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APPROXIMATE CONVERSIONS TO SI UNITS

APPROXIMATE CONVERSIONS FROM S| UNITS

Symbol When You Know Muitiply By To Find
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When You Know Multiply By To Find
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LENGTH

254 millimeters
0.305 meters
0914 meters
1.61 kilometers

AREA

square inches 645.2 square millimeters
square feet 0.093 square meters

yd square yards 0.836 square meters

ac acres 0.405 hectares

mi? square miles 2.59 square kilometers

VOLUME

floz fluid ounces 29.57 milliliters
gal gallons 3.785 liters
ftt
yd

cubic feet 0.028 cubic meters
cubic yards 0.765 cubic meters

NOTE: Volumes greatsr than 1000 | shall be shown in m?.
MASS

oz ounces 28.35 grams
Ib pounds -0.454 kilograms
T short tons (2000 Ib) 0.907 megagrams
(of "metric ton")
TEMPERATURE (exact)

Fahrenheit 5(F-32)/9 Celcius
temperature or (F-32)/1.8 temperature

ILLUMINATION

foot-candles 10.76 lux
foot-Lamberts 3.426 candela/m?

FORCE and PRESSURE or STRESS

poundforce 445 newtons
poundforce per 6.89 kilopascals
square inch

* Sl is the symbol for the International System of Units. Appropriate
rounding should be made to comply with Section 4 of ASTM E380.

LENGTH

millimeters 0.039
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square meters 10.764 square feet
square meters 1.195 square yards
hectares 247 acres

square kilometers 0.386 square miles
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milliliters 0.034 fluid ounces
liters 0.264 gallons
cubic meters 35.71 cubic feet
cubic meters 1.307 cubic yards
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(or "metric ton")
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temperature temperature
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kilopascals 0.145 poundforce per
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PROJECT SUMMARY
Background and Objectives

This final report documents the findings of a four and one-half year study of
“Microdamage Healing in Asphalt and Asphalt Concrete.” The study is identified as Task K in
a larger overall study under the direction of Western Research Institute entitled “Fundamental
Properties of Asphalts and Modified Asphalts.” The study was sponsored by the Federal
Highway Administration (FHWA) under contract number DTFH61-92-C-00170. Work in Task
K was a joint effort between the Texas Transportation Institute (TTI) of Texas A&M University
and the Department of Civil Engineering at North Carolina State University (NCSU).

The final report is divided, for reasons of readability and ease of documentation, into four
volumes: (1) Microdamage Healing - Project Summary Report, (2) Evidence of Microdamage
Healing, (3) Micromechanics Fatigue and Healing Model, and (4) Viscoelastic Continuum
Damage Fatigue Model.

There were five primary study objectives:

1. Demonstrate that microdamage healing occurs and that it can be measured in the
laboratory and in the field.

2. Confirm that the same fracture properties that control propagation of visible cracks
control the propagation of microcracks, and determine the effects of microdamage
healing on these fracture properties and basic fracture parameters.

3. Identify the asphalt constituents that influence microdamage and microdamage
healing.

4. Establish appropriate correlations between microdamage and microdamage healing
in the laboratory and in the field.

5. Predict the effect of microdamage healing on pavement performance and develop
the appropriate constitutive damage models that account for the effects of
microdamage healing on the performance of asphalt concrete pavement layers.

By satisfying the objectives of this research, the FHWA will be able to:
1. Establish the validity and significance of microdamage healing in flexible
pavement design and analysis.
2. Identify how microdamage healing can be utilized in pavement design and analysis.
3. Maximize pavement performance life by selecting asphalt binders that match the
level of microdamage healing to the level of traffic.

Volume 1: Microdamage Healing - Project Summary Report

Volume 1 is a summary report that chronicles the research highlights of the entire study.




Volume 1 describes the success of the project in addressing the project objectives as summarized
in the following paragraphs. ‘

The initial research objective was to demonstrate that healing occurs and can be measured
both in the laboratory and in the field. Healing was verified on laboratory test samples, which
demonstrated that dissipated pseudo-strain energy (DPSE) with each cycle of loading, which
steadily decreased during cyclic, controlled-strain loading, was recovered after rest periods. The
level and rate of the recovered DPSE varied in a logical manner corresponding to changes in the
duration of the rest period and the temperature during the rest period. A parameter called the
Healing Index (HI) was developed to quantify the magnitude of healing. Furthermore, a
Micromechanics Fatigue and Healing Model (MFHM) was developed in this study based on the
basic laws of fracture and microcrack growth. This model predicts the size distribution of
microcracks and the growth of the microcracks as the fatigue process continues. The model,
which is based on a relationship between stiffness loss during the fatigue process (due to
microcrack damage) and the rate of change in DPSE, reveals a reduced average length of
microcracks in the sample following rest periods. The MFHM model can be used to accurately
calculate (by reverse calculation techniques) pertinent material properties and the rate of change in
DPSE during the fatigue and healing process at temperatures below 25°C. However, the back-
calculated pertinent material properties and the rate of change in DPSE cannot be accurately
predicted using the MFHM at temperatures above about 25°C. This is because below 25°C, the
change in damage during cyclic loading is almost all due to microcrack growth and healing.
However, at the higher temperatures, plastic deformation occurs to a considerable extent, and
plastic damage is not accounted for by the MFHM.

Convincing evidence of healing based on field data further verifies the occurrence of and
ability to measure microdamage and healing. The stiffness of damaged roadways was found to
recover or increase after rest periods where the stiffness was measured using in situ surface wave
techniques. Experiments that verify healing were performed on U.S. 70 in North Carolina, the
Minnesota Road Project (MnROAD) project, and the Accelerated Loading Facility in McLean,
Virginia.

The second research objective, using the MFHM, which is based on fracture mechanics
principles, confirm that the same fracture properties that control the propagation of visible cracks
also control the propagation of microcracks and determine the effects of microdamage healing on
the basic fracture properties and the fatigue life.

The third objective was to identify the asphalt constituents that influence microdamage and
microdamage healing. Five asphalts ranging widely in aromatic, amphoteric, and wax contents
were considered, and asphalts with low amphoteric and high aromatic contents were found to be
better healers. However, the most important relationship between binder properties and healing
was based on surface energy, which was shown to be fundamentally related to fracture and
healing in a landmark study by Richard Schapery. More specifically, two components of surface
energy (the polar and the non-polar component) were found to explain experimental data on the
rate of early healing and the development of long-term healing.

2




The fourth objective was to establish appropriate correlations between microdamage and
microdamage healing in the laboratory and in the field. This was accomplished as evidence verifies
that a very significant level of recovery or healing occurs in the field following rest periods, and
this level of recovery is in agreement with the magnitude of healing measured in the laboratory.

Finally, the project sought to predict the effect of microdamage healing on pavement
performance and to develop an appropriate damage model. Two complementary approaches to
the accomplishment of this objective were developed in this research. One was the development
of the viscoelastic continuum damage mechanics model (CDM) and the second was the
micromechanics fatigue and healing model (MFHM). The CDM can be used to assess fatigue life
from either controlled-strain or controlled-stress fatigue experiments and the direct effects of rest
periods (healing) on damage. Whereas the CDM offers an assessment of generic damage, the
MFHM offers considerable insight into how material properties of the mixture affect fracture rate,
healing rate, and the net rate of crack growth or fatigue, which is a balance between fracture rate
and healing rate.

Volume 2: Evidence of Microdamage Healing

Volume 2 documents laboratory and field testing that provides the evidence that
microdamage healing is real and measurable and that it has a significant impact on pavement
performance. ' ’

Part of the laboratory experiments to evaluate the impact of rest periods were performed at
North Carolina State University (NCSU). In these experiments, fatigue damage was induced
through flexural beam experiments. Damage was recorded as the flexural stiffness of the beam
became smaller during the flexural fatigue experiment and as the dynamic modulus of elasticity (as
measured from impact resonance) became smaller. The experiment included two very different
asphalt binders: AAD and AAM. The experiment clearly demonstrated that the rest periods
introduced after fatigue damage allowed significant recovery in the flexural and dynamic modulus.
The recovery was attributed to the healing of microcracks within the sample. The time of the rest
period and the temperature of the sample during the rest period were found to significantly affect
the degree of healing. The healing potentials of AAD and AAM asphalt cements were evaluated
using four different indicators. Each indicator showed AAM to be a significantly better healer than
AAD.

A separate series of laboratory testing was performed at Texas A&M University’s Texas
Transportation Institute (TTI). These tests consisted of controlled-strain haversine loading direct
tensile tests and controlled-strain trapezoidal loading direct tensile tests. The change and rate of
change in DPSE were recorded throughout the test and after rest periods introduced during the
fatigue tests. The recovered DPSE after the rest period normalized by the DPSE before the rest
period defined a Healing Index (HI) term used to quantify healing. Although healing was found to
be dependent on the temperature of the mixture during the rest period and the length of the rest




period, it was also found to be highly dependent on the type of asphalt cement. Asphalt AAM was
found to provide much better healing properties than asphalt AAD, which is in agreement with the
work of NCSU where significantly different testing protocols were used.

A discussion is presented in Volume 2 that explains the importance of transforming the
dissipated energy into pseudo-dissipated energy in order to accurately evaluate the relative ability
of the various mixtures to heal. The transformation to pseudo-strain energy can be tedious and
painfully slow. However, a linear transformation protocol is presented that is acceptably accurate
and efficient. This protocol was used in this research to calculate pseudo-dissipated energies for
the mixtures compared.

The TTI laboratory work demonstrated that several factors may influence the measure of
microdamage healing apart from crack healing: molecular structuring or steric hardening,
temperature confoundment, and stress relaxation during loading and rest periods. Each factor is
discussed with respect to its role in influencing microdamage and microdamage healing. The
conclusions are that: 1) molecular structuring is not of significance or importance for the rest
periods and test protocols used in this study; 2) temperature increase upon loading or dissipation
during rest periods was minimal in these experiments and had an insignificant impact on measured
properties due to the nature of the test protocol, number of loading cycles used, and length of rest
periods; and 3) stress relaxation is accounted for in the determination of the pseudo-strain energy
data as they relate to microdamage healing.

The influence of several factors as they affect microdamage healing (the healing index) are
discussed. These include the effects of low density polyethylene (LDPE) as an asphalt additive,
the effects of age-hardening (including the effects of hydrated lime as an inhibitor of hardening),
the effect of five different binders (exhibiting very different compositional properties), and the
effect of different mixture types (dense graded mixtures versus stone mastic type mixtures).

The most notable finding presented in this volume is the difference in healing indices among
the five virgin binders evaluated. A strong relationship between surface energy of the binder and
the magnitude of healing and the rate of realization of maximum healing is presented. This
relationship agrees with the fundamental (fracture mechanics-based) explanation of fatigue
presented in Volume 3. In this fundamental relationship, the fatigue process is presented as a
balance between the fracture during loading and healing or recovery during periods of rest.

