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FOREWORD 

The research documented in this report was conducted as part of the Federal Highway 
Administration’s (FHWA) Evaluation of Low-Cost Safety Improvements Pooled Fund Study 
(ELCSI-PFS). FHWA established this PFS in 2005 to conduct research on the effectiveness of 
the safety improvements identified by the National Cooperative Highway Research Program 
Report 500 Guides as part of the implementation of the American Association of State Highway 
and Transportation Officials Strategic Highway Safety Plan. The ELCSI-PFS studies provide a 
crash modification factor and benefit-cost (B/C) economic analysis for each of the targeted 
safety strategies identified as priorities by the pooled fund member States. 

This study compares the safety performance of the continuous green T (CGT) intersections with 
conventional signalized T intersections using treatment and comparison sites from Florida and 
South Carolina. The results show crashes were reduced for expected total, fatal and injury, and 
target (rear-end, angle, and sideswipe) crashes at the CGT intersection compared with the 
conventional signalized T intersection. Further, the B/C analysis indicated that the CGT 
intersection is a cost-effective alternative to the traditional, signalized T intersection. This report 
is intended for practicing engineers when contemplating application of CGT intersections and for 
researchers who wish to consider the propensity scores-potential outcomes framework in non-
randomized, observational traffic safety evaluations. 
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EXECUTIVE SUMMARY 

This study used a propensity scores-potential outcomes framework to evaluate the safety 
performance of the continuous green T (CGT) intersection relative to a conventional signalized T 
intersection. Data from 30 CGT (treated) and 38 conventional signalized (untreated) intersections 
from Florida were used in the evaluation, as were 16 treated and 21 untreated sites from South 
Carolina. In the propensity scores-potential outcomes framework, a propensity scores model was 
estimated using a binary logistic regression model, where the dependent variable was codified as 
a binary variable based on the presence of the CGT or the conventional T signalized intersection 
form. The independent variables in the propensity scores model included safety-influencing 
features present at the intersections, including the average annual daily traffic on the major and 
minor street approaches, the posted speed limit, cross-sectional widths, and the type of 
intersection channelization. The propensity scores were then used to match treated (CGT) to 
untreated (conventional signalized) intersections, mimicking a randomized experiment. After 
matching, the potential outcomes were estimated using mixed effects negative binomial or 
Poisson count regression models (where possible) and weighted using negative binomial 
regression with robust standard errors otherwise. The expected total, fatal and injury, and target 
crash frequencies were used as the dependent variables in the count models, while the 
intersection safety-influencing variables were used as independent variables. In addition, an 
indicator variable was used in the potential outcomes model to assess the safety performance of 
the CGT relative to a conventional T signalized intersection.  

The results showed that there was a small but statistically insignificant benefit associated with 
the CGT intersection relative to the conventional signalized T intersection. The crash 
modification factors (CMFs) associated with total crashes, fatal and injury crashes, and target 
crashes were 0.958 (p-value = 0.699, 95-percent confidence interval (CI) = 0.772–1.189), 0.846 
(p-value = 0.211, 95-percent CI = 0.651–1.099), and 0.920 (p-value = 0.519, 95-percent CI = 
0.714–1.185), respectively. Because the propensity scores-potential outcomes framework 
involves matching, some treated and untreated intersections in the database were not included in 
the analysis sample. For purposes of comparison, cross-sectional regression models using all 
available data were estimated, and the results were similar to the propensity scores-potential 
outcomes results. In these models, the CMFs associated with total, fatal and injury, and target 
crashes were 0.886 (p-value = 0.389), 0.844 (p-value = 0.230), and 0.808 (p-value = 0.187), 
respectively. The benefit-cost analysis confirmed that the CGT is a cost-effective intersection 
design alternative to the conventional T signalized intersection.  
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CHAPTER 1. INTRODUCTION 

BACKGROUND ON CGT INTERSECTION 

The Federal Highway Administration’s (FHWA) Development of Crash Modification Factors 
(DCMF) program was established in 2012 to address highway safety research needs for 
evaluating new and innovative safety strategies (improvements) by developing reliable 
quantitative estimates of their effectiveness in reducing crashes. The goal of the DCMF program 
is to provide measures of their safety effectiveness and benefit-cost (B/C) ratios for new safety 
strategies based on research. Promotion of the effective safety strategies has the potential benefit 
of decreasing total crashes and, subsequently, reducing fatalities. Furthermore, transportation 
agencies will be able to use safety effectiveness estimates and B/C ratios to manage safety on the 
highway and street network by making effective use of limited resources. There are 40 State 
transportation departments that provide technical feedback on safety improvements to the DCMF 
program and implement new safety improvements to facilitate evaluations. These States are 
members of the Evaluation of Low Cost Safety Improvements Pooled Fund Study (ELCSI-PFS) 
and have selected this study to be conducted under this program. 

At-grade intersections are an inherent conflict location on the highway and street network 
because the turning or crossing paths of motorized and non-motorized users frequently interact at 
these locations. As a result, crashes involving both user groups often occur at intersections. 
FHWA estimates that, on average, 26 percent of fatal and 50 percent of injury crashes in the 
United States occur at intersections. National Cooperative Highway Research Program (NCHRP) 
Report 500, Volume 12, A Guide for Reducing Collisions at Signalized Intersections estimated 
that approximately 30 percent of fatal intersection crashes occur at locations with signalized 
control.(1) Intersection safety is a priority among transportation agencies in the United States.  

