MACROSCOPIC FLOW MODELS

BY JAMES C. WILLIAMS °®

® Associate Professor, Department of Civil Engineering, University of Texas at Arlington, Box 19308,
Arlington, TX 76019-0308.



CHAPTER 6 - Frequently used Symbols

Note to reader: The symbols used in Chapter 6 are the same as those used in the original sources. Therefore, theioeadehat cau
the same symbol may be used for different quantities in different sections of this chapter. The syritlooisdeélow include the sections
in which the symbols are used if the particular symbol definition changes within the chapter or is a definition particulzrapter.

In each case, the symbols are defined as they are introduced within the text of the chapter. Symbol units are givertioeyhehere
define the quantity; in most cases, the units may be in either English or metric units as necessary to be consistennitthirother
relation.

A = area of town (Section 6.2.1)

c = capacity (vehicles per unit time per unit width of road) (Section 6.2.1)

D = delay per intersection (Section 6.2.2)

f = fraction of area devoted to major roads (Section 6.1.1)

f = fraction of area devoted to roads (Section 6.2.1)

f = number of signalized intersections per mile (Section 6.2.2)

f, = fraction of moving vehicles in a designated network (Section 6.3)

f = fraction of stopped vehicles in a designated network (Section 6.3)

f min = minimum fraction of vehicles stopped in a network (Section 6.4)

I = total distance traveled per unit area, or traffic intensity (pcu/hour/km) (Sections 6.1.1 and 6.2.3)

J = fraction of roadways used for traffic movement (Section 6.2.1)

K = average network concentration (ratio of the number of vehicles in a network and the network length, Section 6.4)
K = jam network concentration (Section 6.4)

N = number of vehicles per unit time that can enter the CBD (Section 6.2.1)

n = quality of traffic indicator (two-fluid model parameter, Section 6.3)

Q = capacity (pcu/hr) (Section 6.2.2)

Q = average network flow, weighted average over all links in a designated network (Section 6.4)

q = average flow (pcu/hr)

R = road density, i.e., length or area of roads per unit area (Section 6.2.3)

r = distance from CBD

T = average travel time per unit distance, averaged over all vehicles in a designated network (Section 6.3)
To = average minimum trip time per unit distance (two-fluid model parameter, Section 6.3)

T, = average moving (running) time per unit distance, averaged over all vehicles in a designated network (Section 6.3)
T, = average stopped time per unit distance, averaged over all vehicles in a designated network (Section 6.3)
\% = average network speed, averaged over all vehicles in a designated network (Section 6.4)

\Y/ = network free flow speed (Section 6.4)

V., = average maximum running speed (Section 6.2.3)

V, = average speed of moving (running) vehicles, averaged over all in a designated network (Section 6.3)
v = average speed

Y = weighted space mean speed (Section 6.2.3)

v, = average running speed, i.e., average speed while moving (Section 6.2.2)

w = average street width

o = Zahavi's network parameter (Section 6.2.3)

A = g/ctime, i.e. ration of effective green to cycle length
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Mobility within an urban area is a major component of that area's level provides this measurement in terms of the three be
quality of life and an important issue facing many cities as they variables of traffic flow: speed, flow (or volume), anc
grow and their transportation facilities become congested. There concentration. These three variables, appropriateiyndefined,
is no shortage of techniques to improve traffic flow, ranging also be used to describe traffic at the network level. Th
from traffic signal timing optimization (with elaborate, description must be one that can overcome the intractabilities ©
computer-based routines as well as simpler, manual, heuristic existing flow theories when network component interactions
methods) to minor physical changes, such as adding a lane by the talemTdniot.
elimination of parking. However, the difficulty lies in evaluating
the effectiveness of these techniques. A number of methods The work in this chapter views traffic in a network from
currently in use, reflecting progress in traffic flow theory and macroscopic point of view. Microscopic analyses run into twe
practice of the last thirty years, can effectively evaluate changes major difficulties when applied to a street network:
in the performance of an intersection or an arterial. But a
dilemma is created when these individual components, 1) Each street block (link) and intersection are models
connected to form the traffic network, are dealt with collectively. individually. A proper accounting of the interactions
between adjacent network components (particularly in the
The need, then, is for a consistent, reliable means to evaluate case of closely spaced traffic signals) quickly leads
traffic performance in a network under various traffic and intractable problems.
geometric configurations. The development of such
performance models extends traffic flow theory into the network 2) Since the analysis is performed for each networ
level and provides traffic engineers with a means to evaluate component, it is difficult to summarize the results in
system-wide control strategies in urban areas. In addition, the meaningful fashion so that the overall network performar
guality of service provided to the motorists could be monitored can be evaluated.
to evaluate a city's ability to manage growth. For instance,
network performance models could also be used by a state Simulation can be used to resolve the first difficulty, but t
agency to compare traffic conditions between cities in order to second remains; traffic simulation is discussed in Chapter 1
more equitably allocate funds for transportation system
improvements. The Highway Capacity Manual (Transportation Research Board
1994) is the basic reference used to evaluate the quality of traffic
The performance of a traffic system is the response of that service, yet does not address the problem at the network le
system to given travel demand levels. The traffic system consists While some material is devoted to assessing theit®vel of sel
of the network topology (street width and configuration) and the on arterials, it is largely a summation of effects atl individus
traffic control system (e.g., traffic signals, designation of one- intersections. Several travel time models, beginniag with tt
and two-way streets, and lane configuration). The number of travel time contour map, are briefly reviewed in the next secti
trips between origin and destination points, along with the followed by a description of general network models in Sectic
desired arrival and/or departure times comprise the travel 6.2. The two-fluid model of town traffic, also a general netwo
demand levels. The system response, i.e., the resulting flow model, is discussed separately in Section 6.3 due to the exte
pattern, can be measured in terms of the level of service the model's development through analytical, field, and simulat
provided to the motorists. Traffic flow theory at the intersection studies. Extensions of the two-fluid model into gevakal net
and arterial models are examined in Section 6.4, and the chapter references

are in the final section.

6.1 Travel Time Models

Travel time contour maps provide an overview of how well a dispatched away from a specified location in the network, ar
street network is operating at a specific time. Vehicles can be each vehicle's time itiad poted at desired intervals.

6-1
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Contours of equal travel time can be established, providing
information on the average travel times and mean speeds over
the network. However, the information is limited in that the
travel times are related to a single point, and the study would
likely have to be repeated for other locations. Also, substantial
resources are required to establish statistical significance. Most
importantly, though, is that it is difficult to capture network
performance with only one variable (travel time or speed in this
case), as the network can be offering quite different levels of
service at the same speed.