Volume 2 completes the evidence of microdamage healing with convincing field evidence.
Wave speed and attenuation measurements were made on in situ pavements. The stress wave test
and analysis successfully detected fatigue damage growth and microdamage healing of asphalt
pavements (at the FHWA'’s Turner-Fairbank Highway Research Center - Accelerated Loading
Facility) with different asphalt layer thicknesses and viscosities and demonstrated the importance
of microdamage healing during rest periods on pavement performance. The ability of stress wave
testing to measure microdamage and healing in the field was further evaluated at the Minnesota
Road Project (Mn/ROAD) on seven pavement test sections at the site. The results further




confirmed that the stress wave analysis can be used to monitor microdamage growth and healing
in the field. The conclusion of the field study was that, although healing of asphalt concrete
pavements in the field is more difficult to measure than in the controlled setting of a laboratory, it
can be accurately detected using stress wave analysis. The fact that healing does occur in
pavements in the field during rest periods suggests that the performance and service life of the
pavement will be increased if rest periods are introduced, or if binders are used which heal more
quickly and completely, or if binders are used that heal more quickly and completely.

Volume 3: Micromechanics Fatigue and Healing Model

Volumes 3 and 4 present two different ways of describing the fatigue cracking in mixes. In
both volumes, the sample being tested is damaged. The two approaches differ in their ways of
characterizing cracking. InVolume 3, it is assumed that all of the damage is due to cracking and
obeys the fracture and healing laws that have been established for viscoelastic materials. In this
approach the material properties that are relevant to these fracture and healing laws may be
measured independently of the sample that is tested in fatigue. The resulting model of fatigue
cracking and healing is the Micromechanics Fracture and Healing Model (MFHM). In Volume 4,
the sample is assumed to suffer a generic “damage” with which no material properties are
associated. Instead, model coefficients are found by analysis of the sample damage and healing
data. The resulting model is the continuum damage model (CDM). In Volume 3 is a description
of the test that were run and interpreted using the MFHM at 4°C, 25°C, and 40°C. At the lower
temperatures (4°C and 25°C), the MFHM model was used to calculate the cohesive fracture and
healing surface energies, which were measured independently using a Wilhemy Plate apparatus.
The calculated and measured values matched well within reasonable experimental error.
However, at 40°C, the calculated surface energies did not match the measured values, indicating
that a mechanism other than fracture and healing was operating at the higher temperature. The
most likely damage mechanism to operate at the higher temperature is plastic flow. This suggests
that a continuum damage model (CDM) at the higher temperatures will probably be of a different
form with different sets of model coefficients than what was found to fit the fracture and healing
damage mechanism at the lower temperatures as discussed in Volume 4. The most likely dividing
line between the fracture and healing mechanism and the plastic flow mechanism is the stress free
temperature of the asphalt concrete mixture.

Three events occur simultaneously in asphalt mixtures under strain-controlled fatigue loading.
These are relaxation, fracture, and healing. Relaxation of stress is a direct result of asphalt
molecular structure. Fracture can be regarded as the growth of microcracks or macrocracks
during loading, and healing is the recovery of the asphalt structure during rest periods. Healing is
at least partly due to the recovery of bonding strength at the closure of fracture faces. The
relaxation and healing mechanisms extend the performance life of asphalt mixtures while fatigue
damage degrades their quality.

The theories of fracture mechanics are well established for time-independent materials, such
as metals. However, analysis methods to characterize the behavior of time-dependent viscoelastic




materials are rare. A number of approximate interrelationships between linear elastic and
viscoelastic properties have been developed; however, they are only applicable to quasi-static
problems. Finding a closed-form solution to quantify the response of viscoelastic materials under
general loading conditions is one of the objectives of a portion of the study described in this
volume. A second objective of this portion of the research was to show that the same fracture
properties that control the propagation of visible cracks control the propagation of microcracks.

It is a third objective to show that the microfracture and healing properties that can be
calculated from the measured results of tensile fatigue tests match the cohesive fracture and
healing properties of the asphalt binder that can be measured independently. It is this third
objective which demonstrates closure: The microfracture and healing theory proposed in this
report actually does predict the measured results.

An extended background review of the literature, which supports much of the development
of the models presented in this volume, is presented in the Ph.D. dissertation of Chen [1997]. This
volume presents a finite element model, which is used to calculate the fracture properties of
asphalt mixtures and to calculate damage behavior (average crack length and density of crack
distribution) during fatigue testing. The fracture properties and damage assessment is based on
dissipated pseudo-strain energy, which is recorded throughout the test. Based on the
microfracture and healing model, a fundamental relation of viscoelastic fracture was derived and
is presented in this volume. This fundamental law is used to describe the rate or speed of fracture
and the rate or speed of microfracture healing based on fundamental properties of the mixture and
its components. The law defines the fatigue process as being a balance between the rate of
fracture and the rate of healing. The fundamental relationship identifies component and global
mixture properties that affect fracture and healing. Tests to measure these material properties
show potential for development into specification tests. Among these are the surface energy tests
for binders and aggregates and mixture tensile and compressive compliance tests. The
reasonableness of the approach is demonstrated by the fact that the fundamental relationship of
viscoelastic fracture mechanics was used to calculate fracture and healing surface energies from
actual fatigue test dissipated pseudo-dissipated energy data and fundamental mixture fracture
properties were calculated from these data. The calculated mixture surface energies were within a
reasonable range of those measured separately for the binder and mixture as discussed in Volume
3.

The analytical methods presented in this volume demonstrate a reduction in average
microcrack length following rest periods and that the same fundamental fracture parameters that
influence macrocrack growth (fractures larger than about 7.5 mm) also control microcrack
growth.




Volume 4: Viscoelastic Continuum Damage Fatigue Model of Asphalt Concrete With
Microdamage Healing

A mechanistic approach to fatigue characterization of asphalt-aggregate mixtures is presented
in this volume. This approach is founded on a uniaxial viscoelastic constitutive model that
accounts for damage evolution under cyclic loading conditions. The elastic-viscoelastic
correspondence principle is applied in order to evaluate damage growth and healing in cyclic
loading separately from time-dependent characteristics of the material. The damage growth during
loading cycles and healing during rest periods are modeled using work potential theory, a
continuum damage theory based on thermodynamics of irreversible processes. Internal state
variable formulation was used in developing the analytical representation model. Tensile uniaxial
fatigue tests were performed in the controlled-strain mode with different strain amplitudes to
determine model parameters. The resulting constitutive model successfully predicts the damage
growth of asphalt concrete under monotonic loading at varying strain rates and damage growth

and recovery due to complex loading histories, in both controlled-strain and controlled-stress
modes, composed of randomly applied multi-level loading with different loading rates and varying
durations of rest.

Fatigue lives of two different mixtures were predicted with reasonable accuracy using the
constitutive model for the constant stress-strain amplitude cyclic loading histories with and
without rest periods. A standard uniaxial fatigue test protocol is proposed by s1mp11fymg the
experimental approach used in developing the constitutive model.




VOLUME SUMMARY

This volume documents the development of the micromechanics fracture and healing model
(MFHM). This model is based on the assumption that all of the damage in the test sample is due
to cracking and obeys the fracture and healing laws that have been established for viscoelastic
materials. Therefore, the material properties that are relevant to these fracture and healing laws
can be measured independently of the sample that is tested in fatigue.

The model is based on a relationship between the reduction in stiffness of a cylindrical sample
of asphalt concrete subjected to cyclic direct tensile fatigue loading and the rate of dissipated
pseudo-strain energy occurring during the cyclic loading. The relationship between stiffness
reduction in the direction of axial loading (a measure of damage) and the rate of dissipated
pseudo-strain energy is also affected by the basic Paris fracture properties and the global surface
energy of the mixture.

The MFHM is shown to apply to mixtures tested at and below a test temperature of 25° C.
This is because the relative damage in these samples is due to microcrack fracture and healing.
On the other hand, samples tested at higher temperatures are subjected to considerable plastic
damage, and crack growth theory could not adequately explain the accumulation of damage.

The MFHM is shown to accurately predict the rate of change in pseudo-strain dissipated
energy as crack damage occurs in samples tested at temperatures below 25°C. The model also
logically accounts for the effects of healing as it demonstrates a reduction in average microcrack
size following rest periods.




VOLUME 3: MECHANISTIC APPROACH TO THE
EVALUATION OF MICRODAMAGE AND MICRODAMAGE HEALING
IN ASPHALT CONCRETE MIXTURES

CHAPTER 1: INTRODUCTION

Volumes 3 and 4 present two different ways of describing the fatigue cracking in mixes. In
both volumes, the sample being tested is damaged. The two approaches differ in their ways of
characterizing cracking. In this volume, it is assumed that all of the damage is due to cracking
and obeys the fracture and healing laws that have been established for viscoelastic materials. In
this approach the materials properties that are relevant to these fracture and healing laws may be
measured independently of the sample that is tested in fatigue. The resulting model of fatigue
cracking and healing is the micromechanics fracture and healing model (MFHM). In Volume 4,
the sample is assumed to suffer a generic “damage” with which no material properties are
associated. Instead, model coefficients are found by analysis of the samples’ damage and healing
data. The resulting model is the continuum damage model (CDM). Tests were run and
interpreted using the MFHM at 4° C, 25°C and 40°C. At the lower temperatures (4°C and 25°C),
the MFHM model was used to calculate the cohesive fracture and healing surface energies which
were measured independently using a Wilhemy Plate apparatus. The calculated and measured
values matched well within reasonable experimental error. However, at 40°C, the calculated
surface energies did not match the measured values, indicating that a mechanism other than
fracture and healing was operating at the higher temperature. The most likely damage mechanism
to operate at the higher temperature is plastic flow. This suggests that a continuum damaged
model (CDM) at the higher temperatures will probably be of a different form with different sets of
model coefficients than what was found to fit the fracture and healing damage mechanism at the
lower temperatures and is discussed in Volume 4. The most likely dividing line between the
fracture and healing mechanism and the plastic flow mechanism is the stress free temperature of
the asphalt concrete mixture.

Three events occur simultaneously in asphalt mixtures under strain controlled fatigue loading.
These are relaxation, fracture, and healing. Relaxation of stress is a direct result of asphalt
molecular structure. Fracture can be regarded as the growth of microcracks or macrocracks
during loading, and healing is the recovery of the asphalt structure during rest periods. Healing is
at least partly due to the recovery of bonding strength at the closure of fracture faces. The
relaxation and healing mechanisms extend the performance life of asphalt mixtures while fatigue
damage degrades their quality. '

The theories of fracture mechanics are well established for time-independent materials, such
as metals. However, analysis methods to characterize the behavior of time-dependent viscoelastic
materials are rare. A number of approximate interrelationships between linear elastic and
viscoelastic properties have been developed; however, they are only applicable to quasi-static
problems. Finding a closed-form solution to quantify the response of viscoelastic materials under




general loading conditions is one of the objectives of a portion of the study described in this
volume. A second objective of this portion of the research was to show that the same fracture
properties that control the propagation of visible cracks control the propagation of microcracks.

It was a third objective to show that the microfracture and healing properties that can be
calculated from the measured results of tensile fatigue tests match the cohesive fracture and
healing properties of the asphalt binder that can be measured independently. It is this third
objective that demonstrates closure: The microfracture and healing theory proposed in this report
actually does predict the measured results.