Alternative intersection designs have emerged in recent years to improve traffic operations and 
safety. Implementation of specific alternative intersection forms is dependent on the conditions 
present at the location of interest. The presence of traffic congestion, high crash frequencies, or 
severe crash outcomes at existing intersections often necessitates either operational or safety 
improvements. Rather than seeking traditional traffic measures to mitigate delay or traffic safety 
problems, practitioners are now seeking opportunities to convert conventional intersections into 
alternative, innovative forms. Examples of alternative intersections include the displaced left-
turn, restricted crossing U-turn, and median U-turn.  

Another alternative intersection type that has been employed in several States is the continuous 
green T (CGT) intersection. CGT intersections are an alternative to conventional signalized T 
intersections. CGT intersections are characterized by a channelized left-turn movement from the 
minor street approach onto the mainline (major street), along with a continuous mainline through 
movement that occurs at the same time.(2) The continuous-moving through lanes are not 
controlled by a traffic signal phase, while the other intersection movements are controlled by a 
three-phase signal. The through lanes on the mainline that have continuous flow typically contain 
a green through arrow signal indicator to inform drivers that they do not have to stop. The 
continuous through lanes are often separated from the left-turn and merge lanes with delineators, 
curbed islands, pavement markings, or other separations. Figure 1 shows a major street approach 
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to the continuous through lanes of a CGT intersection. An aerial view of a full CGT intersection 
is shown in figure 2.  

 
Original image: ©2014 Google®. 

Figure 1. Photo. Driver view of approach toward continuous through lanes at CGT 
intersection (latitude: 32.210420, longitude: -80.695000).(3) 
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Original image: ©2014 Google®. 

Figure 2. Photo. Overhead view of approach toward continuous through lanes at CGT 
intersection (latitude: 32.240866, longitude: -80.816626).(4) 

BACKGROUND ON STUDY 

In 1997, the American Association of State Highway and Transportation Officials (AASHTO) 
Standing Committee on Highway Traffic Safety, with the assistance of FHWA, the National 
Highway Traffic Safety Administration, and the Transportation Research Board Committee on 
Transportation Safety Management, met with safety experts in the fields of driver, vehicle, and 
highway issues from various organizations to develop a strategic plan for highway safety. These 
participants developed 22 key emphasis areas that affect highway safety. NCHRP published a 
series of guides to advance the implementation of countermeasures targeted to reduce crashes 
and injuries. Each guide addresses one of the emphasis areas and includes an introduction to the 
problem, a list of objectives for improving safety, and strategies for each objective. Each strategy 
is designated as proven, tried, or experimental. Many of the strategies discussed in these guides 
have not been rigorously evaluated; about 80 percent of the strategies are considered tried or 
experimental. 

In 2005, to support the implementation of the guides, FHWA organized a PFS to evaluate low-
cost safety strategies as part of this strategic highway safety effort. Over the years, the ELCSI-
PFS has grown in size and now includes 40 States. The purpose of the ELCSI-PFS is to evaluate 
the safety effectiveness of tried and experimental, low-cost safety strategies through 
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scientifically rigorous crash-based studies. The use of CGT at signalized intersections was 
selected as a strategy to be evaluated as part of this effort.
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CHAPTER 2. LITERATURE REVIEW 

SAFETY 

CGT intersections have been used for several decades in Florida.(5) It has been reported that 
Florida citizens do not feel that CGT intersections are safe, especially for unfamiliar drivers.(5) 
For this reason, Sando et al. completed a safety evaluation of the CGT intersection using only 
data from Florida.(5) The authors used a paired t-test and an ordered probit model to analyze 
crash type proportions and severity, respectively. The analysis compared crashes that were 
reported on the continuous through lane on the major CGT roadway with crashes that were 
reported on the major road turning lane (i.e., the lane that must stop at the signal). Data consisted 
of crashes at nine Florida intersections from the years 2003 through 2008. There were a total of 
398 crashes in the study sample. 

The paired t-tests compared the proportions of total crashes in each direction that were lane-
changing (sideswipe), rear-end, and angle. No differences were found in the proportion of rear-
end and angle crashes when comparing the two travel lanes (i.e., continuous flow versus signal-
controlled travel lane). The continuous flow lanes had a statistically significant higher proportion 
of sideswipe crashes than the lanes that had to stop. This was likely due to turning vehicles 
merging onto the continuous flow lanes. This analysis did not account for the total crash 
frequency or any potential confounding factors. Because the analysis results were based on a 
simple comparison of crash proportions between lane groups, rather than rigorous statistical 
methods, the results of the study have limited practical value. 

The ordered probit was used to analyze crash severity outcomes. The severity levels considered 
in the model included no injury, non-incapacitating injury, incapacitating injury, and fatal.  
Two ordered probit models were estimated—one model that controlled for crash type and one 
that controlled for geometric elements, lighting, weather, time of day, speed limit, and driver age. 
The findings indicated that the continuous flow lanes on the CGT major road had lower severity 
outcomes when controlling for geometrics, lighting, weather, time of day, speed limit, and driver 
age when compared with the turning lane on the major road. The opposite finding occurred when 
only crash type was considered in the model. Neither of these findings, however, were 
statistically significant.  