This type of model has be generalized by several authors to
estimate average network travel times (per unit distance) or
speeds as a function of the distance from the central business
district (CBD) of a city, unlike travel time contour maps which
consider only travel times away from a specific point.

6.1.1 General Traffic Characteristics
as a Function of the Distance
from the CBD

Vaughan, loannou, and Phylactdi®72) hypothesized several
general models using data from four cities in England. In each

case, general model forms providing the best fit to the data w
selected. Traffic intensityl ( defined as the total distance
traveled per unit area, with units of pcu/hour/km) tends to
decrease with increasing distance from the CBD,

| - Aexd-y/7a) (6.1)

wherer is the distance from the CBD, amd and a are
parameters. Each of the four cities had unique valugsoél

a, while A was also found to vary between peak and off-peak
periods. The data from the four cities is shown in Figure 6.1.
A similar relation was found between the fraction of the area
which is major roadff and the distance from the CBD,

(6.2)

f - Bexd-yb) |

whereb andB are parameters for each town. Traffic intensity
and fraction of area which is major road were found to be
linearly related, as was average speed and distance from the
CBD. Since only traffic on major streets is considered, these
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Figure 6.1

Total Vehicle Distance Traveled Per Unit Area on Major Roads as a
Function of the Distance from the Town Center (Vaughan et al. 1972).
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results are somewhat arbitrary, depending on the streets selected
as major.

6.1.2 Average Speed as a Function of
Distance from the CBD

Branston (1974) investigated five functions relating average
speed V) to the distance from the CBD) (using data collected

by the Road Research Laboratory (RRL) in 1963 for ifiescin
England. The data was fitted to each function using least-
squares regression for each city separately and for the aggregated
data from all six cities combined. City centers were defined as
the point where the radial streets intersected, and the journey
speed in the CBD was that found within 0.3 km of the selected
center. Average speed for each route section was found by
dividing the section length by the actual travel time
(miles/minute). The five selected functions are described below,
wherea, b, andc are constants estimated for the data. A power
curve,

v=ar® (6.3)

was drawn from Wardrop's work (1969), but predicts a zero
speed in the city center (at 0). Accordingly, Branston also
fitted a more general form,

v=c+ar® , (6.4)

wherec represents the speed at the city center.

Earlier work by Beimborn (1970)uggested a strictly linear
form, up to some maximum speed at the city edge, which was
defined as the point where the average speed reached its
maximum (i.e., stopped increasing with increasing distance from
the center). None of the cities in Branston's data set had a clear
maximum limit to average speed, so a strict linear function alone
was tested:

v=at+hbr (6.5)
A negative exponential function,
v=a-be® |, (6.6)

had been fitted to data from a single city (Angel and Hy
1970). The negative exponential asymptotically approaches
some maximum average speed.

The fifth function, suggested by Lyman and EverB8{1),
1+b?r?
a+cb?r?

V= (6.7)

also suggested a finite maximum average speed at the city
outskirts. It had originally be applied to data for radial and ring
roads separately, but was used for all roads here.

Two of the functions were quickly discarded: The linear model
(Equation 6.5) overestimated the average speed in the CBDs by
3 to 4 km/h, reflecting an inability to predict the rapid rise in
average speed with increasing distance from the city center. The
modified power curve (Equation 6.4) estimated negative speeds
in the city centers for two of the cities, and a zero speed for the
aggregated data. While obtaining the second smallest sum of
squares (negative exponential, Equation 6.6, had the smallest),
the original aim of using this model (to avoid the estimation of
a zero journey speed in the city center) was not achieved.

The fitted curves for the remaining three functions (negative
exponential, Equation 6.6; power curve, Equation 6.3; and
Lyman and Everall, Equation 6.7) are shown for the data from
Nottingham in Figure 6.2. All three functions realistically
predict a leveling off of average speed at the city outskirts, but
only the Lyman-Everall function indicates a leveling off in the
CBD. However, the power curve showed an overall better fit
than the Lyman-Everall model, and was preferred.

While the negative exponential function showed a somewhat
better fit than the power curve, it was also rejected because of its
greater complexity in estimation (a feature shared with the
Lyman-Everall function). Truncating the power function at
measured downtown speeds was suggested to overcome its
drawback of estimating zero speeds in the city center. The
complete data set for Nottingham is shown in Figure 6.3,
showing the fitted power function and the truncation=a.3

km.
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Figure 6.2
Grouped Data for Nottingham Showing Fitted a) Power Curve,
b) Negative Exponential Curve, and c) Lyman-Everall Curve
(Branston 1974, Portions of Figures 1A, 1B, and 1C).
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Figure 6.3
Complete Data Plot for Nottingham, Power Curve
Fitted to the Grouped Data (Branston 1974, Figure 3).
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If the data is broken down by individual radial routes, as shown Hutchinson (1974) used RRL data collected in 1967 from eig
in Figure 6.4, the relation between speed and distance from the cities in England to reexamine Equations 6.3 and 6.6 (po
city center is stronger than when the aggregated data is curve and negative exponential) with an eye towards simplify
examined. them.
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Figure 6.4
Data from Individual Radial Routes in Nottingham,
Best Fit Curve for Each Route is Shown (Branston 1974, Figure 4).
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The exponents of the power functions fitted by Branst®74)
fell in the range 0.27 to 0.36, suggesting the following
simplification

1/3

v = kr (6.8)

When fitted to Branston's data, there was an average of 18
percent increase in the sum of squares. The other parakneter,
was found to be significantly correlated with the city population,
with different values for peak and off-peak conditions. The
parametek was found to increase with increasing population,
and was 9 percent smaller in the peak than in the off-peak.

In considering the negative exponential model (Equation 6.6),
Hutchinson reasoned that average speed becomes less
characteristic of a city with increasingand, as such, it would

be reasonable to select a single maximum limiv for every

6.2 General Network Models

A number of models incorporating performance measures other
than speed have been proposed. Early work by Wardrop and
Smeed (Wardrop 1952; Smeed 1968) dealt largely with the

development of macroscopic models for arterials, which were

later extended to general network models.

