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CHAPTER 4 - Frequently used Symbols

� = Numerical coefficients
a     = Generalized sensitivity coefficient 

5,m

a (t) = Instantaneous acceleration of a followingf

vehicle at time t
a (t) = Instantaneous acceleration of a lead

5

vehicle at time t
� = Numerical coefficient 
C = Single lane capacity (vehicle/hour)
- = Rescaled time (in units of response time,

T) following vehicle

 = Short finite time period u (t) = Velocity profile of the lead vehicle of a
F = Amplitude factor
� = Numerical coefficient 
k = Traffic stream concentration in vehicles

per kilometer 7 = Frequency of a monochromatic speed
k = Jam concentrationj

k = Concentration at maximum flowm

k = Concentration where vehicle to vehiclef

interactions begin = Instantaneous speed of a lead vehicle at
k = Normalized concentration time tn

L = Effective vehicle length
L = Inverse Laplace transform-1

� = Proportionality factor
� = Sensitivity coefficient, i = 1,2,3,...i

ln(x) = Natural logarithm of x
q = Flow in vehicles per hour
q = Normalized flown

<S> = Average spacing rear bumper to rear
bumper = Instantaneous position of the following

S = Initial vehicle spacing vehicle at time ti

S = Final vehicle spacing = Instantaneous position of the ith vehicle atf

S = Vehicle spacing for stopped traffic time to

S(t) = Inter-vehicle spacing z(t) = Position in a moving coordinate system
�S = Inter-vehicle spacing change

= Average response time
T = Propagation time for a disturbanceo

t = Time

t = Collision timec

T = Reaction time
U = Speed of a lead vehicle 

5

U = Speed of a following vehiclef

U = Final vehicle speedf

U = Free mean speed, speed of traffic near zerof

concentration
U = Initial vehicle speedi

U = Relative speed between a lead andrel

5

platoon
V = Speed 
V = Final vehicle speedf

oscillation
= Instantaneous acceleration of a following

vehicle at time t

= Instantaneous speed of a following vehicle
at time t

= Instantaneous speed of a lead vehicle at
time t

= Instantaneous speed of a following vehicle
at time t

= Instantaneous position of a lead vehicle at
time t

< x > = Average of a variable x

6 = Frequency factor   
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4.
CAR FOLLOWING MODELS

It has been estimated that mankind currently devotes over 10 roadways.  The speed-spacing relations that were obtained from
million man-years each year to driving the automobile, which on these studies can be represented by the following equation:
demand provides a mobility unequaled by any other mode of
transportation.  And yet, even with the increased interest in
traffic research, we understand relatively little of what is
involved in the "driving task".  Driving, apart from walking,
talking, and eating, is the most widely executed skill in the world
today and possibly the most challenging. where the numerical values for the coefficients, �, �, and � take

Cumming (1963) categorized the various subtasks that are are given below:
involved in the overall driving task and paralleled the driver's
role as an information processor  (see Chapter  3).  This chapter
focuses on one of these subtasks, the task of one vehicle
following another on a single lane of roadway (car following).
This particular driving subtask is of interest because it is
relatively simple compared to other driving tasks, has been
successfully described by mathematical models, and is an
important facet of driving.  Thus, understanding car following
contributes significantly to an understanding of traffic flow.  Car
following is a relatively simple task compared to the totality of
tasks required for vehicle control.  However, it is a task that is
commonly practiced on dual or multiple lane roadways when
passing becomes difficult or when traffic is restrained to a single
lane.  Car following is a task that has been of direct or indirect
interest since the early development of the automobile. 

One aspect of interest in car following is the average spacing, S,
that one vehicle would follow another at a given speed, V.  The
interest in such speed-spacing relations is related to the fact that
nearly all capacity estimates of a single lane of roadway were
based on the equation:

C = (1000) V/S (4.1) permeated safety organizations can be formed.  In general, the

where physical length of vehicles; the human-factor element of
C = Capacity of a single lane

(vehicles/hour)               
V = Speed (km/hour)
S = Average spacing rear bumper to rear

bumper in meters

The first Highway Capacity Manual (1950) lists 23
observational studies performed between 1924 and 1941 that
were directed at identifying an operative speed-spacing relation
so that capacity estimates could be established for single lanes of

on various values.  Physical interpretations of these coefficients

� = the effective vehicle length, L
 � = the reaction time, T

 � = the reciprocal of twice the maximum average
deceleration of a following vehicle

In this case, the additional term, � V , can provide sufficient2

spacing so that if a lead vehicle comes to a full stop
instantaneously, the following vehicle has sufficient spacing to
come to a complete stop without collision.  A typical value
empirically derived for � would be � 0.023 seconds /ft .  A less2

conservative interpretation for the non-linear term would be:

where a  and a   are the average maximum decelerations of theƒ  5

following and lead vehicles, respectively.  These terms attempt
to allow for differences in braking performances between
vehicles whether real or perceived (Harris 1964).

For � = 0,  many of the so-called "good driving" rules that have

speed-spacing Equation 4.2 attempts to take into account the

perception, decision making, and execution times; and the net
physics of braking performances of the vehicles themselves.  It
has been shown that embedded in these models are theoretical
estimates of the speed at maximum flow, (�/�) ; maximum0.5

flow,  [� + 2(� �) ] ;  and the speed at which small changes in0.5 -1

traffic stream speed propagate back through a traffic stream,
(�/�)   (Rothery 1968). 0.5

The speed-spacing models noted above are applicable to cases
where each vehicle in  the traffic stream maintains the same or
nearly the same constant speed and each vehicle is attempting to
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maintain the same spacing (i.e., it describes a steady-state traffic 1958 by Herman and his associates at the General Motors
stream). Research Laboratories.  These research efforts were microscopic

Through the work of Reuschel (1950) and Pipes (1953), the which one vehicle followed another.  With such a description,
dynamical elements of a line of vehicles were introduced.  In the  macroscopic  behavior  of  single lane traffic flow can be
these works, the focus was on the dynamical behavior of a approximated.  Hence, car following models form a bridge
stream of vehicles as they accelerate or decelerate and each between individual "car following" behavior and the
driver-vehicle pair attempts to follow one another.  These efforts macroscopic world of a line of vehicles and their corresponding
were extended further through the efforts of Kometani and flow and stability properties.
Sasaki (1958) in Japan and in a series of publications starting in

approaches that focused on describing the detailed manner in

4.1  Model Development

Car following models of single lane traffic assume that there is vehicle characteristics or class of
a correlation between vehicles in a range of inter-vehicle characteristics and from the driver's  vast
spacing, from zero to about 100 to 125 meters and provides an repertoire of driving experience.  The
explicit form for this coupling.  The modeling assumes that each integration of current information and
driver in a following vehicle is an active and predictable control catalogued knowledge allows for the
element in the driver-vehicle-road system.  These tasks are development of driving strategies which
termed psychomotor skills or perceptual-motor skills because become "automatic" and from which evolve
they require a continued motor response to a  continuous series "driving skills".
of stimuli.

The relatively simple and common driving task of one vehicle commands with dexterity, smoothness, and
following another on a straight roadway where there is no coordination, constantly relying on feedback
passing (neglecting all other subsidiary tasks such as steering, from his own responses which are
routing, etc.) can be categorized in three specific subtasks: superimposed on the dynamics of the system's

� Perception: The driver collects relevant information
mainly through the visual channel.  This It is not clear how a driver carries out these functions in detail.
information arises primarily from the motion The millions of miles that are driven each year attest to the fact
of the lead vehicle and the driver's vehicle. that with little or no training, drivers successfully solve a
Some of the more obvious information multitude of complex driving tasks.  Many of the fundamental
elements, only part of which a driver is questions related to driving tasks lie in the area of 'human
sensitive to, are vehicle speeds, accelerations factors' and in the study of how human skill is related to
and higher derivatives (e.g., "jerk"), inter- information processes. 
vehicle spacing, relative speeds, rate of
closure, and functions of these variables (e.g., The process of comparing the inputs of a human operator to that
a "collision time"). operator's outputs using operational analysis was pioneered by

� Decision These attempts to determine mathematical expressions linking
Making: A driver interprets the information obtained by input and output have met with limited  success.  One of the

sampling and integrates it over time in order to primary difficulties is that the operator (in our case the driver)
provide adequate updating of  inputs. has no unique transfer function; the driver is a different
Interpreting the information is carried out 'mechanism' under different conditions.  While such an approach
within the framework of a knowledge of has met with limited success, through the course of studies like

� Control: The skilled driver can execute control

counterparts (lead vehicle and roadway).

the work of Tustin (1947), Ellson (1949), and Taylor (1949).
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these a number of useful concepts have been developed.  For where �  is a proportionality factor which equates the stimulus
example, reaction times were looked upon as characteristics of function to the response or control function.  The stimulus
individuals rather than functional characteristics of the task itself. function is composed of many factors:  speed, relative speed, 
In addition, by introducing the concept of "information", it has inter-vehicle spacing, accelerations, vehicle performance, driver
proved possible to parallel reaction time with the rate of coping thresholds, etc. 
with information.  

The early work by Tustin (1947) indicated maximum rates of the question is, which of these factors are the most significant from
order of 22-24 bits/second (sec).  Knowledge of human an explanatory viewpoint.  Can any of them be neglected and still
performance and the rates of handling information made it retain an approximate description of the situation being
possible to design the response characteristics of the machine for modeled? 
maximum compatibility of what really is an operator-machine
system.  What is generally assumed in car following modeling is that a

The very concept of treating an operator as a transfer function avoid collisions.
implies, partly, that the operator acts in some continuous
manner.  There is some evidence that this is not completely These two elements can be accomplished if the driver maintains
correct and that an operator acts in a discontinuous way.  There
is a period of time during which the operator having made a
"decision" to react is in an irreversible state and that the response
must follow at an appropriate time, which later is consistent with
the task. 

The concept of a human behavior being discontinuous in
carrying out tasks was first put forward by Uttley (1944)  and
has been strengthened by such studies as Telfor's (1931), who
demonstrated that sequential responses are correlated in such a
way that the response-time to a second stimulus is affected
significantly by the separation of the two stimuli.  Inertia, on the
other hand, both in the operator and the machine, creates an
appearance of smoothness and continuity to the control element.

In car following, inertia also provides direct feedback data to the
operator which is proportional to the acceleration of the vehicle.
Inertia also has a smoothing effect on the performance
requirements of the operator since the large masses and limited
output of drive-trains eliminate high frequency components of
the task.

