hierarchy of streams. Some streams have absolute priority
(Rank 1), while others have to yield to higher order streams. In
some cases, streams have to yield to some streams which in turn
have to yield to others. It is useful to consider the streams as
having different levels of priority or ranking. These different
levels of priority are established by traffic rules. For instance,
Rank 1 stream  has absolute priority and does not need to
yield right of way to another stream,

Rank 2 stream  has to yield to a Rank 1 stream,

Rank 3 stream  hastoyield to a Rank 2 stream and in turn to
a Rank 1 stream, and

Rank 4 stream  hastoyield to a Rank 3 stream and in turn to
Rank 2 and Rank 1 streams (left turners from
the minor street at a cross-intersection).

Different Ranking

This is illustrated in Figure 8.22 atuced for traffic on the right
side. The figure illustrates that the left turners on the major road
have to yield to the through traffic on the major road. The left
turning traffic from the minor road has to yield to all other
streams but is also affected by the queuing traffic in the Rank 2
stream.

8.6.2 Capacity for Streams of
Rank 3 and Rank 4

No rigorous analytical solution is known for the derivation of the
capacity of Rank-3-movements like the left-turner from the
minor street at a T-junction (movement 7 in Figure 8.22, right
side). Here, the gap acceptance theory uses the impedance
factorsp, as an approximationg for each movement is the
probability that no vehicle is queuing at the entry. This is given
with sufficient accuracy by Equation 8.50 or better with the two
service time Equation 8.52. Only during the mgyt,.,of the

total time, vehicles of Rank 3 can enter the intersection due to
highway code regulations.
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The numbers beside the arrows indicate the enumeration of streams given by the Highway Capacity Manual (1994,

Figure 8.22
Traffic Streams And Their Level Of Ranking.

Therefore, for Rank-3-movements, the basic vajyéor the
potential capacity must be reducedpfo- ¢, to get the real
potential capacity,:

qe,rank-3: pO,rank-Z. qm,rank»3 (894)

For a T-junction, this means
Oe7= Pos Omz7

For a cross-junction, this means

qe,8: px' qm,8 (895)

Oc11= Py Omua (8.96)
with

P = Po1 Poa

Here the index numbers refer to the index of the movements
according to Figure 8.22. Now the valuepgfandp, ,,can be
calculated according to Equation 8.50.

For Rank-4-movements (left turners at a cross-intersection), the
dependency between tipg values in Rank-2 and Rank-3-
movements must be empirical and can not be calculated from
analytical relations. They have been evaluated by numerous
simulations by Grossmann (1991; cf. Brilon and Grossmann
1991). Figure 8.23 shows the statistical dependence between
gueues in streams of Ranks 2 and 3.

In order to calculate the maximum capacity for the Rank-4-
movements (numbers 7 and 10), the auxiliary facmgsand
P,,;, Should be calculated first:

Py
P,y = 068, =

Vi

+0.6/p; (8.97)

diminished to calculate the actual capacitigs,Brilon (1988,
cf. Figures 8.7 and 8.8) has discussed arguments which support
this double introduction.

The reasons for this are as follows:
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Figure 8.23
Reduction Factor to Account for the Statistical Dependence
Between Streams of Ranks 2 and 3.

®  During times of queuing in Rank-2 streams (e.g. left ® Even if no Rank-2 vehicle is queuing, these vehicles

turners from the major street), the Rank-3 vehicles (e.g. influence Rank-3 operations, since a Rank-2 vehic
left turners from the minor street at a T-junction) cannot approaching the intersection within a time of less than
enter the intersection due to traffic regulations and the prevents a Rank-3 vehicle from entering the intersection.
highway code. Since the portion of time provided for

Rank-3 vehicles ig,, the basic capacity calculated from Grossmann (1991) has proven thiag) dine possibilities
Section 8.4.1 for Rank-3 streams has to be diminished by considered, the described approach is the easiest and quite

the factor p, for the corresponding Rank-2 streams realistic in the range of traffic volumes which occur in practical

(Equations 8.95 to 8.99). applications.