In a second study using Florida CGT intersection information to evaluate safety, Jarem compiled 
crash data from five intersections to compare crash rates at each CGT intersection with a critical 
crash rate.(6) The method to determine the critical crash rate was not provided by the author; 
however, this method often involves determining the average crash rate for similar roadway 
types plus an adjustment for the desired level of statistical confidence. The study included 
reported crashes at the CGT intersections from 2000 through 2003, which included a total of 117 
crashes (10 of which were rear-end collisions caused by drivers inadvertently stopping in the 
continuous flow lanes). The crash rate analysis assumes a linear relationship between crash 
frequency and traffic volumes, which is rarely found in traffic-safety relationships.(7) The 
findings from the analysis suggested that the reported crash rates for each of the CGT 
intersections were lower than the critical crash rates, likely indicating that the CGT intersections 
did not produce crash rates that exceeded average rates at similar intersections without the 
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continuous green movement. A diagnostic review of the reported crashes at CGT intersections in 
Florida found that rear-end, sideswipe, and angle crashes were the most common types. The rear-
end crashes were often caused by drivers who unexpectedly stopped in the continuous flow lane. 
Sideswipe and angle crashes occurred when drivers turning left from the minor leg of the 
intersection were turning or merging with the through traffic on the major road.  

TRAFFIC OPERATIONS 

Jarem also completed an analysis of the operational effectiveness of CGT intersections.(6) The 
analysis considered the five CGT intersections used in the safety analysis and subsequently 
performed traffic simulations using traffic analysis software to estimate the total delay savings 
(per vehicle) and total fuel savings achieved by the continuous flow lanes (compared with a 
standard signalized T intersection). The findings indicated that the CGT intersections resulted in 
savings of 3.7 to 28.4 s of delay per vehicle (1,601 and 4,786 vehicles/h, respectively) and 0.005 
to 0.015 gal of fuel saved per vehicle (5,275 and 1,622 vehicles/h, respectively). The traffic 
volumes for the movements other than for the through lanes were not provided.  

Litsas and Rakha provided a more comprehensive operational analysis of CGT intersections.(8) 
Simulation software was used to run 2,445 unique intersection condition combinations to 
compare CGT with traditional signalized T intersections.(8) The analysis estimated the reduction 
in vehicle delay, fuel usage, hydrocarbon emissions, carbon monoxide emissions, nitrogen oxide 
emissions, and carbon dioxide emissions. The simulation results indicated that CGT intersections 
resulted in a 10.29 percent reduction in vehicle delay, 2.78 percent fuel savings, 12.47 percent 
fewer hydrocarbon emissions, 14.44 percent fewer carbon monoxide emissions, 4.38 percent 
fewer nitrogen oxide emissions, and 2.29 percent fewer carbon dioxide emissions than traditional 
signalized T intersections.  

SUMMARY OF CGT INTERSECTIONS 

Safety and operational evaluations of the CGT intersection are relatively limited in the literature. 
With regards to safety, crash type proportion analyses have indicated that continuous flow 
movements at CGT intersections do not differ from the through lanes in the opposing direction. 
There are preliminary findings to suggest that the proportion of sideswipe crashes on the 
continuous flow lanes on the major road were higher relative to the opposing through lanes, but 
there were not significant differences in other crash types. No statistically significant differences 
among severity outcomes have been reported when comparing the CGT continuous flow lanes to 
the lanes in the opposing direction. With regard to operations, published research indicates that 
the vehicle delay, emissions, and fuel consumption are lower at CGT intersections relative to 
traditional signalized T intersections.  
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CHAPTER 3. OBJECTIVES 

The objective of the present study was to examine the safety effectiveness of CGT intersections 
in terms of crash frequency using a rigorous methodology. The propensity scores-potential 
outcomes framework described by Sasidharan and Donnell was used.(9) In this analysis, the 
safety performance of CGT intersections was compared with the safety performance of 
traditional, signalized T intersections. The following target crashes were included in the 
evaluation: 

• Total crashes within 250 ft of the intersection. 
• Fatal and injury crashes within 250 ft of the intersection. 
• Rear-end, angle, and sideswipe crashes within 250 ft of the intersection. 

The 250-ft measurement was defined by Harwood et al. as the boundary for intersection-related 
crashes when assessing the safety performance of left- and right-turn lanes at three- and  
four-legged, stop- and signal-controlled intersections.(10) 
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CHAPTER 4. METHODOLOGY 

This chapter describes the propensity scores-potential outcomes framework that was used to 
estimate the safety effectiveness of the CGT intersection relative to a traditional signalized T 
intersection. The propensity scores estimation method, matching methods, and the potential 
outcomes estimation method are described in this chapter. An observational before-after 
evaluation (using the empirical Bayes (EB) method) could not be used in the present study, 
because the CGT intersections were either constructed as such or the conversion from a 
traditional signalized T intersection to a CGT intersection took place long ago, precluding the 
availability of electronic crash data from the before period. Recent research has shown that the 
propensity scores-potential outcomes framework produces safety effect estimates (i.e., CMFs) 
that are nearly identical to EB observational before-after and cross-sectional statistical models 
when treatments are deployed at locations that were not selected for countermeasure 
implementation based on high crash frequencies.(11) Because the CGT is an intersection form that 
is constructed to improve traffic operations when site conditions permit, and because only after 
data were available for analysis (i.e., no crash data were available when the intersections may 
have operated either under a different configuration or with different control), the analysis is 
therefore not subject to site-selection bias. Thus, it is assumed that the propensity scores-
potential outcomes framework will produce results equivalent to the EB method.  