Car following models have not explicitly attempted to take all of
these factors into account.  The approach that is used assumes
that a stimulus-response relationship exists that describes, at
least phenomenologically, the control process of a driver-vehicle
unit.  The stimulus-response equation expresses the concept that
a driver of a vehicle responds to a given stimulus according to a
relation:

 Response = � Stimulus (4.4)

Do all of these factors come into play part of the time?  The

driver attempts to:  (a) keep up with the vehicle ahead and (b)

a small average relative speed, U   over short time periods, sayrel


t,  i.e.,

is kept small.  This ensures that ‘collision’ times:

are kept large, and inter-vehicle spacings would not appreciably
increase during the time period, 
t.  The duration of the 
t will
depend in part on alertness, ability to estimate quantities such as:
spacing, relative speed, and the level of information required for
the driver to assess the situation to a tolerable probability level
(e.g., the probability of detecting the relative movement of an
object, in this case a lead vehicle) and can be expressed as a
function of the perception time. 

Because of the role relative-speed plays in maintaining relatively
large collision times and in preventing a lead vehicle from
'drifting' away, it is assumed as a first approximation that the
argument of the stimulus function is the relative speed.

 
From the discussion above of driver characteristics, relative
speed should be integrated over time to reflect the recent time
history of events, i.e., the stimulus function should have the form
like that of Equation 4.5 and be generalized so that the stimulus
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(4.7)

(4.8)

(4.9)

(4.10)

(4.12)

at a given time, t, depends on the weighted sum of all earlier
values of the relative speed, i.e.,

where ) (t)  is a weighing function which reflects a driver's
estimation, evaluation, and processing of earlier information
(Chandler et al. 1958).  The driver weighs past and present
information and responds at some future time.  The consequence
of using a number of specific weighing functions has been
examined (Lee 1966), and a spectral analysis approach has been
used to derive a weighing function directly from car following
data (Darroch and Rothery 1969). 

The general features of a weighting function are depicted  in
Figure 4.1.  What has happened a number of seconds (� 5 sec)
in the past is not highly relevant to a driver now, and for a short
time (� 0.5 sec) a driver cannot readily evaluate the information which corresponds to a simple constant response time, T, for a
available to him.  One approach is to assume that

 where

and

For this case, our stimulus function becomes

Stimulus(t) = U  (t - T) - U  (t - T) (4.11)
5     f

       

driver-vehicle unit.  In the general case of ) (t), there is an
average response time, ,  given by

Figure 4.1
Schematic Diagram of Relative Speed Stimulus 

and a Weighting Function Versus Time (Darroch and Rothery 1972).
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(4.15)

The main effect of such a response time or delay is that the driver
is responding at all times to a stimulus.   The driver is observing
the stimulus and determining a response that will be made some
time in the future.  By delaying the response, the driver obtains
"advanced" information.

For redundant stimuli there is little need to delay response, apart equation of car-following, and as such it is a grossly simplified
from the physical execution of the response.  Redundancy alone description of a complex phenomenon.  A generalization of car
can provide advance information and for such cases,  response following in a conventional control theory block diagram is
times are shorter. shown in Figure 4.1a.  In this same format the linear car-

The response function is taken as the acceleration of the 4.1b.  In this figure the driver is represented by a time delay and
following vehicle, because the driver has direct control of this a gain factor.  Undoubtedly, a more complete representation of
quantity through the 'accelerator' and brake pedals and also car following includes a set of equations that would model the
because a driver obtains direct feedback of this variable through dynamical properties of the vehicle and the roadway
inertial forces, i.e., characteristics.  It would also include the psychological and

Response  (t) = a (t) =  (t) (4.13)  f   f

where x (t) denotes the longitudinal position along the roadwayi

of the ith vehicle at time t.  Combining Equations4.11 and 4.13
into Equation 4.4 the stimulus-response equation becomes
(Chandler et al. 1958):

or equivalently

Equation 4.15 is a first approximation to the stimulus-response

following model presented in Equation 4.15 is shown in Figure

physiological properties of drivers, as well as couplings between
vehicles, other than the forward nearest neighbors and other
driving tasks such as lateral control, the state of traffic, and
emergency conditions.  

For example, vehicle performance undoubtedly alters driver
behavior and plays an important role in real traffic where mixed
traffic represents a wide performance distribution, and where
appropriate responses cannot always be physically achieved by
a subset of vehicles comprising the traffic stream.  This is one
area where research would contribute substantially to a better
understanding of the growth, decay, and frequency of
disturbances in traffic streams (see, e.g., Harris 1964; Herman
and Rothery 1967; Lam and Rothery 1970).

Figure 4.1a
Block Diagram of Car-Following.
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Figure 4.1b
Block Diagram of the Linear Car-Following Model. 

4.2  Stability Analysis

In this section we address the stability of the linear car following
equation, Equation 4.15, with respect to disturbances.  Two
particular types of stabilities are examined: local stability and
asymptotic stability.

Local Stability is concerned with the response of a following
vehicle to a fluctuation in the motion of the vehicle directly in
front of it; i.e., it is concerned with the localized behavior
between pairs of vehicles.

Asymptotic Stability is concerned with the manner in which a
fluctuation in the motion of any vehicle, say the lead vehicle of
a platoon, is propagated through a line of vehicles. 

The analysis develops criteria which characterize the types of
possible motion allowed by the model.  For a given range of
model parameters, the analysis determines if the traffic stream
(as described by the model) is stable or not, (i.e., whether
disturbances are damped, bounded, or unbounded).  This is an
important determination with respect to understanding the
applicability of the modeling.  It identifies several characteristics
with respect to single lane traffic flow, safety, and model validity.
If the model is realistic, this range should be consistent with
measured values of these parameters in any applicable situation
where disturbances are known to be stable.  It should also be
consistent with the fact that following a vehicle is an extremely
common experience, and is generally stable.

4.2.1  Local Stability

In this analysis, the linear car following equation, (Equation
4.15) is assumed.  As before, the position of the lead vehicle and
the following vehicle at a time, t, are denoted by x  (t) and x  (t),

5   f

respectively.  Rescaling time in units of the response time, T,
using the transformation, t = -T, Equation 4.15 simplifies to

where C = �T.  The conditions for the local behavior of the
following vehicle can be derived by solving Equation 4.16 by the
method of Laplace transforms (Herman et al. 1959).

The evaluation of the inverse Laplace transform for Equation
4.16 has been performed (Chow 1958; Kometani and Sasaki
1958).  For example, for the case where the lead and following
vehicles are initially moving with a constant speed, u, the
solution for the speed of the following vehicle was given by
Chow where � denotes the integral part of t/T.  The complex
form of Chow's solution makes it difficult to describe various
physical properties (Chow 1958).
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(4.17)

(4.18)

(4.19)

(4.20)

However, the general behavior of the following vehicle's motion particular, it demonstrates that in order for the following vehicle
can be characterized by considering a specific set of initial
conditions.  Without any loss in generality, initial conditions are
assumed so that both vehicles are moving with a constant speed,
u.  Then using a moving coordinate system z(t) for both the lead
and following vehicles the formal solution for the  acceleration
of the following vehicle is given more simply by:

(4.16a)

where L   denotes the inverse Laplace transform.  The character-1

of the above inverse Laplace transform is determined by the
singularities of the factor (C + se )   since Cs Z (s) is a regulars -1   2

5

function.  These singularities in the finite plane are the simple
poles of the roots of the equation

Similarly, solutions for vehicle speed and inter-vehicle spacings
can be obtained.  Again, the behavior of the inter-vehicle spacing
is dictated by the roots of Equation 4.17.  Even for small t, the
character of the solution depends on the pole with the largest real
part, say , s  = a  + ib , since all other poles have considerably0   0   0

larger negative real parts so that their contributions are heavily
damped.

Hence, the character of the inverse Laplace transform has the
form .  For different values of C, the pole with the
largest real part generates four  distinct cases:

a) if , and the
motion is non-oscillatory and exponentially
damped.

b) if e  < C < % / 2, then  a < 0, b   > 0 and the- 1
0    0

motion is oscillatory with exponential damping.

c) if C = % / 2 , then  a  = 0, b ,  > 0 and the motion is0   0

oscillatory with constant amplitude.

d) if C > % / 2  then  a  > 0, b   > 0 and the motion is0   0 

oscillatory with increasing amplitude.

The above establishes criteria for the numerical values of C
which characterize the motion of the following vehicle.  In

not to over-compensate to a fluctuation, it is necessary that C

�1/e.  For values of C that are somewhat greater, oscillations
occur but are heavily damped and thus insignificant.    Damping
occurs  to  some  extent  as  long  as 
C < %/2.

These results concerning the oscillatory and non-oscillatory
behavior apply to the speed and acceleration of the following 
vehicle as well as to the inter-vehicle spacing.  Thus, e.g., if C �
e , the inter-vehicle spacing changes in a non-oscillatory manner-1

by the amount  �S , where

when the speeds of the vehicle pair changes from U to V.  An
important case is when the lead vehicle stops.  Then, the final
speed, V, is zero, and the total change in inter-vehicle spacing is
- U/ �.
  
In order for a following vehicle to avoid a 'collision' from
initiation of a fluctuation in a lead vehicle's speed the inter-
vehicle spacing should be at least as large as U/�.  On the other
hand, in the interests of traffic flow the inter-vehicle spacing
should be small by having � as large as possible and yet within
the stable limit.  Ideally, the best choice of  �  is (eT) . -1

The result expressed in Equation 4.18 follows directly from
Chow's solution (or more simply by elementary considerations).
Because the initial and final speeds for both vehicles are U and
V, respectively, we have

and from Equation 4.15 we have

or
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as given earlier in Equation 4.18. 

In order to illustrate the general theory of local stability, the
results of several calculations using a Berkeley Ease analog
computer and an IBM digital computer are described.  It is
interesting to note that in solving the linear car following
equation for two vehicles, estimates for the local stability
condition were first obtained using an analog computer for
different values of C which differentiate the various type of
motion. 

Figure 4.2 illustrates the solutions for C= e , where the lead-1

vehicle reduces its speed and then accelerates back to its original
speed.    Since  C  has  a  value  for  the  locally stable limit, the
acceleration and speed of the following vehicle, as well as the
inter-vehicle spacing between the two vehicles are non-
oscillatory. 

In Figure 4.3, the inter-vehicle spacing is shown for four other
values of C for the same fluctuation of the lead vehicle as shown
in Figure 4.2.  The values of C range over the cases of oscillatory

Note: Vehicle 2 follows Vehicle 1 (lead car) with a time lag T=1.5 sec and a value of C=e (�0.368), the limiting value for local-1

stability.  The initial velocity of each vehicle is u

Figure 4.2
Detailed Motion of Two Cars Showing the 

Effect of a Fluctuation in the Acceleration of the Lead Car (Herman et al. 1958).