6.2.1 Network Capacity

Smeed (1966) considered the number of vehicles which can
"usefully” enter the central area of a city, and defiNek the
number of vehicles per unit time that can enter the city center.
In generalN depends on the general design of the road network,
width of roads, type of intersection control, distribution of
destinations, and vehicle mix. The principle variables for towns
with similar networks, shapes, types of control, and vehicles are:
A, the area of the towf, the fraction of area devoted to roads;
andc, the capacity, expressed in vehicles per unit time per unit
width of road (assumed to be the same for all roads). These are
related as follows:

N = afc/A, (6.10)

city. Assuming that any speed between 50 and 75 km/h would
make little difference, Hutchinson selected 60 km/h, and

-rIR (6.9)

v = 60-ae

Hutchinson found that this model raised the sum of squares by
30 percent (on the average) over the general form use

Branston. R was found to be strongly correlated with the city

population, as well as showing different averages with peak a
off-peak conditions, while was correlated with neither the city

population nor the peak vs. off-peak conditions. The differenc
in the Rs between peak and off-peak conditions (30 percent
higher during peaks) implies that low speeds spread out over
more of the network during the peak, but that conditions in the
city center are not significantly different. Hutchinson (1974)

used RRL data collected in 1967 from dighktin England to

reexamine Equations 6.3 and 6.6 (power curve and negative
exponential) with an eye towards simplifying them.

where ¢ is a constant. General relationships betweand
(N/cvA) for three general network types (Smeed 1965) are
shown in Figure 6.5. Smeed estimated a valug cdpacity per
unit width of road) by using one of Wardrop's speed-flow
equations for central London (Smeed and Wardi@f4),

q = 2440- 0.220v3 (6.11)

wherev is the speed in kilometers/hour, anpthe average flow
in pcus/hour, and divided by the average road width, 12.6
meters,

c = 58.2- 0.00524v° . (6.12)

A different speed-flow relation which provided a better fit for
speeds below 16 km/h resultectin 68 -0.13/2 (Smeed 1963).

Equation 6.12 is shown in Figure 6.6 for radial-arc, radial, and
ring type networks for speeds of 16 and 32 km/h. Data from
several cities, also plotted in Figure 6.6, suggestsdi80,
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Figure 6.5

Theoretical Capacity of Urban Street Systems (Smeed 1966, Figure 2).
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and using the peak period speed of 16 km/h in central London,
Equation 6.10 becomes

N - (33-0.003v3) fyA , (6.13)

wherev is in miles/hour and\ in square feet. It should be noted
that f represents the fraction of total area usefully devoted to
roads. An alternate formulation (Smeed 1968) is

N = (33-0.003v3) Jf/A (6.14)

wheref is the fraction of area actually devoted to roads, while

is the fraction of roadways used for traffic movemehivas
found to range between 0.22 and 0.46 in sevadtigscin
England. The large fraction of unused roadway is mostly due to
the uneven distribution of traffic on all streets. The number of
vehicles which can circulate in a town depends strongly on their
average speed, and is directly proportional to the area of usable
roadway. For a given area devoted to roads, the larger the
central city, the smaller the number of vehicles which can
circulate in the network, suggesting that a widely dispersed town
is not necessarily the most economical design.

6.2.2 Speed and Flow Relations

Thomson (1967b) used data from centrahdlon to develop a
linear speed-flow model. The data had been collected once
every two years over a 14-year period by the RRL and the
Greater London Quncil. The data consisted of a network-wide
average speed and flow each year it was collected. The average
speed was found by vehicles circulatingtigh central London

on predetermined routes. Average flows were found by first
converting measured link flows into equivalent passenger
carunits, then averaging the link flows weighted by their
respective link lengths. Two data points (each consisting of an
average speed and flow) were found for each of the eight years
the data was collected: peak and off-peak.

Plotting the two points for each year, Figure 6.7, resulted in a
series of negatively sloped trends. Also, the speed-flow capacity
(defined as the flow that can be moved at a given speed)
gradually increased over the years, likely due to geometric and
traffic control improvements and "more efficient vehicles." This
indicated that the speed-flow curve had been gradually changing,
indicating that each year's speed and flow fell on different curves.
Two data points were inadequate to determine the shape of the
curve, so all sixteen data points were used by accounting for the
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Figure 6.7
Speeds and Flows in Central London, 1952-1966,
Peak and Off-Peak (Thomson 1967b, Figure 11)
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changing capacity of the network, and scaling each year's flow The equation implies a free-flow speed of about 48.3 kn
measurement to a selected base year. Using linear regression, however, there were no flows less thaha2?00 heu/
the following equation was found: historical data.

v = 30.2- 0.0086q (6.15)

Thomson used data collected on several subsequent Sundays
(Thomson 1967a) to get low flow data points. These are
reflected in the trend shown in Figure 6.9.Also shown is a curve
wherev is the average speed in kilometers/hour auisl the developed by Smeed and Wardrop using data from a single year
average flow in pcu/hour. This relation is plotted in Figure 6.8.  only.
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Figure 6.8
Speeds and Scaled Flows, 1952-1966 (Thomson 1967b, Figure 2).
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Estimated Speed-Flow Relations in Central London
(Main Road Network) (Thomson 1967b, Figure 4).
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The selected area of central London could be broken into inner

and outer zones, distinguished principally by traffic signal . +fd (6.18)

densities, respectively 7.5 and 3.6 traffic signals per route-mile. voov

Speed and flow conditions were found to be significantly

different between the zones, as shown in Figure 6.10, and for the

inner zone, wherev is the average speed in mih, the running speed in
v - 243-0.0075q , (6.16) mi/h,d the delay per intersection in hours, &tlde number of

signalized intersections per mile. Assumipng a(1-g/Q)and
d = b/(1-g4s), whereq is the flow in pcu/hrQ is the capacity
in pcu/hr, A is the g/c time, angdlis the saturation flow in pcu/hr,
and for the outer zone, and combining into Equation 6.18,

v - 34.0- 0.0092q . (6.17) 1 1 fb

v a(l-9Q) ' 1-g/As

(6.19)

Wardrop (1968) directly incorporated average street width and

average signal spacing into a relation between average speed and Using an expression for running speed found for central London

flow, where the average speed includes the stopped time. In (Smeed and Wardrop 1964; RRL 1965),
order to obtain average speeds, the delay at signalized

intersections must be considered along with the running speed vV, = 317M
between the controlled intersections, where running speed is 3w

defined as the average speed while moving. Since speed is the

inverse of travel time, this relation can be expressed as:

(6.20)
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Figure 6.10

Speed-Flow Relations in Inner and Outer Zones of Central Area
(Thomson 1967a, Figure 5).
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wherew is the average roadway width in feet, and an average
street width of 42 feet (in central London), Equation 6.20
becomes v =28 - 0.005f or 24 mi/h, whichever is less. The
coefficient ofg was modified to 0.0058 to better fit the observed
running speed.