The propensity scores-potential outcomes methodology used in the study controlled for the 
following: 

• Comparability of the comparison intersections (traditional signalized T intersection). 
• Missing traffic volume data. 
• The need to pool data from multiple States to improve the sample size. 

PROPENSITY SCORES FRAMEWORK  

Randomized experiments are considered the gold standard for determining the causal effects of 
treatments. Well-conducted randomized experiments yield unbiased estimates of average 
treatment effects because there is no correlation between the treatment and all other important 
covariates, other than the outcome of interest (i.e., there is no confounding).(12,13) Thus, methods 
that remove correlation between the treatment and other important predictor (independent) 
variables in observational studies lead to estimates of treatment effects that are similar to the 
results of a randomized experiment.  

Propensity score analysis can be used to mimic randomized experiments by using observed 
covariates to estimate the probability that an observation received a treatment (i.e., the propensity 
score).(14) Propensity scores can be viewed as a scalar summary of the multivariate covariates, 
and balancing the true propensity score will lead to balance of all observed covariates.(14) In the 
context of traffic safety, examples may include the probability that an at-grade intersection 
contains lighting (or not) based on site-specific features such as traffic volume, type of traffic 
control, and level of pedestrian demand. Another example may be the probability that a roadway 
segment contains a horizontal curve as a function of traffic volume, lane width, and roadside 
geometry. The estimated propensity scores are then used to match treated and untreated 
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observations.(15,16) This process removes correlation between the treatment and observed 
covariates. When propensity score matching is paired with regression analysis (performed after 
matching), selection bias is reduced.  

Binary logit or probit models are commonly used to estimate propensity scores.(9,15,16) The 
estimated propensity scores should include all variables that could potentially be relevant to the 
treatment. As such, the variables included in the propensity score model should not be selected 
based on statistical significance.(9,17,18) Since the goal of propensity score analysis is to remove 
correlation between the treatment and other potentially important predictor variables, the 
functional form of the variables in the propensity score model should be selected based on which 
functional form yields the best matching results. 

Propensity Score Assumptions 

The following assumptions are associated with propensity score analysis:(9,15,16) 

1. Stable Unit Treatment Value Assumption (SUTVA): This assumption states that when a 
treatment is applied to an entity, it does not affect the outcome for any other entity. Since the 
CGT intersections and the comparison intersections were separated, it is not likely that the 
CGT intersections affected the safety outcomes for the comparison intersections. Thus, the 
SUTVA was met for this study. 

2. Positivity: This assumption states that the probability of receiving the treatment is non-zero 
for all observations. The comparison intersections were carefully selected to ensure that it 
would be possible to install CGT intersections at the reference intersection locations. The 
comparison intersections all had high enough traffic volumes on the main road to warrant 
continuous flow lanes (on major highways). In addition, they were all signalized T 
intersections, were in urban/suburban areas, were located near the CGT intersections 
(whenever possible), and had existing left-turn lanes from the major road onto the 
intersecting road. Thus, this assumption was met for the current study. 

3. Unconfoundedness: The treatment assignment is unconfounded if the treatment status 
(treated or untreated) is conditionally independent of the potential outcomes for a given set of 
covariates. It must be assumed that all confounding covariates were measured and available 
for this analysis.  

Binary Logit Estimation 

The propensity score for a treatment was estimated in the present study using binary logit 
regression, which is specified in the equation in figure 3.(19) 

( ) ( )
( )i
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x
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β
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Figure 3. Equation. Binary logit model for propensity scores. 

 



13 

Where: 

xi = A set of covariates for entity i (i.e., intersection safety-influencing features such as average 
annual daily traffic (AADT), the intersection skew angle, and the intersection’s location (if any) 
on a horizontal curve). 

β  = A vector of parameters to be estimated. 

p(i) = The propensity score for entity i.  

The standard error for the propensity score can also be calculated. The formula for the standard 
error of a binary logit is specified as seen in the equation in figure 4. (20) 

( )( ) ( ) ( )( )
n

ipipipSE −
=

1

 
Figure 4. Equation. Binary logit standard error. 

Where:  

n = The sample size used to estimate the propensity score. 
SE(pn(i)) = The standard error of the propensity score for entity i.  

In traffic safety evaluations, it is common to assess the quality of model fit using the McFadden 
Pseudo R-squared (ρ 2), which is analogous to the R-squared value used to express the goodness-
of-fit of an ordinary least squares regression model, where higher values indicate a better fit to 
the data, and can take a value between 0 and 1. It is expressed as seen in the equation in 
figure 5:(19,21) 

ρ2 = 1–
)0(

)(
L

fullL  
 

Figure 5. Equation. Psuedo R-squared goodness-of-fit. 

Where:  

L(full) = Log-likelihood of the model with explanatory variables.  
L(0) = Log-likelihood of the intercept-only model. 

However, the best model when using matching, within the propensity scores-potential outcomes 
framework, is the model that yields the best covariate balance, not the model with the best 
 ρ 2 value. 