ẍf(-�1) 
 C d m

dt m
[x

5
(-)	xf(-)]

C�s me s

 0

�
%

2

�� &$5 )2//2:,1*02'(/6

� � �

(4.21)

(4.22)

 

Note: Changes in car spacings from an original constant spacing between two cars for the noted values of C.  The acceleration
profile of the lead car is the same as that shown in Figure 4.2.

Figure 4.3
Changes in Car Spacings from an 

Original Constant Spacing Between Two Cars (Herman et al. 1958).  

motion where the amplitude is damped, undamped, and of
increasing amplitude.

For the values of C = 0.5 and 0.80, the spacing is oscillatory and
heavily damped.  

For C = 1.57 ( ), Equation 4.21 is 

the spacing oscillates with constant amplitude.  For C = 1.60, the
motion is oscillatory with increasing amplitude.

Local Stability with Other Controls.  Qualitative arguments can
be given of a driver's lack of sensitivity to variation in relative
acceleration or higher derivatives of inter-vehicle spacings
because of the inability to make estimates of such quantities.  It
is of interest to determine whether a control centered around
such derivatives would be locally stable.   Consider the car
following equation of the form

for m= 0,1,2,3..., i.e., a control where the acceleration of the
following vehicle is proportional to the mth derivative of the

inter-vehicle spacing.  For m = 1, we obtain the linear car
following equation.

Using the identical analysis for any  m,  the equation whose roots
determine the character of the motion which results from

None of these roots lie on the negative real axis when m is even,
therefore, local stability is possible only for odd values of the
mth derivative of spacing: relative speed, the first derivative of
relative acceleration (m = 3), etc.  Note that this result indicates
that an acceleration response directly proportional to inter-
vehicle spacing stimulus is unstable.

4.2.2  Asymptotic Stability

In the previous analysis, the behavior of one vehicle following
another was considered.  Here a platoon of vehicles (except for
the platoon leader) follows the vehicle ahead according to the
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

linear car following equation, Equation 4.15.  The criteria
necessary for asymptotic stability or instability were first
investigated by considering the Fourier components of the speed
fluctuation of a platoon leader (Chandler et al. 1958). 

The set of equations which attempts to describe a line of N i.e. if
identical car-driver units is:

where n =0,1,2,3,...N.

Any specific solution to these equations depends on the velocity
profile of the lead vehicle of the platoon, u (t), and the two0

parameters � and T.  For any inter-vehicle spacing, if a
disturbance grows in amplitude then a 'collision' would
eventually occur somewhere back in the line of vehicles.

While numerical solutions to Equation 4.23 can determine at
what point such an event would occur, the interest is to
determine criteria for the growth or decay of such a disturbance.
Since an arbitrary speed pattern can be expressed as a linear
combination of monochromatic components by Fourier analysis,
the specific profile of a platoon leader can be simply represented
by one component, i.e., by a constant together with a
monochromatic oscillation with frequency, 7  and amplitude, fo

, i.e.,  

and the speed profile of the nth vehicle by

Substitution of Equations 4.24 and 4.25 into Equation 4.23
yields:

where the amplitude factor F (7, �, ,, n) is given by

which decreases with increasing n if 

The severest restriction on the parameter � arises from the low
frequency range, since in the limit as 7 � 0, �  must satisfy the
inequality

Accordingly, asymptotic stability is insured for all frequencies
where this inequality is satisfied.  

For those values of 7 within the physically realizable frequency
range of vehicular speed oscillations, the right hand side of the
inequality of 4.27 has a short range of values of 0.50 to about
0.52.  The asymptotic stability criteria divides the two parameter
domain into stable and unstable regions, as graphically
illustrated in Figure 4.4.

The criteria for local stability (namely that no local oscillations
occur when �,� e ) also insures asymptoticstability.  It has also-1

been shown (Chandler et al. 1958) that a speed fluctuation can
be approximated by:

Hence, the speed of propagation of the disturbance with respect
to the moving traffic stream in number of inter-vehicle
separations per second, n/t, is �. 

That is, the time required for the disturbance to propagate
between pairs of vehicles is � , a constant, which is independent-1

of the response time T.  It is noted from the above equation that
in the propagation of a speed fluctuation the amplitude of the 
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Figure 4.4
Regions of Asymptotic Stability (Rothery 1968).

disturbance grows as the response time, T, approaches   1/(2�)
 until  instability is reached.   Thus, while
�T < 0.5 ensures stability, short reaction times increase the range
of the sensitivity coefficient, �, that  ensures stability.  From a
practical viewpoint, small reaction times also reduce relatively
large responses to a given stimulus, or in contrast, larger
response times require relatively large responses to a given
stimulus.  Acceleration fluctuations can be correspondingly
analyzed (Chandler et al. 1958).

4.2.1.1 Numerical Examples

In order to illustrate the general theory of asymptotic stability as
outlined above,  the results of a number of numerical calculations
are given.  Figure 4.5 graphically exhibits the inter-vehicle
spacings of successive pairs of vehicles versus time for a platoon
of vehicles.  Here, three values of C were used:  C = 0.368, 0.5,
and 0.75.  The initial fluctuation of the lead vehicle, n = 1, was
the same as that of the lead vehicle illustrated in Figure 4.2.  This
disturbance consists of a slowing down and then a speeding up
to the original speed so that the integral of acceleration over time
is zero.  The particularly stable, non-oscillatory response is
evident in the first case where C = 0.368 (�1/e), the local
stability limit.  As analyzed, a heavily damped oscillation occurs
in the second case where C = 0.5, the asymptotic limit.  Note that
the amplitude of the disturbance is damped as it propagates

through the line of vehicles even though this case is at the
asymptotic limit.  

This results from the fact that the disturbance is not a single
Fourier component with near zero frequency.  However,
instability is clearly exhibited in the third case of Figure 4.5
where C = 0.75 and in Figure 4.6 where C = 0.8.  In the case
shown in Figure 4.6, the trajectories of each vehicle in a platoon
of nine are graphed with respect to a coordinate system moving
with the initial platoon speed u.  Asymptotic instability of a
platoon of nine cars is illustrated for the linear car following
equation, Equation 4.23, where C = 0.80.  For t = 0, the vehicles
are all moving with a velocity u and are separated by a distance
of 12 meters.  The propagation of the disturbance, which can be
readily discerned, leads to "collision" between the 7th and 8th
cars at about t = 24 sec.    The lead vehicle at t = 0 decelerates
for 2 seconds at 4 km/h/sec, so that its speed changes from u to
u -8 km/h and then accelerates back to u.  This fluctuation in the
speed of the lead vehicle propagates through the platoon in an
unstable manner  with  the  inter-vehicle  spacing  between the
seventh and eighth vehicles being reduced to zero at about 24.0
sec after the initial phase of the disturbance is generated by the
lead vehicle of the platoon.

In Figure 4.7 the envelope of the minimum spacing that occurs
between successive pairs of vehicles is graphed versus time
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Note: Diagram uses Equation 4.23 for three values of C.  The fluctuation in acceleration of the lead car, car number 1, is the
same as that shown in Fig. 4.2  At t=0 the cars are separated by a spacing of 21 meters.

Figure 4.5
Inter-Vehicle Spacings of a Platoon of Vehicles 

Versus Time for the Linear Car Following Model (Herman et al. 1958).

 where the lead vehicle's speed varies sinusoidally with a point.  Here, the numerical solution yields a maximum and
frequency 7 =2%/10 radian/sec.  The envelope of minimum minimum amplitude that is constant to seven significant places.
inter-vehicle spacing versus vehicle position is shown for three
values of �.  The response time, T, equals 1 second.  It has been
shown that the frequency spectrum of relative speed and
acceleration in car following experiments have essentially all
their content below this frequency (Darroch and Rothery 1973).

The values for the parameter � were 0.530, 0.5345, and
0.550/sec.  The value for the time lag, T, was 1 sec in each case.
The frequency  used  is  that  value  of   7   which  just  satisfies
the  stability   equation,  Equation 4.27,   for  the  case  where
�= 0.5345/sec.  This latter figure serves to demonstrate not only
the stability criteria as a function of frequency but the accuracy
of the numerical results.  A comparison between that which is
predicted from the stability analysis and the numerical solution
for the constant amplitude case (�=0.5345/sec) serves as a check

4.2.1.2  Next-Nearest Vehicle Coupling

In the nearest neighbor vehicle following model, the motion of
each vehicle in a platoon is determined solely by the motion of
the vehicle directly in front.  The effect of including the motion
of the "next nearest neighbor" vehicle (i.e., the car which is two
vehicles ahead in addition to the vehicle directly in front) can be
ascertained.  An approximation to this type of control, is the
model
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Note:  Diagram illustrates the linear car following equation, eq. 4.23, where C=080.  

Figure 4.6
Asymptotic Instability of a Platoon of Nine Cars (Herman et al. 1958).

Figure 4.7
Envelope of Minimum Inter-Vehicle Spacing Versus Vehicle Position   (Rothery 1968 ).
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(4.30) (4.31)

(4.32)

(4.33)

(4.34)

which in the limit 7� 0 is This equation states that the effect of adding next nearest
neighbor coupling to the control element is, to the first order, to
increase �  to (�  + � ).  This reduces the value that �  can have1  1  2        1

and still maintain asymptotic stability.

4.3  Steady-State Flow

This section discusses the properties of steady-state traffic flow also follows from elementary considerations by integration of
based on car following models of single-lane traffic flow.  In Equation 4.32 as shown in the previous section (Gazis et al.
particular, the associated speed-spacing or equivalent speed-
concentration relationships, as well as the flow-concentration
relationships for single lane traffic flow are developed. 

  
The Linear Case.  The equations of motion for a single lane of
traffic described by the linear car following model are given by:

where n = 1, 2, 3, ....

In order to interrelate one steady-state to another under this
control, assume (up to a time t=0) each vehicle is traveling at a 1) They link an initial steady-state to a second arbitrary
speed U  and that the inter-vehicle spacing is S .  Suppose thati        i

at t=0, the lead vehicle undergoes a speed change and increases
or decreases its speed so that its final speed after some time, t, is
U .  A specific numerical solution of this type of transition isf

exhibited in Figure 4.8.

