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FOREWORD 

The purpose of this report is to describe the work performed and the results obtained during the 
Layered Object Recognition System for Pedestrian Sensing Project sponsored by the Federal 
Highway Administration. The goal of this project was to use stereo vision to detect, classify, and 
track pedestrians in cameras’ field of views and demonstrate the system’s performance in real 
time in a test vehicle. 

This report will be of interest to researchers, developers, and technologists in the area of highway 
safety, pedestrian collision warning systems, intelligent transportation systems, and driver 
assistance systems. It provides information about state-of-the-art practices and directions for 
future work. 
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1. INTRODUCTION 

1.1 BACKGROUND 

There is a significant need to develop innovative technologies to detect pedestrians or other 
vulnerable road users at locations where they are experiencing increased exposure to dangerous 
traffic. The motivation of this research was triggered by the Fatality Analysis Reporting System 
data that indicated that there were 4,882 pedestrian fatalities and 64,000 pedestrian injuries in the 
United States in 2005.(1) Pedestrian-related traffic crashes accounted for 11 percent of the total 
fatalities and 2 percent of the total injuries in 2005. Europe and Japan have adopted standards to 
improve pedestrian protection, including passive energy absorption structure modification, active 
energy absorption systems installed on selected vehicle models from Jaguar and Citroën, and 
brake assist systems to reduce impact severity.  

In 2007, there was a proposal to develop a real-time in-vehicle vision-based system that would 
detect pedestrians from a moving vehicle and estimate their position and distance relative to the 
vehicle at distances that would allow actionable warning time.  

In April 2008, there was a panel meeting in Princeton, NJ, for the research team to demonstrate 
the technical capability in machine vision technology. The meeting also allowed the technical 
panel members to share the latest pedestrian fatality and injury statistics and collectively define 
the specifications of the desired research product.  

According to information provided by the Federal Highway Administration (FHWA) technical 
panel, the following pedestrian fatalities occurred in 2007:(2) 

• 73 percent occurred in an urban area. 

• 76 percent occurred at non-intersection areas. 

• 90 percent occurred under normal weather conditions. 

• 67 percent occurred at night. 

2007 pedestrian deaths by road type are as follows: 

• 16 percent occurred on interstates or freeways. 

• 55 percent occurred on other major roads. 

• 27 percent occurred on minor roads. 

2007 pedestrian deaths by speed limit in an urban environment are as follows: 

• 24 percent occurred on roads with a speed limit less than 35 mi/h (56.35 km/h). 
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• 31 percent occurred on roads with a speed limit between 35 and 40 mi/h (56.35 and  
64.4 km/h). 

• 20 percent occurred on roads with a speed limit between 45 and 50 mi/h (72.45 and  
80.5 km/h). 

• 7 percent occurred on roads with a speed limit of 55 mi/h (88.55 km/h) or greater.  

• 7 percent occurred on roads with an unknown speed limit.  

The panel members also described scenarios such as pedestrian crossing patterns at intersections, 
pedestrians unexpectedly darting across the street from behind motor vehicles at midblock 
locations, etc. The performance requirements of the pedestrian detection system were formed 
based on the above inputs and the technology limitations known to the research team.  

While several researchers have developed pedestrian detection systems, most of these systems 
suffer from a high false positive (FP) rate of detection (e.g., objects incorrectly detected as 
pedestrians). The proposed approach in this report attempts to alleviate this problem by 
following a layered approach (i.e., different layers of processing to gradually reduce FPs by 
using multiple cues (shape, appearance, and depth)) and classifying objects. 

1.2 STUDY OBJECTIVES 

The objectives of this study were to develop an in-vehicle pedestrian detection system capable  
of simultaneously recognizing pedestrians and other roadside infrastructures such as lamp  
posts, traffic signs, lane markings, pavements, buildings etc. The detection system should also  
be capable of distinguishing pedestrians and motor vehicles in and out of danger and determining 
danger levels. The researchers wanted to produce a system with a high detection rate and a  
low FP rate, coupled with inherently low-cost sensing technology for potential widespread 
adoption. The project addresses the Highway Safety Focus Area of the Broad Agency 
Announcement. 

1.3 RESEARCH GOALS 

The primary goal of this project was to develop a real-time in-vehicle system that uses stereo 
vision and advanced computer vision techniques to detect pedestrians under typical driving 
conditions and meet the metrics in table 1. 

Table 1. Pedestrian detection performance specifications. 
Pedestrian 

Detection Rate 
(percent) FP Rate  

Range of 
Detection 
(meters) Conditions 

98  
(in path) 

0.00001  
(in path) 40 (day) Benign mostly  

urban scenes 90–93  
(out of path) 

0.003  
(out of path) 25 (night) 

1 ft = 0.305 m 
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These metrics were measured on selected video sequences by an offline implementation of the 
developed system. The true positive rate is defined as the percentage of pedestrians detected 
compared to the number of actual pedestrians in every frame of the sequence. It was measured 
on collected video sequences that contained a significant number of pedestrians. The FP rate  
is defined as the number of nonpedestrians incorrectly identified as pedestrians per hour of 
driving. It was measured by executing the real-time system in the test vehicle while driving 
under typical U.S. highway and urban conditions, collecting images every time the system 
detected a pedestrian, and manually checking the images against the actual presence or absence 
of pedestrians. 

1.4 SCOPE OF REPORT 

This report describes the work performed during the course of this project, which was partially 
funded by FHWA. It assumes a basic understanding of linear algebra, probability theory, and 
prior exposure to computer vision. Section 2 of this report provides a brief review of computer 
vision and probability theory topics that were used as prior art for the development of algorithms 
and software for a stereo-based pedestrian recognition system. Sections 3 and 4 describe the 
developed system configuration and the key innovations. The technical approach used to solve 
the pedestrian recognition problem is described in section 5. Section 6 describes the experiments 
conducted, results from collected data, and a comparison between state-of-the-art approaches 
published in literature. Finally, section 7 provides suggestions for future work and conclusions 
from this research work. 
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2. REVIEW OF RELATED TECHNOLOGIES AND RELATED WORK 

This section provides a brief review of the computer vision technologies that were used in this 
project, and it discusses recent work in vision-based pedestrian detection.  

2.1 RELATED TECHNOLOGIES 

The key vision technologies used as background technology in this project include the following: 

• Stereo vision for scene depth estimation. 

• Appearance representation using histogram of oriented gradient (HOG) features extracted 
from the image. 

• Classifiers for pedestrian and other object recognition. 

• Markov random fields (MRFs) for a principled probabilistic method for scene  
structure labeling. 

2.1.1 Stereo Vision 

Stereo vision is a process of triangulation that determines range from two images taken from two 
different positions. These two images are taken simultaneously from a pair of cameras with a 
known baseline (i.e., separation distance between the cameras). In this implementation, the 
research team designed the camera setup so that the optical axes of the two cameras were almost 
parallel. The objective of a stereo vision system is to find correspondences in the images 
captured by the two cameras. This is usually done by some manner of image correlation and 
peak finding. The image correlation function is a local correlation-based method that provides a 
dense disparity map of the image, which can then be converted to a range map. The correlation 
function implemented is the sum of absolute differences (SAD). The equation for SAD for each 
pixel in an image when computed over a 7 × 7 pixel local region is found in figure 1. 

 
Figure 1. Equation. SAD. 

Where: 

A = Left image of the stereo pair.  
B = Right image of the stereo pair. 
x and y = Image pixel locations. 
s = Number of horizontal shifts that are searched to find an image correlation.  

There are other functions that could be used for local image correlation, including the sum  
of squared differences and normalized correlation. After the correlation was computed,  
32 horizontal shifts in this case, the minimum value was detected and interpolated for an accurate 

SAD(x, y, s) = � |A(x + i, y + j)- B(x + i - s, y + j)|
i = 3, j = 3

i = -3, j = -3
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disparity estimate. In this implementation, the SAD correlation was applied to multiple 
resolutions of the image pair, extending the search range by a factor of two for every coarser 
resolution image. The disparity estimates obtained at coarser resolutions are generally less prone 
to false matches that can occur in regions of low texture, but they are commensurately  
less accurate.  

The computed disparity maps based on these methods are often noisy because the range of data 
depends on accurately correlating each point in the image to a corresponding point in the other 
image. To increase the reliability of the range data, the image can be prefiltered (with boxcar or 
Gaussian filters), and the summing window for SAD can be changed from 7 × 7 pixels to  
13 × 7 pixels. Additionally, the researchers masked out potentially unreliable data by computing 
a local texture measure and comparing it to a threshold. Researchers also compared the disparity 
estimates between the right image referenced to the left and the left image referenced to the right, 
checking for consistency between the two results. This checking method masks inconsistent or 
ambiguous disparity data such as areas that are occluded by one of the two cameras. Disparity 
maps computed at multiple resolutions are combined before range (depth) is computed.  