Using observed values of 0.0B8urs/mile stopped tim&180
pcu/hr flow, and 2610 pcu/hr capacity, the numerator of the
second term of Equation 6.1¢b) was found to be 0057.
Substituting the observed values into Equation 6.19,

1 1 . 0.0057
v 28 00058 ; g
2610
Simplifying,
1 1 v 1 6.21
v 28-00058q 197 00775q  (02Y)

Revising the capacity to 2770 pbadr (to reflectl966 data),
thus changing the coefficient gfin the second term of Equation
6.21 t0 0.071, this equation provided a better fit than Thomson's
linear relation (Thomson 1967b) and ognizes the known
information on the ultimate capacity of the intersections.

Generalizing this equation for urban areas other than London,
and knowing that the average street width in centvatlbn was
12.6 meters, the running speed can be written

r,317ﬂ)7ﬂ
3w W
_ 31140 _agq
woow

Sincea/w= 0.0058 whenv = 42 by Equation 6.25=0.0244,
then

140

v, = 31-
w

- 0.02444 (6.22)
W

For the delay term, five controlled intersections per mile and a
g/c of 0.45 were found for central London. Additionally, the
intersection capacity was assumed to be proportional to the
average stop line width, given that it is more than 5 meters wide
(RRL 1965), which was assumed to be proportional to the
roadway width. The general form for the delay equation (second
term of Equation 6.21) is

fb
d-__"'D0
1- q/kiw (6.23)

wherek is a constant. For central Londenz 42,4 = 0.45,
andkAw = Q = 2770, thuk = 147, yielding

fb

T 1-q47aw (6.24)

Given thatf = 5 signals/mile andb = 0.00507 for central
London,b = 0.00101, vielding

f

¢ [ E—
1000- 6.8g/Aw

(6.25)

Combining, then, for the general equation for average speed:

1 1 f
Vv

= + i
31- 140 002449  1000-689  (626)
W AW

w

The sensitivity of Equation 6.26 to flow, average street width,
number of signalized intersections per mile, and the fraction of
green time are shown in Figures 6.11, 6.12, and 6.13. By
calibrating this relation on geometric and traffic control features
in the network, Wardrop extended the usefulness of earlier speed
flow relations. While fitting nicely for central London, the
applicability of this relation to other cities in its generalized
format (Equation 6.26) is not shown, due to a lack of available
data.
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Figure 6.11
Effect of Roadway Width on Relation Between Average (Journey)
Speed and Flow in Typical Case (Wardrop 1968, Figure 5).
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Average (Journey) Speed and Flow in Typical Case (Wardrop 1968, Figure 6).
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Figure 6.13
Effect of Capacity of Intersections on Relation Between
Average (Journey) Speed and Flow in Typical Case (Wardrop 1968, Figure 7).

Godfrey (1969) examined the relations between the average
speed and the concentration (defined as the number of vehicles
in the network), shown in Figure 6.14, and between average
speed and the vehicle miles traveled in the network in one hour,
shown in Figure 6.15. Floating vehicles on circuits within the
network were used to estimate average speed and aerial
photographs were used to estimate concentration.

There is a certain concentration that results in the maximum flow
(or the maximum number of miles traveled, see Figure 6.15),
which occurs around 10 miles/hour. As traffic builds up past
this optimum, average speeds show little deterioration, but there
is excessive queuing to get into the network (either from car
parking lots within the network or on streets leading into the
designated network). Godfrey also notes that expanding an
intersection to accommodate more traffid move the queue to
another location within the network, unless the bottlenecks
downstream are cleared.

6.2.3 General Network Models
Incorporating Network Parameters

Some models have defined specific parameters which intend to
guantify the quality of traffic service provided to the users in the
network. Two principal models are discussed in this chapter, the

a-relationship, below, and the two-fluid theory of town traffic.

The two-fluid theory has been developed and applied to a gr
extent than the other models discussed in this section, ar

described in Section 6.3.

Zahavi (1972a; 1972b) selected three principal variablése
traffic intensity (here defined as the distance traveled per unit
area),R, the road density (the length or area of roads per unit
area), and, the weighted space mean speed. Using data from
England and the United States, valuek of andR were found

for different regions in different cities. In investigating various
relationships betwednandv/R, a linear fit was found between
the logarithms of the variables:

| = a(VR)™ , (6.27)

where ¢ and m are parameters. Trends for London and
Pittsburgh are shown in Figure 6.16. The slopewas found
to be close to -1 for all six cities examined, reducing Equation

6.27 to
| = aRV , (6.28)

where « is different for each city. Relative values of the
variables were calculated by finding the ratio between observed
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Speed and Number of Vehicles on Town
Center Network (Godfrey 1969, Figure 1).

% of maximum vehicles km/h
0 10 20 30 40 50 60 70 80 99 190

: AN
20 = N\

\
15 = . .
Present peak period mean journey speed

~

-

N W
o O

Vehicie kms max.

—

Mean journey speed, v (km/h)

o (o))
i

0 1,000 2,0003,000 4,000 5,000 6,000 7,000
Network vehicles kms in one hour ( (N, XV)

Figure 6.15
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The a-Relationship for the Arterial Networks of London and Pittsburgh,
in Absolute Values (Zahavi 1972a, Figure 1).

values of andv/Rfor each sector and the average value for the
entire city. The relationship between the relative values is
shown in Figure 6.17, where the observations for London and
Pittsburgh fall along the same line.

The physical characteristics of the road network, such as street
widths and intersection density, were found to have a strong
effect on the value of for each zone in a city. Thug,may
serve as a measure of the combined effects of the network
characteristics and traffic performance, and can possibly be used
as an indicator for the level of service. Thmap of London is
shown in Figure 6.18. Zones are shown by the dashed lines,
with dotted circles indicating zone centroids. Values ofere
calculated for each zone and contour lines of equalere
drawn, showing areas of (relatively) good and poor traffic flow
conditions. (The quality of traffic service improves with
increasinge.)

Unfortunately, Buckley and Wardrop (1980) have showndhat

is strongly related to the space mean speed, and Ardekani
(1984), through the use of aerial photographs, has shows that
has a high positive correlation with the network concentration.

The two-fluid model also uses parameters to evaluate the level
of service in a network and is described in Section 6.3.