In this example C = �T=0.47 so that the stream of traffic is
stable, and speed fluctuations are damped.  Any case where the
asymptotic stability criteria is satisfied assures that each
following vehicle comprising the traffic stream eventually
reaches a state traveling at the speed U  .  In the transition fromf

a speed U  to a speed U  , the inter-vehicle spacing S changesi     f

from S  to S , wherei  f

This result follows directly from the solution to the car following
equation, Equation 4.16a or from Chow (1958).   Equation 4.33

1959).  This result is not directly dependent on the time lag, T,
except that for this result to be valid the time lag, T, must allow
the equation of motion to form a stable stream of traffic.  Since
vehicle spacing is the inverse of traffic stream concentration, k,
the speed-concentration relation corresponding to Equation 4.33
is:

The significance of Equations 4.33 and 4.34 is that:

steady-state, and

2) They establish relationships between macroscopic traffic
stream variables involving a microscopic car following
parameter, � .   

In this respect they can be used to test the applicability of the car
following model in describing the overall properties of single
lane traffic flow. For stopped traffic, U  = 0, and thei

corresponding spacing, S , is composed of vehicle length ando

"bumper-to-bumper" inter-vehicle spacing. The concentration
corresponding to a spacing, S, is denoted by k  and is frequentlyo       j

referred to as the 'jam concentration'. 

Given k, then Equation 4.34 for an arbitrary traffic state definedj

by a speed, U, and a concentration, k, becomes



U 
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(4.36)

Note:  A numerical solution to Equation 4.32 for the inter-vehicle spacings of an 11- vehicle platoon going from one steady-state to
another (�T = 0.47).  The lead vehicle's speed decreases by 7.5 meters per second.  

Figure 4.8
Inter-Vehicle Spacings of an Eleven Vehicle Platoon (Rothery 1968).

A comparison of this relationship was made (Gazis et al. 1959)
with a specific set of reported observations (Greenberg 1959) for
a case of single lane traffic flow (i.e., for the northbound traffic
flowing through the Lincoln Tunnel which passes under the The inability of Equation 4.36 to exhibit the required qualitative
Hudson River between the States of New York and New Jersey). relationship between flow and concentration (see Chapter 2) led
This comparison is reproduced in Figure 4.9 and leads to an to the modification of the linear car following equation (Gazis et
estimate of 0.60 sec  for �.  This estimate of � implies an upper al. 1959).-1

bound for T � 0.83 sec for an asymptotic stable traffic stream
using this facility.

While this fit and these values are not unreasonable, a
fundamental problem is identified with this form of an equation
for a speed-spacing relationship (Gazis et al. 1959).  Because it
is linear, this relationship does not lead to a reasonable
description of traffic flow.  This is illustrated in Figure 4.10
where the same data from the Lincoln Tunnel (in Figure 4.9) is
regraphed.  Here the graph is in the form of a normalized flow,

versus a normalized concentration together with the
corresponding theoretical steady-state result derived from
Equation 4.35, i.e.,

Non-Linear Models.  The linear car following model specifies
an acceleration response which is completely independent of
vehicle spacing (i.e., for a given relative velocity, response is the
same whether the vehicle following distance is small [e.g., of the
order of 5 or 10 meters] or if the spacing is relatively  large [i.e.,
of the order of hundreds of meters]).  Qualitatively, we would
expect that response to a given relative speed to increase with
smaller spacings.
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Note: The data are those of (Greenberg 1959) for the Lincoln Tunnel.  The curve represents a "least squares fit" of Equation 4.35
to the data.

Figure 4.9
Speed (miles/hour) Versus Vehicle Concentration (vehicles/mile).(Gazis et al. 1959).

Note: The curve corresponds to Equation 4.36 where the parameters are those from the "fit" shown in Figure 4.9.

 Figure 4.10
Normalized Flow Versus Normalized Concentration  (Gazis et al. 1959).
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(4.37)

(4.38)

(4.39)

(4.40)

In order to attempt to take this effect into account, the linear therefore the flow-concentration relationship, does not describe
model is modified by supposing that the gain factor, �, is not a the state of the traffic stream. 
constant but is inversely proportional to vehicle spacing, i.e., 

where �  is a new parameter - assumed to be a constant and approaches to single-lane traffic flow because in these cases any1

which shall be referred to as the sensitivity coefficient.  Using small speed change, once the disturbance arrives, each vehicle
Equation 4.37 in Equation 4.32, our car following equation is: instantaneously relaxes to the new speed, at the 'proper' spacing.

for n = 1,2,3,... downstream from the vehicle initiating the speed change at a

As before, by assuming the parameters are such that the traffic
stream is stable, this equation can be integrated yielding the
steady-state relation for speed and concentration:

 and for steady-state flow and concentration:

 where again it is assumed that for u=0, the spacing is equal to
an effective vehicle length, L = k .  These relations for steady--1

state flow are identical to those obtained from considering the
traffic stream to be approximated by a continuous compressible
fluid (see Chapter 5) with the property that disturbances are
propagated with a constant speed with respect to the moving
medium (Greenberg 1959).   For our non-linear car following
equation, infinitesimal disturbances are propagated with speed
�  .  This is consistent with the earlier discussion regarding the1

speed of propagation of a disturbance per vehicle pair.

It can be shown that if the propagation time, , , is directly0

proportional to spacing (i.e.,  ,  � S), Equations 4.39 and 4.400

are obtained where the constant ratio S /,  is identified as the Assuming that this data is a representative sample of thiso

constant � . facility's traffic, the value of 27.7 km/h is an estimate not only ofl

These two approaches are not analogous.  In the fluid analogy but it is the 'characteristic speed' for the roadway under
case, the speed-spacing relationship is 'followed' at every instant consideration (i.e., the speed of the traffic stream which
before, during, and after a disturbance.  In the case of car maximizes the flow).  
following during the transition phase, the speed-spacing, and

A solution to any particular set of equations for the motion of a
traffic stream specifies departures from the steady-state.  This is
not the case for simple headway models or hydro-dynamical

This emphasizes the shortcoming of these alternate approaches.
They cannot take into account the behavioral and physical
aspects of disturbances.  In the case of car following models, the
initial phase of a disturbance arrives at the nth vehicle

time (n-1)T seconds after the onset of the fluctuation.  The time
it takes vehicles to reach the changed speed depends on the
parameter  �,  for the linear model, and � ,  for  the  non-linear1

model,  subject  to  the restriction  that �  > T or �  < S/T,-1
1

respectively.  

These restrictions assure that the signal speed can never precede
the initial phase speed of a disturbance.  For the linear case, the
restriction is more than satisfied for an asymptotic stable   traffic
 stream.  For small speed changes, it is also satisfied for the  non-
linear model  by assuming that the stability criteria results for the
linear case yields a bound for the stability in the non-linear case.
 Hence, the inequality  �, /S*<0.5   provides a sufficient stability
condition for the non-linear case, where S* is the minimum
spacing occurring during a transition from one steady-state to
another. 

Before discussing a more general form for the sensitivity
coefficient (i.e., Equation 4.37), the same reported data
(Greenberg 1959) plotted in Figures 4.9 and 4.10 are graphed in
Figures 4.11 and 4.12 together with the steady-state relations
(Equations 4.39 and 4.40 obtained from the non-linear model,
Equation 4.38).  The fit of the data to the steady-state relation via
the method of "least squares" is good and the resulting values for
�  and k  are 27.7 km/h and 142 veh/km, respectively.1   j

the sensitivity coefficient for the non-linear car following model
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Note:  The curve corresponds to a "least squares" fit of Equation 4.39 to the data (Greenberg 1959).

Figure 4.11
Speed Versus Vehicle Concentration  (Gazis et al. 1959).  

Note:  The curve corresponds to Equation 4.40 where parameters are those from the "fit" obtained in Figure 4.11.

Figure 4.12
Normalized Flow Versus Normalized Vehicle Concentration (Edie et al. 1963).  
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ẍn�1(t�,)

�2x

.
n�1(t�,)

[xn(t)	xn�1(t)]
2
[x
.

n(t)	x
.
n�1(t)]

U 
 Uf e
	k/km

q 
 Uf ke	
k/km

U 
 Uf for 0�k�kf

U 
 Uf exp	
k	 kf

km

U 
 Uf (1	k/kj)

U 
 Uf (1	L/S)

�U 
 (Uf L/S2) �S
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(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

(4.49)

The corresponding vehicle concentration at maximum flow, i.e.,
when  u = �  , is  e  k.   This  predicts  a  roadway  capacity  of1     j

-l

� e k of about �1400 veh/h for the Lincoln Tunnel.  A noted1  j
-l 

undesirable property of Equation 4.40 is that the tangent dq/dt
is infinite at k = 0, whereas a linear relation between flow and
concentration would more accurately describe traffic near zero
concentration.  This is not a serious defect in the model since car
following models are not applicable for low concentrations
where spacings are large and the coupling between vehicles are
weak.  However, this property of the model did suggest the
following alternative form (Edie 1961) for the gain factor,

This leads to the following expression for a car following model:

As before, this can be integrated giving the following steady-
state equations:

and

where U  is the "free mean speed", i.e., the speed of the trafficf

stream near zero concentration and k   is the concentration whenm

the flow is a maximum.  In this case the sensitivity coefficient, �2

can be identified as k .  The speed at optimal flow is e Um         f
-1         -1

which, as before, corresponds to the speed of propagation of a
disturbance with respect to the moving traffic stream.  This
model predicts a finite speed, U  , near zero concentration.  f

Ideally, this speed concentration relation should be translated to
the right in order to more completely take into account
observations that the speed of the traffic stream is independent
of vehicle concentration for low concentrations, .i.e.

and

where  k   corresponds to a concentration where vehicle tof

vehicle interactions begin to take place so that the stream speed
begins to decrease with increasing concentration.  Assuming that
interactions take place at a spacing of about 120 m, k   wouldf

have a value of about 8 veh/km.  A "kink" of this kind was
introduced into a linear model for the speed concentration
relationship (Greenshields 1935). 