Given the horizontal coordinates of corresponding pixels, xl and xr, in the left and right image, 
the range, z, can be expressed as follows: 

 
Figure 2. Equation. The range estimate of an image pixel. 

Where: 

b = The stereo camera baseline. 
f = The focal length of the camera in pixels. 
d = The image disparity value. 

2.1.2 Feature Extraction Using HOG 

HOG is a method of encoding and matching image patches under varying image orientation and 
scale changes. It is defined as the HOG directions of image pixels within a rectangular sampling 
window on an image. The gradient direction of each pixel in an image can be computed by 
convolving it with the Sobel mask (or differential kernels) in the X and Y directions. The ratio of 
convolution along two directions gives the underlying image feature direction. The gradient 
direction of each pixel is then binned in nine directions covering 180 degrees. HOG is then 
computed by gathering the directions of pixels inside a sampling window and weighting each 
response by the edge strength. This results in an 8 × 1 vector that is then normalized to be bound 
in a [0, 1] range. Figure 3 shows an illustration of how a HOG is computed. The image location 
is shown in blue in the photo of the pedestrian. 

z =
b f
d  
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Figure 3. Illustration. HOG computed at an image location. 

Within small regions, HOG encodes dominant shapes, which are computed by a voting scheme 
applied to the region’s edge segments (see figure 4). Specifically, an image patch or region is 
first subdivided into multiple image cell regions. Each cell region is further divided into  
2 × 2-pixel or 3 × 3-pixel local grids. The HOG feature is computed for each local grid region. 
For pedestrian recognition, candidate image patches are typically resized to a nominal size of  
64 × 128 pixels, and HOG is computed. To handle image noise and exploit pedestrian shape,  
the algorithm applies a four-tap Gaussian filter to smooth the image and enhances it using 
histogram stretching. 

 
Figure 4. Illustration. HOG computation using integral images. 

  

 

( )2 2,H x y

( )2 1,H x y

( )1 2,H x y
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To efficiently compute HOG for use in a real-time system, an integral image is pre-computed  
so that HOG can be retrieved by look-up operations that consist of simple arithmetic 
summations. The integral image denotes a stack of image encoding where cumulative histogram 
of orientation for each pixel is computed by a fast scanning method. The integral histogram is 
computed as follows: 

 
Figure 5. Equation. Computation of integral histogram. 

Given a candidate pedestrian region of interest (ROI), the corresponding HOG for each ROI is 
computed by sampling integral histogram as follows: 

 
Figure 6. Equation. Computation of HOG for a specific image patch. 

2.1.3 AdaBoost Classifier 

This project uses the AdaBoost classifier algorithm for multi-object recognition. The AdaBoost 
algorithm was introduced in 1995 by Freund and Schapire, and a tutorial is provided by 
Friedman et al.(3,4) Classifiers are supervised machine-learning procedures in which input test 
data are assigned to one of N labels based on a model that was learned from a representative 
training dataset. AdaBoost uses a training set (x1, y1)… … …(xm, ym) where xi belongs to a 
domain X and yi is a label in some label set Y. For simplicity, assume the labels are -1 or +1. 
AdaBoost calls a given weak learning algorithm repeatedly. It maintains a distribution or set of 
weights over the training set. Initially, all weights are set equally, but on each round, the weights 
of incorrectly classified examples are increased so that the weak learner is forced to focus on 
harder examples in the training set. The goodness of a weak hypothesis is measured by its error; 
this error is measured with respect to the distribution on which the weak learner was trained. The 
following information provides the pseudo-code for the algorithm: 

Given (x1, y1)… … …(xm, ym) where xi  X, yi  Y = {-1, +1}: 

Initialize D1(i) = 1/m  

For t = 1, … …, T, use the following: 

1. Train the weak learner using distribution 𝐷𝑡. 

2. Get the weak hypothesis ht: X  {-1, +1} with error   

3. Choose  

  

H�xi, yi� = H�xi – 1, yi� + H�xi, yi – 1� – H�xi – 1, yi – 1� + H�xi, yi� 

H ��x1, y1�, �x2, y2��= H�x2, y2� – H�x2, y1� – H�x1, y2� + H(x1, y1)  

∈ ∈ 

∈t =Pri~Dt�ht(xi)≠yi� 

αt =
1
 2

ln �
1 - ∈t

∈t
� 



9 

4. Update as follows:  

  

Where Zt is a normalization factor. 

5. Output the final hypothesis as follows: 

 

2.1.4 MRF 

One of the key contributions from this project was the development of a principled method to 
label scene structure into buildings, trees, other tall vertical structures (e.g., poles), and objects  
of interest (e.g., pedestrians and vehicles). This approach relied on posing the labeling problem  
as Bayesian labeling in which the solution is defined as the maximum a posteriori (MAP) 
probability estimate of the true labeling. This posterior is usually derived from a prior model and 
a likelihood model, which, in turn, depends on how prior constraints are expressed. The MRF 
theory encodes contextual constraints into the prior probability. MRF modeling can be 
performed in a systematic way as follows: 

1. Pose the problem as one of labeling with a specific label configuration. 

2. Further pose the problem as a Bayesian labeling problem in which the optimal solution is 
defined as the MAP label configuration. 

3. Characterize the prior distribution of label configurations. 

4. Determine the likely density of data based on an assumed observation model. 

5. Use the Bayesian rule to derive the posterior distribution of label configurations. 

A more detailed treatment of MRF models in computer vision is provided in Markov Random 
Fields and Their Applications.(5) 
 
2.2 RELATED WORK 

One of the most popular recent pedestrian detection algorithms is the HOG method created  
by Dalal and Triggs.(6) They characterized pedestrian regions in an image using HOG 
descriptors, which are a variant of the well-known scale invariant feature transform (SIFT) 
descriptor.(7) Unlike SIFT, which is sparse, the HOG descriptor offers a denser representation of 
an image region by tessellating it into cells which are further grouped into overlapping blocks.  
At each cell, a HOG at pixels belonging to the cell is computed. Within each block, a HOG 
descriptor is calculated by concatenating individual cell histograms belonging to that block and 
normalizing the resulting feature vector to give some degree of illumination invariance. A  

Dt+1(i)= 
Dt(i)

Zt
× �

e-αt  if ht(xi) = yi
eαt    if ht(xi) ≠ yi

�  = 
Dt(i) exp (-αtyiht(x))

Zt
 

H(x)= sign (� αtht(x)
T

t=1
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two-class support vector machine (SVM) classifier was trained using the HOG features and  
used for final pedestrian detection.  

Dalal and Triggs reported significantly better results compared to previous approaches based on 
wavelets and a principle component analysis SIFT of around 90 percent correct pedestrian 
detection at 10-4 FPs per number of windows (FPPW) evaluated.(6,8,9) Note that based on the 
image size and the number of scales used to detect pedestrians, a FP rate of 10-4 FPPW 
corresponds to about 0.4 FPs per frame (FPPF). 

Tuzel et al. proposed the covariance descriptor to characterize global image regions and used  
a Riemannian manifold for pedestrian detection.(10) They reported improved results of about  
93.2 percent correct detection compared to the HOG descriptor at the same rate of 10-4 FPPW. 
Tran and Forsyth used geometric features describing the spatial layout of parts with appearance 
features characterizing individual parts.(11) They employed structured learning to determine the 
discriminative configuration of parts and reported excellent detection rates exceeding 95 percent 
with 0.1 FPPF (10-4 FPPW naive Bayes weight) less number of window needed to be evaluated 
since the approach is robust to centering of the pedestrian ROI) on the INRIA Person Dataset, 
though no time performance was discussed.(12) Wu and Nevatia used a cluster boosted tree 
classifier for pedestrian detection and also showed a performance of 95 percent at 10-4 FPPW.(13) 

Leibe et al. described a stereo-based system for three-dimensional (3D) dynamic scene analysis 
from a moving platform, which integrates a sparse 3D structure estimation with multicue image-
based descriptors (shape context) computed using Harris-Laplace and HOG features to detect 
pedestrians.(14,15) The authors showed that the use of sparse 3D structure significantly improved 
the performance of pedestrian detection. The best performance cited was 40 percent probability 
of detection at 1.65 FPPF. While the structure estimation was performed in real time, the 
pedestrian detection was significantly slower. 