8.7 Shared Lane Formula

8.7.1 Shared Lanes on the Minor Street

If more than one minor street movement is operating on the same
lane, the so-called "shared lane equation” can be applied. It
calculates the total capadaifyof the shared lane, if the capacities

of the corresponding movements are known. (Derivation in

Harders, 1968 for example.) %

qm,i

(8.100)

capacity of the shared lane in veh/h,
capacity of movement, if it operates on a
separate lane in veh/h,
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b, = proportion of volume of movemenof the total
volume on the shared lane,
m = number of movements on the shared lane.

The formula is also used by the HCM (1994, Equation 10-9).

This equation is of general validity regardless of the formula for
the estimation off,, and regardless of the rank of priority of the
three traffic movements. The formula can also be used if the
overall capacity of one traffic stream should be calculated, if this
stream is formed by several partial streams with different
capacities, e.g. by passenger cars and trucks with different
critical gaps. Kyte at al (1996pdnd that this procedure for
accounting for a hierarchy of streams, provided most realistic
results.

8.7.2 Shared Lanes on the Major Street

In the case of a single lane on the major street shared by right-
turning and through movements (movements no. 2 and 3 or 5
and 6 in Figure 8.22), one can refer to Table 8.2.

If left turns from the major street (movements no. 1 and 4 in
Figure 8.22) have no separate turning lanes, vehicles in the
priority | movements no. 2 and 3, and no. 5 and 6 respectively

in Figure 8.21 may also be obstructed by queuing vehicles in
those streams. The fagtdrandp , ;* indicate the probability

that there will be no queue in the respective shared lane. They

might serve for a rough estimate of the disturbance that can be

expected and can be approximated as follows (Harders 1968):

. 1-py;
Poj = 1 8.101
o 1-gtg; — Otex ( )
where: i=1,j=2 andk= 3 (cf. Figure 8.22)
or

i=4,j=5 andk =6 (cf. Figure 8.22)

g = volume of streamin veh/sec,
g, = volume of strearkin veh/sec, and
t; andtg, = follow-up time required by a vehicle in stream
ork (s).
(1.7 sec 4;< 2.5 sec, e.g; = 2 sec)

In order to account for the influence of the queues in the major
street approach lanes on the minor street streams no. 7, 8, 10,
and 11, the valugs, andp,,, according to Equation 8.47 have

to be replaced by the valygg* andp, ;* according to Equation
8.101. This recement is defined in Equations 8.95 to 8.97.

8.8 Two-Stage Gap Acceptance and Priority

At many unsignalized intersections there is a space in the center
of the major street available where several minor street vehicles
can be stored between the traffic flows of the two directions of
the major street, especially in the case of multi-lane major traffic
(Figure 8.24). This storage space within the intersection enables
the minor street driver to cross the major streams from each
direction at different behavior times. This behavior can
contribute to an increased capacity. This situation is called two-
stage priority. The additional capacity being provided by these
wider intersections can not be evaluated by conventional
capacity calculation models.

Brilon et al. (1996) have developed an analytical theory for the
estimation of capacitiasnder two-stage priority conditions. It is
based on an earlier approach by Harders (1968). iticadth

the analytical theory, simulations have been performed and were

the basis of an adjustment fattee resulting set of
equations for the capacity of a two-stage priorityrsituation a

%ﬁ {y(ykl)-[c(qs) ~qy] +(y-1) c(qﬁqqu)}

for y=1

Cry-n = ﬁ {k[c(qs) -0yl +(c(a, +a,* qS)J (8.104)

fory=1
C; = total capacity of the intersection for minor through traffic
(movement 8)
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Table 8.2
Evaluation of Conflicting Traffic Volume a,
Note: The indices refer to the traffic streams denoted in Figure 8.22.

I
I Subject Movement No. [Conflicting Traffic Volume q,

Left Turn from Major Road | 1 gs + qs°

7 .+ g5
Right Turn from Minor 6 q,” +0.5q,"
Road

12 g2 +0.5q,”

Through Movement from | 5 q,+05q" +qs+q2 +q,+q,
Minor Road

11 | g,+q? +q;+0.5q4) +q,+q,

Left Turn from Minor Road | 4 q,+0.5q” +qs+q,+q,+q,,"” +q,,°

10 |g,+05q"+q,+q,+q,+q" +q,”

Notes

1) |Ifthereis a right-turn lane, q of qg should not be considered.

2) Ifthere is more than one lane on the major road,  q, and qs are considered as traffic volumes on the right
lane.

3) If right-turning traffic from the major road is separated by a triangular island and has to comply with a
YIELD- or STOP-Sign, qs and q; need not be considered.