Greenshields' empirical model for a speed-concentration relation
is given by

where U    is a “free mean speed” and k  is the jam concentration.f         j

It is of interest to question what car following model would
correspond to the above steady-state equations as expressed by
Equation 4.46.  The particular model can be derived in the
following elementary way (Gazis et al. 1961).  Equation 4.46 is
rewritten as

Differentiating both sides with respect to time obtains

which after introduction of a time lag is for the (n+1) vehicle:
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(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)

The gain factor is:

The above procedure demonstrates an alternate technique at
arriving at stimulus response equations from relatively
elementary considerations.  This method was used to develop
early car following models (Reuschel 1950; Pipes 1951).  The
technique does pre-suppose that a speed-spacing relation reflects
detailed psycho-physical aspects of how one vehicle follows
another.  To summarize the car-following equation considered,
we have:

where the factor, �, is assumed to be given by the following:

� A constant, � = � ;0

� A term inversely proportional to the spacing, � = � /S; 1

� A term proportional to the speed and inversely
proportional to the spacing squared, � = � U/S ; and2

2

� A term inversely proportional to the spacing squared, 
� = �  / S .3

 2

These models can be considered to be special cases of a more
general expression for the gain factor, namely:

where a  is a constant to be determined experimentally.  Model 5,m

specification is to be determined on the basis of the degree to
which it presents a consistent description of actual traffic
phenomena.  Equations 4.51 and 4.52 provide a relatively broad
framework in so far as steady-state phenomena is concerned
(Gazis et al. 1961). 

Using these equations and integrating over time we have

where, as before, U is the steady-state speed of the traffic stream,
S is the steady-state spacing, and a and b are appropriate

constants consistent with the physical restrictions and where
f (x), (p =  m  or 5), is given by p

for p g 1 and

for p = 1.  The integration constant b is related to the "free mean
speed" or the "jam concentration" depending on the specific
values of m and 5.  For m > 1, 5g 1, or m =1, 5 >1 

and

for  all  other  combinations of  m  and   5,  except  5  <  1  and 
m = 1.

For those cases where 5 < 1 and m = 1 it is not possible to satisfy
either the boundary condition at k = 0 or k  and the integrationj

constant can be assigned arbitrarily, e.g., at k , the concentrationm

at maximum flow or more appropriately at some 'critical'
concentration near the boundary condition of a "free speed"
determined by the "kink" in speed-concentration data for the
particular facility being modeled.  The relationship between km

and k  is a characteristic of the particular functional or modelj

being used to describe traffic flow of the facility being studied
and not the physical phenomenon involved.  For example, for the
two models given by  5 = 1, m = 0, and  5 = 2, m = 0, maximum
flow occurs at a concentration of e  k and  k  / 2 , respectively.-l

j   j

Such a result is not physically unrealistic.  Physically the
question is whether or not the measured value of  q  occurs atmax 

or near the numerical value of these terms, i.e., k  = e k  or k /2m  j  j
-1

for the two examples cited.  

Using Equations 4.53, 4.54, 4.55, 4.56, 4.57, and the definition
of steady-state flow, we can obtain the relationships between
speed, concentration, and flow.  Several examples have been
given above.   Figures 4.13 and 4.14 contain these and additional
examples of flow versus concentration relations for various
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Note: Normalized flow versus normalized concentration corresponding to the steady-state solution of Equations 4.51 and 4.52
for m=1 and various values of  5.

Figure 4.13
Normalized Flow Versus Normalized Concentration (Gazis et al. 1963). 

Figure 4.14
Normalized Flow versus Normalized Concentration Corresponding to the Steady-State 

Solution of Equations 4.51 and 4.52 for m=1 and Various Values of 55 (Gazis 1963).
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values of 5 and m.  These flow curves are normalized by letting
q  = q/q , and k  = k/k .n  max   n  j

It can be seen from these figures that most of the models shown
here reflect the general type of flow diagram required to agree
with the qualitative descriptions of steady-state flow.  The
spectrum of models provided are capable of fitting data like that
shown in Figure 4.9 so long as a suitable choice of the
parameters is made. spacing, i.e., m= 0,  5 =1 (Herman et al. 1959).  A generalized

equation for steady-state flow (Drew 1965) and subsequently
The generalized expression for car following models, Equations tested on the Gulf Freeway in Houston, Texas led to a model
4.51 and 4.52, has also been examined for non-integral values
for m and 5 (May and Keller 1967).  Fittingdata obtained on the
Eisenhower Expressway in Chicago they proposed a model with As noted earlier, consideration of a "free-speed" near low
m = 0.8 and 5 = 2.8.  Various values for m and 5 can be identified
in the early work on steady-state flow and car following . model   m = 1,  5 = 2   (Edie 1961).    Yet another model, m = 1,

The case m = 0, 5 = 0 equates to the "simple" linear car following
model.  The case m = 0, 5 = 2 can be identified with a model
developed from photographic observations of traffic flow made
in 1934 (Greenshields 1935). This model can also be developed

considering the perceptual factors that are related to the car
following task (Pipes and Wojcik 1968; Fox and Lehman 1967;
Michaels 1963).  As was discussed earlier, the case for m = 0,
5 = 1  generates a steady-state relation that can be developed bya
fluid flow analogy  to  traffic  (Greenberg  1959)  and  led  to the
reexamination of car following experiments and the hypothesis
that drivers do not have a constant gain factor to a given relative-
speed stimulus but  rather that it varies inversely with the vehicle

where m = 0 and 5 = 3/2. 

concentrations led to the proposal and subsequent testing of the

5 = 3 resulted from analysis of data obtained on the Eisenhower
Expressway in Chicago (Drake et al. 1967).  Further analysis of
this model together with observations suggest that the sensitivity
coefficient may take on different values above a lane flow of
about 1,800 vehicles/hr (May and Keller 1967).

4.4  Experiments And Observations

This section is devoted to the presentation and discussion of derived from car following models for steady-state flow are
experiments that have been carried out in an effort to ascertain examined. 
whether car following models approximate single lane traffic
characteristics.  These experiments are organized into two Finally, the degree to which any specific model of the type
distinct categories.  examined in the previous section is capable of representing a

The first of these is concerned with comparisons between car macroscopic viewpoints is examined. 
following models and detailed measurements of the variables
involved in the driving situation where one vehicle follows
another on an empty roadway.  These comparisons lead to a
quantitative measure of car following model estimates for the
specific parameters involved for the traffic facility and vehicle
type used.

The second category of experiments are those concerned with
the measurement of macroscopic flow characteristics: the study
of speed, concentration, flow and their inter-relationships for
vehicle platoons and traffic environments where traffic is
channeled in a single lane.  In particular, the degree to which this
type of data fits the analytical relationships that have been

consistent framework from both the microscopic and

4.4.1  Car Following Experiments

The first experiments which attempted to make a preliminary
evaluation of  the linear car following model were performed a
number of decades ago (Chandler et al. 1958; Kometani and
Sasaki 1958).  In subsequent years a number of different tests
with varying objectives were performed using two vehicles,
three vehicles, and buses.  Most of these tests were conducted on
test track facilities and in vehicular tunnels. 
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In these experiments, inter-vehicle spacing, relative speed, speed
of the following vehicle, and acceleration of the following
vehicles were recorded simultaneously together with a clock
signal to assure synchronization of each variable with every
other.

These car following experiments are divided into six specific
categories as follows:

1) Preliminary Test Track Experiments.  The first
experiments in car following were performed by (Chandler
et al. 1958) and were carried out in order to obtain
estimates of the parameters in the linear car following
model and to obtain a preliminary evaluation of this model.
Eight male drivers participated in the study which was
conducted on a one-mile test track facility.    

2) Vehicular Tunnel Experiments.  To further establish the even though the relative speed has been reduced to zero or
validity of car following models and to establish estimates, near zero.  This situation was observed in several cases in
the parameters involved in real operating environments tests carried out in the vehicular tunnels - particularly
where the traffic flow characteristics were well known, a when vehicles were coming to a stop.  Equation 4.58
series of experiments were carried out in the Lincoln, above allows for a non-zero acceleration when the relative
Holland, and Queens Mid-Town Tunnels of New York speed is zero.  A value of � near one would indicate an
City.  Ten different drivers were used in collecting 30 test attempt to nearly match the acceleration of the lead driver
runs. for such cases.  This does not imply that drivers are good

3) Bus Following Experiments.  A series of experiments
were performed to determine whether the dynamical
characteristics of a traffic stream changes when it is
composed of vehicles whose performance measures are
significantly different than those of an automobile.  They
were also performed to determine the validity and measure
parameters of car following models when applied to heavy
vehicles.  Using a 4 kilometer test track facility and 53-
passenger city buses, 22 drivers were studied. b)  Experiments of Forbes et al.  Several experiments

4) Three Car Experiments.  A series of experiments were
performed to determine the effect on driver behavior when
there is an opportunity for next-nearest following and of
following the vehicle directly ahead.  The degree to which
a driver uses the information that might be obtained from
a vehicle two ahead was also examined.  The relative
spacings and the relative speeds between the first and third
vehicles and the second and third vehicles together with
the speed and acceleration of the third vehicle were
recorded.

5) Miscellaneous Experiments.  Several additional car
following experiments have been performed and reported
on as follows:

a)  Kometani and Sasaki Experiments.  Kometani and
Sasaki conducted and reported on a series of experiments
that were performed to evaluate the effect of an additional
term in the linear car following equation.  This term is
related to the acceleration of the lead vehicle.  In
particular, they investigated a model rewritten here in the
following form:

This equation attempts to take into account a particular
driving phenomenon,  where the driver in a particular state
realizes that he should maintain a non-zero acceleration

estimators of relative acceleration.  The conjecture here is
that by pursuing the task where the lead driver is
undergoing a constant or near constant acceleration
maneuver, the driver becomes aware of this qualitatively
after nullifying out relative speed - and thereby shifts the
frame of reference.  Such cases have been incorporated
into models simulating the behavior of bottlenecks in
tunnel traffic (Helly 1959).

using  three  vehicle  platoons  were reported by Forbes 
et al. (1957).  Here a lead vehicle was driven by one of the
experimenters while the second and third vehicles were
driven by subjects.   At predetermined locations along the
roadway relatively severe acceleration maneuvers were
executed by the lead vehicle.  Photographic equipment
recorded these events with respect to this moving
reference together with speed and time.  From these
recordings speeds and spacings were calculated as a
function of time.  These investigators did not fit this data
to car following models.  However, a partial set of this data
was fitted to vehicle following models by another
investigator (Helly 1959).  This latter set consisted of six
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tests in all, four in the Lincoln Tunnel and two on an for which the correlation coefficient is a maximum and typically
open roadway. falls in the range of 0.85 to 0.95.

c)  Ohio State Experiments.  Two different sets of
experiments have been conducted at Ohio State
University.  In the first set a series of subjects have been given for �, their product; C = �T, the boundary value for
studied using a car following simulator (Todosiev 1963).
An integral part of the simulator is an analog computer
which could program the lead vehicle for many different
driving tasks.  The computer could also simulate the
performance characteristics of different following vehicles.
These experiments were directed toward understanding the
manner in which the following vehicle behaves when the
lead vehicle moves with constant speed and the
measurement of driver thresholds for changes in spacing,
relative speed, and acceleration.  The second set of
experiments were conducted on a level two-lane state
highway operating at low traffic concentrations (Hankin
and Rockwell 1967).  In these experiments the purpose
was "to develop an empirically based model of car
following which would predict a following car's
acceleration and change in acceleration as a function of
observed dynamic relationships with the lead car."  As in
the earlier car following experiments, spacing and relative
speed were recorded as well as speed and acceleration of
the following vehicle.

d)  Studies by Constantine and Young.  These studies
were carried out using motorists in England and a
photographic system to record the data (Constantine and
Young 1967).  The experiments are interesting from the
vantage point that they also incorporated a second
photographic system mounted in the following vehicle and
directed to the rear so that two sets of car following data
could be obtained simultaneously.  The latter set collected
information on an unsuspecting motorist.  Although
accuracy is not sufficient, such a system holds promise.