An extended background review of the literature, which supports much of the development
of the models presented in this volume, is presented in the Ph.D. dissertation of Chen (1997). This
chapter presents a finite element model, which is used to calculate the fracture properties of
asphalt mixtures and to calculate damage behavior (average crack length and density of crack
distribution) during fatigue testing. The fracture properties and damage assessment is based on
dissipated pseudo-strain energy, which is recorded throughout the test. Based on the
microfracture and healing model, a fundamental relation of viscoelastic fracture was derived and
is presented in this chapter. This fundamental law is used to describe the rate or speed of fracture
and the rate or speed of microfracture healing based on fundamental properties of the mixture and
its components. The law defines the fatigue process as being a balance between the rate of
fracture and the rate of healing. The fundamental relationship identifies component and global
mixture properties that affect fracture and healing. Tests to measure these material properties
show potential for development into specification tests. Among these are the surface energy tests
for binders and aggregates and mixture tensile and compressive compliance tests. The
reasonableness of the approach is demonstrated by the fact that the fundamental relationship of
viscoelastic fracture mechanics was used to calculate fracture and healing surface energies from
actual fatigue test pseudo-dissipated energy data and fundamental mixture fracture properties
calculated from these data. The calculated mixture surface energies were within a reasonable
range of those measured separately for the binder and mixture as discussed in Volume 2.

The analytical methods presented in this volume demonstrate a reduction in average
microcrack length following rest periods and that the same fundamental fracture parameters that
influence macrocrack growth (fractures larger than about 7.5 mm) also control microcrack
growth.

The remainder of this volume is divided into the following chapters:

Chapter 2 - A description of pseudo-strain analysis in a viscoelastic body,

Chapter 3 - A discussion of how uniaxial tensile fatigue testing was used and evaluated to
achieve data for analysis of evaluation of the MFHM,

Chapter 4 - A description of the finite element model (FEM) for microcrack growth,
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Chapter 5 - A discussion of the fundamental laws governing the rates of fracture and
healing.

CHAPTER 2: PSEUDO-STRAIN ANALYSIS IN VISCOELASTIC BODY
In the quasi-static cases where separation of variables conditions prevail, the solution of

boundary value problems may be obtained by special means. By separation of variables we mean
the existence of the solution for surface and body force variables in the form:

ulx,, 1) = u/(x) u() | o
€x, , 0 = €x) u(t) @)
ox, , 1) = oyfx) F() G)

In this case the Laplace transform simply changes the time domain to the s domain leaving the
space dependence unchanged. Since this is linear, if the loading falls into groups of proportional
loading and prescribed displacements, each with a different time dependence, they can be
considered separately and superposed. The functions u(t) and F(t) are determined by:

m-1 U]
R R LR .o

at"'" ot

an-l
atn-l

+ o+ by) F(f) @)

The a's and b's define the characteristics of the material. With the initial condition that u(t)
and its first (n-1) derivatives vanish at t = 0, the function u(t) depends only on F(t) and the
properties of the material. The other characteristics of the problem do not enter into its
determination.

In this research, two particular solutions based on Alfrey's theorem (1944) are detailed
below. One is for asphalt cylinder specimens under trapezoidal strain-controlled loading and the
other is for specimens under half-cubic-sine strain-controlled loading. There is a relaxation
influence between the analytic functions u(t) and F(t). To get the basic functions for each sample,
the testing program began with a simple tension and compression relaxation loading. Stresses and
strains used in the evaluation of relaxation modulus were nominal stresses and strains; they are:

o =PlA | (5)

and
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€ = ulL ©)

where
P =  load response,
A = cross -ection area of the cylinder sample regardless of the distribution of microcrack
faces,
u = the displacement measured from the average reading of three vertical LVDTs
attached to the sample, and
L =  original height of the sample.

Pseudo Strain for Trapezoid Strain-Controlled Loading

Under the separation of variables conditions, the stress/pseudo-strain relation in the form of a
hereditary integral can be calculated without space dependence. Pseudo strain for a constant strain
rate monotonic loading case is determined from:

e C t
where C = de/dt.

Following a superposition method developed by Lytton (1994), the trapezoidal strain loading
falls into four groups of prescribed strains as shown in Figure 1. The pattern begins to repeat itself
with each load cycle. During the first loading path of trapezoidal strain wave, the sample cannot
distinguish whether the test is monotonic loading or cyclic loading. Therefore, the pseudo strain
can be calculated from Equation (7). Durmg the flat strain period of tensile stress relaxatlon, the
superposition of the counter strain pattern gives:

C t, e
e€)=— ["E'(t)dt = €
R AT R ®
where
t, = the time of the increasing strain ramp,
E'(t) = the tensile relaxation modulus, and
E, = the reference modulus, which is an arbitrary constant.

For the first unloading ramp, the same practice yields:
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C ¢ C (t-4 -
el =— ["E'(t)dt - — *E(t) dv
) E] [ E® £ [ @ ©)
where
t, = the time when unloading begins, and
E(t) = the compressive relaxation modulus.
The pseudo strain for the compression relaxation period is:
C ¢ C (-4 - _ e
€)== ["E'(t)dt - — [* TE(t) dt = €
® ERfo ® ER'f" ® min (10)
ﬁ Actual Strain Trace
c e
€ B
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,’ 1
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¥ [\\\ \ | I \\‘
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\\ c \‘ c \\\ c

Figure 1.  Superposed Strain Pattern for Trapezoid Strain Wave.
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Pseudo Strain for General Loading Condition

When a viscoelastic medium is subjected to cyclic loading as shown in Figure 2, the strain

history can be expressed as a series of a periodic functions g,(t). With zero initial conditions

£,(0)=0, the Laplace transform of function g,(t) is:

j; Te=* g (1) dt

LA, (0] = =——rp
€
NANAN
—r— Time
l P 81 (D78 (1 T)
—
a

Figure2. A Periodic Function g,(t) for Strain-Controlled Fatigue Loading.

and the Laplace transform of g,'(t) is:

dgD)=s-4g®]
Following the work of Schapery, pseudo strain can be of the form:

e(t) = EL [ =) % dt

R

After taking the Laplace transform, Equation (12) becomes:
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I )] = 2 GLE) 10 ) (14)

R

From Figure 2, the viscoelastic body during time period [0, a] is subjected to tensile loading.
Equation (14) becomes:

g e ] = Ei QLE() 14 g ] 15)

R

To transform Equation (15) back from the s domain to the time domain, the complex Laplace
inversion technique (1976) is utilized:

€(f) = Y residues of { L[e* (?)] e® } at each of its poles (16)

During time period [a, T], the viscoelastic body is under compressive loading and the
responding relaxation modulus will be different than the one in tension. As shown in Figure 2, the
superposition method can be applied to describe the material behavior.

The pseudo-strain equation after subtracting and adding the counter-strain patterns is:

e*(r)=Ei{ [E@git-v)de- [ VE"(@)g,(t* o)+ [ E"(0)gy (" -v) e} a7
R

where g,(t*) is a new periodic function and t* =t - a as defined in Figure 3(b).

€ 1
i de/dt* gz(t#)
' >
— O\

gt
> time*
time "
(iea/ | e
@ (®)

Figure 3. Superposition Method for General Loading Condition: (a) Subtraction with Tensile
Relaxation Modulus E’, (b) Addition with Compressive Relaxation Modulus E".
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The initial condition of g,(t*) may not be zero and the Laplace transform of Equation (17) is:

sv[e’(t)l%{ SE *+g|(0)]-L(E **g;(t )] +LIE “*g/ ()] }
R

where
€°(t) is the sum of residues of L[€"(t)]e" at each of its poles.

The pseudo strain during time period [T, T+a] is:
€ 1 + e+ * ‘- *
O=——{[ E"@g -ty [ "E"(0)g)(t"~v)dv+ [ "E ()" )t
E. Jo 0 0
[ E et v [ E (g (¢ o) )
where t** =t@ =t . T.

The Laplace transform of Equation (19) becomes:

s.v[e'(t)]=—El—{c.9[E**g{] ~L[E " xg, 1+I[E “*g,1-L[E “*g/]+L[E **g,]}

R

(18)

(19)

(20)

The Laplace transform of pseudo strain for time period [T+a, 2T] is analogous to that for

time period [a, T]:

1

Lle*0]= z
R

{S[E " +g|1-L[E **g,1+L[E ~*+g;]-L[E ~+g,]+L[E **g,/]

~J[E *xg, 1 +L[E “*g,1}

Therefore, the Laplace transform can be expressed according to the time period as:
(a) for time period [iT, a +iT],i=0,1,2 ...

(+1){LIE "*g{1-L[E “*g1} +(NLIE “*gy]-L[E *+g,]} +L[E “+g}]

dle@]= I3
R

(b) for time period [a +T, (i+1)T],i=0, 1,2 ...

oy GYILIE " *g{1-S[E " *g 1} +(i+1){L[E “*g,)-L[E **g, 1} +L[E “*g]]
gle(d]=

Eq

Equations (22) and (23) are schematically illustrated in Figure 4.
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Figure 4.  Laplace Transform of Pseudo Strain.

If the tension and compression relaxation modulus happen to be the same, Equations (22) and
(23) can be reduced and the pseudo strain becomes:

E']-Lg’] - e”
Eg
Equation (24) is derived for viscoelastic bodies that are initially undisturbed. With the same

technique, problems with non-zero initial conditions are also well suited as long as Equation (22)
is modified by adding a negative value of g,(0).

€() = Y residues of { } at each of its poles (29)

CHAPTER 3: UNIAXIAL FATIGUE TESTS

Two ways to express pseudo strains are derived in the previous chapter: the time integral of
relaxation modulus and the residue sum of ¥[e“(t)]e®. To utilize these two methods, two loading
types of uniaxial fatigue tests were performed on asphalt mix cylinder specimens. They are
trapezoidal strain-controlled loading and half-cubic-sine strain-controlled loading. The loading
periods, alternated with rest periods, were applied during each fatigue test to simulate actual
conditions of a pavement system. The loading and rest periods are schematically illustrated in
Figure 5.
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Study of Trapezoid Strain Loading Tests

The specimen configuration and trapezoidal strain loading wave are plotted in Figure 6.
Three vertical LVDTs were placed to measure the loading response within the middle one third
height of sample. The fatigue test consisted of several loading periods and rest periods. Each
loading period consisted of 23 loading cycles. A rest period was incurred between two loading
periods. These rest periods were 32 minutes between loading periods 1 and 2, 16 minutes
between periods 2 and 3, 8 minutes between periods 3 and 4, 4 minutes between periods 4 and 5,
2 minutes between periods S and 6, 1 minute between periods 6 and 7, and 30 seconds between
periods 7 and 8. The testing design required the establishment and definition of three
characteristics: the loading wave form, the selection of rest period lengths, and the target
maximum and minimum strain values. Details of the testing protocol and data acquisition are
discussed in Volume 2.