6.2.4 Continuum Models

Models have been developed which assume an arbitrarily fine
grid of streets, i.e., infinitely many streets, to circumvent the
errors created on the relatively sparse networks typically used
during the trip or network assignment phase in transportation
planning (Newell 1980). A basic street pattern is superimposed
over this continuum of streets to restrict travel to appropriate
directions. Thus, if a square grid were used, travel on the street
network would be limited to the two available directions (the x
and y directions in a Cartesian plot), but origins and destinations
could be located anywhere in the network.

Individual street characteristics do not have to be specifically

modeled, but network-wide travel time averages and capacities
(per unit area) must be used for traffic on the local streets. Other
street patterns include radial-ring and other grids (triangular, for

example).
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The a-Relationship for the Arterial Networks of London and Pittsburgh,
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While the continuum comprises the local streets, the major
streets (such as arterials and freeways) are modeled directly.
Thus, the continuum of local streets provides direct access

6.3 Two-Fluid Theory

An important result from Prigogine and Herman's (1971) kinetic
theory of traffic flow is that two distinct flow regimes can be
shown. These are individual and collective flows and are a
function of the vehicle concentration. When the concentration
rises so that the traffic is in the collective flow regime, the flow
pattern becomes largely independent of the will of individual
drivers.

Because the kinetic theory deals withltiane traffic, the two-

fluid theory of town traffic was proposed by Herman and
Prigogine (Herman and Bogine1979; Herman and Ardekani
1984) as a description of traffic in the collective flow regime in
an urban street network. Vehicles in the traffic stream are
divided into two classes (thus, two fluid): moving and stopped
vehicles. Those in the latter class include vehicles stopped in the
traffic stream, i.e., stopped for traffic signals and stop signs,
stopped for vehicles loading and unloading which are blocking
a moving lane, stopped for normal congestion, etc., but excludes
those out of the traffic stream (e.g., parked cars).

The two-fluid model provides a macroscopic measure of the
quality of traffic service in a street network which is independent
of concentration. The model is based on two assumptions:

(1) The average running speed in a street network is
proportional to the fraction of vehicles that are moving,
and

(2) The fractional stop time of a test vehicle circulating in
a network is equal to the average fraction of the
vehicles stopped during the same period.

The variables used in the two-fluid model represent network-
wide averages taken over a given period of time.

The first assumption of the two-fluid theory relates the average
speed of the moving (running) vehicl&s, to the fraction of
moving vehiclesf, , in the following manner:

(within the constraints provided by the superimposed grid) to
network of major streets.

Ve = Vo £ (6.29)
whereV,, andn are parametersY,, is the average maximum
running speed, and is an indicator of the quality of traffic
service in the network; both are discussed below. The average
speedy, can be defined a4 f,, and combining with Equation
6.29,

VAER'AR e (6.30)
Sincef, + f, = 1, wheref is the fraction of vehicles stopped,
Equation 6.30 can be rewritten

V=V (1-f)". (6.31)

Boundary conditions are satisfied with this relation: wiye®,
V=V,,, and wheri=1, V=0.

This relation can also be expressed in average travel times rather
than average speeds. Note fha¢presents the average travel
time, T, the running (moving) time, ari the stop time, all per

unit distance, and thate1/V, T, =1/\, andT,=1/V,,, whereT,

is the average minimum trip time per unit distance.

The second assumption of the two-fluid model relates the
fraction of time a test vehicle circulating in a network is stopped
to the average fraction of vehicles stopped during the same

period, or
TS

This relation has been proven analytically (Ardekani and
Herman 1987), and represents thgoeic principle embedded

in the model, i.e., that the network conditions can be represented
by a single vehicle appropriately sampling the network.

Restating Equation 6.31 in terms of travel time,
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~(n+1) observations of stopped and moving times gathered in each
T=Tn(1-1) ' (6.33) network. The log transform of Equation 6.35,
Incorporating Equation 6.32, nT, - 1l nT, + nl nT (6.37)
T=T,[1- (M), (6.34) n n
. i provides a linear expression for the use of least squares analysis.
realizing thafl = T, + T, and solving fofT,
1 n Empirical information has been collected with chase cars
T =T T (6.35) following randomly selected cars in designated networks. Runs

have been broken into one- or two-mile trips, and the running

time (T,) and total trip tim&T) for each one- or two-mile trip

1 n from the observations for the parameter estimation. Results tend

T,-T- Tmm Tl (6.36) to form a nearly linear relationship when trip time is plotted
against stop time (Equation 6.36) as shown in Figure 6.19 for

A number of field studies have borne out the two-fluid model  data collected in Austin, Texas. The valud gfs reflected by

(Herman and Ardekani 1984; Ardekani and Herman 1987; the y-intercept @td..=0), andn by the slope of the curve.

Ardekani et al. 1985); and have indicated that urban street Data points representing higher concentration levels lie hig

networks can be characterized by the two model parameters,  along the curve.

andT,,. These parameters have been estimated using

The formal two-fluid model formulation, then, is

6.
Two-fluid model_/s
t
v .
= Austin CBD Data
= . 1980
~ + 1981
- x 1982
& o 1983
£
e
-
|_
T, = 1.1
17 n = 1.03
566 points
0 - ¥ g
0 1.0 2.0 30 4o

Stop time, T, (min/km)

Note: Each point represents one test run approximately 1 or 2 miles long.

Figure 6.19
Trip Time vs. Stop Time for the Non-Freeway Street Network of the Austin CBD
(Herman and Ardekani 1984, Figure 3).
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6.3.1 Two-Fluid Parameters

The parameteT, is the average minimum trip time per unit
distance, and it represents the trip time that might be
experienced by an individual vehicle alone in the network with
no stops. This parameter is unlikely to be measured directly,
since a lone vehicle driving though the network very late at night
is likely to have to stop at a red traffic signal or a stop sign.
T, . then, is a measure of the uncongested speed, and a higher
value would indicate a lower speed, typicalsulting in poorer
operation. T, has been found to range from 1.5 to 3.0
minutes/mile, with smaller values typically representing better
operating conditions in the network.

As stop time per unit distan¢d ) increases for a single value

of n, the total trip time also increases. Becals€, +T,, the

total trip time must increase at least as fast as the stop time. If
n=0, T, is constant (by Equation 6.35), and trip time would
increase at the same rate as the stop time>0f trip time
increases at a faster rate than the stop time, meaning that running
time is also increasing. Intuitively,must be greater than zero,
since the usual cause for increased stop time is increased

congestion, and when congestion is high, vehicles when moving,
travel at a lower speed (or higher running time per unit distance)
than they do when congestion is low. In fact, field studies have
shown thatn varies from 0.8 to 3.0, with a smaller value
typically indicating better operating conditions in the network.