4.4.1.1  Analysis of Car Following Experiments

The analysis of recorded information from a car following
experiment is generally made by reducing the data to numerical
values at equal time intervals.  Then, a correlation analysis is
carried out using the linear car following model to obtain
estimates of the two parameters, � and T.  With the data in
discrete form, the time lag ,T, also takes on discrete values.  The
time lag or response time associated with a given driver is one

The results from the preliminary experiments (Chandler et al.
1958) are summarized in Table 4.1 where the estimates are

asymptotic stability; average spacing, < S >; and average speed,
< U >.  The average value of the gain factor is 0.368 sec .  The-1

average value of �T is close to 0.5, the asymptotic stability
boundary limit. 

Table 4.1   Results from Car-Following Experiment  

Driver �� <U> <S> ��T

1 0.74 sec 19.8 36 1.04-1

m/sec m

2 0.44 16 36.7 0.44

3 0.34 20.5 38.1 1.52

4 0.32 22.2 34.8 0.48

5 0.38 16.8 26.7 0.65

6 0.17 18.1 61.1 0.19

7 0.32 18.1 55.7 0.72

8 0.23 18.7 43.1 0.47

Using the values for � and the average spacing <S > obtained for
each subject a value of 12.1 m/sec (44.1 km/h) is obtained for an
estimate of the constant a  (Herman and Potts 1959).  This1, 0

latter estimate compares the value � for each driver with that
driver's average spacing, <S > , since each driver is in somewhat
different driving state.  This is illustrated in Figure 4.15.  This
approach attempts to take into account the  differences in the
estimates for the gain factor � or a , obtained for different0,0

drivers by attributing these differences to the differences in their
respective average spacing.  An alternate and more direct
approach carries out the correlation analysis for this model using
an equation which is the discrete form of Equation 4.38 to obtain
a direct estimate of the dependence of the gain factor on spacing,
S(t).
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Figure 4.15
Sensitivity Coefficient Versus the Reciprocal of the Average Vehicle Spacing (Gazis et al. 1959).

Vehicular Tunnel Experiments.  Vehicular tunnels usually have
roadbeds that are limited to two lanes, one per direction.
Accordingly, they consist of single-lane traffic where passing is
prohibited.  In order to investigate the reasonableness of the non-
linear model a series of tunnel experiments were conducted.
Thirty test runs in all were conducted: sixteen in the Lincoln estimate of a ,  and equals 29.21 km/h.  Figure 4.18 graphs the
Tunnel, ten in the Holland Tunnel and four in the Queens Mid- gain factor, �, versus the reciprocal of the average spacing for
Town Tunnel.  Initially, values of the parameters for the linear the Lincoln Tunnel tests.  The straight line is a "least-squares" fit
model were obtained, i.e., � = a and T.  These results are0,0 

shown in Figure 4.16 where the gain factor, �= a  versus the0,0

time lag, T, for all of the test runs carried out in the vehicular
tunnels.  The solid curve divides the domain of this two
parameter field into asymptotically stable and unstable regions.

It is of interest to note that in Figure 4.16 that many of the drivers
fall into the unstable region and that there are drivers who have
relatively large gain factors and time lags.  Drivers with
relatively slow responses tend to compensatingly have fast
movement times and tend to apply larger brake pedal forces
resulting in larger decelerations.  

Such drivers have been identified, statistically, as being involved and 14) the results tend to support the spacing dependent model.
more frequently in "struck-from-behind accidents" (Babarik This time-dependent analysis has also been performed for seven
1968; Brill 1972).  Figures 4.17 and 4.18 graph the gain factor additional  functions  for  the  gain  factor  for the same fourteen

versus the reciprocal of the average vehicle spacing for the tests
conducted in the Lincoln and Holland tunnels, respectively. 
Figure 4.17, the gain factor, �, versus the reciprocal of the
average spacing for the Holland Tunnel tests.  The straight line
is a "least-squares" fit through the origin.  The slope, which is an

1 0

through  the  origin.  These results yield characteristic speeds,
a  , which are within ± 3km/h for these two similar facilities.1,0

Yet these small numeric differences for the parameter al,0

properly reflect known differences in the macroscopic traffic
flow characteristics of these facilities. 

The analysis was also performed using these test data and the
non-linear reciprocal spacing model.  The results are not
strikingly different (Rothery 1968).  Spacing does not change
significantly within any one test run to provide a sensitive
measure of the dependency of the gain factor on inter-vehicular
spacing for any given driver (See Table 4.2).  Where the
variation in spacings were relatively large (e.g., runs 3, 11, 13,
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Table 4.2
Comparison of the Maximum Correlations obtained for the Linear and Reciprocal Spacing Models for the Fourteen
Lincoln Tunnel Test Runs

Number r r < S> (m) ))S (m) Number r r < S> (m) ))S (m)0,0 l,0

1 0.686 0.459 13.4 4.2 8 0.865 0.881 19.9 3.4

2 0.878 0.843 15.5 3.9 9 0.728 0.734 7.6 1.8

3 0.77 0.778 20.6 5.9 10 0.898 0.898 10.7 2.3

4 0.793 0.748 10.6 2.9 11 0.89 0.966 26.2 6.2

5 0.831 0.862 12.3 3.9 12 0.846 0.835 18.5 1.3

6 0.72 0.709 13.5 2.1 13 0.909 0.928 18.7 8.8

7 0.64 0.678 5.5 3.2 14 0.761 0.79 46.1 17.6

0,0 l,0

Figure 4.16
Gain Factor, ��, Versus the Time Lag, T, for All of the Test Runs (Rothery 1968).
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Note:  The straight line is a "least-squares" fit through the origin.  The slope, which is an estimate of a , equals 29.21 km/h.1,0

Figure 4.17
Gain Factor, ��, Versus the Reciprocal of the 

Average Spacing for Holland Tunnel Tests (Herman and Potts 1959).

Note:  The straight line is a "least-squares" fit through the origin.  The slope, is an estimate of a , equals 32.68 km/h.1,0

Figure 4.18
Gain Factor, �� ,Versus the Reciprocal of the 

Average Spacing for Lincoln Tunnel Tests (Herman and Potts 1959).
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little difference from one model to the other.  There are definite of the cases when that factor is introduced and this model (5=1;
trends however.  If one graphs the correlation coefficient for a
given 5, say 5=1 versus m; 13 of the cases indicate the best fits the analysis are summarized in Figure 4.19 where the sensitivity
are with m = 0 or 1.  Three models tend to indicate marginal coefficient a  versus the time lag, T, for the bus following
superiority; they are those given by (5=2; m=1), (5=1; m=0) and
(5=2; m=0).

Bus Following Experiments.  For each of the 22 drivers tested,
the time dependent correlation analysis was carried out for the
linear model (5=0; m=0), the reciprocal spacing model (5=1;
m=0), and the speed, reciprocal-spacing-squared model (5=2;
m=1).  Results similar to the Tunnel analysis were obtained: high
correlations for almost all drivers and for each of the three
models examined (Rothery et al. 1964).

The correlation analysis provided evidence for the reciprocal
spacing effect with the correlation improved in about 75 percent

m=0) provided the best fit to the data.  The principle results of

0,0

experiments are shown.  All of the data points obtained in these
results fall in the asymptotically stable 

region, whereas in the previous automobile experiments
approximately half of the points fell into this region.  In Figure
4.19, the sensitivity coefficient, a , versus the time lag, T, for0,0 

the bus following experiments are shown.  Some drivers are
represented by more than one test.  The circles are test runs by
drivers who also participated in the ten bus platoon experiments.
The solid curve divides the graph into regions of asymptotic
stability and instability.  The dashed lines are boundaries for the
regions of local stability and instability.

Table 4.3
Maximum Correlation Comparison for Nine Models, a , for Fourteen Lincoln Tunnel Test Runs.

55,m

      

Driver r(0,0) r(1,-1) r(1,0) r(1,1) r(1,2) r(2,-1) r(2,0) r(2,1) r(2,2)

1 0.686 0.408 0.459 0.693 0.721 0.310 0.693 0.584 0.690

2 0.878 0.770 0.843 0.847 0.746 0.719 0.847 0.827 0.766

3 0.770 0.757 0.778 0.786 0.784 0.726 0.786 0.784 0.797

4 0.793 0.730 0.748 0.803 0.801 0.685 0.801 0.786 0.808

5 0.831 0.826 0.862 0.727 0.577 0.805 0.728 0.784 0.624

6 0.720 0.665 0.709 0.721 0.709 0.660 0.720 0.713 0.712

7 0.640 0.470 0.678 0.742 0.691 0.455 0.745 0.774 0.718

8 0.865 0.845 0.881 0.899 0.862 0.818 0.890 0.903 0.907

9 0.728 0.642 0.734 0.773 0.752 0.641 0.773 0.769 0.759

10 0.898 0.890 0.898 0.893 0.866 0.881 0.892 0.778 0.865

11 0.890 0.952 0.966 0.921 0.854 0.883 0.921 0.971 0.940

12 0.846 0.823 0.835 0.835 0.823 0.793 0.835 0.821 0.821

13 0.909 0.906 0.923 0.935 0.927 0.860 0.935 0.928 0.936

14 0.761 0.790 0.790 0.771 0.731 0.737 0.772 0.783 0.775



a0,0 

a1,0
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Note: For bus following experiments - Some drivers are represented by more than one test.  The circles are test runs by drivers
who also participated in the ten bus platoons experiments.  The solid curve divides the graph into regions of asymptotic stability
and instability.  The dashed lines are boundaries for the regions of local stability and instability.