The strain wave function was designed to approximate a step function, but with a sufficient
ramp for accurate documentation and characterization of the material reaction during loading and
unloading paths. This was accomplished using a hydraulic feedback system controlled by an
average circuit connected to the three LVDTSs. The wave form consisted of a 0.5-second ramp to
the maximum strain, which was held for 10 seconds. Then a 0.5-second ramp was applied down
to a slight compressive strain, which was also held for 10 seconds before the cycle was repeated.

loading periods

#1 #2 #3 #4 #5

\/ \/ \/ \/ \/
&
g » o000
§|

time
#1 #2 #3 #4
rest periods

Figure S. Schematic Illustration of Loading and Rest Periods.
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Figure 6.  Trapezoid Strain-Controlled Loading Tests: (a) Specimen Configuration, (b) Strain
Loading Wave.

Theoretically, each fatigue test could be performed at the same maximum strain level in hopes
of achieving results that could be used to compare the effects of different binders, rest periods and
temperatures. However, due to the variation in asphalt properties with temperature and data
resolution settings of the machine system, different levels of the maximum strain were applied.
The minimum strain was applied in each test to place the fracture surfaces in contact with each
other but without significant load.

Relaxation Modulus

Prior to each fatigue test, a simple tensile and compressive relaxation loading was performed.
These data serve as a valuable reference in calculating pseudo strains. Usually, the tensile and
compressive relaxation moduli for each specimen can be represented in the form of a generalized
power law:

E‘(¢) =E, +E/ t™ 25)

E()=E, +E t™ (26)

where E,’, E,*, and m" are regression constants for the tensile relaxation modulus, and E, E,
and m’ are regression constants for the compressive relaxation modulus. However, a simple way
to fit the data mix as shown in Figure 7 is to use a pure power law:
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Figure 7.  Tensile Relaxation Modulus for Sample M/DG/25 at 25°C. (The sample
identification is explained in Volume 2. M is for asphalt AAM, DG is for a dense-
graded mix, and 25 is the sample number.)

E'(®) =E t™ 27
E(@)=E t™ (28)

A linear regression analysis was performed between log[E(t)] and log(t), and the sum of squares
of error was calculated. The regression results for each specimen are shown in Table 1. These
material parameters may be applied to the fundamental relation of fracture mechanics and will be
discussed further in the next section.
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Table 1. Results of Relaxation Moduli for Tested Specimens.

Sample E,* (kPa) m' E,’(kPaL - Temp.(°C)
M/DG/19 415796 0.460 290762 | 0.572 25
M/DG/25 252467 0.541 212876 | 0.590 25
M/DG/21 I 4702 0.629 6274 | 0.460 40
D/DG/17 4205 0.618 4440 | 0.536 40
F/DG/4 u 23449 0.716 28524 | 0.604 25
_F/DG/6 79851 0.488 48685 0.555 25
B/DG/4 || 16789 0.537 18209 | 0.439 25
B/DG/3 " 49547 0.426 30503 | 0.507 25
B/DG/5 48761 0.461 30917 | 0.532 25
F/DG/2 65109 0.567 53491 | 0.606 25
F/FG/3 i 63323 0.530 42045 |0.599 25
B/DG/2 703 0.620 558 |0.520 40
M/DG/1 407439 0.433 344625 | 0.524 222
M/DG/3 382045 0.431 333855 | 0.498 222
D/DG/11 1 45562 0.553 75748 | 0.394 222
D/DG/12 " 51953 0.467 71618 | 0.365 222

Reference Modulus and Dissipated Pseudo-Strain Energy

The advantage of introducing a reference modulus E; is that the pseudo-strains can be related
to stresses through Hooke's law. If Ey is any arbitrary constant, the pseudo-strain energy stored in
the specimen during the tensile loading path can have as many values as possible. It violates the
first law of thermodynamics, which says there is a net decrease in energy when a system goes
from a non-equilibrium to equilibrium state. To adjust for those inadequacies and still demonstrate
Schapery's definition, the reference modulus E; will be proposed in the following form:

- o)
e’(t) = —E: (29)
where E; is a peculiar constant such that the maximum tensile pseudo-strain €°,,,, for each loading
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cycle is equal to the maximum tensile strain €, designed in the fatigue test. The results of
reference modulus, Ey , calculated for tested specimens are shown in Table 2.

Table 2. Results of Reference Modulus for Tested Specimens.

Sample _J=em_n (millistrain) Oy (KP2) EE gga)
M/DG/19 0.3085 469 913587
M/DG/25 0.6150 689 563321
M/DG/21 2.8417 200 18106
D/DG/17 2.8453 186 19099

FDG/4 | 1.9366 351 72631

F/DG/6 || 1.9633 598 160101
B/DG/4 || 1.9603 203 38308
B/DG/3 1.9649 358 92186
B/DG/5 1.9440 379 96150

F/DG/2 1.9550 599 152476

F/FG/3 1.9550 541 142864
B/DG/2 19.4540 204 1944
M/DG/1 0.3459 514 1565165
MDG3 | 0.3606 482 1385895
D/DG/11 || 0.3637 116 284556
D/DG/12 || 0.3385 9% 238222

Data from sample M/DG/19 from the first three loading cycles are used to illustrate the
material response under fatigue loading. Figure 8 presents the typical hysteresis loops.
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Figure 8. Stress-Strain Curves from M/DG/19 Tested at 25° C.

By applying Equations (8), (9), and (10) discussed previously, the corresponding stress/pseudo-
strain curves are plotted in Figure 9. This technique was applied to analyze each fatigue test data
set. With the proposed Ey, the tensile pseudo-strain energy has the same magnitude as the tensile
strain energy and the determination of E, for each specimen becomes clear. It will be shown in the

next section that each E, is extremely important in determining the fracture surface energy density,
T. '
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Figure 9. Stress/Pseudo-Strain Curves with Proposed E; for M/DG/19.

After shifting the beginning points of each stress/pseudo-strain curve to the origin, the stress
paths of mix M/DG/19 for the first four cycles are plotted in Figure 10. Note that this test is
performed at a low target strain level in order to make sure that most of the material damage is
through microcrack growth. When microcrack lengths increase with the loading cycle number, the
effective thickness of each mix layer decreases and the stress increases. This is similar to the
phenomenon of mastic film tests. The thinner the film thickness is, the stiffer the bitumen is
(1968).
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Figure 10.  Stress Paths of M/DG/19 for the First Four Cycles.

Figures 11 through 14 are examples of pseudo-strain energy plotted for mix M/DG/19. The
increase-drop-increase pattern of pseudo-strain energy is found in each analysis. This is believed
to be an indication of the development of macrocracks from the coalescence of microcracks
during the strain-controlled tests.
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Figure 11.  Pseudo-Strain Energy vs. Load Cycle of M/DG/19 During Load Period 1.
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Pseudo-Strain Energy vs. Load Cycle of M/DG/19 During Load Period 2.
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Figure 13. Pseudo-Strain Energy vs. Load Cycle of M/DG/19 During Load Period 3.
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The patterns of change of pseudo-dissipated energy, W, with the number of load cycles
shows a sawtooth pattern. For a number of consecutive load repetitions, the value of W rises
smoothly and then suddenly, after one load application, the value of W drops sharply downward
and then begins its slow rise again, normally on the same slope it was before the drop. This
pattern is explained in the following way.

Microcracks grow as the rate of change of dissipated pseudo-strain energy, %V

bl

grows. So the steady rise of the W-vs-N curve between the sharp drops reflects the steady
growth of microcracks. The pseudo-strain energy is expressed in units of mm-N/mm?® or similar
units, meaning that it is the pseudo-strain energy that is being dissipated per unit of volume of the
sample being tested. The sharp drops in this quantity indicate that a crack area that is not a
microcrack has suddenly opened up and some of the dissipated energy has been used to satisfy the
surface energy requirements of the newly cracked area.

The size of the crack that opens to cause a precipitous drop in dissipated pseudo-strain
energy is of macro-crack length with a diameter equal to or greater than roughly 7.5 mm. After
this explosive appearance of a single macrocrack, the growth of microcracks, which are
distributed throughout the volume of the sample, continues at steady pace. Thus, although there
are interruptions in the W-vs-N curve caused by the sudden appearance of a single “macrocrack”

or visible crack, the curve of % , the rate of change of dissipated pseudo-strain energy, is a

smooth curve that follows the form

aw .
ay BN e (30)

This integrates into the W-vs-N curve
W=e N (3D

This is a form of equation that leaves out the sharp drops of W upon the sudden formation of
a macrocrack, but is entirely consistent with the steady growth of distributed microcracks as a

function of the rate of change of dissipated pseudo-strain energy, ‘%V . When a sufficient

number of these microcracks form, they too, begin to grow and the process of “crack
propagation” begins. There is, in fact, no real distinction between the two processes of crack
initiation and crack propagation except that the propagating cracks are larger (of visible size) and
begin to use up the dissipated pseudo-strain energy at an increasing rate. An artificial distinction
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can be made between the two processes to say that crack propagation begins when the steady
growth

of % ends and an accelerating rate begins. “This measured value of % is used in

analyzing the laboratory tests that were made to determine the material properties that are related
to microcracking. This use of the measured rate of change of dissipated pseudo-strain energy is
explained subsequently on pages 38- 45 and particularly in equations (60) through (74).

Study of Half-Cubic-Sine Strain-Loading tests
A Closed-Form Solution for Pseudo Strain

The specimen configuration and half-cubic-sine strain loading wave are presented in Figure
15. The loading history is repeated with a 0.25-second half-cubic-sine wave and 0.35-second
resting period. The results of four specimens (sample ID: M/DG/1, M/DG/3, D/DG/11 and
D/DG/12) are discussed. The periodic function g,(t) can be defined as:

€., [ sin(4nf) ' 0.00sec < t < 0.25sec

3
0 0.25sec < ¢t < 0.60sec (32)

g, =

During the time period [0 sec, 0.125 sec], the Laplace transform of tensile relaxation modulus
E*(t) is:

QIE*(®)] = E, T(1-m* ) s™ ! (33)
<« > ‘ one cycle
€
4 maximum strain at €nax
/)
3LVDT b | Time
Test Temp. at 22.2°C J125s .125s 0.35 sec
@ ®)

Figure 15. Half-Cubic-Sine Loading Tests: (a) Specimen Configuration, (b) Strain-Loading
Wave.
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and the Laplace transform of pseudo strain becomes:

S[e(]= 3841!:

e TG54
Condl (17 (s2+161t’)(s2+1441t2)(1—e ~0.61n) @4

Equation (34) has four first-order poles at +4i, £12i and infinitely many other first-order poles
at (x10nn/3i) where n=1, 2, .