Gavrila and Munder proposed Preventive Safety for Unprotected Road User (PROTECTOR), a 
real-time stereo system for pedestrian detection and tracking.(16) PROTECTOR employs sparse 
stereo and temporal consistency to increase the reliability and mitigate misses. Gavrila and 
Munder reported 71 percent pedestrian detection performance at 0.1 FPPF without using a 
temporal constraint with pedestrians located less than 82 ft (25 m) from the cameras. However, 
the datasets used were from relatively sparse, uncluttered environments. Recently, Doll´ar et al. 
introduced a new pedestrian dataset and benchmarked a number of existing approaches.(17) 

Another leading real-time monocular vision system for pedestrian detection was proposed by 
Shashua et al.(18) A focus of attention mechanism was used to rapidly detect candidates. The 
window candidates (approximately 70 per frame) were classified as pedestrians or 
nonpedestrians using a two-stage classifier. Each input window was divided in 13 image 
subregions. At each region, a histogram of image gradients was computed and used to train an 
SVM classifier. The training data were divided into nine mutually exclusive clusters to account 
for pose changes in the human body. The 13 × 9 vector containing the response of the SVM 
classifiers for each of the nine training clusters were used to train, as well as AdaBoost second-
stage classifier. A practical pedestrian awareness system requires few FPs per hour of driving. As 
a result, the authors employed temporal information to improve the per-frame pedestrian 
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detection performance and to separate in-path and out-of-path pedestrian detections, which 
increased the latent period in the system. 

Hoeim et al. presented a method for learning 3D context from a single image by using 
appearance cues to infer simple geometric labelings.(19) Hoiem et al. also presented a 
probabilistic detection framework which exploits the overall 3D context extracted using 
Geometric Context from a Single Image.(19) The authors argued that object recognition could not 
be solved locally but required statistical reasoning over the whole image.(20) 

Wojek and Schiele proposed a probabilistically sound combination of scene labeling and object 
detection using a conditional random field, but their method relied on appearance rather than 
3D.(21) Brostow et al. investigated the use of 3D features from structure-from-motion to classify 
patches in the scene.(22)
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3. SYSTEM CONFIGURATION 

The developed system consists of the following components: 

• National Television System Committee (NTSC) cameras in a parallel stereo 
configuration with a baseline of 7 inches (177.8 mm). Each camera has a 46-degree 
horizontal field of view (see figure 7 and figure 8). 

• Acadia I™ Vision Accelerator Board for real-time stereo depth estimation (see figure 9). 

• Dual Intel Core2Quad processor running Windows XP® or later. 

• Monitor and keyboard installed in the motor vehicle. 

 
Figure 7. Photo. In-vehicle camera sensor and a portable briefcase processing system.  
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Figure 8. Photo. NTSC camera used in the developed pedestrian detection system. 

 
Figure 9. Photo. Acadia I™ vision accelerator board. 

The research team used a modified Lincoln® Navigator and a Toyota® Highlander to test the 
developed real-time system. Both vehicles were modified to include an inverter that was used to 
supply power to the components listed above.  
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4. KEY INNOVATIONS 

The research team made the following key innovations during the execution of this project: 

• Detected and recognized multiple roadway objects in real-time. In addition to pedestrian 
detection, the system also detected regions that corresponded to buildings, poles, trees, 
and motor vehicles. 

• Used multiple cues to detect, classify, and track people. Stereo images provided depth 
information. Shape and appearance were used in the classifier, and motion cues were 
used to perform object tracking. 

• Used contextual information about regions such as buildings, trees, poles, etc., derived 
from depth information to reject a majority of the FPs that were detected by the initial 
pedestrian detection module. 
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5. TECHNICAL APPROACH 

This section describes the technical approach to achieve the research goals. The research team 
captured data from a calibrated stereo rig mounted behind the rear-view mirror of a car. The  
data was processed at 30 frames per second using an Acadia I™ Vision Accelerator Board to 
compute dense disparity maps at multiple resolution scales using a pyramid image representation 
and a SAD-based stereo matching algorithm.(23,24) The disparities are generated at three  
different pyramid resolutions, Di, i = 1, 2, …3, with D0 being the resolution of the input image. 
In figure 10, the pedestrian detector (PD) module takes the individual disparity maps and 
converts each one into a depth representation. These three depth images are used separately to 
detect pedestrians using a template matching of a 3D human shape model, as described in  
detail in section 5.2 of this report. The structure classifier (SC) module employs a combined 
depth map to classify image regions into several broad categories such as tall vertical structures, 
overhanging structures, and ground and poles to remove pedestrian candidate regions that have a 
significant overlap. Finally, the pedestrian classifier (PC) module takes the list of pedestrian 
ROIs provided from stereo modules and confirms valid detections by using a cascade of 
classifiers tuned for several depth bands and trained on a combination of pedestrian contour and 
gradient features. The rest of this section describes the algorithms implemented and the results 
produced by each stage. 

 
Figure 10. Illustration. Diagram of the developed system. 

5.1 SENSORS 

The proposed system consists of a stereo rig that is made of off-the-shelf monochrome  
cameras and the Acadia I™ Vision Accelerator Board. The cameras are standard NTSC  
format 720 × 480 resolution with a 46-degree horizontal field of view. 
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5.2 STEREO-BASED PEDESTRIAN DETECTION 

The approach to stereo-based generic object detection framework is based on the techniques 
introduced by Chang et al.(25) The algorithm introduced by Chang et al. used template matching 
(through correlation) of pre-rendered 3D templates of objects (e.g., pedestrians and motor 
vehicles) with the depth map to detect objects.(25) The 3D template matching was conducted in a 
coarse to fine manner over a two-dimensional (2D) grid overlayed onto the local XY plane. At 
each grid location, a 3D template was matched to the range image data by searching around the 
X, Y, and Z directions according to the local pitch uncertainty due to calibrations and bumps in 
the road surface. Locations on the horizontal grid corresponding to local maximal correlation 
were returned as candidate object locations. 

In the proposed method, template matching is conducted separately using a 3D pedestrian shape 
template in three disjoint range bands in front of the host vehicle. The 3D shape size is a 
determined function of the actual range from the cameras. The researchers obtains depth maps  
at separate image resolutions, Di, i = 1, 2, …3. For the closest range band, the researchers 
employed the coarsest depth map D2, for the next band level D1, and for the furthest band the 
finest depth map D0. This ensures that at each location on the horizontal grid, only the highest 
resolution disparity map that is dense enough is used. The output of this template matching is a 
correlation score map (over the horizontal 2D grid) from which peaks are selected by non-
maximal suppression as in Chang et al.(25) 

Note that this detection stage must ensure small pedestrian miss rates. As a result, a larger 
number of peaks obtained by non-maximal suppression is acceptable. The researchers relied on 
additional steps to reduce the candidates. Around each peak, the area of the correlation score 
map with values within 60 percent of the peak score was projected into the image to obtain the 
initial pedestrian ROI candidate set. This set was further pruned by considering the overlap 
between multiple ROIs: detections with more than 70 percent overlap with existing detections 
were removed. After this pruning step, a Canny edge map was computed for each initial 
pedestrian ROI. The edge pixels that were too far off from the expected disparity were  
rejected. A vertical projection of the remaining edges resulted in a one-dimensional profile from 
which peaks were detected using mean shift.(26) A new pedestrian ROI was initialized at each 
detected peak, which was refined first in the horizontal direction followed by the vertical 
direction to get a more centered and tightly fitting bounding box on the pedestrian. This involves 
using vertical and horizontal projections of binary disparity maps (similar to using the edge 
pixels above) followed by detection of peak and valley locations in the computed projections. 
After this refinement, any resulting overlapping detections were again removed from the 
detection list. The above approach allows detections of pedestrians and vehicles up to a range  
of 131.2 ft (40 m). Figure 11 through figure 14 show examples of pedestrian detection 
performance. In the figures, the white boxes indicate possible pedestrians, and the blue boxes 
indicate possible pedestrians to be further analyzed by an appearance classifier. Both true 
detections and typical FPs are shown. The objective of the following modules is to reduce the 
FPs. 
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5.3 EXAMPLES OF PEDESTRIAN DETECTION 

 
©INRIA (See Acknowledgements section) 

Figure 11. Photo. Example 1 of pedestrian detection.(12) 

 
©INRIA (See Acknowledgements section) 

Figure 12. Photo. Example 2 of pedestrian detection.(12) 

 
©INRIA (See Acknowledgements section) 

Figure 13. Photo. Example 3 of pedestrian detection.(12) 

 



20 

 
©INRIA (See Acknowledgements section) 

Figure 14. Photo. Example 4 of pedestrian detection.(12) 

5.3.1 Structure Classifier 

A key step in the developed method for pedestrian detection is depth-based classification of the 
scene into a few major structural components. Given an image and a sparse and noisy range map, 
the goal is to probabilistically label each pixel as belonging to one of the following scene classes: 

• V: Tall vertical structure (magenta). 

• O: Overhanging structure (green). 

• G: Ground (yellow). 

• C: Candidate objects (blue). 

An occupied cell in the range map of a scene provides evidence for the presence of one or more 
of the structure classes. The structure classes outlined above typically span multiple adjacent 
cells in a scene with discontinuities at the boundaries of the classes. Therefore, local evidence  
for the presence/absence of a class can be combined with neighborhood constraints to 
probabilistically estimate the class labels.  