MATCHING ALGORITHMS AND METHODS 

Numerous algorithms exist for propensity score matching. Among them are nearest-neighbor 
(NN) matching, K-nearest neighbor matching, radius matching, kernel matching, and 
Mahalanobis matching.(9,15,16) The optimal method for matching is dependent on the available 
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data. Typically, either caliper-based NN or Mahalanobis matching is used.(16) Either 1:1 (one 
treated to one untreated) matching or 1:n (1 treated to n untreated) matching can be done using 
either NN or Mahalanobis matching. If the sample sizes of the treated and untreated groups are 
similar, 1:1 matching is often an appropriate choice. (16) 

Other issues related to propensity score matching relate to allowing replacement (permitting a 
comparison or untreated entity to be matched to more than one treated entity) and eliminating 
data for use in the potential outcomes estimation.(9,15,16) Discussion of these issues follow 
descriptions of the NN and Mahalanobis matching algorithms in the following subsections. 

NN Matching 

The first step in NN matching is to randomly order the data.(9) If the data are not randomly 
ordered and there are multiple observations with the same propensity scores, the results may be 
biased.(15) Once this is done, it is possible to use either 1:1 or 1:n matching. When closeness of 
the match is critical (how similar the matched entities are based on the estimated propensity 
score), or the sample size of the two groups are similar, 1:1 matching is preferred.(16) On the 
other hand, 1:n matching increases the total sample size, leading to lower standard errors in 
regression estimates of the potential outcomes (with potentially smaller standard errors than in 
simple cross-sectional analysis of the data). (22) However, this often comes at the expense of 
making the treated and comparison groups less comparable.(16) Issues related to replacement are 
described in more detail in the following sections.  

When using NN matching, the differences between treated and untreated observations may be 
small or large. In order to account for large differences, two things should be considered. First, 
the data should be checked for common overlap (the distribution of propensity scores that is 
shared between the treated and comparison groups). Second, use of calipers or confidence 
intervals (CIs) should be used to ensure that differences between matched treated and untreated 
observations are not significantly dissimilar.(9,15,16) 

Specifying a caliper width ensures that all matched observations will have a maximum 
propensity score difference within the range of the caliper width. Common caliper widths used 
are 0.25 or 0.20 multiplied by the standard deviation of the propensity scores within the treated 
group.(9,16) Other caliper widths can be used as long as the standardized bias in the matching 
results is not too large (typically assumed to be greater than 0.25 or 0.20). Larger caliper widths 
allow increased selection bias to remain in the data due to larger differences between the treated 
and comparison groups. Smaller caliper widths minimize the differences between the treated and 
comparison groups but often come at the expense of dropped observations.(16) However, it has 
been shown that with large datasets, the treatment effects estimates do not change significantly 
as the caliper width changes.(23)  

Once the matching criteria have been established, the treated observations are matched to the 
untreated observations with the most similar propensity score (within the caliper width or 
CI).(9,15,16) If replacement is allowed, a single untreated observation can be copied and matched to 
multiple treated observations if it has the nearest propensity score. If replacement is not 
permitted, then each untreated observation may only be used once. After matching has occurred, 
unmatched treated and comparison observations are dropped from the dataset and not used in the 
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potential outcomes.(9) The results should then be checked, and the standardized bias for the 
unmatched data and the matched data should be compared.(9) The standardized bias indicates 
whether the matching was effective in achieving covariate balance.  

Mahalanobis Matching 

Mahalanobis matching uses the same algorithm as NN matching with one difference: the treated 
observations are matched to the untreated observations with the closest match based on multiple 
variables, not just the propensity score.(16) The closest match based on multiple variables uses the 
Mahalanobis distance. This method may specify that the untreated observations available for 
matching to a treated observation be within a specified caliper or CI based on the propensity 
score, but this is not required as long as the matching results lead to small values of standardized 
bias.(9,15,16) As with NN matching, the data should be randomly ordered prior to matching. The 
Mahalanobis distance is calculated using the equation in figure 6.(16) 

( ) ( ) ( )yxSyxyxd T 
−−= −1,  

Figure 6. Equation. Mahalanobis distance. 

Where:  

d( )yx,  = The Mahalanobis distance matrix between groups x and y (i.e., treated and untreated 
groups) using the variables specified for the matching.  

 ( )− yx 
 = The matrix of the differences in values between groups x and y for the variables 

included in the matching. 

S = The covariance matrix between x and y. 

The propensity scores can be included as one of the variables in the Mahalanobis distance along 
with other important matching variables.  

Genetic Matching 

Genetic matching is a sequential process that optimizes covariate balance by finding the best 
matches for each treated entity.(16) The genetic matching process minimizes imbalance across the 
covariates; therefore, it optimizes covariate balance.(24) This is accomplished by minimizing a 
general Mahalanobis distance defined in figure 7.(24) 

( ) ( ) ( )yxWSSyxWyxGMD
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Figure 7. Equation. Genetic matching distance. 

Where:  

GMD = The genetic matching distance. 
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S-1/2 = The Cholesky decomposition of S (i.e., S = S-1/2(S-1/2)T). 
W = The weighting matrix. 