At the pole s = -4mi, the residual of Equation (34) is:

3 0255y m* -1, st
im 384w E; e, J(1-m*) (s+4ni)(s+se "< )s™ e o
~-ani Eg (s+4mi)(s-4mi)(s2+1447%)(1-e 0%

(33)

At the pole s = 4, the residual is:

A -0255y m*-1, st
lim 3841: _T(1-m* (s 4ﬂ1)(s+sg s™ e -0 36)

5= 4xi ER (s—41ti)(s+41ti)(sz+14411:2)(1 - "0

Similarly, the residuals are zeros for the poles at s= 127i and s = -12i, respectively.
At the pole s = 10n7/3i, the residual is [The indeterminacy is evaluated by L'Hospital's rule]:

: C 2 Snn 10n%
IOmt =
1+ e 3: 3i
3 110473 ( ) ( )

37
B! eodl1-m) e <
ER ‘ (86 472-60nin )(12961r lOOn 2n2)

and at the pole s = -10n7/3i, the residual is:

_2.38% 10 _lOnﬂ

(re ) (-0 e ¥ s

311047° E; e T(1-m") 3i (38)
B, (86.4n2-60n*n2)(1296m2-100n 21%)

—_—t

The pseudo strain is the sum of the total residuals:

[cos( 10nmt m m)+cos( 10nme _2.5nm _m x1t)]

—  10nm., 3 2 3 3 2 (39)
€ = ( )
P> 3 (86.47*-60n21?)(12967%-100n 21?)
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where q = [622087°E, "€, ['(1-m*))/Ey, and iiﬁdosi;-i:isinx—;-, x=15,9,..,41.
" For comparison, the pseudo-strain solution from Schapery's approximate inversion is:

384n’°E e T (1-m"*) (s+se 02)gm’

€@ =
Eq (s2+16m2)(s2+144n%)(1-e %)

(40)

Results and Discussion

The stress versus pseudo-strain curves obtained from three methods [the results of numerical
integration, s = 1/2t, and Equation (39) with n up to 5] for each specimen are plotted in Figures
16 through 19. Although Schapery's approximate method is very easy, its accuracy will strongly
depend on the assumption that the loading history is rather smooth. It is inadequate for half-cubic-
sine strain-controlled loading. Figures 16 through 19 also show that the sum up to n =5 will be
accurate enough to represent the pseudo-strain history. The closed-form solution has the
advantages of being able to be used in a spreadsheet calculation and of saving computer memory.

If the geometry and material properties of a cylindrical specimen are symmetric about its
middle surface, according to Equation (39), the cylinder can be viewed as infinite layers combined
in a series mode as shown in Figure 20. All layers are perfectly bonded together and interface slip
is not allowed. The concept of infinite layers in a series mode is consistent with the study of
trapezoidal strain loading tests in which the stress increases as the result of each asphalt layer
getting thinner. ‘ :

In this research, the closed-form solution for the hereditary integral is demonstrated through
pseudo strains but the idea can be applied to pseudo stresses. Following the approach developed
by Schapery, the hereditary integral can be symbolized by:

e NN |
E dff = Eq j; E(t-t,0)——dt (41)
or
{Dap=E f Dl )= f (42)

After recognizing the periodic functions for strain-controlled loading conditions (such as constant-
strain rate monotonic loading, constant-strain rate simple loading, pulse loading, and multi-level
loading) or stress-controlled loading conditions (such as creep compliance loading, trapezoid
stress wave loading, and sinusoidal stress-controlled loading), the closed-form solution can be
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modified easily by replacing the old Laplace transform of the periodic function with a new one.
Then the complex inversion method is used to determine the time-independent response. The
derivation of a closed-form solution might be cumbersome, but it can be avoided by using tests in
which the loading patterns and time steps are designed to reduce the level of complication. An
example of the results of dissipated pseudo-strain energy for the haversine strain controlled tests
are plotted in Figures 21, 22, and 23.

0.00035
0.0003 -
'g 0.00025 |
E 0.0002 %
K=
& 000015
%
3
2 0.0001 f-
a &
o ———= numerical
0.00005 =z complex intergration inversion (x=41)
= | .. - s=1/2t
0 | '
-10 190 390 590 790 990
Stress (kPa)

Figure 16. Comparison of Stress vs. Pseudo-Strain Curves for Sample M/DG/1.
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Figure 17. Comparison of Stress vs. Pseudo-Strain Curves for Sample M/DG/3.
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Figure 18. Comparison of Stress vs. Pseudo-Strain Curves for Sample D/DG/11.
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Figure 19.  Comparison of Stress vs. Pseudo-Strain Curves for Sample D/DG/12.
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Figure 20. A Cylinder Specimen in a Series Mode.
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Figure 21.  Pseudo-Strain Energy vs. Load Cycle for Sample B/DG/23 During Load Period 1.
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Figure 22. Pseudo-Strain Energy vs. Load Cycle for Sample B/DG/23 During Load Period 2
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Figure 23.  Pseudo-Strain Energy vs. Load Cycle for Sample B/DG/23 During Load Period 3.
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CHAPTER 4: THE FINITE ELEMENT MODEL FOR MICROCRACK GROWTH

Various numerical techniques, such as finite difference, finite element, and boundary integral
methods, have been applied to crack problems over the past two decades. Of these, the finite
element method (FEM) has been used extensively. The task of this section is to apply continuum
fracture mechanics (CFM) and derive a finite element formulation with which the fracture
properties of asphalt mixes can be calculated. The first section outlines the finite element
formulation for only one microcrack. By using the energy criterion and the CFM concept, a
mechanical equation to describe the damage behavior was established. The formulation was
further expanded for the cases of multiple microcracks. The Weibull distribution was then utilized
to simulate microcrack growth with load repetition. Finally, the system identification (SID)
method and fatigue data from the trapezoid strain loading tests were adapted in the microcrack
analysis.

Finite Element Formulation for One Microcrack

Many FEM programs are available to analyze plane crack problems. The MICROCRACK
code developed in this research is based on the work of Lytton et al.(1993) and the fracture
program developed by Owen and Fawkes (1980) with two major modifications, which are the
finite element matrixes for axially symmetric solids and the implementation of the finite element
formulation. Because the axially symmetric FEM have been well documented, only the microcrack
formulation is included in this section.

As shown in Figure 24(a), the finite element with microcrack length 2c is assumed to be
isotropic. The elastic properties are the same in all directions. The Young's modulus and Poisson's
ratio under stresses ¢ and T are denoted by E and v, respectively. Following the Griffith model
(1920), the total energy per unit area U, for the cracked element is given by:

_ [e® + 201 +v)1:2]I c 4aT'E
U = + 2m(= _
g 1+ 2m( bl) o 2097 c] } (43)

where G=E/2(1+v), I is the surface energy density, 2c is the microcrack length, and b and | are
the width and height of the finite element, respectively.

To calculate the total energy stored in the fictitious undamaged body, the effective stiffness is
introduced. Furthermore, the orientation of the microcrack is expected in the direction of the
principal planes. The equivalent uncracked element is modeled as an orthotropic material. It is
assumed that the modulus parallel to the orientation of the microcrack does not change with load
repetitions, but the modulus perpendicular to the microcrack is reduced. The reduced modulus is
obtained by equating the total energy associated with the cracked element to the total energy
associated with the fictitious uncracked element.
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The total energy per unit area U for the fictitious uncracked element is:
1
U-= E(o,e, + 0 + Og€g + T.Y,;) ) (44)

and €, €, €g and r,, are given by:

4 > = < > (45)

[ Yrz | LC41 Cy Cy Cy 1T
where C; is the compliance component in the cylindrical coordinate system.

The matrix [C] is determined from the following transformation equation:

[C] =[T,FICT,] (46)

vVzr

: J E JZ' z Ep
T———’» J ’ ] J r Sz r a‘
| = | 14" SN
J f J |

FV vy vy VvV vy

(@ (b)

Figure 24. The Microcrack Model: (a) Isotropic Material for Damaged State, (b) Orthotropic
Material for Fictitious Undamaged State.

38




where [T,] is the transformation matrix and [C'] is the local compliance matrix in its principal
coordinates, which is inclined at B radius with reference to the global r-z coordinate.

The [T,] and [C'] matrices are defined as:

cos’p sinp 0 2cosPsinf 1
sin? cos’p 0 -2cosPsin
oy -] B Bsing “
0 0 1 0
| -cosPsinB cosPsin 0 cos?B-sin’p |
I/Er/ —vz’r’/Ez’ 'Ve/r//Ee/ 0
“V,A/z//Er/ I/Ezl _VO’z’/EO' 0
[CA = (48)
_vr’e'/Er’ _vz’ﬁ/Ez’ l/Ee/ 0
0 0 0 1/G,,

where v; characterizes the strain in the j direction due to the stress in the i direction.
According to energy concept (Maxwell-Betti reciprocal theorem), the local compliance [C'] is
. a symmetrical matrix. To further simplify Equation (44), the stress components o, and o are

iignored. By substituting Equations (47) and (48) into Equation (45), the total energy U for the
uncracked element can be written as:

U= —;-(Cno’ + 2C,0t + C,7%) (49)

where 0 = g,, T =T, and the components C,,, C,, and C,, are defined as follows:

1. . cos*P . cos?Bsin’p
C,, = —I[sin*B-2v , cos?Bsin?p]+ +
22 E,/[ B iz Bsin®p] Ez/ G,.’z' (50)
. . 2 v - 2 .
C,, = smzl[;sm B_ L:/z/si n2Boos2f- sngcos B , sin2Bcos2p 1)
r/ I’/ ZI 2Gr/z/

(1+2v,4) 4cos’Bsin®p _ (4cos*Bsin’B-1)
E, Ez’ ‘ Gr’z’ oo

r

C,, = 4cos’sinf (52)
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If the local coordinate system is set such that r' - axis is always parallel with the orientation of the
microcrack, we can assume:

E_ , = E = original Young's modulus (53)
V,,s = U = original Poisson's ratio (54’
E,, = E'= reduced Young's modulus (55)
G,,s = G’'= reduced shear modulus (56)

The reduced Young’s modulus E' is perpendicular to the orientation of the microcrack. The
reduced shear modulus G', at a given load cycle, is related to E' through the following
relationship:

;_ E’
G = 2(1+v) G

Substituting Equations (53) through (57) into Equations (50), (51), and (52) and solving for
Cy, Cy, and C,,, Equation (51) becomes:

_ F+F,
=

U

F, |
+

2F (8)
where

F,=0? cos*B-207 sin2B cos’B + 4t cos’B sin’B
F,=2(1+v)0? cos’B sin?B + 2(1+v)ot sin2B cos2B -2t% (1+v) (4 cos’B sin’B -1)
F,=0”(sin*B-2vcos’Bsin’B)+20tsin2Bsin’B-20Tv sin2Bcos2B+4t%(1+2v)cos*Bsin’B

By equating Equations (58) and (43), the reduced modulus E' is determined as:

E'= fir hy E

4ATE (59)
F,{1+2nf (&= - - F
“{ bl C)} 3

where F,=0%4+2(1+v)t%
The length c is the internal state variable in this microcrack model. For a strain-controlled

test, there is no sudden failure and E' gradually decreases with load repetitions. Therefore, the
length ¢ for modulus E',;, can be solved with nonlinear finite element programs.
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Finite Element Formulation for Multiple Microcracks

If, instead of one microcrack, there are m microcracks existing in the finite element, the
probability of having a microcrack length c; is defined as:

mi
— =plc) (60)
m

where m, is the number of microcracks with length c;.