The range map from the stereo does not provide enough resolution to differentiate between a 
group of people and a motor vehicle. As a result, the research team labels all motor vehicle-like 
objects as object candidates and allows the appearance-based classifier to resolve detections in 
these regions. These classes have been chosen to competitively label pixels among a few 
commonly occurring structures as a precursor to PC versus non-PC. This is in contrast to 
traditional detectors that directly apply PC/non-PC in which the negative examples themselves 
form a large set of structured classes. The research team further separates the structured classes 
into classes that are distinct from the pedestrian class. In this method, if large numbers of pixels 
can be rejected as being part of generic structural classes, the system substantially reduces the 
number of false hypotheses that are presented to a PC/non-PC, gaining both in performance  
(FP rate) and computation. 
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The research team performed structure classification using depth maps. An example depth map is 
shown in figure 15. The map is pseudo-colored with red denoting close-range objects, cyan 
denoting far-off objects, and black denoting missing depth. The depth map illustrates a number 
of issues: (1) objects appear bloated in the range map due to the stereo integration window,  
(2) the characteristic noise in the range values is observable as scattered fragments, and  
(3) the occlusion boundaries between objects are noisy. 

To handle depth map errors, first, the research team defines a structure called the vertical  
support histogram (VSH) to accumulate 3D information over voxels in the vertical direction  
(see figure 15). In a given frame, the system will compute a feature vector using this structure 
and subsequently use the feature vector to learn the likelihood of each pixel belonging to a given 
structural class. Next, the team makes use of the scene-context constraints arising from the 
camera viewpoint by formulating the labeling problem as an MRF, where the smoothness 
constraints allows the team to reason about the relative positioning of the 3D structure labels in 
the image. This reduces error in labeling due to depth inaccuracies and gives a smooth labeling 
of the scene. 

 
©INRIA (See Acknowledgements section) 

Figure 15. Illustration. VSH.(12) 

5.3.2 Bayesian Labeling 

The main problem with using Bayesian labeling is deriving a labeling L = l of image patches,Π , 
using a set of image observations, r. Suppose that both the a priori probabilities )(P of labels 
and the likelihood densities )|( rp   of r are known, the best estimate one can get from these is 
one that maximizes MAP, which can be computed using the Bayesian rule as follows: 

 Figure 16. Equation. Bayesian rule. 

In the above equation, p(r), which is the density function of r, does not affect the MAP solution.  

The following section describes the approach to estimate the likelihood densities )|( rp  and the 
prior probabilities )(P for this labeling problem. 
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5.3.3 Likelihood Densities of Structure Labels 

The likelihood densities for the structure labels are estimated by first computing VSH, 
determining the likelihood of the structure labels using VSH information, and modeling the 
smoothness inherent in scene structures. Each of these steps is described in more detail below.  

The 3D scene is represented as distributions of reconstructed 3D points with respect to a ground 
plane coordinate system. The ground plane can be estimated using several well-known 
techniques applied to the reconstructed stereo points, such as in Leibe et al.(14) The ground plane 
(XZ in this case) is divided into a regular grid at a resolution of Xres × Zres. At each grid cell, a 
histogram of distribution is created of 3D points according to their heights. All the image pixels 
that map into a given XZ coordinate participate in that cell's histogram. The heights, or Y 
coordinates, of all the points in a cell are mapped into a k-bin histogram where each bin 
represents a vertical height range. This structure is named VSH and is denoted by V. At any 
given grid cell, the following equation can be used: 

 
Figure 17. Equation. VSH for a given grid cell.  

In this equation, g
is measures the support for the ith-bin of the histogram. Figure 8 shows how 

image points and the corresponding depth estimates are mapped to 3D distributions for an 
example histogram with k = 3 bins.  

Three ranges are chosen to capture the typical vertical characteristics of structures of interest 
which result in three histograms: hlow, hmid, and hhi. 

In order to compute the supports, gs , from noisy range estimates at each pixel, the researchers 
uses a mean-around-the-median estimate of range. If a wxh patch is defined at each pixel (X, Y), 
a robust range estimate is computed for each patch (in the following, pixel and patch are used 
interchangeably, with the idea that the context makes the sense clear). Image points, (X, Y), with 
the range estimate, Z, are mapped to the corresponding (X, Z) grid cell with height estimate Y.  
Y is used to increment the appropriate bin of VSH at (X, Z). 

Each cell of the histogram is normalized by dividing with the maximum number of pixels that 
can project to the cell. For a cell at a distance Z from the camera (with horizontal and vertical 
focal-lengths fx and fy, respectively), the maximum number of pixels in each image row is  
as follows: 

 Figure 18. Equation. Maximum number of pixels in each image row. 
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The maximum number of image rows in the height-band (Hmin and Hmax) is as follows: 

 
Figure 19. Equation. Maximum number of image rows in a specific height band. 

In this equation, Hmax is determined taking into account the maximum height that is visible in the 
image at distance Z . This gives the normalizing factor for the cell as follows: 

 
Figure 20. Equation. Normalization factor for each cell in which VSH is calculated.  

V(X, Z) is defined in 3D space. If this 3D representation is transferred to the 2D image and 
augmented with the 3D height, then, at a given image patch, p, the robust range estimate Z can be 
used to project this patch to a footprint (collection of cells) in the XZ-grid coordinate system. An 
aggregate of the VSH values for the cells within this footprint serves as the total support of p. HP 
is defined as the average height estimate of the image pixels within the patch. Subsequently, each 
such p is associated with a k + 1 - D feature vector as follows:  

 Figure 21. Equation. Feature vector extracted from each image patch. 

VSH captures the distribution of 3D points in any given scene in terms of quantized height bins. 
V(X, Z) is a representation of the scene in front of a camera. In order to associate each image 
patch with structural labels, the researchers compute the likelihoods for the augmented feature 
vector, rp, conditioned on the specific structural labels defined earlier. 

The research team randomly sampled approximately 100 frames from sequences in typical urban 
driving scenarios. In each frame, structures were coarsely hand-labeled as tall vertical structures 
(buildings), candidate objects (pedestrians, vehicles, etc.), ground, and overhanging structures. 
The research team experimented with the number of histogram bins and the placement of the bin 
boundaries and empirically derived the three most discriminative feature components (bins in 
this case). Feature vectors along these three most discriminative components for all the labeled 
patches rp are shown in figure 22, with different colors denoting different ground truth labels. 
The bin boundary values for these bins are in table 2. The resolution was 12 × 16 pixels. This 
separation is not surprising and can be explained as follows:  

• All buildings should at least have support in hmid. 

• All candidate objects should have a low Hp and at least have support from hlow (and some 
support from hhi when under overhanging structures) and all overhanging structures 
should have a high Hp and at least have support from hhi and lack of support from hmid. 
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Figure 22. Illustration. Two views of the feature space showing the distribution of vectors 

from which the class conditional likelihoods are estimated.  

Table 2. Parameter settings for SC. 
XY Histogram (meters) MRF 

Xres Zres hlow hmid hhi Zn ρbp 
0.1  0.1  0 to 2  2 to 4  4 to 8  0.1 1.0 

1 ft = 0.305 m 

Figure 23 through figure 26 show the various steps of the likelihood density estimation process 
for one frame. Note that, in particular, the vertical structure likelihoods in figure 26 capture the 
visible extent of the buildings all the way to the base, a task that is difficult to achieve with a 
simple heuristic on H. 

 
©INRIA (See Acknowledgements section) 

Figure 23. Photo. Likelihood density estimation of original (left) and labeled structures 
(right) showing buildings and candidate objects.(12) 
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Figure 24. Illustration. Top view of VSH components: hlow (left), hmid (center), and  

hhi (right). 

    
Figure 25. Illustration. VSH projected on to the image (left three images) and the height of 

each pixel (right). 

    
Figure 26. Illustration. Likelihoods conditioned on the four labels: candidate objects, 

vertical structures, ground, and overhanging structures. 

The research team performed kernel density estimation on the feature space obtained in the 
above process to compute the likelihood densities, )|( rp , for each of the four class labels,  ,  
as follows:(27)  

 Figure 27. Equation. Kernel density estimation on the feature vector extracted from each 
image patch.  
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Where: 
c

ir = The feature vectors of all the patches. 
i = The training set belonging to the class c.  

)()()( 2
1

uHKHuK H

−

= α  = A kernel function. 
H = A bandwidth matrix which scales the kernel support to be radially symmetric.  

In implementation, the research team defines K(u) = k(uTu) and uses the following  
bi-weight kernel: 

 Figure 28. Equation. Bi-weight kernel used in the kernel density estimation function. 

The bi-weight kernel is efficient to compute, and the research team found that it had a 
comparable performance to more complex kernels.  

In addition to the likelihoods of structural labels, the research team modeled the smoothness 
inherent in scene structures through MRF priors on a pair-wise basis. The a priori joint 
probability of labels, )( =LP , is difficult to define in general but is tractable for MRFs. If L is 
represented as an MRF, then the prior probability, )(P , is a Gibbs distribution given by the 
following equation:(28) 

 Figure 29. Equation. Gibbs distribution used to model the prior probability.  