In other wordsh is a measure of the resistance of the network to
degraded operation with increased demand. Higher values of
indicate networks that degrade faster as demand increases.
Because the two-fluid parameters reflect how the network
responds to changes in demand, they must be measured and
evaluated in a network over the entire range of demand
conditions.

While lowern andT,, values represent, in general, better traffic
operations in a network, often there is a tradeoff. For example,
two-fluid trends for four cities are shown in Figure 6.20. In
comparing HoustonT(=2.70 min/mile,n=0.80) and Austin
(T,=1.78 min/mile,n=1.65), one finds that traffic in Austin
moves at significantly higher average speeds during off-peak
conditions (lower concentration); at higher concentrations, the
curves essentially overlap, indicating similar operating
conditions. Thus, despite a higher value,dfaffic conditions

6.
Matamoros~-._
g San
5= Antonioi™
f nionio! Houston
£ -
E 4.
= ,
g 3,
E
2 2. )
| ~ Austin
T
0 10 20 30
Stop time, T, (min/km)

Note: Trip Time vs. Stop Time Two-Fluid Model Trends for CBD Data From the Cities of Austin, Hangt&an Antonio,

Texas, and Matamoros, Mexico.

Figure 6.20
Trip Time vs. Stop Time Two-Fluid Model Trends
(Herman and Ardekani 1984, Figure 6).
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are better in Austin than Houston, at least at lower being chased imitating the other driver's actions so as to refle
concentrations. Different values of the two-fluid parameters are as closely as possible, the fraction of time the offpemndisver
found for different city street networks, as was shown above and stopped. The objective is to sample the behavior ef the dri\
in Figure 6.21. The identification of specific features which have in the network as well as the commonly used routesein the st
the greatest effect on these parameters has been approached network. The chase car's trip history is then broken into
through extensive field studies and computer simulation. mile (typically) segments, arid andT calculated for each mile.

The (T, ,T) observations are then used in the estimation of the
two-fluid parameters.
6.3.2 Two-Fluid Parameters: Influence
of Driver Behavior One important aspect of the chase car study is driver behavior,
both that of the test car driver and the drivers sampled in the
Data for the estimation of the two-fluid parameters is collected Ee:}wo_rk. On% sftudy dattqudrtesstedtthe q(l;?St'on OI ex:r%rrle grl_ver
through chase car studies, where the driver is instructed to follow ehaviors, and found that a test car driver instructed to drive
a randomly selected vehicle until it either parks or leaves the aggressw_ely estabhshed_a S|gn|f|cantly d|ffe_rent two-fluid trend
designated network, after which a nearby vehicle is selected and than one mstr_ucted to drive conservatively in the same network
followed. The chase car driver is instructed to follow the vehicle &t the same time (Herman et al. 1988).

Two-fluid models
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Note: Trip Time vs. Stop Time Two-Fluid Model Trends for Dallas and Houston, Texas, compared to the trends kedJlilwau
Wisconsin, and in London and Brussels.

Figure 6.21
Trip Time vs. Stop Time Two-Fluid Model Trends Comparison
(Herman and Ardekani 1984, Figure 7).
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The two-fluid trends resulting from the these studies in two cities
are shown in Figure 6.22. In both cases, the normal trend was
found through a standard chase car studlygdacted at the same
time as the aggressive and conservative test drivers were in the
network. In both cases, the two-fluid trends established by the
aggressive and conservative driver are significantly different. In
Roanoke (Figure 6.22a), the normal trend lies between the
aggressive and conservative trends, as expected. However, the
aggressive trend approaches the normal trend at high demand
levels, reflecting the inability of the aggressive driver to reduce
his trip and stop times during peak periods. On the other hand,

6 =3 ,
S
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e

’é /™ Normal
~
—

= ™~ Aggressive
£
|_
o
£
2
t .
|_

K TM N

/ Aggressive 1.22 0.61

Normal 167 0.44

1 s Conservative 1.80 0.54

] i i L
q 1.0 2.0 3.0
Stop time, T, (min/km)

at lower network concentrations, the aggressive dkeer can t
advantage of the less crowded streets and significantly lowe
trip times.

As shown in Figure 6.22b, aggressive driving behavior me
closely reflects normal driving habits in Austin, suggessting
aggressive driving overall. Also, all three trends converge
high demand (concentration) levels, indicating that, perhap
Austin network would suffer congestion to a greater extent
ndReareducing all drivers to conservative behavior (at least
as represented in the two-fluid parameters).

(b)

Trip time, T (min / km)

1-/(\\

~ Normal
] i i ] i
0 1.0 20 3.0
Stop time, T, (min/km)

Note: The two-fluid trends for aggressive, normal, and conservative drivers in (a) Roanoke, Virginia, and (b) Austin, Texas

Figure 6.22
Two-Fluid Trends for Aggressive, Normal, and Conservative Drivers
(Herman et al. 1988, Figures 5 and 8).
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The results of this study reveal the importance of the behavior of
the chase car driver in standard two-fluid studies. While the
effects on the two-fluid parameters of using two different chase
car drivers in the same network at the same time has not been
investigated, there is thought to be little difference between two
well-trained drivers. To the extent possible, however, the same
driver has been used in different studies that are directly
compared.

6.3.3 Two-Fluid Parameters: Influence
of Network Features (Field Studies)

Geometric and traffic control features of a street network also
play an important role in the quality of service provided by a
network. If relationships between specific features and the two-
fluid parameters can be established, the information could be
used to identify specific measures to improve traffic flow and
provide a means to compare the relative improvements.

Ayadh (1986) selected seven network features: lane miles per
square mile, number of intersections per square mile, fraction of
one-way streets, average signal cycle length, average block
length, average number of lanes per street, and average block
length to block width ratio. The area of the street network under
consideration is used with the first two variables to allow a direct
comparison between cities. Data for the seven variables were
collected for four cities from maps and in the field. Through a
regression analysis, the following models were selected:

T, - 359 0.54C, and

m
n = -0.21+2.97C, + 0.22C,

(6.38)

where C, is the fraction of one-way streefS, the average
number of lanes per street, aBdthe average block length to
block width ratio. Of these network features, only one (the
fraction of one-way streets) is relatively inexpensive to
implement. One feature, the block length to block width ratio,
is a topological feature which would be considered fixed for any
established street network.