Back to the energy equivalence, Equation (59) can be expressed either in the summation
form:

E! = F + K E
k

4TE (61)

F, {1+ 2™ Ye (RE -¢)} - F

‘{ bl ;p € ¢ (nF4 c')} 3

or in the integral form:

E' = f B E
4AI'E
F, {1 + 21:-;% fcp(c)(-—-— - ¢) dc} - F,

(62)
nF

4

In Equations (61) and (62), the microcrack density m/bl is assumed to be a function of the
maximum stress 0, in the loading history. Specifically, the following model is used:

(%) = d(o,,, - o) (63)

where
0, = athreshold stress below which no microcrack growth occurs, and
d, q = model coefficients.

The probability p(c) changes as microcracks grow. In this research, p(c) is assumed to follow
a Weibull distribution function, which is illustrated in Figure 51. The function is given by:
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p(e) = Ay(Ac)le” @Y (64)

where the scale parameter A and the shape parameter vy are further related to load repetitions
according the following equations:

ye=pe ¥ (65)
L

A=ae v (66)

where N is the number of load cycles and p, 1, s, a, f, and g are model coefficients.

Replace (Ac)" with t in Equation (64) and noteing that

-1

—<|-—

1
Ay

dc t 67)

A initial distribution

¥

p(c) crack growth

microcrack length c;
Figure 25. Weibull Distribution Function for Microcrack Length c,.

The integral term in the denominator of Equation (62) can be evaluated from the following
expressions:

_ I+ 1y, (Ae,, )* 1 - T[1+ Uy, (Acy)' ]

f cp(cydec = ¢ = n (68)
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fczp(c)dc - ? - I[1+ 2N, (A-me)y ]Az— I[1+ 2y, (A.CO)Y ] )

where
= the Incomplete Gamma function with two parameters,

|

¢ = the mean microcrack length,
c? = the mean of the squared microcrack length,
¢, = the initial microcrack length, and
Crax = the maximum microcrack length.

Thus, Equation (62) can be rewritten as:

F, + F, £
(70)

The reduced modulus E' in Equation (70) can be further related to the rate of change of
dissipated pseudo-strain energy. It is proposed that the same fracture properties that control the

propagation of visible cracks control the propagation of microcracks. The change in dissipated
pseudo-strain energy per load cycle dW/dN is given by:

aw

dN

% Jp+ Iy )

f—
dN

Following Schapery’s method, the rate of mean microcrack growth can be given by:
i
o = AK] + Ky (72)

where K> and K2 are given by o?nc and t2nic, respectively.

By substituting Equation (72) into Equation (71) it can be shown that:
aw _ F, ~ 3 2 3
— = 2 Altc o'+ T 73
dN E () ( ) 73)
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Therefore, the finite element formulation for multiple microcracks contains the original

modulus E, the reduced modulus E', and the change in dissipated strain energy per load cycle
dW/dN:

E/ = F + K E
2,2 2 g’ 2+ B
F4 1 + 21:;_"]_ [4FA”‘ (;IW"' T ) E 2 _ C2 ] - F3 (74)

aNn

The measured value of the dissipated pseudo-strain energy, % , as discussed earlier on

pages 22-29, along with the measured reduced modulus, E’, are both inserted into equation (74)
as they change with the number of load cycles, N. The multiple values permit the back-calculation
of the microfracture properties A,n,p,d, and q. These properties are first introduced into
equations (72), (72), (65), (63) and (63), respectively.

System Identification Method

With the formulation presented in Equation (74), fatigue data from trapezoidal strain loading
tests were analyzed to back-calculate the fracture parameters. The objective of the System
Identification method (SID) is to estimate system characteristics by using only input and output
data from the system. The process is identified when the error between the model and the real
process is minimized in some sense. Otherwise, the process must be modified until the desired
level of agreement is achieved.

The SID scheme can be modeled with a mathematical representation. The dW/dN is taken as
the output to be compared. Based on the Taylor Series expansion, the following linear equations
are derived for adjusting the input parameters:

) = Fite} )
(PY"! = (PY (1 + {a}) 76)

where the vector {r} is the analysis difference between the model and the real system, the matrix
[F] is the sensitivity matrix, and the vector {a} represents the parameter adjustments that can be
generated numerically with the trial and error process. The element F,; reflects the model output
component f, to the input parameter p;. The parameter set {P} is updated each time with a new
{o} until the difference vector {r} is acceptable. This SID algorithm is plotted in Figure 26.
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Figure 26.  System Identification Diagram.

Microcrack Anaiysis

A sensitivity analysis of the model was initially conducted to identify the parameters that most
significantly influence the predictions. It was found that the dW/dN is most sensitive to the
following parameters:

1. the fracture coefficient A in Paris' law,
2. the fracture exponent n in Paris' law, and
3. the coefficient p for the microcrack distribution parameter ¥.

From the fatigue test data, the pseudo-strain energy history is of a sawtooth form as
discussed previously. The drop in the level of total pseudo-strain energy in the sample represents
a loss of some of the cross-sectional area of the sample due to the opening up of a new crack
area. This transfers the load carried by the sample to the remaining intact cross section of the
sample, increasing the stress on that reduced area and increasing the pseudo strain in that area
also. In this process the total pseudo-strain energy per unit volume in the sample remains the
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same or very nearly the same. Thus, the trend in the pseudo-strain energy history after a drop in
the level of total energy in the sample is the same as the trend in the pseudo-strain energy history
before the drop. Because what is important in predicting the rates of fracture is the rate of change
of the pseudo-strain energy, the curves representing the growth of curves representing the growth
of microcracks with load repetitions were joined end-to-end for the purpose of analysis. A
function that best fits the modified pseudo-strain energy was initially identified and used to
calculate dW/dN. The task was performed by using the Jandel Scientific Table Curve. The sum of
squares of error was calculated between the modified pseudo-strain energy and each function
listed in the software. The function that resulted in the smallest sum of squares of error was
chosen. This procedure yields the best fitting equation for all modified pseudo-strain energy as
follows:

W = e bN? (77)

The pseudo-strain energy for sample M/DG/25 during load period 1 is used here to illustrate
the whole process. As illustrated in Figure 27, the energy at cycle 2 was escalated to the same
level as one at cycle 1 and the modification was applied for energy values at cycles 7 and 16. In
Figure 28, Equation (77) with a=-3.74245 and b=0.00089 was found to best fit the modified
pseudo-strain energy with R?=0.89.

A set of seed values for the fracture parameters is input to the MICROCRACK program. The
SID method is used to adjust the input values. This iterative procedure is continued until the
dW/dN predicted from the FEM best matches the dW/dN calculated from the fitted function. Two
dW/dN curves are plotted in Figure 29. The back-calculated fracture parameters for selected
specimens are shown in Tables 3 and 4. The mean microcrack lengths for trapezoidal strain-
controlled tests are plotted in Figures 30 and 31.

Two approaches have been used to investigate microdamage healing: (1) calculation of a
healing index based on the differences in dissipated strain energy before and after rest periods and
(2) the use of fracture mechanics together with measurement of dissipated pseudo-strain energy as
a means of investigating the rate of microcrack propagation as well as a change in the distribution
of microcrack length upon loading and healing. The successful application of Schapery's fracture
law and a microfracture and healing (MFH) method to the observed microcrack and macrocrack
behavior of mix cylinder fatigue tests refines the understanding of fundamental fracture mechanics
and will be discussed in the next section.
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Figure 27. Modification of Pseudo-Strain Energy, W, for Sample M/DG/25 During Load
Period 1.
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W for Sample M/DG/25 During Load Period 1.
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Table 3. Back-calculated Fracture Parameters

from Trapezoidal Strain Data.

Sample A n p
M/DG/19 | 0.000043 |13 [1.14
M/DG/25 |0.000034 |13 |[1.10
M/DG/21 |0.000017 |16 |1.01
D/DG/17 | 0.000014 |19 |1.00
F/DG/4 0.000030 |0.94 |1.23
F/DG/6 0.000036 [1.14 |166 |
B/DG/4 0.000062 |1.10 |1.36
B/DG/3 0.000038 |1.21 |1.40
B/DG/5 0.000048 |1.19 |1.50
F/DG/2 0.000020 |1.25 |1.64
F/FG/3 0.000033 |[1.13 |1.57
B/DG/2 0.000032 |1.53 |1.26
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Table 4. Back-calculated Fracture
Parameters from Haversine Strain

Data.

Specimen A n p
B/DG/23 0.000060 |1.62 |1.31
B/DG/25 0.000070 |1.64 | 1.26
D/DG/38 0.000057 | 1.65 |1.30
D/DG/43 0.000080 | 1.55 |1.29

I M/DG/40 0.000021 |1.70 | 1.24

‘ M/DG+P/7 0.000020 |1.60 |1.27
F/DG/19 .0000057 |1.54 |1.30
M/SMA/1 .0000085 |1.58 |1.23
M/SMA+L/10 | 0.000010 |[1.70 |1.23
M/DG/46 0.000015 | 1.67 |1.30 |
D/FG/61 0.000024 | 1.50 j1.21
D/DG/9 0.000018 | 1.50 | 1.20
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CHAPTER 5: FUNDAMENTAL LAWS OF THE RATES OF FRACTURE AND
HEALING

Derivation of the Rate of Fracture Law

Schapery's fundamental law of fracture mechanics (1984) is stated as:

2y, = Ex Dt,) Jy (78)
where
Y = the surface energy density of a crack surface (units: FL).

Ex = an arbitrary constant with units of F L2, Its numerical value is commonly taken
as 1.0 although in this report it is always taken as the maximum stress divided
by the maximum pseudo strain. It makes Equation (78) dimensionally correct.

D(t,) = the tensile creep compliance of a material corresponding to the time, t,, that is

required for a crack to move through the distance o, which is the length of the
fracture process zone ahead of the crack tip (units: F' L?).

Iy = the viscoelastic J-integral. This is the change of dissipated energy per unit of
crack growth area from one tensile load cycle to the next (units: F L™).

Lytton proposed a corresponding fundamental law for material healing that is of the same
form:

2y, = Ex D,(¢) Hy (79)
where
Y Eg = the same meaning as before.
D,(t,) = the compressive creep compliance of a material corresponding to the time t,,

that is required for a crack to heal through the distance e, the length of the
fracture process zone. Note that D, is not necessary equal to D;.

Hy = the viscoelastic H-integral. This is the change of dissipated pseudo-strain energy
per unit of crack healing area from one compressive load cycle to the next.

The tensile and compressive compliances for asphalt-aggregate mixes can be expressed in a
power law form as:

Dft) =D, + D t" (80)
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D, =D, + D, t™ (81)

and the times for the fracture and healing to traverse the length of the fracture process zone « are:

1 = A (82)
S
K a
1, = — (83)
h

where
ks, k, = constants that depend upon the value of m. A common values of both are 1/3.
my, m, = theslopes of log creep compliance versus log time curves for asphalt mixes.