In the above equation, )(sE  is the cost associated with  and is modeled as a pair-wise 
smoothness term between neighboring patches. L can be formulated as an MRF on the grid graph 
represented by the patch grid, Pi, with the four-connectivity imposed by the grid structure 
defining the edges. This can occur if the following conditions are satisfied:  

• L is a random field. 

• The label for a particular patch given those of all other patches depends only on the labels 
of the neighboring patches.  

These are reasonable assumptions in this scenario. For example, the identification of a patch as a 
building patch might depend on whether its neighboring patches are ground but has little to do 
with the identity of the patches far away spatially. 

The next step is to define the smoothness cost, Es, from which the prior probability )( =LP  
can be computed. The smoothness term can be used to model valid configurations of scene 
objects possible from the camera viewpoint. Thus, for each patch, its neighboring patch will  
be considered, and the cost of associating a pair of labels with the two patches will be defined. 
The neighboring patch is defined as the patch that is four-connected to this patch and is also 
close in its world depth, Zw. Thus, two patches, which are neighbors in the image space but 
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distant in the world space, are treated to have no conditional dependence on each other's labeling 
in the MRF network. This condition essentially cuts the grid graph along depth discontinuities 
before the MRF framework starts any label propagation. The remaining neighbors are now  
depth neighbors as well, and it is easier to reason about what objects can (or cannot) be near 
other objects. 

Let p and q be two neighboring patches from the patch grid and w
pZ and w

qZ  represent the world 
depths of these patches. Define a binary variable, )(tn ∂=ρ , as follows: 

 
Figure 30. Equation. Binary variable used to test the depth neighborhood of image patches. 

The binary variable defined in figure 30 is used for testing depth neighborhood using a ratio 
threshold, Zn. The smoothness cost assigned to the patch pair (p, q) is as follows: 

 
Figure 31. Equation. Smoothness cost associated with each image patch pair. 

In the above equation, ρbp is the constant weight factor applied to the smoothness term and is set 
empirically, L(p) and L(q) are the labels of p and q, and D(.) is a function that measures the 
compatibility between those labels. 

The function D(.) is defined by considering not only the labels L(p) and L(q), but also 
considering if patch p is a left, right, top, or bottom neighbor of patch q. The function can 
enforce different costs for the same pair of labels (L(p) and L(q)) if p is below q compared to if 
 p is above q. For example, if p is a building patch and q is below p, then q can be a building, 
candidate object, or ground patch. However, if q is above p, then q can only be a building patch 
since one cannot expect to see either ground or candidate objects along the top edge of a 
building. Note that in the first scenario, the candidate label is included to allow a pedestrian 
patch close in depth to the building patch to occlude the lower part of the building. The allowed 
choices for L(q) would also be the same as the first scenario if p and q were horizontal neighbors. 
D(.) is a binary function which imposes a penalty 1 (correction was applied) if a pair of labels is 
inconsistent and a penalty 0 (no correction) otherwise. In implementation, the MAP estimation 
(see figure 16) is done with the max-product belief propagation algorithm.(29) 

5.4 PEDESTRIAN CLASSIFIER 

The PC layer consists of a set of multirange classifiers. Specifically, three classifiers are trained 
for distance intervals of 0 to 65.6, 65.6 to 98.4, and 98.4 to 131.2 ft (0 to 20, 20 to 30, and 30 to 
40 m) where a specific layer is triggered based on distance of detected target. 
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This is inspired by the fact that under a typical interlaced automotive grade camera with a 
resolution of 720 × 480 pixels, pedestrian ROI size on image varies substantially. For example, 
people who are 98.4 ft (30 m) away or farther appear on image around 25 pixels or smaller. 
Thus, it is desirable to handle them with approaches tuned to each specific resolution variations 
rather than from a single classifier covering mixed resolutions. 

Each of the three distance-specific classifiers is composed of multiple cascade layers to 
efficiently remove FPs. For the optimal performance of the target application, the classifiers are 
designed with different approaches (i.e., for low latency detection at short ranges and detection at 
farther distances). 

5.4.1 Contour-Based Classifier 

The first classifier is designed to reliably classify high-resolution pedestrians in a 
computationally efficient manner. In general, for pedestrian detection approaches reported thus 
far, it is often required to search for optimal ROI position and size to obtain valid classification 
scores.(6,10,14) This is due to the sensitivity of classifier to ROI alignments that results from rigid 
local feature sub-ROI placement inside the detection window. 

This result would require exhaustive search over multiple positions and scales for each input 
ROI. Aside from computational overhead, the classification score also becomes sensitive and 
often produces false negatives. 

Note that there are approaches, such as codebook-based approaches, that do not require global 
ROI search; however, they typically show inferior performance to approaches with fixed  
sub-ROI.(14,6) False negatives can also happen when pedestrians appear against a complex 
background (i.e., highly textured). In this case, typical image gradient-based features become 
fragile due to the presence of multiple gradient directions in a local image patch. 

The research team addressed this issue by designing a classifier that combines contour template 
and HOG descriptors, which helps with local parts alignment and background filtering  
(see figure 32).  



29 

 
Figure 32. Photo. Process of contour and HOG classification for (a) fixed sub-ROI, (b) local 

ROI, (c) foreground mask from contour matching, and (d) filtered HOG directions 
underlying masked regions. 

The research team uses a collection of templates of shape contours for each local feature 
window. That is, each feature window (i.e., sub-ROI) contains examples of contour models of 
underlying body parts that can cover different variations. For example, a sub-ROI at head 
position contains a set of head contours samples of different poses and shapes. Figure 33 
provides an example of local contour models.  

 
Figure 33. Illustration. Example of local contour models. 

Given a pedestrian ROI, each local feature window can search in a limited range and lock  
on underlying local body parts. In addition to computational efficiency, it can better handle  
local parts deformation from pose changes and shape variations. It can also overcome ROI 
alignment issues. 

The part contour models consist of edge maps of representative examples. Each sub-ROI 
contains 5 to 12 such templates. Contour template matching is achieved by chamfer matching. 
For each sub-ROI, the chamfer score is computed for each template model. The refined sub-ROI 
position is then obtained from mean position of maximum chamfer scores from each template 
(see figure 34). 
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From the contour template, a foreground mask can also be composed by overlapping binary local 
templates at each detected position that is weighted by matching scores. The foreground mask is 
used as a filter to suppress noisy background features prior to classification step. 

 
Figure 34. Equation. Foreground mask for the contour template. 

In the above equation, 
∑

=

i
ch iw )(

1α   

Where: 

)( , yxsubROI iCtr = Center of local sub-ROI. 
MFG = Foreground mask. 

Cont
templI  = Binary contour template. 

Ctrtempl (i; Ich) = Center from chamfer matching score with the ith kernel image. 

Given refined sub-ROI and foreground mask, the research team applied a HOG-based classifier. 
The HOG feature is computed by using refined sub-ROI boxes where gradient values are 
enhanced by the weighted foreground mask. 

Each of the three images displays the original image, the foreground mask generated from local 
part templates, and the resulting edge filtering. Note that local contour parts can capture global 
body contours at various poses from its combinations; however, this does not form a conforming 
pedestrian mask for negative patches. 

Figure 35 shows examples of a foreground mask and negative patches on pedestrians.  
Columns 3, 6, and 9 in figure 35 show the results on negative data. On the pedestrian images, the 
proposed scheme can refine the ROI positions on top of matching local body parts and can 
enhance effectively underlying body contours. The mask also produces nonconforming shape 
and position on negative examples. This scheme produces efficient and reliable performance on 
relatively high-resolution pedestrian ROIs. However, as pedestrian ROI size becomes smaller, it 
faces a problem as contour extraction and matching steps become fragile under low-resolution 
images. As a result, the researchers employ conventional HOG classifier at farther distances of 
pedestrian ROI (less than 35 vertical pixels). 
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Figure 35. Photo. Foreground mask examples.  

5.4.2 Far Distance Classification 

At the second and third levels, the research team uses a cascade of HOG-based classifiers. The 
HOG classifier proved to be effective on relatively low-resolution imageries when body contour 
is distinctive from the background. 

Each classifier is trained separately for each resolution band. Gaussian smoothing and 
subsampling is applied to match target image resolution, where 25 (at 82 ft (25 m)) and  
17 (at (114.8 ft (35 m)) are nominal pixel heights for the distance interval. 

Note that at farther distances, the image contrast is reduced as pedestrian ROI size becomes 
smaller. To compensate for this reduction and to meet scene dependent low-light situations, a 
histogram normalization step is used that is based on histogram stretching. For each ROI, the 
research team applies local histogram stretching where the top 95 percent gray value histogram 
range is linearly extended to cover 255 gray levels. As opposed to histogram normalization, it 
does not produce artifacts at low contract images, yet it can enhance underlying contours. 