Figure 4.19
Sensitivity Coefficient, a ,Versus the Time Lag, T (Rothery et al. 1964).0,0 

The results of a limited amount of data taken in the rain suggest
that drivers operate even more stably when confronted with wet
road conditions.  These results suggest that buses form a highly
stable stream of traffic. 

The time-independent analysis for the reciprocal-spacing model
and the speed-reciprocal-spacing-squared model uses the time
dependent sensitivity coefficient result, a  , the average speed,0,0

<U> , and the average spacing, <S>, for eachof the car In Figure 4.21, the sensitivity coefficient versus the ratio of the
following test cases in order to form estimates of  a  and  a ,1,0   2,1

i.e. by fitting

and

respectively (Rothery et al. 1964).

Figures 4.20 and 4.21 graph the values of a  for all test runs0,0

versus <S>  and <U> <S> , respectively.  In Figure 4.20, the-1   -2

sensitivity coefficient versus the reciprocal of the average
spacing for each bus following experiment, and the "least-
squares" straight line are shown.  The slope of this regression is
an estimate of the reciprocal spacing sensitivity coefficient.  The
solid dots and circles are points for two different test runs.

average speed to the square of the average spacing for each bus
following experiment and the "least-square" straight line are
shown.  The slope of this regression is an estimate of the speed-
reciprocal spacing squared sensitivity coefficient.  The solid dots
and circles are data points for two different test runs.  The slope
of the straight line in each of these figures give an estimate of
their  respective sensitivity coefficient for the sample population.
For the reciprocal spacing model the results indicate an estimate
for a  = 52.8 ± .05 m/sec.  (58 ± 1.61 km/h) and for the speed-1,0

reciprocal spacing squared model a  = 54.3 ± 1.86 m.  The2,1

errors are one standard deviation.
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Note: The sensitivity coefficient versus the reciprocal of the average spacing for each bus following experiment.  The least squares
straight line is shown.  The slope of this regression is an estimate of the reciprocal spacing sensitivity coefficient.  The solid dots and
circles are data points for two different test runs.

Figure 4.20
Sensitivity Coefficient Versus the Reciprocal of the Average Spacing (Rothery et al. 1964).

Note: The sensitivity coefficient versus the ratio of the average speed to the square of the average spacing for each bus following
experiment.  The least squares straight line is shown.  The slope of this regression is an estimate of the speed-reciprocal spacing
squared sensitivity coefficient.  The solid dots and circles are data points for two different test runs.

Figure 4.21
Sensitivity Coefficient Versus the Ratio of the Average Speed (Rothery et al. 1964).
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Three Car Experiments.  These experiments were carried out in
an effort to determine, if possible, the degree to which a driver
is influenced by the vehicle two ahead, i.e., next nearest
interactions (Herman and Rothery 1965).  The data collected in
these experiments are fitted to the car following model:

This equation is rewritten in the following form:

where obtained for each of the drivers for �T, exceeded the asymptotic

A linear regression analysis is then conducted for specific values contain such a term.  This is not surprising, given the task of
of the parameter 
.  For the case 
 = 0 there is nearest neighbor
coupling only and for 
 >> 1 there is next nearest 

neighbor coupling only.  Using eight specific values of 
 (0,
0.25, 0.50, 1, 5, 10, 100, and �) and a  mean response time of
1.6 sec, a maximum correlation was obtained when 
 = 0.
However, if response times are allowed to vary, modest
improvements can be achieved in the correlations. 

While next nearest neighbor couplings cannot be ruled out
entirely from this study, the results indicate that there are no
significant changes in the parameters or the correlations when where the data has been quantitized at fixed increments of 
t,
following two vehicles and that the stimulus provided by the
nearest neighbor vehicle, i.e., the 'lead' vehicle, is the most
significant.  Models incorporating next nearest neighbor
interactions have also been used in simulation models (Fox and
Lehman 1967).  The influence of including such interactions in
simulations are discussed in detail by those authors.

Miscellaneous Car Following Experiments. A brief discussion
of the results of three additional vehicle following experiments
are included here for completeness.

The experiments of Kometani and Sasaki (1958) were car
following experiments where the lead vehicle's task was closely
approximated by: "accelerate at a constant rate from a speed u to
a speed u' and then decelerate at a constant rate from the speed
u' to a speed u."  This type of task is essentially 'closed' since the

external situation remains constant.  The task does not change
appreciably from cycle to cycle.  Accordingly, response times
can be reduced and even canceled because of the cyclic nature
of the task.  

By the driver recognizing the periodic nature of the task or that
the motion is sustained over a period of time (� 13 sec for the
acceleration phase and � 3 sec for the deceleration phase) the
driver obtains what is to him/her advanced information.  
Accordingly, the analysis of these experiments resulted in short
response times � 0.73 sec for low speed (20-40 km/h.) tests and
� 0.54 sec for high speed (40-80 km/h.) tests.  The results also
produced significantly large gain factors.  All of the values

stability limit.  Significantly better fits of the data can be made
using a model which includes the acceleration of the lead vehicle
(See Equation 4.58) relative to the linear model which does not

following the lead vehicle's motion as described above.

A partial set of the experiments conducted by Forbes et al.
(1958) were examined by Helly (1959), who fitted test runs to
the linear vehicle model, Equation 4.41, by varying � and T to
minimize the quantity:

N
t is the test run duration,  (j.
t) is the experimentallyExp.

measured values for the speed of the following vehicle at time
j
t, and (j.
t)  is the theoretical estimate for the speed ofTheor..

the following vehicle as determined from the experimentally
measured values of the acceleration of the following vehicle and
the speed of the lead vehicle using the linear model.  These
results are summarized in Table 4.4.

Ohio State Simulation Studies.  From a series of experiments
conducted on the Ohio State simulator, a relatively simple car
following model has been proposed for steady-state car
following (Barbosa 1961).  The model is based on the concept
of driver thresholds and can be most easily described by means
of a 'typical' recording of relative speed versus spacing as
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Table 4.4 Results from Car Following Experiments  large or the spacing becoming too small.  At point "A," after a

 Driver # T a r00 max

  1 1.0 0.7 0.86

  2 0.5 1.3 0.96

  3 0.6 0.8 0.91

  4 0.5 1.0 0.87

  5 0.7 1.1 0.96

  6 0.5 1.0 0.86

shown in Figure 4.22.  At point "1," it is postulated that the
driver becomes aware that he is moving at a higher speed than
the lead vehicle and makes the decision to decelerate in order to
avoid having either the negative relative speed becoming too

time lag, the driver initiates this deceleration and reduces the
relative speed to zero.  Since drivers have a threshold level
below which relative speed cannot be estimated with accuracy,
the driver continues to decelerate until he becomes aware of a
positive relative speed because it either exceeds the threshold at
this spacing or because the change in spacing has exceeded its
threshold level.  At point "2," the driver makes the decision to
accelerate in order not to drift away from the lead vehicle.  This
decision is executed at point "B" until point "3" is reach and the
cycle is more or less repeated.  It was found that the arcs,  e.g.,
AB, BC, etc. are "approximately parabolic" implying that
accelerations can be considered roughly to be constant.  These
accelerations have been studied in detail in order to obtain
estimates of relative speed thresholds and how they vary with
respect to inter-vehicle spacing and observation times (Todosiev
1963).  The results are summarized in Figure 4.23.  This driving
task, following a lead vehicle traveling at constant speed, was
also studied using automobiles in a driving situation so that the
pertinent data could be collected in a closer-to-reality situation
and then analyzed (Rothery 1968).  

Figure 4.22
Relative Speed Versus Spacing (Rothery 1968).
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Figure 4.23
Relative Speed Thresholds Versus Inter-Vehicle Spacing for

Various Values of the Observation Time. (Rothery 1968).

The interesting element in these latter results is that the character speed stimulus is positive or negative.  This effect can be taken
of the motion as exhibited in Figure 4.22 is much the same. into account by rewriting our basic model as:
However, the range of relative speeds at a given spacing that
were recorded are much lower than those measured on the
simulator.  Of course the perceptual worlds in these two tests are
considerably different. The three dimensional aspects of the test
track experiment alone might provide sufficient additional cues where �  = �  or �  depending on whether the  relative speed is
to limit the subject variables in contrast to the two dimensional greater or less than zero.
CRT screen presented to the 'driver' in the simulator.  In any
case, thresholds estimated in driving appear to be less than those A reexamination of about forty vehicle following tests that were
measured via simulation. carried out on test tracks and in vehicular tunnels indicates,

Asymmetry Car Following Studies.  One car following
experiment was studied segment by segment using a model
where the stimulus included terms proportional to deviations
from the mean inter-vehicle spacing, deviations from the mean
speed of the lead vehicle and deviations from the mean speed of
the following car (Hankin and Rockwell 1967).  An interesting
result of the analysis of this model is that it implied an
asymmetry in the response depending on whether the relative

i  +  -

without exception, that such an asymmetry exists (Herman and
Rothery 1965).  The average value of �  is �10 percent greater-

than � .  The reason for this can partly be attributed to the fact+

that vehicles have considerably different capacities to accelerate
and decelerate.  Further, the degree of response is likely to be
different for the situations where vehicles are separating
compared to those where the spacing is decreasing.  This effect
creates a special difficulty with car following models as is
discussed in the literature (Newell 1962; Newell 1965).  One of
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the principal difficulties is that in a cyclic change in the lead The associated units for these estimates are ft/sec, ft /sec, and
vehicle's speed - accelerating up to a higher speed and then miles/car, respectively.  As illustrated in this table, excellent
returning to the initial speed, the asymmetry in acceleration and agreement is obtained with the reciprocal spacing model.  How
deceleration of the following car prevents return to the original well these models fit the macroscopic data is shown in Figure
spacing.  With n such cycles, the spacing continues to increase
thereby creating a drifting apart of the vehicles.  A relaxation
process needs to be added to the models that allows for this
asymmetry and also allows for the return to the correct spacing.

4.4.2  Macroscopic Observations:
  Single Lane Traffic

Several data collections on single lane traffic have been carried
out with the specific purpose of generating a large sample from
which accurate estimates of the macroscopic flow characteristics
could be obtained.  With such a data base, direct comparisons
can be made with microscopic, car following estimates -
particularly when the car following results are obtained on the
same facility as the macroscopic data is collected.  One of these
data collections was carried out in the Holland Tunnel (Edie et
al. 1963).  The resulting macroscopic flow data for this 24,000
vehicle sample is shown in Table 4.5.