4) If right-turning traffic from the minor road is separated by a triangular island and has to comply with a
YIELD- or STOP-sign, q, and q,, heed not be considered.

5) If movements 11 and 12 are controlled by a STOP-sign,  q;, and q,, should be halved in this equation.
Similarly, if movements 8 and 9 are controlled by a STOP-sign, gs and g, should be halved.

6) It can also be justified to omit q agd q of,to halve their values if the minor approach area is wide.

where a=1 fork=0
_og, +q,) ~c(a, + 4, + )
o(0s) -0y ~C(G; * G, * Go)

a=1-0.32exp(1.3-y/k) fork>0 (8.105)

Of course, here the volumes of all priority movements at part II

a, = volume of priority street left turning traffic at part | have to be included. These are: major right (6, except if this
d, = volume of major street through traffic coming from the  movement is guided along a triangular island separated from the
left at part | through traffic) , major through (5), major left (4); numbers of

gs = volume of the sum of all major street flows coming movements according to Figure 8.22.
from the right at part Il.
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Note: The theory is independent of the number of lanes in the major street.

Figure 8.24
Minor Street Through Traffic (Movement 8) Crossing the Major Street in Two Phases.

c(o,, &) = capacity at part |
c(a) = capacity at part Il
c(q,+0,+0) = capacity at a cross intersection for

minor through traffic with a major
street traffic volume afj,+g,+0.

(All of these capacity terms are to be calculated by any useful
capacity formula, e.g. the Siegloch-formula, Equation 8.33)

8.9 All-Way Stop Controlled Intersections

8.9.1 Richardson’s Model

Richardson (1987) developed a model for all-way stop
controlled intersections (AWSC) based on M/G/1 queuing
theory. He assumed that a driver approaching will either have

The same set of formulas applies in analogy for movement 7. If
both movements 7 and 8 are operated on one lane then the total
capacity of this lane has to be evaluated foppandc,, using

the shared lane formula (Equation 8.95). Brilon et al. (1996)
provide also a set of graphs for an easier application of this
theory.

a service time equal to the follow-up headway for vehicles in this
approach if there are no conflicting vehicles on the cross roads
(to the left and right). The average service time is the time
between successive approach stream vehicles being able to
depart. If there were conflicting vehicles then the conflicting
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vehicles at the head of their queues will depart before the The probability of no conflicting vehicles beingdgiven by
approach stream being analysed. Consequently, Richardson

assumed that if there were conflicting vehicles then the average 1. = (1-p) 1-0) (8.113)
service time is the sum of the clearance timefor conflicting

vehicles and for the approach stream. hence,

For simplicity, Richardson considered two streams; northbound Ps = 1-(1-q 5)(1-9 s) (8.114)

and westbound. Looking at the northbound drivers, the
probability that there will be a conflicting vehicle on the cross  and
road is given by queuing theory s The average service time P = 1-(1—q3s)1-¢ 5) (8.115)
for northbound drivers is then
Given the flowsg,, g, q, andg and using an estimate of
s, =t (1) + T.p, (8.106) service timesp,, andp,, can be estimated using Equations
8.114 and 8.115. The iterative process is continued with

A similar equation for the average service time for westbound ~ Eduations 8.109 to 8.112 providing a better estimate of the

drivers is service timess, s, S, ands,,
S = t, (1) +T.p (8.107) Richardson used Herbert's (1963) results in whjahas found
where, e to be 4 sec antl, was a function of the number of cross flow
p, is the utilization ratio and i s lanes to be crossed. The equation was
g, is the flow from approach t. = 3.6 = 0.1 number of lanes

5 is the service time for approaich
t,, is the minimum headway, and

T, is the total clearance time. ) -
andT, is the sum of the values for the conflicting and the

These equations can be manipulated to give a solutiepdsr approach streams.