5.5 TRACKING 

The research team implemented a pedestrian tracking method designed to complement 
intermittent missing target detection and to allow further analysis of spatial-temporal feature 
spaces (i.e., motion cues) to enhance classification performance. Figure 36 provides an overview 
of the pedestrian tracker. The red box indicates the object inside it was identified as a pedestrian, 
and the green shading indicates the pixel region (pedestrian’s trace) that was occupied by the 
pedestrian in subsequent frames. 
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Figure 36. Photo. Overview of the pedestrian tracker. 

5.5.1 Camera Motion Estimation 

The tracking method consists of two steps: (1) 3D feature-based camera motion estimation and 
(2) image correlation-based ROI tracking. The research team’s visual odometry system computes 
3D motion of the camera, specifically rotation and translation of a vehicle between adjacent 
frames with respect to the ground plane. To compute camera motion, the system first extracts 
feature points on each frame where features are obtained from corner points from various scene 
structures. Next, the correspondences between adjacent frames are established by using random 
sample consensus-based point association. Given correspondences, the relative camera motion 
can be computed by solving the structure from motion equation. 

5.5.2 Image Correlation-Based Tracker 

The estimated camera motion parameter is used to predict the location of the detected pedestrian 
boxes on image (ROI) in the current frame. The camera motion-based prediction is important to 
accurately localize ROIs under large image motions such as turning.  

Given the predicted location of the ROI from the previous frame (t-1), the new location in the 
current frame (t) is estimated by patch correlation-based tracker module. The correlation-based 
tracker refines ROI position by searching through multiple candidate positions and scales of  
the enlarged prediction window that matches the highest appearance similarity with the 
corresponding ROI image patch. Figure 37 provides an equation for an image correlation tracker. 

 
Figure 37. Equation. Image correlation tracker. 
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5.5.3 Pedestrian Tracker Integration 

In the current system, the tracker is integrated with the PD and classifier to form a closed-loop 
feedback architecture. The positive outputs from PC, which are the confirmed pedestrian image 
patches, are fed back to the tracker, and the tracker registers them as new entries and predicts and 
refines the changing position of ROIs for future frames. The tracked ROIs are removed from the 
track queue when the following occur: 

• ROIs go outside the image boundary. 

• Tracking loss occurs. 

• Reconfirmation of the pedestrian label from the classifier does not occur during tracking. 

Figure 38 shows a pedestrian tracker. 

 
Figure 38. Illustration. Pedestrian tracker data flow. 
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6. EXPERIMENTS AND RESULTS 

The proposed system consists of a stereo rig that is made of off-the-shelf monochrome cameras 
and a commercial stereo processing board that runs on multicore personal computer 
environments.(23) The cameras are of standard NTSC automotive grade with 720 × 480 image 
resolution with a 46-degree field of view. The stereo rig is mounted inside a vehicle (Toyota® 
Highlander) that also has a dual-quad-core processing unit and electronics to power the computer 
using the vehicle battery. This test platform allows the researchers to conduct live experiments 
and collect data for offline processing. 

To evaluate system performance, the research team captured and ground truth-marked a number 
of data sequences in various urban driving scenarios. The testing data included sequences of 
pedestrians crossing the road, cluttered intersections, and pedestrians darting out from between 
parked vehicles. The research team also acquired data from publicly available datasets, which are 
particularly challenging because they have a large number of pedestrians and a crowded urban 
setting.(30) The research team compared the performance of this system against those of other 
state-of-the-art systems in the public dataset.(30) 

Several image examples of the data collected are provided in figure 39 through figure 51. 

 
Figure 39. Photo. Pedestrians crossing at an intersection during the day under good 

lighting conditions. 
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Figure 40. Photo. Pedestrians crossing at an intersection during the day while a vehicle 

turns right. 

 
Figure 41. Photo. Pedestrian crossing an intersection at night. 
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Figure 42. Photo. Pedestrians crossing a road at midblock during the evening. 

 
Figure 43. Photo. Pedestrians crossing a road at midblock during the early evening. 
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Figure 44. Photo. Pedestrians crossing a road at an intersection at night. 

 
Figure 45. Photo. Vehicle driving on the highway. 
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Figure 46. Photo. Second view of vehicles driving on the highway with tall vertical poles 

and overhang bridge in the field of view. 

 
Figure 47. Photo. Pedestrians crossing midblock in a multilane urban street with overhang 

bridge as overlapping background. 



40 

 
©INRIA (See Acknowledgements section) 

Figure 48. Photo. Pedestrian crossing the street and right-turning vehicle in winter.(12) 

 
©INRIA (See Acknowledgements section) 

Figure 49. Photo. Pedestrians on the sidewalk in an urban environment during winter.(12) 
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©INRIA (See Acknowledgements section) 

Figure 50. Photo. Pedestrians walking in the roadway near parked vehicles in an urban 
environment.(12) 

 
©INRIA (See Acknowledgements section) 

Figure 51. Photo. Pedestrians at a crosswalk in front of a vehicle in bright conditions with 
saturated areas.(12) 
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6.1 EVALUATION METHODOLOGY 

This section briefly discusses the experimental methodology and shows results on selected 
sequences. The system was evaluated by comparing it to hand-marked ground-truth marked  
data. For a detailed evaluation, the research team analyzed the performance under the  
following factors: 

• Overall system performance. 

• Zone-based (head-on/in-path versus full field of view) performance analysis. 

• Performance of each module in the system. 

6.2 EXPERIMENTAL RESULTS  

The results in this section are presented for typical sequences acquired at the research team’s 
campus, from a Europe dataset, and from a publicly available dataset.(31,12) Overall, the research 
team captured over 2 h of video data using a vehicle owned by the research team and a vehicle 
maintained by the research team’s automotive tier 1 partner, Autoliv Electronics.  

The results are representative of the developed system’s performance. It is important to note that 
for many of these sequences, the FPPF results are somewhat misleading in that the sequences are 
acquired for the purposes of pedestrian detection and do not have the empty roads that are typical 
of regular driving scenarios.  

For each of the tables shown below, the performance of each key module of the developed 
system is shown including the stereo-based PD and the detector and classifiers as well as  
the detector, classifier, and tracker. Results are shown for both in-path pedestrians and all 
pedestrians in the field of view up to 131.2 ft (40 m). 

Additionally, the research team tested the real-time system by driving the vehicle and 
qualitatively observing true detection and FP performance. The system was tested while driving 
at speeds of 15 and 30 mi/h (24.15 and 48.3 km/h). Researchers also demonstrated the system 
multiple times to FHWA personnel at the research team’s campus in Princeton, NJ, and at the 
Turner-Fairbank Highway Research Center in McLean, VA. The following main observations 
were made during live experiments: 

• The frame rate of the developed system under live conditions was between  
7.5 and 10 Hz. 

• Due to the frame rate performance, the live system performed better at slower speeds 
(standstill to 15 mi/h (24.15 km/h) than at higher speeds. The offline system showed that 
if the frame rate were improved to 15 Hz, the performance would improve so that speeds 
of 30 mi/h (48.3 km/h) could be easily handled.  

• At specific operating points of the classifiers in crowded urban environments, the FP 
performance can be reduced to one or lower every few minutes, but this would reduce the 
true detection rate. The true and FP numbers for the empirically chosen operating point of 
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the classifier under different evaluation zones (in path versus full view) are shown in the 
tables below. 

• For highway driving, the FP rate approached zero. This is mainly due to the performance 
of SC and the vehicle FP rejection classifiers.  

Tabulated results are provided in table 3 through table 9. Table 3 results are as follows: 

• Sequence name: 080613111722_BM-SHJ_cross-in-front (parking lot). 

• Parameters: In-path (-3.28 to 3.28 ft (-1 to 1 m) from the center of the vehicle).  

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 3. In-path detection results for sequence 080613111722_BM-SHJ_cross-in-front 
(parking lot). 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector only 100 0.04 70 
Detector + classifier 87.14 0 70 
Detector + classifier + tracker 95.71 0 70 

 
Table 4 results are as follows: 

• Sequence name: 080613111722_BM-SHJ_cross-in-front (parking lot). 

• Parameters: Full field of view.  

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 4. Full field-of-view detection results for sequence 080613111722_BM-SHJ_ 
cross-in-front (parking lot). 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector only 100 7.09 383 
Detector + classifier 87.73 0.36 383 
Detector + classifier + tracker 96.87 1.1 383 
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Table 5 results are as follows: 

• Sequence name: 080613112933_SHJ_walk_BM_stand_on-side (parking lot). 

• Parameters: Full field of view.  

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 5. Full field-of-view detection results for sequence 80613112933_ 
SHJ_walk_BM_stand_on-side (parking lot). 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector-only 95.73 10.06 234 
Detector + classifier 90.60 0.54 234 
Detector + classifier + tracker 98.29 1.55 234 

 
Table 6 results are as follows: 

• Sequence name: EuropeTour_Innsbruck.0_20070128_42_SVS_Data. 

• Parameters: Full field of view.  