The data of Table 4.5 is also shown in graphical form, Figures
4.24 and 4.25 where speed versus concentration and flow versus
concentration are shown, respectively.  In Figure 4.24, speed
versus vehicle concentration for data collected in the Holland
Tunnel is shown where each data point represents a speed class
of vehicles moving with the plotted speed ± 1.61 m/sec.  In
Figure 4.25, flow versus vehicle concentration is shown; the
solid points are the flow values derived from the speed classes
assuming steady-state conditions.  (See Table 4.5 and Figure
4.24.)  Also included in Figure 4.25 are one-minute average flow
values shown as encircled points.  (See Edie et al. 1963).  Using
this macroscopic data set, estimates for three sensitivity
coefficients are estimated for the particular car following models
that appear to be of significance.  These are: a , a , and a .1,0   2,1     2,0

These are sometimes referred to as the Reciprocal Spacing
Model, Edie's Model, and Greenshields' Model, respectively.
The numerical values obtained are shown and compared with the
microscopic estimates from car following experiments for these
same parameters.  

2

4.26, where the speed versus vehicle concentration data is
graphed together with the curves corresponding to the steady-
state speed-concentration relations for the various indicated
models.  The data appears in Figure 4.24 and 4.25. 

The curves are least square estimates.  All three models provide
a good estimate of the characteristic speed (i.e., the speed at
optimum flow, namely 19, 24, and 23 mi/h for the reciprocal
spacing,  reciprocal spacing squared, and speed reciprocal
spacing squared models, respectively).

Edie's original motivation for suggesting the reciprocal spacing
speed model was to attempt to describe low concentration, non-
congested traffic.   The key parameter in this model is the "mean
free speed", i.e., the vehicular stream speed as the concentration
goes to zero.  The least squares estimate from the macroscopic
data is 26.85 meters/second.

Edie also compared this model with the macroscopic data in the
concentration range from zero to 56 vehicles/kilometer; the
reciprocal spacing model was used for higher concentrations
(Edie 1961).  Of course, the two model fit is better than any one
model fitted over the entire range, but marginally (Rothery
1968).  Even though the improvement is marginal there is an
apparent discontinuity in the derivative of the speed-
concentration curve.  This discontinuity is different than that
which had previously been discussed in the literature.  It had
been suggested that there was an apparent break in the flow
concentration curve near maximum flow where the flow drops
suddenly (Edie and Foote 1958; 1960; 1961).  That type of
discontinuity suggests that the u-k curve is discontinuous.

However, the data shown in the above figures suggest that the
curve is continuous and its derivative is not.  If there is a
discontinuity in the flow concentration relation near optimum
flow it is considerably smaller for the Holland Tunnel than has
been suggested for the Lincoln Tunnel.  Nonetheless, the
apparent discontinuity suggests that car following may be
bimodal in character.



�� &$5 )2//2:,1*02'(/6

� � ��

Table 4.5   Macroscopic Flow Data

Speed Average Spacing Concentration Number of
(m/sec) (m) (veh/km) Vehicles

2.1 12.3 80.1 22

2.7 12.9 76.5 58

3.3 14.6 67.6 98

3.9 15.3 64.3 125

4.5 17.1 57.6 196

5.1 17.8 55.2 293

5.7 18.8 52.6 436

6.3 19.7 50 656

6.9 20.5 48 865

7.5 22.5 43.8 1062

8.1 23.4 42 1267

8.7 25.4 38.8 1328

9.3 26.6 37 1273

9.9 27.7 35.5 1169

10.5 30 32.8 1096

11.1 32.2 30.6 1248

11.7 33.7 29.3 1280

12.3 33.8 26.8 1162

12.9` 43.2 22.8 1087

13.5 43 22.9 1252

14.1 47.4 20.8 1178

14.7 54.5 18.1 1218

15.3 56.2 17.5 1187

15.9 60.5 16.3 1135

16.5 71.5 13.8 837

17.1 75.1 13.1 569

17.7 84.7 11.6 478

18.3 77.3 12.7 291

18.9 88.4 11.1 231

19.5 100.4 9.8 169

20.1 102.7 9.6 55

20.7 120.5 8.1 56
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Note: Each data point represents a speed class of vehicles moving with the plotted speed ± 1 ft/sec (See Table 4.4).

Figure 4.24
Speed Versus Vehicle Concentration (Edie et al. 1963). 

Note: The solid points are the flow values derived from the speed classes assuming steady-state condition.  Also included in
Figure 4.25 are one minute average flow values shown as encircled points.

Figure 4.25
Flow Versus Vehicle Concentration (Edie et al. 1963). 
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Figure 4.26
Speed Versus Vehicle Concentration (Rothery 1968).

Table 4.6 flow variables without resorting to using two different
Parameter Comparison
(Holland Tunnel Data)

Parameters Estimates Estimates
Microscopic Macroscopic

a 26.8 27.81,0

a 0.57 0.122, 0

a (123) (54)2,1
-1 -1

A totally different approach to modeling traffic flow variables
which incorporates such discontinuities can be found in the
literature.  Navin (1986) and Hall (1987) have suggested that
catastrophe theory (Thom 1975; Zeeman 1977) can be used as
a vehicle for representing traffic relationships.  Specifically,
Navin followed the two regime approach proposed by Edie and
cited above and first suggested that traffic relations can be
represented using the cusp catastrophe.  A serious attempt to
apply such an approach to actual traffic data in order to represent

expressions or two different sets of parameters to one expression
has been made by Hall (1987).  More recently, Acha-Daza and
Hall (1994) have reported an analysis of freeway data using
catastrophe theory which indicates that such an approach can
effectively be applied to traffic flow.  Macroscopic data has also
been reported on single lane bus flow.  Here platoons of ten
buses were studied (Rothery et al. 1964).

Platoons of buses were used to quantify the steady-state stream
properties and stability characteristics of single lane bus flow. 
Ideally, long chains of buses should be used in order to obtain
the bulk properties of the traffic stream and minimize the end
effects or eliminate this boundary effect by having the lead
vehicle follow the last positioned vehicle in the platoon using a
circular roadway.  These latter type of experiments have been
carried out at the Road Research Laboratory in England
(Wardrop 1965; Franklin 1967).

In the platoon experiments, flow rates, vehicle concentration,
and speed data were obtained.  The average values for the speed
and concentration data for the ten bus platoon are shown in
Figure 4.28 together with the numerical value for the parameter
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Figure 4.27
Flow Versus Concentration for the Lincoln and Holland Tunnels.

Figure 4.28
Average Speed Versus Concentration 

for the Ten-Bus Platoon Steady-State Test Runs (Rothery 1968).
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a  = 53 km/h which is to be compared to that obtained from the1,0

two bus following experiments discussed earlier namely, 58
km/h.  Given these results, it is estimated that a single lane of
standard size city buses is stable and has the capacity of over
65,000 seated passengers/hour.  An independent check of this
result has been reported (Hodgkins 1963).  Headway times and

speed of clusters of three or more buses on seven different
highways distributed across the United States were measured
and concluded that a maximum flow for buses would be
approximately 1300 buses/hour and that this would occur at
about 56 km/h.

4.5  Automated Car Following

All of the discussion in this chapter has been focused on manual Mechanical Laboratory (Oshima et al. 1965), the Transportation
car following, on what drivers do in following one or more other Road Research Laboratory (Giles and Martin 1961; Cardew
vehicles on a single lane of roadway.  Paralleling these studies, 1970), Ford Motor Corporation (Cro and Parker 1970) and the
research has also focused on developing controllers that would Japanese Automobile Research Institute (Ito 1973).  During the
automatically mimic this task with specific target objectives in past several decades three principal research studies in this arena
mind. stand out: a systems study of automated highway systems

At the 1939 World's Fair, General Motors presented program on numerous aspects of automated highways conducted
conceptually such a vision of automated highways where at The Ohio State University from 1964-1980, and the Program
vehicles were controlled both longitudinally (car following) and on Advanced Technology for the Highway (PATH) at the
laterally thereby freeing drivers to take on more leisurely University of California, Berkeley from about 1976 to the
activities as they moved at freeway speeds to their destinations. present.  Three overviews and detailed references to milestones
In the intervening years considerable effort has been extended of these programs can be found in the literature: Bender (1990),
towards the realization of this transportation concept.  One prime Fenton and Mayhan (1990), and Shladover et al. (1990),
motivation for such systems is that they are envisioned to provide respectively.
more efficient utilization of facilities by increasing roadway
capacity particularly in areas where constructing additional The car following elements in these studies are focused on
roadway lanes is undesirable and or impractical, and in addition, developing controllers that would replace driver behavior, carry
might improve safety levels.  The concept of automated out the car following task and would satisfy one or more
highways is one where vehicles would operate on both performance and/or safety criteria.  Since these studies have
conventional roads under manual control and on specially essentially been theoretical, they have by necessity required the
instrumented guideways under automatic control.  Here we are difficult task of modeling vehicle dynamics.  Given a controller
interested in automatic control of the car following task.  Early for the driver element and a realistic model representation of
research in this arena was conducted on both a theoretical and vehicle dynamics a host of design strategies and issues have been
experimental basis and evaluated at General Motors Corporation addressed regarding inter-vehicular spacing control, platoon
(Gardels 1960; Morrison 1961; Flory et al. 1962), Ohio State configurations, communication schemes, measurement and
University   (Fenton  1968;  Bender  and  Fenton  1969;  Benton timing requirements, protocols, etc.  Experimental verifications
et  al.  1971;  Bender  and  Fenton  1970),  Japan Governmental of these elements are underway at the present time by PATH.

conducted at General Motors from 1971-1981, a long-range
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4.6  Summary and Conclusions

Historically, the subject of car following has evolved over the this chapter has addressed in order.  First, it provides a
past forty years from conceptual ideas to mathematical model mathematical model of a relative common driving task and
descriptions, analysis, model refinements resulting from provides a scientific foundation for understanding this aspect of
empirical testing and evaluation and finally extensions into the driving task; it provides a means for analysis of local and
advanced automatic vehicular control systems.  These asymptotic stability in a line of vehicles which carry implications
developments have been overlapping and interactive.  There with regard to safety and traffic disruptions and other dynamical
have been ebbs and flows in both the degree of activity and characteristics of vehicular traffic flow; it provides a steady state
progress made by numerous researchers that have been involved description of single lane traffic flow with associated road
in the contributions made to date. capacity estimates; it provides a stepping stone for extension into

The overall importance of the development of the subject of car will undoubtedly continue to provide stimulus and
following can be viewed from five vantage points, four of which encouragement to scientists working in related areas of traffic

advance automatic vehicle control systems; and finally, it has and

theory. 
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