The absolute crack speed ¢ is the difference between the fracture speed / and the healing
speed h. Rearranging Equations (78) through (83) gives an expression for crack growth:

é=f-h
1
Ko, E, J)™  an (84)
1 dt
@Y, - D, E, J)™

or
1
dc _ pan, KDy Ep J)Mdt gy
prl TN ®5)
(Y, - D, Eg J)™
where
(At)y = the time permitted for fracture,
(At), = the time permitted for healing, and
dt = dN[ (At);+(At),]
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_In the course of analyzing the measured healing data, it was discovered that the actual rate of

healing, % , is governed by two separate healing mechanisms, one of which is controlled by
t : ,

the non-polar ((Lifschitz-Van der Waals) and the other is controlled by the polar (Lewis acid-
base) components of the surface energy densities, I',  and I 5, respectively. Both healing rates
occur simultaneously and govern the actual healing rate according to the relation

h=h + [ hl.' hz. (a9,
, Gy - k) (86)

h

p

where
j;p ;;2 = the healing rates generated by the nonfpolar ( }51 ) and polar ( 152 ) surface
energies;
}il = the actual healing rate;
(At), = therest period between load applications; and
hy = afactor that varies between 0 and 1 and represents the maximum degree of

healing that can be achieved by the asphalt binder.
A schematic graph of this relation is shown in Figure 32.

The theories explaining the two healing rates were developed by Lytton in this project
( i;l ) and Schapery ( };2 ) in (1989). The simpler forms of these two theoretical relations are

given below in Equation (87) for ( ’;1 ) and Equation (88) for ( };2 ).

1
. |K, Dy, Eg H, [
he [ 20w P - @D
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and

2 1
[2y E5 D, T,,[m
. m “R “1h 4B
2 : B (88)

l(l—vz) c™H,

The forms of these relations become more complicated when the glassy compressive
compliance of the asphalt mixture, A, is not zero. Because of their greater complexity, they will

not be reported here.

Healing Rate

Time of Rest

Figure 32.  Schematic Graph of the Rate of Healing.
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The variables not identified earlier are as follows:

B = length of the healing zone
v = Poisson’s ratio of the asphalt mixture
Co = 2m,+1 (89)
m,+1
_ ng DQ+m,)
Yo = =) —— (90)
: 4" T(1.5+m,

I'( ) + the Gamma function of the argument in parentheses.

A striking difference between the two formulations is in the ratio of the surface energy I' to
the healing integral H,. The early healing rate depends largely upon Iil which, in turn,
depends upon H/T'y,. The long-term healing rate slows down to approach ;;2 , which depends

upon the ratio I',p/H,, the reciprocal of the healing rate governed by the non-polar surface energy.

The empirical evidence of these relations comes from the healing index, HI, measurements that
were made and discussed in Volume 2. Although the healing index is a normalized, dimensionless
number and is not the same as the actual length of the zone that is healed, it is still an indication of
the rate at which healing proceeds. The rates of maximum and minimum change of healing index

were determined by nonlinear regression analysis to be lil and }52 , as shown in Figures 33

and 34. The graphof A , the early healing index rate and the non-polar (or LW component)

surface energy component, I}y, is shown in Figure 33. The graph of the liz , long-term

healing rate and the polar (or AB component) surface energy component I' 5, is shown in Figure
34, The two relations reveal the inverse and direct relations predicted by Equations (87) and (88),
respectively.
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Figure 33.  Relation Between the Early Healing Index Rate, };1 , and the Non-Polar Surface

Energy.
6
T R’=07445 .
§. 3 + e P ’.
g€ 21 L
6 1 + «” T
: .- e * ®
0 -t % } i
02 03 0.4 0.5 0.6 0.7
Long-Term Healing Rate
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The rate of crack healing per load cycle, % , is given by an equation that is similar to

equation (86), as shown below:

-
N = hy(A7), +

(h, - h) (&),

h, - h
1+——2(A9),
hB

The value of hg was found empirically to depend upon the ratio of the surface energies,
I,z L'Lw, the polar divided by the non-polar component. Figure 35 shows this empirical relation
which suggests that maximum healing may be achieved by an asphalt binder with a surface energy
ratio less than 0.5. This is only part of the picture, however, since it is certain that hy must also
depend upon the compliance of the asphalt mix. All of the relations suggest a very productive line
of further inquiry into the healing properties.

1
08 +
06 +
«
9
£ 047 ;
= y =-11.362x" +7.4633x- 0.2884
02 1 R’ =0.6898
1 x . .
0 / T T T T T T
(P 0.1 0.2 03 04 05 0.6 0(7
0.2
Ratio (AB/LW)
: . : . LTy
Figure 35.  Empirical Relation Between hy and the Ratio T
w
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Analysis of Load Test Data

The analysis of the laboratory test sample data was conducted assuming that healing is
governed only by the total surface energy. All of the material properties that enter into the
equations for fracture and healing were measured leaving only one unknown; the total surface
energy, I'. Having measured all the components of total surface energy separately, it was possible
to compare this back-calculated value of I' with the independently measured values. The two
values compared very well, as is shown in Table 5 through 10 and discussed in the conclusions.

The form of the healing rate equation that was used in the analysis follows the early healing
rate form, Iil , of Equation (87) only for one principal reason. The rest interval between loads

that was used in the test was too short for the long-term healing rate, liz , to have much

influence.

The following section outlines the analysis that was done to arrive at the back-calculated
laboratory values of the total surface energy I'.

Following the same approach developed by Schapery (1973) for the stress intensity factor, the
Jy and Hy, integrals are defined according to the normalized wave form w(t) and wy(t):

w(l) = Iy 92

0 = 3 ©2)
H,

w(0) = T (93)
vo

where Jy, and Hy, are the maximum values of Jy, and Hy, during loading time (At); and (At),.

It is assumed that the growth or healing of microcracks in each load cycle is small and w(t)
and wy(t) have essentially the shapes of the difference of loading between two consecutive cycles.
The size of fracture process zone ¢ is estimated by the ratio of the J-integral to the area under the
tensile strain curve of the material. An equation for this estimation is:

J.
o = 14

- 2 %4
le o Il

where o is the tensile strength of material, and I, is a number between 1 and 2.
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Consider a special case that D;and D, are much smaller than D;; and D,,. Substituting
Equations (86), (87), and (88) to Equation (85) gives:

1

14—

1

14—

m 1 m
de _ b Dy B o, WO ™
T T
D, T/ a1
yir O ' (95)
k™ D, E — w(Ow, ()™ 71'
- 21h Ryms ];(A‘)h A 1h dt [Hyl ™ [yl

D, P:h O: I

Schapery proposed two relationships between Paris' law parameter n and the material
compliance property m:

n=2 Jor strain controlled tests (96)
m

N
]

2(1 + —1—) Jor stress controlled tests C))
m

Experiments conducted by Lytton et al (1983) led to the following relationship for n:

- + L
n=08( m) (98)

To take into account the hyperelastic nature of the large strains in the fracture process zone,
the parameter n, for cohesive fracture may be written as:

1
n.=r(l+ ;) (99)
'
and the coefficient r defines:
K %
= (L) (100)
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JV
a = (———) 10
D, o} I | (101)

The time t, is a nonlinear function of fracture speed f and the fracture speed becomes:

2{ r(l+_l..) 1
r L me 1+
daf [kf D, ER]m, f(mf wl) & [JW]'( ,,,/)
aN 2 0 = (102)
D, T,” o I
=4, V™
The fracture surface energy density I'; can be determined from Equation (102):
m G - I
kfr D, E, [ j; Tw() Yoar]’
T, = (L - (103)

7 2
D 4" o' I’

After studying asphalt properties and the parameter m, back-calculated from the microcrack
model, r is around 0.4. This value is smaller than Schapery's value based on a thin layer model and
Lytton's value determined from thermal crack data. The curve fitting of dissipated pseudo-strain
energy and the I'; back-calculation are according to the proposed reference modulus (Ej is a
specific constant such that the maximum pseudo strain is equal to the maximum strain). To be
consistent with Schapery’s fundamental fracture theory (E; is an arbitrary constant),

Equation (103) is remodified as :

m 04a+Lt) 0™
£ p L[ wey ™ ar]*
T = [ f I ] 0 (104)
r- 2

"
m o4 2m, .m
lef (Af . ER)OA of s Il 7

The cohesive healing surface energy density I, is proposed in a similar form:
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04 my,

mh — .
I'\h = 1 ] 0
-m m 105
2 P(1+mh)w * m, o—% 2m, m, (105)
[—_—7] Dlh (Ah ® ER) 4 Of Il
LQ+myw ™

where w is the loading frequency and I' is Gamma function.

Results Of Comparison

Equations (104) and (105) are valid when D is much smaller than D ;. Mixes tested at room
temperature are generally of this nature. If the tensile relaxation modulus for each specimen is
represented in the pure power law, D((t) can be determined from:

sin(m, ™)

D) E(d) = (106)

where D(f) = D), t™

The integral terms in Equations (104) and (105) are the area moment under the normalized
waves w(t) and w,(t) with orders related to material properties. The fracture and healing
normalized waves for samples M/DG/19 and M/DG/25 are shown in Figures 36 and 37. The
common values for k; and k, are 1/3 and I, is 1. The fracture I and healing I for mixes tested with
trapezoidal strain loading are listed in Tables 5 and 6, respectively. The fracture I for mixes tested
with haversine strain loading are listed in Table 7.

The fracture surface energy densities in Table 5 range between 135 and 518 mJ/m? for tests run
at 25°C. The corresponding healing surface energy densities in Table 6 range between 100 and 417
mJ/m?, always being smaller than the fracture surface energies. The two samples that were tested at
4°C, M/DG/1 and M/DG/25, showed a reversal of this trend, suggesting a different mode of
fracture as will be discussed below.

Values of the fracture surface energies I'; taken from haversine strain loading tests range
between 23 and 113 mJ/m? at a temperature of 22.2°C.

The values of I'; and T, that are completely out of range are those that were calculated from the
rate of change of dissipated pseudo-strain energy at a test temperature of 40°C. The numbers are in
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the thousands and are clearly out of range of the fracture and healing surface energies as measured
independently, as discussed below. This strongly indicates that a damage process other than
fracture, requiring much more energy than fracture, is at work at this elevated temperature. The
most likely candidate is plastic flow.

The values of cohesive fracture and healing surface energies, I'; and I';, as measured by the
Wilhelmy Plate apparatus on different SHRP binders at 25°C are given in Table 8. This shows that
the values are all within a narrow range: for fracture, between 27 and 32 mJ/m”. These are taken
from plunging an asphalt-coated plate into (wetting) and withdrawing it (dewetting) from a variety
of fluids with known surface energies.

The values of adhesive fracture surface energies shown in Table 9 are calculated from the
surface energies measured on binders by the Wilhelmy Plate apparatus and by the high vacuum
adsorption Cahn Balance apparatus for the aggregates. The table shows the fracture surface
energies for the work required to separate the aggregate surfaces from the various binders listed in
the left-hand column. The aggregate was the Watsonville granite separated into the three size
fractions shown in columns two through four. These numbers range between 174 and 223 mJ/m?,
showing the range within which adhesive fracture will occur.

Table 10 shows the corresponding calculated adhesive healing surface energies for the same
sets of aggregate surfaces and asphalt binders. These range between 122 and 195 mJ/m?, which are
consistently lower than the fracture surface energies. These are calculated in the absence of water.