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 6. Full field-of-view detection results for sequence EuropeTour_ 
Innsbruck.0_20070128_42_SVS_Data. 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector-only 90.54 4.436 134 
Detector + classifier 72.97 0.58 134 
Detector + classifier + tracker 85.14 1.36 134 

 
Table 7 results are as follows: 

• Sequence name: EuropeTour_Wurzburg.0_20070126_19_SVS_Data. 

• Parameters: Full field of view. 

• Distance: 0 to 131.2 ft (0 to 40 m). 
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Table 7. Full field-of-view detection results for sequence EuropeTour_ 
Wurzburg.0_20070126_19_SVS_Data. 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector-only 86.43 5.35 161 
Detector + classifier 70.54 0.98 161 
Detector + classifier + tracker 74.03 2.5 161 

Table 8 results are as follows: 

• Sequence name: seq00_rerun (Ess sequence). 

• Parameters: In-path.  

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 8. In-path detection results for Sequence seq00_rerun (Ess sequence). 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector-only 94.56 0.82 584 
Detector + classifier 66.61 0.16 584 
Detector + classifier + tracker 92.81 0.45 584 

 
Table 9 results are as follows: 

• Sequence name: seq00_rerun (Ess sequence). 

• Parameters: Full field of view. 

• Distance: 0 to 131.2 ft (0 to 40 m). 

Table 9. Full field-of-view detection results for sequence seq00_rerun (Ess sequence). 

Mode 
Detection Rate 

(percent) FPPF 
Number of 

People 
Detector-only 91.91 10.78 1,816 
Detector + classifier 66.13 1.56 1,816 
Detector + classifier + tracker 89.21 3.55 1,816 

 
6.2.1 Comparison Between FHWA Results and Published State-of-the-Art Results 

Figure 52 through figure 55 show receiver operating characteristic (ROC) curves illustrating the 
developed system’s performance on four sequences (Seq00, Seq01, Seq02, and Seq03). The 
figures also show comparisons with another representative approach from literature.(31) 
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Figure 52. Graph. ROC curves for Seq00. 

 
Figure 53. Graph. ROC curves for Seq01. 

 
Figure 54. Graph. ROC curves for Seq02. 
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Figure 55. Graph. ROC curves for Seq03. 

Example image outputs of the system are provided in figure 56 through figure 65. In the left 
image in figure 56, magenta and green pixels are detected by the SC as a tall, vertical structure. 
The image on the right shows the detections that were rejected by the SC in blue. The red 
rectangles indicate objects that were identified as pedestrians. 

 
©INRIA (See Acknowledgements section) 

Figure 56. Photo. Sample output from SC in an alleyway.(12) 

  



48 

In the image on the left in figure 57, ground pixels are yellow, overhang/tree branch pixels are 
green, and buildings/tall vertical structure pixels are magenta. Blue pixels indicate regions 
containing objects that will be further processed by an appearance classifier. In the right image, 
blue boxes indicate objects rejected by the SC, and white boxes indicate potential pedestrians. 

  
©INRIA (See Acknowledgements section) 

Figure 57. Photo. Sample output from SC in a dense urban scene with pedestrians in the 
vehicle path.(12) 

The image on the left in figure 58 shows ground pixels in yellow and tall vertical structure pixels 
in magenta and green. Pedestrian candidate regions are blue. In the right image, white boxes 
indicate detected pedestrian candidates, and blue boxes indicate rejected candidates. 

 
©INRIA (See Acknowledgements section) 

Figure 58. Photo. Sample output from SC in an urban scene with pedestrians at varying 
distances from the vehicle.(12) 
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In the image on the left in figure 59, the SC correctly rejects the poles and trees in the 
foreground, which are magenta and green. It also rejects portions of the bicycle parked near the 
sidewalk while validating the pedestrian detections. In the image on the right, pedestrian 
detections are shown in white boxes, while rejected candidates have blue boxes around them. 

 
©INRIA (See Acknowledgements section) 

Figure 59. Photo. Sample output from SC in an urban scene with pedestrians entering a 
building and others in the distance ahead of the vehicle.(12) 
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In figure 60, the SC did not reject the person on the motorcycle or the light post on the median. 
The image shows tall vertical structures in magenta, overhanging structures in green, and 
possible pedestrians in blue. 

 
©INRIA (See Acknowledgements section) 

Figure 60. Photo. SC rejecting poles.(12) 

Figure 61 through figure 65 show pedestrians detected by the appearance classifier, which are 
shown by the red boxes.  

 
©INRIA (See Acknowledgements section) 

Figure 61. Photo. Appearance classifier recognizing a pedestrian.(12) 
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Figure 62. Photo. Appearance classifier output recognizing pedestrians crossing  

in front of vehicles. 

 
Figure 63. Photo. Appearance classifier output recognizing pedestrians while making a  

left turn. 
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©INRIA (See Acknowledgements section) 

Figure 64. Photo. Appearance classifier recognizing pedestrians in front of a vehicle in a 
busy urban street.(12) 

 
©INRIA (See Acknowledgements section) 

Figure 65. Photo. Appearance classifier recognizing pedestrians 98.4 ft (30 m) ahead of a 
vehicle in a busy street.(12)
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7. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The research team developed a real-time in-vehicle vision-based stereo system that detects and 
recognizes pedestrians in the camera’s field of view. The system uses a layered or hierarchical 
approach that progressively operates on all or part of the input image data, with each step 
increasing in computational complexity and reducing the image area that needs to be processed 
by subsequent steps. The system integrates multiple cues including depth, appearance, and 
motion. The key steps are as follows: 

1. Large-scale object extraction using stereo depth templates. 

2. SC recognition of multiple classes including ground, buildings, trees, and poles and 
separation of those classes from vehicles and pedestrians. 

3. Appearance classification using a cascade of classifiers that explicitly recognizes pedestrians 
and discriminates against other objects such as vehicles and bushes. 

4. Pedestrian tracking using shape and appearance matching. 

Based on offline and live experiments using a Toyota® Highlander with a stereo camera head and 
a personal computer processing unit, the following conclusions were made: 

• The system achieves state-of-the-art performance for detection rate and FP rate when 
compared to other published results. 

• The FP rate achieved by the system is not low enough for deployment as a stand-alone 
system. This performance argues for either the use of an additional sensor (e.g., using 
radar/light detection and ranging or reducing the horizontal field of view of the stereo 
camera to achieve production-level performance). 

• The system needs further optimization to improve its performance to 15 Hz or higher. A 
higher frame rate is needed so that the system can be used on vehicles traveling at speeds 
higher than 30 mi/h (48.3 km/h). 

If successful, the following recommendations for future work could lead to a commercially 
viable system: 

• Enforce optimizations to increase throughput and reduce system latency. 

Implement the developed system on an embedded platform. Potential candidates include the 
Acadia II™ application-specific integrated circuit in combination with a field-programmable 
gate array (FPGA) or the automotive-grade multiple digital signal processor and FPGA system 
jointly developed by Autoliv Electronics and Sarnoff Corporation.   
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• Improve the classification performance to further reduce FPs. Most of the FPs are from 
specific objects. While some progress has been made to remove these types of consistent 
FPs, there is a need for additional development to categorize these detections using 
supervised or unsupervised learning techniques and to build more focused classifier 
cascades that can reject them. 

• Test and create enhancements to enable the system to operate in off-road conditions and 
construction zones. 
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APPENDIX 

This appendix describes the user interface that was developed for the real-time layered object 
recognition system for pedestrian collision sensing software system.  

The graphic user interface (GUI) consists of a main page in which subsequent modules can be 
customized and run. For each of these modules (i.e., PD, classification, etc.), tab pages are 
defined, which can be subsequently customized if users click the respective tab. A screenshot  
of the main page is shown in figure 66. It is the first interface that users see when operating  
the system.  

 
Figure 66. Screenshot. Main screen of the GUI for PD and classification.  
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This appendix illustrates each of the options through captured screenshots. The two key 
properties exposed by GUI are controls for the stereo-based detection system and controls for 
PC. The controls for the stereo-based detection system help find ROIs in an input image. The 
controls for PC help prune the detections and reduce the number of false pedestrians returned by 
the system. The arrow in figure 67 indicates the selection option to display all of the pedestrian 
candidates detected by the system prior to classification. 

 
Figure 67. Screenshot. PD interface—display all detected pedestrian candidates.  
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Figure 68 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to display all pedestrian candidates 82 ft (25 m) away from the vehicle detected by the system 
prior to classification. 

 
Figure 68. Screenshot. PD interface—PCS-Ped tab with option selected to display detected 

pedestrians.  
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Figure 69 also shows the PCS-Ped tab within the GUI interface. The arrow indicates the 
selection option to display the horizon line estimated by the system. This option is a byproduct of 
the ground plane estimator. 

 
Figure 69. Screenshot. PD interface—PCS-Ped tab with option selected to display horizon 

line estimated by the system.  
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Figure 70 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to display the SC output. 