Ardekani et al. (1992), selected ten network features: average
block length, fraction of one-way streets, average number of
lanes per street, intersection density, signal density, average
speed limit, average cycle length, fraction of curb miles with
parking allowed, fraction of signals actuated, and fraction of

approaches with signal progression. Of these, onlgswo featt
(average block length and intersection density) can
considered fixed, and, as such, not useful in formulaking netw
improvements. In addition, one feature (average numbe
lanes per street), also used in the previous study§fyadh 19
can typically be increased only by eliminating parking |
present), yielding only limited opportunities for improvement
traffic flow. Data was collected in ten cities; in seven of the
cities, more than one study wamnducted as major geometric
changes or revised signal timings were implemented, yielding
nineteen networks for this study. As before, the two-fluid
parameters in each network were estimated from chase car data
and the network features were determined from maps, field
studies, and local traffic engineers. Regression analysis yielded
the following models:

T, - 3.93+0.0035% - 0.047% - 0.433%, (6.39)
and n = 1.73+ 1.124% - 0.180% - 0.0042 % - 0.271%

where X, is the fraction of one-way streets, the average
number of lanes per stre&t, the signal density(, the average
speed limit, X, the fraction of actuated signals, aXg, the
fraction of approaches with good progression. The R for these
equations, 0.72 and 0.75 (respectively), are lower than those for
Equation 6.38 (both very close to 1), reflecting the larger data
size. The only feature in common with the previous model
(Equation 6.38) is the appearance of the fraction of one-way
streets in the model for. Since all features selected can be
changed through operational practices (signal density can be
changed by placing signals on flash), the models have potential
practical application. Computer simulation has also been used
to investigate these relationships, and is discussed in Section
6.3.4.

6.3.4 Two-Fluid Parameters: Estimation
by Computer Simulation

Computer simulation has many advantages over field data in the
study of network models. Conditions not found in the field can
be evaluated and new control strategies can be easily tested. In
the case of the two-fluid model, the entire vehicle population in
the network can be used in the estimation of the model
parameters, rather than the small sample used in the chase car
studies. TRAF-NETSIM (Mahmassani et al. 1984), a

6-22
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microscopic traffic simulation model, has been used successfully
with the two-fluid model.

Most of the simulation work to-date has used a generic grid
network in order to isolate the effects of specific network
features on the two-fluid parameters (FHWA 1993). Typically,
the simulated network has been a 5 x 5 intersection grid made up
entire of two-way streets. Traffic signals are at each intersection
and uniform turning movements are applied throughout. The
network is closed, i.e., vehicles are not allowed to leave the
network, thus maintaining constant concentration during the
simulation run. The trip histories of all the vehicles circulating
in the network are aggregated to form a sin@e, T)
observation for use in the two-fluid parameter estimation. A
series of five to ten runs over a range of network concentrations
(nearly zero to 60 or 80 vehicles/lane-mile) are required to
estimate the two-fluid parameters.

Initial simulation runs in the test network showed Bb8MdT,
increasing with concentration, bt remaining nearly constant,
indicating a very low value of (Mahmassani et al. 1984). In

its default condition, NETSIM generates few of the vehicle
interaction of the type found in most urban street networks,
resulting in flow which is much more idealized than in the field.
The short-term event feature of NETSIM was used to increase
the inter-vehicular interaction (Williams et &B85). With this
feature, NETSIM blocks the right lane of the specified link at
mid-block; the user specifies the average time for each blockage
and the number of blockages per hour, which are stochastically
applied by NETSIM. In effect, this represents a vehicle stopping
for a short time (e.g., a commercial vehicle unloading goods),
blocking the right lane, and requiring vehicles to change lanes to
go around it. The two-fluid parameters (anth particular)
were very sensitive to the duration and frequency of the short-
term events. For example, using an average 45-second event
every two minutesy rose from 0.076 to 0.845 aiig] fell from
2.238t0 2.135. With the use of the short-term events, the values
of both parameters were within the ranges found in the field
studies. Further simulation studies found both block length
(here, distance between signalized intersections) and the use of
progression to have significant effects on the two-fluid
parameters (Williams et &985).

Simulation has also provided the means to investigate the use of
the chase car technique in estimating the two-fluid parameters
(Williams et al. 1995). The network-wide averages in a

simulation model can be directly computed; and chase car data

can be simulated by recording the trip history of admgle vehi

for one mile, then randomly selecting another vehicle in the
network. Because the two-fluid model is non-linear

(specifically, Equation 6.35, the log transform of which is use

to estimate the parameters), estimations performed at t

network level and at the individual vehicle level result in

different values of the parameters, and are not dire
comparable. The sampling strategy, which was foigled to pro\
the best parameter estimates, required a single veh
circulating in the network for at least 15 minutes. However, d
to the wide variance of the estimate (due to the possibility o
relatively small number of "chased” cars dominatingléhe samp
estimation), the estimate using a single vehicle was often far
from the parameter estimated at the network level. On the other
hand, using 20 vehicles to sample the network resulted in
estimates much closer to those at the network level. The much
smaller variance of the estimates made with twenty vehicles,
however, resulted in the estimate being significantly different
from the network-level estimate. The implication of this study
is that, while estimates at the network and individual vehicle
levels can not be directly compared, as long as the same
sampling strategy is used, the resulting two-fluid parameters,
although biased from the "true" value, can be used in making
direct comparisons.

6.3.5 Two-Fluid Parameters:
Influence of Network Features
(Simulation Studies)

The question in Section 6.3.3, above, regarding the influence of
geometric and control features of a network on the two-fluid
parameters was revisited with an extensive simulation study
(Bhat 1994). The network features selected were: average
block length, fraction of one-way streets, average number of
lanes per street, signals per intersection, average speed limit,
average signal cycle length, fraction of curb miles with parking,
and fraction of signalized approaches in progression. A
uniform-precision central composite design was selected as the
experimental design, resulting in 164 combination of the eight
network variables. The simulated network was increased to 11
by 11 intersections; again, vehicles were not allowed to leave the
network, but traffic data was collected only on the interior 9 by
9 intersection grid, thus eliminating the edge effects caused by
the necessarily different turning movements at the boundaries.
Ten simulation runs were made for each combination of
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variables over a range of concentrations from near zero to about
35 vehicles/lane-mile.

Regression analysis yielded the following models:

T, = 1.049+ 1.453X, + 0.684X, - 0.024X,
n = 4.468- 1.391X, - 0.048X, + 0.042X,

and
(6.40)

whereX, is the fraction of one-way streed$ the number of
lanes per streek, average speed limit, antl,average cycle
length. The R (0.26 and 0.16 for Equation 6.40) was
considerably lower than that for the models estimated with data
from field studies (Equation 6.39). Additionally, the only
variable in common between Equations 6.39 and 6.40 is the
number of lanes per street in the equatiomfoAdditional work

is required to clarify these relationships.