With genetic matching, both the propensity score and other covariates can be included in the 
matching scheme. The iterative process uses Kolmogorov-Smirnov (K-S) statistics to measure 
covariate balance in addition to standardized bias measures.(24) Genetic matching results in 
optimal matches but often does so at the cost of high computation times.(16)  

Replacement 

Replacement is defined as allowing a single untreated observation to be replicated and matched 
to multiple treated observations. Allowing replacement may be beneficial when the amount of 
common overlap (portion of distribution of propensity scores shared by the treated and 
comparison groups) is not sufficient to produce good matching or when a significant amount of 
dropped observations would result if replacement is not permitted. When there is only a 
moderate amount of common overlap, replacement reduces the amount of dropped observations 
and is likely to reduce the amount of bias in the data.(16) When there is a significant amount of 
common overlap, matching without replacement is preferred.(16)  

Dropped Observations 

Dropped observations can result from poor common overlap and from narrow caliper widths. 
Dropped untreated observations often occur when matching. However, restricting caliper widths 
will result in treated observations being dropped from the analysis sample when no untreated 
observations have propensity scores within the acceptable range for matching. The tradeoffs 
between caliper width, replacement allowance, and the number of dropped observations must be 
considered in the propensity scores-potential outcomes framework. When caliper width is 
increased, the standardized bias (discussed in the next subsection) could increase, which will also 
increase the sample size used in the analysis (i.e., fewer dropped observations resulting from 
matching). An increased sample size often leads to greater statistical power (i.e., smaller 
standard errors of the estimates). It has been shown in previous research that when the 
standardized bias is kept within a small maximum value (usually 0.20 to 0.25), and the sample 
size is maximized, the matched estimates of treatment effects can yield unbiased estimates of the 
treatment effects that have smaller standard errors than an unmatched sample.(22)  

Standardized Bias 

As noted previously, standardized bias should be checked for propensity scores and other 
important covariates to assess the quality of covariate balance achieved from matching. The 
equation in figure 8 is used to compute the standardized bias.(9) 
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Figure 8. Equation. Standardized bias. 
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Where: 

SB = The standardized bias. 
Tx  = The sample mean of the treated group for variable x. 
Cx  = The sample mean of the comparison group for variable x. 
2
TS  = The sample variance of the treated group for variable x. 
2
CS  = The sample variance of the comparison group for variable x. 

Before-after matching comparisons of standardized bias for the propensity score and other 
covariates provide an indication of the improvement in covariate balance resulting from 
matching on the propensity score. A standardized bias with an absolute value of 20 or smaller 
indicates no statistical difference between the treated and comparison groups (i.e., they are 
equivalent).(16)  

It has also been pointed out that even when the mean and standard error two groups are similar, 
the distributions of the two groups may still be significantly different due to different 
distributional shapes.(25) Thus, a K-S test is also used to assess covariate balance.(26) The K-S test 
compares the cumulative frequencies of two samples. Based on this comparison, the statistical fit 
of the two distributions is estimated.(27) This test uses the maximum difference (Dn) between the 
two distributions to estimate the statistical fit. The distance is calculated using figure 9.(27) 

( ) ( )ininn xSxFD −= max  
Figure 9. Equation. K-S test. 

Where:  

Max = Maximize function. 
Fn(xi) = The cumulative distribution function (CDF) of the treated group for variable x at value i. 
Sn(xi) = The CDF of the untreated group for variable x at value i.  

The p-values for the K-S tests are obtained from a standard mathematical table.(27) This test can 
be used to test the covariate balance for any covariate of interest. 

In summary, the present study estimated the propensity scores using a binary logistic regression 
model. The propensity scores compare the probability that a signalized intersection in the pool of 
observations is a CGT form versus a traditional signalized intersection based on the covariates 
(e.g., traffic volume, intersection skew angle, and presence of horizontal curve). NN matching 
was first used to match each CGT intersection (treatment site) to a traditional signalized 
intersection (comparison site). If, based on the reduction of the standardized bias in the 
covariates among the matched data, acceptable matching was not produced, then Mahalanobis 
matching was used. Replacement was permitted when matching to minimize the amount of 
dropped data from the analysis sample.  
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POTENTIAL OUTCOMES USING COUNT REGRESSION MODELS 

After matching treated (CGT) and untreated sites (conventional signalized T intersections), the 
potential outcomes (crash frequency) were estimated using count regression models. The use of 
Poisson regression to model crash frequency was introduced in 1986.(28) Negative binomial 
regression, a general form of Poisson regression that accounts for overdispersion, was later used 
to estimate crash frequencies in the traffic safety literature.(29,30) Negative binomial regression 
was used to develop the safety performance functions in the first edition of the Highway Safety 
Manual (HSM).(31) However, the standard Poisson and negative binomial models do not account 
for serial correlation, which results when crash data are recorded annually at a site over a period 
of years, and these repeated observations are the analysis unit (i.e., annual expected crash 
frequency is the dependent variable in a statistical model). Thus, the standard errors for the 
regression results using these models were likely underestimated.  

Regression models that account for the count nature of crash frequency data, serial (spatial or 
temporal) correlation, and correlation between variables in the model (e.g., major and minor road 
traffic volumes) and that can estimate parameters for variables that do not vary over time include 
mixed effects negative binomial and Poisson models.(21,32) Since this study used data with 
correlation between variables included in the model, the data included yearly data (repeated 
measurements) for each of the intersections and the variable of interest (if it was a CGT 
intersection or not), all of these issues were present in this study. A discussion of each of these 
models follows. 