The steady-state average delay was calculated using the

. thmTc+tquWtrf] (6.108) Pollaczek-Khintchine formula with Little’s equation as:
n .
1-q,0,(TE-2t, T +t2) w, - 2 p?+q?Var(s) (©.116)
2(1-p)q

If there are four approaches then very similar equations are

obtained for the average service time involving the probability or
there are no cars on either conflicting stream. For instance, q?
P 1+—2Var(s)
_ P p
=t (1p)+ T 8.109 W, = =11+

Sn tm ( —pev) cp ew ( ) S q 2(17p)

S = h(@Pu) tTePen (8.110)

s =t (1p)+T.o. (8.111) This equation requires an estimate of the variance of the service

times. Here Richardson has assumed that drivers either had a

service time oh,, or T. For the northbound traffic, there were
(8.112) (1-p.,) proportion of drivers with a service time of exagtly

andg,, drivers with a service time of exacly. The variance

is then

tm (1ﬁn; + TCp ns

£
I
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var(s), = ti(1-p,)+Tp-s: (8.117)

and

This then gives

Var(s), = t,f,

-t
p - nm (8.118)
chtm
chsn 2 snftm 2
+T -
T T & (68119

for the northbound traffic. Similar equations can be obtained for
the other approaches. An example of this technique applied to

Northbound approach
average delay per vehicle (sec)

100

a four way stop with single lane approaches is given in Figure
8.25. Here the southbound traffic has been sad@veh/h.
The east-west traffic varies but with equal flows in both
directions. In accordance with the comments abipweas 4 sec
andT, was 2%, or 7.6 sec.

Richardson's approach is satisfactory for heavy flows where most
drivers have to queue before departing. His approach has been
extended by Horowitz (1993), who extended the number of
maneuver types and then consequently the number of service
time values. Horowitz has also related his model to Kyte’s
(1989) approach and found that his modified Richardson model
compared well with Kyte’s empirical data.

Figure 8.25 from Richardson's research, gives the performance
as the traffic in one set approaches (north-south or east-
west)increases. Typically, as traffic flow in one direction
increases so does the traffic in the other directions. This will
usually result in the level of delays increasing at a more rapid
rate than the depicted in this figure.

East-west
4 flow (veh/h)

600

400 | 200 0

0 200

400

i * J

600 800 1000

Northbound flow (veh/h)

Figure 8.25
Average Delay For Vehicles on the Northbound Approach.
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8.10 Empirical Methods

Empirical models often use regression techniques to quantify an
element of the performance of the intersection. These models, by
their very nature, will provide good predictions. However, at
times they are not able to provide a cause and effect
relationships.

Kimber and Coombe (1980), of the Unitedngdom, have
evaluated the capacity of the simple 2-stream problem using
empirical methods. The fundamental idea of this solution is as
follows: Again, we look at the simple intersection (Figure 8.7)
with one priority traffic stream and one non-priority traffic
stream during times of a steady queue (i.e. at least one vehicle is
gueuing on the minor street). During these times, the volume of
traffic departing from the stop line is the capacity. This capacity
should depend on the priority traffic volumeduring the same

time period. To derive this relationship, observations of traffic
operations of the intersection have to be made during periods of
oversaturation of the intersection. The total time of observation
then is divided into periods of constant duration, e.g. 1 minute.
During these 1-minute intervals, the number of vehicles in both
the priority flow and the entering minor street traffic are counted.
Normally, these data points are scattered over a wide range and
are represented by a linear regression line. On average, half of
the variation of data points results from the use of one-minute
counting intervals. In practice, evaluation intervals of more than
1-minute (e.g. 5-minutes) cannot be used, since this normally
leads to only few observations.

As a result, the method would produce linear relationg,for

4, =b-c g (8.120)

Instead of a linear function, also other types of regression could

be used as well, e.g.
g, = A e . (8.121)

Here, the regression parametarandB could be evaluated out

of the data points by adequate regression techniques. This type

of equation is of the same form as Siegloch's capacity formula

(Equation 8.33). This analogy shows tAaB600t,.

In addition to the influence of priority stream traffic volumes on
the minor street capacity, the influence of geometric layout of the
intersection can be investigated. To do this, the constant values
bandc or A and Bcan be related to road widths or visibility

or even other characteristic values of the intersection layou
another set of linear regression analysis (see e.g. Kimbel
Cooh8iz®).
The advantages of the empirical regression technique comp:

to gap acceptance theory are:

there is no need to establish a theoretical model.

reported empirical capacities are used.

influence of geometrical design can be taken into account.

effects of priority reversal and forced priority are taken into
account automatically.

there is no need to describe driver behavior in detail.