6.3.6 Two-Fluid Model:
A Practical Application

When the traffic signals in downtown San Antonio were retimed,
TRAF-NETSIM was selected to quantify the improvements in
the network. In order to assure that the results reported by

NETSIM reflected traffic conditions in San Antonio, NETSII
was calibrated with the two-fluid model.

Turning movement counts used in the development of the ne
signal timing plans were available for coding NETSIM.
Simulation runs were made for 31 periods throughout the day,
and the two-fluid parameters were estimated and compared with
those found in the field. By a trial and error process, NETSIM
was calibrated by

®  |ncreasing the sluggishness of drivers, by increasing
headways during queue discharge at traffic signals
and reducing maximum acceleration,

= Adding vehicle/driver types to increase the range of
sluggishness represented in the network, and

m  Reducing the desired speed on all links to 32.2 km/h
during peaks and 40.25 km/h otherwise (Denney
1993).

Three measures of effectiveness (MOEs) were used in the
evaluation: total delay, number of stops, and fuel consumption.
The changes noted for all three MOEs were greater between
calibrated and uncalibrated NETSIM results than between
before and after results. Reported relative improvements were
also affected. The errors in the reported improvements without
calibration ranged from 16 percent to 132 percent (Denney
1994).

6.4 Two-Fluid Model and Traffic Network Flow Models

Computer simulation provides an opportunity to investigate
network-level relationships between the three fundamental
variables of traffic flow, spee@y/), flow (Q), and concentration

(K), defined as average quantities taken over all vehicles in the
network over some observation period (Mahmassani et al.
1984). While the existence of "nice" relations between these
variables could not be expected, given the complexity of network
interconnections, simulation results indicate relationships similar
to those developed for arterials may be appropriate (Mahmassani
et al. 1984; Wliams et al.1985). A series of simulation runs,

as described in Section 6.3.4, above, was made at concentration
levels between 10 and 100 vehicles/lane-mile. The results are
shown in Figure 6.23, and bear a close resemblance to their
counterparts for individual road sections. The fourth plot shows
the relation of, the fraction of vehicles stopped from the two-

fluid model, to the concentration. In addition, using values «

flow, speed, and concentration independently computed from
simulations, the network-level version of the fundamental
relation Q=KV was numerically verified (Mahmassani et al.
1984; Williams et al.1987).

Three model systems were derived and tested against simulation
results (Williams et al1987; Mahmassani et al. 1988gch
model system &3sHivieahd the two-fluid model, and
consisted of three relations:

V= f(K), (6.41)
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Figure 6.23
Simulation Results in a Closed CBD-Type Street Network.
(Williams et al. 1987, Figures 1-4).

(6.42)

(6.43)

relationships; the other two can then be analytically derived.
relation betwee® andV could also be derived.)

Model System 1 is based on a postulated relationship between
the average fraction of vehicles stopped and the network
concentration from the two-fluid theory (Herman and Prigogine
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1979), later modified to reflect that the minimurfy > 0
(Ardekani and Herman 1987):

fo=1

S s,min

+(1-f, ) (K/Kj A (6.44)

s,min

wheref, .. is the minimum fraction of vehicles stopped in a
network,K; is the jam concentration (at which the network is
effectively saturated), and is a parameter which reflects the
quality of service in a network. The other two relations can be
readily found, first by substitutinfy from Equation 6.44 into
Equation 6.31:

Vo= Vo (f )™ (KK )™, (6.45)
then by usindQ=KV,
Q = KV (I-Fg )™ [1-(KIK)T™ (6.46)

Equations 6.44 through 6.46 were fitted to the simulated data
and are shown in Figure 6.24. Because the point representing
the highest concentration (about 100 vehicles/lane-mile) did not
lie in the same linearTh- InT trend as the other points, the two-
fluid parameters andT, were estimated with and without the
highest concentration point, resulting in the Method 1 and
Method 2 curves, respectively, in thieK andQ-K curves in
Figure 6.24.

Model System 2 adopts Greenshields' linear speed-concentration
relationship (Gerlough and Hub£®75),

V=V, (LKK) (6.47)

where V, is the free flow speed (and is distinct frow ;

V; < V, always, and typically, <V, ). Thef-K relation can be
found by substuting Equation 6.47 into Equation 6.31 and
solving forf:

fo = 1-[(V;/V,) (1-KIK)]YOD (6.48)

then by usin@=KV,

Q = V; (K-K?/K) (6.49)

Equations 6.47 through 6.49 were fitted to the simulation data
and are shown in Figure 6.25. The difference between the
Method 1 and Method 2 curves in tiy plot (Figure 6.25) is
described above. Model System 3 uses a non-linear bell-shaped
function for thevV-K model, originally proposed by Drake, et al.,

for arterials (Gerlough and Hub£®75):

V =V, expl-a(K/K, )] , (6.50)

whereK_ is the concentration at maximum flow, amédndd are
parameters. THeK andQ-K relations can be derived as shown
for Model System 2:

f=1-{(V,V,,) exp [-a(K/K_)]}D and (6.51)

Q = KV; exp[-a(K/K,)'] (6.52)

Equations 6.50 through 6.52 were fitted to the simulation data
and are shown in Figure 6.26.

Two important conclusions can be drawn from this work. First,
that relatively simple macroscopic relations between network-
level variables appear to work. Further, two of the models
shown are similar to those established at the individual facility
level. Second, the two-fluid model serves well as the theoretical
link between the postulated and derived functions, providing
another demonstration of the model's validity. In the second and
third model systems particularly, the deriveeK function
performed remarkable well against the simulated data, even
though it was not directly calibrated using that data.
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Comparison of Model System 1 with Observed Simulation Results
(Williams et al. 1987, Figure 5, 7, and 8).
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Comparison of Model System 2 with Observed Simulation Results
(Williams et al. 1987, Figures 9-11).
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Comparison of Model System 3 with Observed Simulation Results
(Williams et al. 1987, Figures 12-14).
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6.5 Concluding Remarks

As the scope of traffic control possibilities widens with the
development of ITS (Intelligent Transportation Systems)
applications, the need for a comprehensive, network-wide

optimization of the control system) becomes clear. While th
models discussed in this chapter are not ready for ea
implementation, they do have promise, as in the application

evaluation tool (as well as one that would assist in the
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