Mixed Effects Negative Binomial 

The mixed effects negative binomial allows parameters to be fixed or random when specifying 
the model.(21) The inclusion of random parameters corrects for serial correlation while allowing 
estimation of an overdispersion parameter to capture the effects of within-cluster overdispersion 
(i.e., when the variance of crashes is greater than the mean for each individual intersection). The 
log-likelihood function for the mixed effects negative binomial is shown in figure 10.(33) 

( ) ( ) ( ) ( )∫ −−− ∑−∑=∑ kkkkk
q duuuuyf 2/'exp,|2,, 12/12/ απαβ

 
Figure 10. Equation. Mixed effects negative binomial log-likelihood. 

Where: 

uk = The random intercept/slope for entity k. 
yk = The outcome for entity k. 
q = The number of covariates included in the model. 
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β 
 = The vector of coefficients. 

α = The overdispersion parameter. 
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A mixed effects negative binomial regression model with only the intercept allowed to be 
random is known as a random intercept model.(21) If all parameters are specified to be random, 
the model is known as a random parameters model. The mixed effects model is sometimes 
referred to as a random parameter or random coefficient model, even if some of the parameters 
are specified as fixed parameters.(21) When multiple parameters are allowed to be random, the 
model adds more adjustment for overdispersion into the model than the mixed-effects Poisson or 
the random intercept negative binomial. Thus, the model must be checked to ensure that it is not 
adjusting for more correlation than is warranted in the data.(21) This can be done by assessing the 
statistical significance of the overdispersion parameter as well as using a chi-square test to assess 
if the mixed effects model is preferred to a standard negative binomial regression. The null 
hypothesis for the chi-square test is that the mixed effects model does not fit the data better than 
the standard negative binomial regression.  

When multiple random coefficients are used, the variance function for a mixed effects model is 
difficult to derive. However, for the case of a random intercept negative binomial, the variance 
function (for observation i) is specified as seen in figure 11.(33) 

( ) ( )( ){ }( )22 11exp iiiVar µασµµ −−+=  
Figure 11. Equation. Mixed effects negative binomial variance function. 

Var = The variance. 
μ  = The expected mean. 
σ  = The standard deviation of the random intercept. 
α  = The overdispersion parameter. 

When the overdispersion parameter is not statistically significant, the mixed effects negative 
binomial regression model reduces to a mixed effects Poisson model. The expected mean for 
observation i, based on the random intercept negative binomial model, is given as seen in  
figure 12.(32) 

( ) ( )iii xβξµ expexp=  
Figure 12. Equation. Mixed effects predictions. 

Where: 

ξ i  = The random intercept for observation i. 
xi = The vector of variables for observation i. 

When a mixed effects model is used for prediction, the mean values of the estimated random 
parameters are used as the constant for the prediction model.  

Mixed Effects Poisson 

The mixed effects Poisson model is the same as a mixed effects negative binomial model but 
without overdispersion within clusters (a cluster for this study is defined as multiple repeated 
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measurements at the same intersection over time). The log-likelihood for the mixed effects 
Poisson is shown in figure 13.(33) 

( ) ( ) ( ) ( )∫ −−− ∑−∑=∑ kkkkk
q duuuuyf 2/'exp|2, 12/12/πβ

      
Figure 13. Equation. Mixed Poisson log-likelihood. 

Where: 
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In figure 13, the subscript i refers to the observation, while all other variables and subscripts are 
defined in figure 10 and figure 12. In the context of this study, the observation i refers to a year 
associated intersection or entity k. 

The variance function for a mixed effects Poisson model with the random term limited to the 
intercept only (random intercept Poisson) is specified using the equation in figure 14.(32) 

( ) ( ){ }( )22 1exp iiiVar µσµµ −+=  
Figure 14. Equation. Mixed effects Poisson variance function. 

The expected mean value for an observation using a random intercept Poisson model is found 
using the equation in figure 12. 

CMF Estimation 

CMFs derived from regression models in the propensity scores-potential outcomes framework 
are estimated using the coefficient for the treatment indicator variable (included in the model) as 
the exponent of the base number e. The formula for this is shown in figure 15. 

( )TreatmentTreatmentCMF βexp=  
Figure 15. Equation. Regression CMF estimation. 

Where:  

CMFTreatment = The CMF for the treatment. 
β 

Treatment = The estimated coefficient for the treatment. 

It should be noted that figure 15 uses the regression coefficient for the treatment indicator 
variable, which is included in the mixed effects Poisson or negative binomial regression model.  

The 95-percent CIs for CMFs using count models are calculated using the equation in figure 16. 
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( )TreatmentTreatmentCI σβ 96.1exp%95 ±=  
Figure 16. Equation. Regression CMF CI. 

Where: 

CI95% = The 95-percent CI. 
σ Treatment = The standard error of β 

Treatment  from the regression model. 

Cross-Sectional Modeling Comparison 

Because traffic safety evaluations often estimate CMFs using a cross-sectional regression model, 
the present study also utilized this approach with all of the observations as a means of 
comparison to the propensity scores-potential outcomes framework. The cross-sectional model 
did not use any matched data and was estimated using a mixed-effects negative binomial 
regression model, which was previously described. The cross-sectional statistical model was 
specified using the form shown in figure 12. In the model, an indicator variable (CGT versus 
conventional signalized T intersection) was included in the specification to assess the safety 
performance of the CGT relative to the conventional signalized T intersection.  
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CHAPTER 5. DATA COLLECTION 

Florida and South Carolina are two States with multiple CGT intersections that have existed for 
several years. Data from both of these States were used in the present study. The data collection 
procedure and summary of the data are provided in this chapter of the report. 