The disadvantages are:

m transferability to other countries or other times (driver
behavior might change over time) is quite limited: For
application under different conditions, a very big sample
size must always be evaluated.

no real understanding of traffic operations at the intersection

is achieved by the user.

the equations for four-legged intersections with 12

movements are too complicated.

m the derivations are based on driver behavior under
oversaturated conditions.

m  each situation to be described with the capacity formulae
must be observed in reality. On one hand, this requires a
large effort for data collection. On the other hand, many of
the desired situations are found infrequently, since
congested intersections have been often already signalized.

8.10.1 Kyte's Method

Kyte (1989) and Kyte et al1991) proposed another rhet for

the direct estimation of unsignalized intersection capacity for
both AWSC and TWSC intersections. The idea is based on the
fact that the capacity of a single-channel queuing system is the
inverse of the average service time. The service tjjnat the
unsignalized intersection is the time which a vehicle spends in
the first position of the queue. Therefore, only the average of
these timest() has to be evaluated by observations to get the
capacity.

Under oversaturated conditions with a steady queue on the minor
street approach, each individual value of this time in the first
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position can easily be observed as the time between two
consecutive vehicles crossing the stop line. In this case,
however, the observations and analyses are equivalent to the
empirical regression technique .

Assuming undersaturated conditions, however, the time each of
the minor street vehicles spends in the first position could be
measured as well. Again, the inverse of the average of these
times is the capacity. Examples of measured results are given by
Kyte et al. (1991).

From a theoretical point of view, this method is correct. The
problems relate to the measurement techniques (e.g. by video
taping). Here itis quite difficult to define the beginning and the
end of the time spent in the first position in a consistent way. If
this problem is solved, this method provides an easy procedure
for estimating the capacity for a movement from the minor street
even if this traffic stream is not operating at capacity.

Following a study of AWSC intersections, Kyte et al. (1996)
developed empirical equations for the departure headways from
an approach for different levels of conflict.

hy = R+ Roag Rr  Mhrag Prr & Phveag Py (8.122)
where:
h, is the adjusted saturation headway for the
degree of conflict cage
hy. is the base saturation headway for ¢ase
hLT-adj
andhg; . are the headway adjustment factors for left

and right turners respectively;,

8.11 Conclusions

This chapter describes the theory of unsignalized intersections
which probably have the most complicated intersection control
mechanism. The approaches used to evaluate unsignalized
intersections fall into three classes.

(@) Gap acceptance theory which assumes a mechanism for
drivers departure. This is generally achieved with the
notion of a critical gap and a follow on time. This
attributes of the conflicting stream and the non priority
stream are also required. This approach has been
successfully used to predict capacity (Kyte et al. 1996) and

P andP,; are the proportion of left and right turners;
Nivag IS the adjustment factor for heavy vehicles; and
Py is the proportion of heavy vehicles.

The average departure headwdy, |, is first assumed to be four
seconds and the degree of saturationis the product of the
flow rate,V andd . A second iterative value of  is given by
the equation:

d- zsj P(C)h,
i=1

where P(C) is the probability that confligf occurs. These
values also depend on estimatescbf  andhthelues. The
service time is given by the departure headway minus the move-
up time.

Kyte et al. (1996) rexgnizes that capacity can be evaluated from
two points of view. First, the capacity can be estimated
assuming all other flows remain the same. This is the approach
that is typically used in Section 8.4.1. Alternatively capacity can
be estimated assuming the ratio of flow rates for different
movements for all approaches remain constant. All flows are
incrementally increased until one approach has a degree of
saturation equal to one.

The further evaluation of these measurement results corresponds
to the methods of the empirical regression techniques. Again,
regression techniques can be employed to relate the capacity
estimates to the traffic volumes in those movements with a
higher rank of priority.

has been extended to predict delays in the simy
conditions.

(b) Queuing theory in which the service time attributes are
described. This is a more abstract method of describing
driver departure patterns. The advantages of u
gueuing theory is that measures of delay (and quet
lengths) can be more easily defined for some of the more
complicated cases.
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(c) Simulation programs. These are now becoming more
popular. However, as a word of caution, the output from
these models is only as good as the algorithms used in
the model, and some simpler models can give excellent
results. Other times, there is a temptation to look at the
output from models without relating the results to the
existing theory. This chapter describes most of the
theories for unsignalised intersections and should assist
simulation modelers to indicate useful extension to
theory.
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