 
Figure 70. Screenshot. PD interface—PCS-Ped tab with option selected to display the SC 

output.  
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Figure 71 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to display an intermediate VSH output of SC. 

 
Figure 71. Screenshot. PD interface—PCS-Ped tab with option selected to display an 

intermediate VSH output of SC.  
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Figure 72 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to display the depth/disparity map generated by the stereo algorithm. 

 
Figure 72. Screenshot. PD interface—PCS-Ped tab with option selected to display 

depth/disparity map.  
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Figure 73 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to capture stereo data for temporary storage in the personal computer. 

 
Figure 73. Screenshot. PD interface—PCS-Ped tab with option selected to capture stereo 

data for temporary storage.  
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Figure 74 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to cancel saving of stereo data and clear the temporary store in the personal computer. 

 
Figure 74. Screenshot. PD interface—PCS-Ped tab with option selected to cancel saving of 

stereo data and clear temporary store.  
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Figure 75 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to stop capture and store the captured stereo data to permanent storage on the disk. 

 
Figure 75. Screenshot. PD interface—PCS-Ped tab with option selected to stop capture and 

store captured stereo data to permanent storage.  
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Figure 76 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to automatically divert data to a file on disk whenever a pedestrian is detected. 

 
Figure 76. Screenshot. PD interface—PCS-Ped tab with option to automatically divert data 

to a file whenever a pedestrian is detected.  
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Figure 77 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
to define the maximum number of frames that are maintained in temporary storage during the 
automatic divert of data to disk. 

 
Figure 77. Screenshot. PD interface—PCS-Ped tab with option selected to define maximum 

number of frames maintained in temporary storage during automatic divert of data.  
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Figure 78 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that specifies the number of additional video frames saved to disk after “Stop” is selected during 
data storage to the disk. 

 
Figure 78. Screenshot. PD interface—PCS-Ped tab with option selected that specifies 

number of additional video frames saved to disk.  
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Figure 79 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that specifies whether the PD algorithms should operate while data are being stored to the disk. 

 
Figure 79. Screenshot. PD interface—PCS-Ped tab with option selected that specifies 

whether PD algorithms should operate while data being stored.  
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Figure 80 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to run in the live system. 

 
Figure 80. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to run in live system.  
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Figure 81 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to split wide object detections into multiple pedestrian candidates. 
This is turned on by default and used to resolve detections within groups of pedestrians observed 
together by the cameras. 

 
Figure 81. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to split wide object detections into multiple pedestrian candidates. 
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Figure 82 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to refine the horizontal placement of the initial detection box using 
depth and edge data. 

 
Figure 82. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to refine horizontal placement of initial detection box. 
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Figure 83 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to refine the vertical placement of the initial detection box using 
depth and edge data. 
 

 
Figure 83. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to refine vertical placement of initial detection box.  
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Figure 84 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to use the ground plane estimate to better locate the foot location 
of a detected pedestrian candidate. 

 
Figure 84. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use ground plane estimate to better locate pedestrians.  
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Figure 85 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to maintain a fixed aspect ratio when detection boxes are refined. 
 

 
Figure 85. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to maintain a fixed aspect ratio when detection boxes are refined.  
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Figure 86 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to use image edge information to reject FPs. 

 
Figure 86. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use image edge information to reject FPs.  
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Figure 87 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to use image depth information to reject FPs. 

 
Figure 87. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use image depth information to reject FPs.  
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Figure 88 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the algorithm to use the SC algorithm to detect tall vertical structures (i.e., buildings, 
trees, and poles). 

 
Figure 88. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use SC algorithm to detect tall vertical structures.  
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Figure 89 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to reject FPs as indicated by the SC algorithm. 

 
Figure 89. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to reject FPs as indicated by SC algorithm.  
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Figure 90 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to use ground plane and horizon information to reject FPs. 

 
Figure 90. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use ground plane and horizon information to reject FPs.  
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Figure 91 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to use image saliency information to reject FPs. 

 
Figure 91. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to use image saliency information to reject FPs.  
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Figure 92 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to reject FPs detected by the three previous rejection algorithms. 

 
Figure 92. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to reject FPs detected by three previous rejection algorithms.  
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Figure 93 shows the PCS-Ped tab of the GUI interface. The arrow indicates the selection option 
that enables the PD algorithm to compute the ground plane in the scene. It is used for ground-
based FP rejection. 

 
Figure 93. Screenshot. PD interface—PCS-Ped tab with option selected that enables PD 

algorithm to compute the ground plane in the scene.  
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Figure 94 through figure 105 show the PC interface. The circled boxes indicate the options that 
specify the classifier search range around a detection box. It is computed by multiplying the box 
width and height by the ratios. 

 
Figure 94. Screenshot. PC interface specifying search range for each ROI in the X and Y 

directions.  

  



84 

The circled boxes in figure 95 indicate the following selection options: (1) enable scale search, 
(2) minimum scale, (3) maximum scale, and (4) number of scales to search. 

 
Figure 95. Screenshot. PC interface showing scale evaluation parameters.  
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The circled boxes in figure 96 indicate the following selection options: (1) classifier search  
step size in pixels and (2) classifier mode. The classifier mode option is not used in the 
developed system. 

 
Figure 96. Screenshot. PC interface showing specifications at ROI classification.  
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The circled boxes in figure 97 indicate legacy classifier parameters that are used for debugging. 

 
Figure 97. Screenshot. PC interface indicating legacy parameters for debugging.  
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The circled boxes in figure 98 indicate the selection options where the operator can specify the 
size of the window padding around a detection box. This is used to create a larger classifier ROI. 

 
Figure 98. Screenshot. PC interface specifying size of padding around a detection box.  
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The circled options in figure 99 indicate the following filter operations: (1) limit pedestrian 
detection to 98.4 ft (30 m), (2) use contour-based ROI refinement, (3) use chamfer score-based 
filter, and (4) use texture filter. Note that (3) and (4) use additional filters for FP rejections.  

 
Figure 99. Screenshot. PC interface showing filter options. 
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The circled options in figure 100 indicate the selection options for image enhancement prior to 
classification. The four options include (1) histogram equalization, (2) histogram stretch,  
(3) contrast normalization, and (4) no operation. 

 
Figure 100. Screenshot. PC interface showing selection options for image enhancement 

prior to classification.  
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The circled options in figure 101 indicate selection options for classifier output display.  
The options are as follows: (1) show display window, (2) show distance, (3) show ID,  
(4) show overlay detection with classification boxes, (5) show detection boxes, and  
(6) show classified pedestrians. 

 
Figure 101. Screenshot. PC interface showing options for classifier output display.  
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The circled options in figure 102 indicate the selection options to run the PC and a  
post-processing SVM classifier for bush rejection. 

 
Figure 102. Screenshot. PC interface showing selection options to run PC and a post-

processing SVM classifier for bush rejection. 
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 The circled options in figure 103 indicate options to select a HOG AdaBoost classifier (Boost) 
or a contour plus HOG AdaBoost classifier (VS + Boost).  

 
Figure 103. Screenshot. PC interface showing options to select a HOG AdaBoost classifier 

or contour plus HOG AdaBoost classifier. 
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The boxes circled in figure 104 indicate the selection options used to decide the distance ranges 
at which the contour + HOG classifier (0 to 32.8 ft (0 to 10 m)) and the basic HOG classifiers  
(32.8 to 65.6 ft (10 to 20 m) and over 65.6 ft (20 m)) are used. 

 
Figure 104. Screenshot. PC interface showing selection options to decide distance ranges 

for three classifiers.  
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The circled options in figure 105 indicate the following classifier debugging options:  
(1) save detected image patches to a file, (2) save the current image with detection boxes, and  
(3) save detection statistics to a file. 

 
Figure 105. Screenshot. PC interface showing classifier debugging options. 
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The options circled in figure 106 indicate the following tracker interface options: (1) enable the 
tracker, (2) apply a heuristic that looks for consistent defects in three out of five frames, (3) show 
debugging labels for the tracker, and (4) enable the egomotion estimator. 

 
Figure 106. Screenshot. PC interface showing tracker options. 
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The boxes circled in figure 107 show the following classifier threshold options: (1) multiplier for 
the classifier threshold (large value suppresses detection), (2) edge detect threshold, (3) HOG 
feature threshold, and (4) threshold for chamfer filter. 

 
Figure 107. Screenshot. PC interface showing classifier threshold options. 
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The boxes circled in figure 108 indicate the options to set the tracker search range as a multiplier 
to the detection box position in the X and Y directions. 

 
Figure 108. Screenshot. Pedestrian tracker interface showing options to set tracker search 

range. 

  



98 

The options circled in figure 109 indicate the following options: (1) reset the tracker, (2) display 
the tracker window, and (3) display the tracked patches for debugging purposes. 

 
Figure 109. Screenshot. Pedestrian tracker interface showing tracker options. 
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