The difference in ranges of cohesive and adhesive fracture and healing surface energies
measured by the independent means suggest that samples M/DG/19 and M/DG/25 in Table 5 and all
but the last two 100-mm x 100-mm samples in Table 7 underwent cohesive fracture and healing.
These ranges also suggest that all of the samples but the first four in Tables 5 and 6 underwent
adhesive fracture and healing. The last two 100-mm x 100-mm samples in Table 7 have ranges of
fracture surface energies in between the independently measured values of cohesive and adhesive
fracture properties. This suggests that both processes were active in these two samples.

The systematic differences in the calculated surface energies of the 200-mm-high versus the
100-mm-high samples shows clearly the differences that are generated by a simple, tensile state of
stress as opposed to a combined state that includes both tension and shear, which is induced by the
proximity of the loading heads in the shorter samples. In the longer samples, all displacement
measurements were made in the center third of the sample where the microcracks were adhesive
and were formed and propagated by purely tensile stresses. On the other hand, in the shorter
samples the microcracks were cohesive and were formed in the binder by a combination of tensile,
shearing, and tearing mode stress intensity factors. The binder is apparently more susceptible to
shearing microfracture initiation than to initiation by tensile stresses. However, once the
microcracks open in the binder, evidence from our tests is that they continue to grow in the binder.
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This consideration shows why it is important to choose the test sample geometry very carefully,
taking into account not simply the modulus that can be inferred from the test but other material
properties as well. This is particularly important when the modulus, Poisson’s ratio, and the
dominant fracture surface energy density and the fracture mode itself, adhesive or cohesive, all
depend upon the stress state of the mix.

This is valuable information for selecting tests for specification values both for mix components
and mixes themselves. The surface energy density tests with the Wilhelmy Plate on the binder and
the high vacuum adsorption apparatus on the aggregates can be run separately and the surface
chemistry formulas of Good and Van Oss (1992) can be used to compute the adhesive and cohesive
surface energies both with and without the presence of water on the interface. Because the surface
energies of asphalts do not vary much from one to another, there is no need for daily tests of this
sort on refinery runs of asphalts. Also, aggregates can be screened separately by source, stratum,
and pit by use of the adsorptlon apparatus. It is the aggregates that prov1de the greatest variability
in adhesive surface energies.

Tests on mixes for fatigue resistance need to determine principally the tensile and compressive
creep compliance information on the mix in different stress states. This can be done very
conveniently by using frequency sweep tests on triaxial samples.

The important thing about all of this is that it is of paramount importance to get accurate

measurements of the actual material properties as presented in this chapter. Sound and reliable
specifications can be developed from them.

64




Table 5. Fracture I'; Analysis (Trapezoidal Strain Loading with 100-mm by 200-mm Samples).

| Sample | D/ | m | n | & [o?]| ES |a] r¥ \
M/DG/19¢ 1.59 | 046 | 1.31 | 0.000043 | 468 | 913587 | 0.5 29.8

M/DG/25¢ 232 | 0.54 | 1.30 | 0.000034 | 689 | 563321 | 0.5 26.0
M/DG/217 19.72 | 0.63 | 1.21 | 0.000017 | 200 18106 | 0.5 | 7425.
D/DG/17 19.72 | 0.62 | 1.27 | 0.000014 | 186 19099 | 0.5 | 9604. n
F/DG/4* 14.79 | 0.72 | 0.96 | 0.000030 | 351 72631 | 0.5 | 3923
F/DG/6* 812 ]| 0.49 | 1.14 | 0.000036 | 598 | 160101 | 0.5 135.4
B/DG/4* 35.09 | 0.54 | 1.10 | 0.000061 | 202 38308 | 0.5 | 303.9
B/DG/3® 20.88 | 0.43 | 1.21 | 0.000038 | 358 92186 | 0.5 | 517.8
B/DG/5* 19.72 | 0.46 | 1.19 | 0.000048 | 379 96150 | 0.5 | 299.7
F/DG/2* 11.89 | 0.57 | 1.25 | 0.000020 | 599 | 152476 | 0.5 | 275.4
F/FG/3* 13.20 | 0.53 | 1.13 | 0.000033 | 541 | 142864 | 0.5 | 211.5
B/DG/2* 245.6 | 0.62 | 1.53 [ 0.000032 | 205 1944 | 0.5 157.5

: Dpe unit : 10 (1/kPa)

: 0, unit: kPa

:Eg unit:kPa

. Aty unit : second

:T¢  unit : mJ/m?

. Samples tested at 4°C

: Samples tested at 40°C

: Samples tested at 25°C

W NN N A WN
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Table 6. Healing I, Analysis (Trapezoidal Strain Loading with 100-mm by 200-mm Samples).

Specimen | D,! m n A o} 3 At | TS
M/DG/19¢ 1.88 | 0.57 | 1.11 ]0.000011 |-455 | 913587 | 0.5 57.2
M/DG/25¢ 246 | 059 | 1.25 |0.000012 | -634 | 563321 0.5 79.5
M/DG/217 108.1 | 0.46 | 1.35 | 0.000019 | -138 18106 | 0.5 | 32016
D/DG/177 131.5 1 0.54 | 1.31 | 0.000023 | -165 19099 | 0.5 | 23978

F/DG/4® 273 | 0.60 |1.02 [0.000017 |-358 72631 | 0.5 1923
F/DG/6* 19.7 | 0.56 | 1.10 |0.000028 |-558 | 160101 | 0.5 | 204.9
B/DG/3® 284 | 0.51 |1.18 | 0.000043 | -289 92186 | 0.5 | 417.1
B/DG/5* 26.9 | 0.53 |1.10 | 0.000035 |-317 96150 { 0.5 | 374.8
B/DG/2} 13.5 | 0.61 |1.13 | 0.000036 |-579 | 152476 | 0.5 100.5
‘F=/DG/3' 174 ] 0.60 | 1.15 0._(_)__00039 -489 | 142864 | 0.5 127.4 II

: D,y unit : 10 (1/kPa)
2. ¢, unit : kPa

3. Ex unit: kPa

4. At, unit : second

5:T, unit: mJ/m?

¢ Samples tested at 4°C.
7. Samples tested at 40°C.
% Samples tested at 25°C
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Table 7. Fracture Iy Analysis (Haversine Strain Loading with 100-mm x 100-mm Samples Tested

at 22.2°C).

Specimen D,/ m n A ol 3 At | T

B/DG/23 0.038 | 0.338 | 1.62 | 0.000060 | 579 562797 |0.13 27.2
B/DG/25 0.043 | 0.357 | 1.64 | 0.000070 | 482 518393 | 0.13 23.1
D/DG/38 0.039 | 0.329 | 1.65 | 0.000057 | 544 531294 | 0.13 32.6
D/DG/43 0.051 | 0.375 | 1.55 | 0.000080 | 482 445996 | 0.13 23.1
M/DG/40 .1 0.027 | 0.380 | 1.70 | 0.000021 | 703 841596 | 0.13 23.1
M/DG+P/7 0.019 | 0.316 | 1.60 | 0.000020 | 737 | 1019646 | 0.13 299
F/DG/19 0.017 {0.354 | 1.54 | .0000057 | 1006 | 1279995 | 0.13 34.0

M/SMA/1 0.023 | 0.338 | 1.58 [.0000085 | 779 | 1021798 | 0.13 | 38.1|
M/SMA+L/10 | 0.021 | 0.350 | 1.70 | 0.000010 | 813 | 1216995 }0.13 | 37.2
M/DG/46 0.025 | 0.358 | 1.67 | 0.000015 | 751 | 986895 | 0.13 | 25.8
D/FG/61 0.077 1 0.359 | 1.50 | 0.000024 | 372 | 312902
D/DG/9 0.078 ] 0.305 | 1.50 | 0.000018 | 393 | 277399

: Dy¢ unit : 10 (1/kPa)
.0, unit:kPa

: Eg unit: kPa

. Aty unit : second

5: Ty unit: mJ/m?

4
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Table 8. Surface Energy I'" Calculated from Dewetting and Wetting Process.

Binder Type | I, (mJ/m?
AAA 11.85
AAB 32.47
AAD 30.28 13.99
AAF 27.59 9.98
AAG 12.99
AAK 27.38 8.20
AAM 8.20

Table 9. Receding (Fractures) Surface Energies (Data from Gerry Elphingstone [1997] and

Wenduan Li [1997]).
Work (mJ/m?)

Material | SHRP#16-30 | SHRP#30-50 | SHRP < 74/um
AAB-1 214.0 216.7 218.9

AAD-1 177.6 179.4 183.7

AAF-1 174.9 177.2 179.5

AAF3 188.1 190.3 1933

AAFa- 198.1 200.7 202.7 ]
AAFTo 200.6 203.4 205.1 |
AAK-1 184.2 186.2 189.5

FI10 193.7 195.9 198.6

FI10a 223.4 226.5 227.6

JG34a 213.4 215.4 220.9

JG34T 210.7 212.8 217.9
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Table 10.  Advancing (Healing) Surface Energies (Data from Gerry Elphingstone [1997] and
Wenduan Li [1997]).

Work (mJ/m?)

Material | SHRP#16-30 | SHRP#30-50 | SHRP < 74/um

AAF3 1503 151.9 155.4

AAFa- 175.2 177.6 179.7

AAFTo 169.4 171.9 173.9 ||
AAK-1 | 1663 168.8 11700 |
FI10 161.6 163.6 166.3

FI10a 160.7 162.4 166.6

1G34a 191.0 193.7 195.1

JG34T 158.9 160.7 1643
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CONCLUSIONS

A finite element model of microcrack growth was developed that can successfully track
microcrack damage and microcrack healing in uniaxial tensile, controlled-strain fatigue tests. The
model is based on the Griffith model of total energy per unit area for a crack element. Damage due
to microcrack growth causes a reduction in the stiffness of an element, which can be calculated
through a mechanics-based relationship between energy and stiffness. The model was modified to
accommodate a certain density of microcrack sizes based on a Weibull density function. The
distribution of sizes and growth rate of the microcracks is also accounted for in the model.

Successful use of the model to track microcrack growth shows that the same basic fracture
laws that control macrocrack growth also control microcrack growth. The microdamage model is
able to accurately track the change in dissipated pseudo-strain energy throughout a uniaxial direct
tensile fatigue test. Employing the relationship between the change in dissipated pseudo-strain
energy and average crack length, crack growth can be tracked in a fatigue sample based on the
history of the change of dissipated pseudo-strain energy throughout the test. The usefulness of this
analytical tool to evaluate the effects of rest periods was proven as the recovery in dissipated
pseudo-strain energy following rest periods was used to calculate the reduction in microcrack size
distribution.

The finite element model based on fracture mechanics principles together with dissipated
pseudo-strain energy recorded during uniaxial direct tensile, controlled-strain fatigue testing was
used to “back-calculate” basic fracture properties of the various mixtures. These fracture properties
were in turn used to “back-calculate” mixture surface energies using a fundamental law of
viscoelastic fracture derived in this chapter. The calculated surface energies for the mixtures
evaluated are within reasonable ranges when compared with measured surface energies for the
various binders and aggregates used in the tests. Furthermore, the “backcalculated” surface energies
for the various mixtures analyzed match the measured surface energies for the binders associated
with the mixture.
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