FLORIDA 

Florida began installing CGT intersections as early as 1972. CGT intersections considered in this 
study were constructed between 1972 and 2004, and the geometry remained unchanged during 
the safety evaluation period. The Florida Department of Transportation (FDOT) provided 
locations of CGT and comparable conventional signalized T intersections for analysis.  

FDOT provided traffic volume data for the major and minor roads for each intersection where 
possible. When FDOT did not have traffic volume data, local jurisdictions were contacted to 
obtain traffic volume data. Traffic volumes for 2013 were available for all of the major roads, 
which included the high-speed, continuous through movement at the CGT intersections. When 
FDOT and the local jurisdictions did not have traffic volume data for the intersecting roadway, 
the Trip Generation Manual was used to predict the traffic volume based on the land uses along 
the properties adjacent to the minor intersecting roadway.(34) After these steps were taken, there 
were 4 CGT and 11 comparison intersections from Florida with missing traffic volumes on the 
minor street approach. Because most of the minor street approaches with missing traffic volume 
data were in residential areas, it was assumed that the volumes on these approach roadways 
would be approximately equal to 500 vehicles per day. One local jurisdiction (Melbourne, FL) 
performed a multiday traffic count for one of the missing minor street approaches and confirmed 
that a 500 vehicle per day volume was accurate. 

FDOT also provided crash data in geographic information system files. These files were used to 
identify all crashes (total crashes), fatal and injury crashes, rear-end crashes, sideswipe crashes, 
and angle crashes within 250 ft of the intersections for 2008–2012 (inclusive). 

Google Earth™ was used to collect other key variables, including variables related to the 
intersection design and traffic control features. These variables included the following: 

• Posted speed limits on the major and minor street approaches. 

• Lane and shoulder widths on all approaches. 

• The number of through lanes on the major and minor approaches. 

• The presence of right- and left-turn lanes on the through and intersecting roadways. 

• The presence of a channelized right-turn lane from the major approach to the  
minor street. 

• The presence of a channelized right-turn lane from the minor approach to the  
major street. 
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• Whether right-turn-on-red movements were permitted on either the major or minor street 
approaches. 

• Whether the intersection is located on a horizontal curve. 

• Whether a rail line crosses the intersecting roadway near the intersection. 

• Whether there was a driveway (right-in, right-out only) where a fourth leg of the 
intersection would be. 

• The skew angle for the intersection.  

In total, there were 30 CGT intersections and 38 comparison intersections from Florida included 
in the analysis database. Variable names and the associated definitions are provided in table 1 for 
the Florida intersections. The variables include traffic volumes and posted speed limits on the 
through and intersecting roadways, lane-use controls, cross-section dimensions, geometric 
characteristics, and crash-related information.  



25 

Table 1. Variable descriptions for Florida intersections. 
Variable Variable Description 

AADTThrough Through road AADT (2013) 
AADTIntersecting Intersecting road AADT (2013) 
LN_AADTThrough The natural log of the through road AADT (2013) 
LN_AADTIntersecting The natural log of the intersecting road AADT (2013) 
AADTMiss AADT on intersecting road missing 
THRU_SPEED Through road posted speed limit (mi/h) 
INT_SPEED Intersecting road posted speed limit (mi/h) 
RTOR Allowed 
Through 

1 = right-turn-on-red allowed from through to intersecting legs,  
0 = otherwise 

RTOR Intersecting 1 = right-turn-on-red allowed from intersecting to through legs,  
0 = otherwise 

INT_LW Intersecting road lane width (ft) 
INT_SW Intersecting road shoulder width (ft) 
IntNumLane Intersecting road number of lanes 
THRU_LW Through road lane width (ft) 
THRU_SW Through road shoulder width (ft) 
ThruNumLane Through road number of lanes 
THRU_RLT 1 = right-turn lane from through road to intersecting road,  

0 = otherwise 
INT_RTL 1 = right-turn lane from intersecting road to through road,  

0 = otherwise 
THRU_LTL 1 = left-turn lane from through road to intersecting road,  

0 = otherwise 
INT_LTL 1 = left-turn lane from intersecting road to through road,  

0 = otherwise 
RAILCROSS 1 = railroad crossing intersecting road near the intersection,  

0 = otherwise 
FRTH_LEG 1 = driveway where fourth leg would be (right-in, right-out only),  

0 = otherwise 
CURVE 1 = intersection located on horizontal curve, 0 = otherwise 
SKEW Intersection skew angle (degrees) 
CHAN_RTL_THRU 1 = channelized right-turn lane from through road to intersecting road, 

0 = otherwise 
CHAN_RTL_INT 1 = channelized right-turn lane from intersecting road to through road, 

0 = otherwise 
TOT_2008 Total crashes in 2008 
TOT_2009 Total crashes in 2009 
TOT_2010 Total crashes in 2010 
TOT_2011 Total crashes in 2011 
TOT_2012 Total crashes in 2012 
TOT_2013 Total crashes in 2013 
FI_2008 Fatal and injury crashes in 2008 
FI_2009 Fatal and injury crashes in 2009 
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FI_2010 Fatal and injury crashes in 2010 
FI_2011 Fatal and injury crashes in 2011 
FI_2012 Fatal and injury crashes in 2012 
FI_2013 Fatal and injury crashes in 2013 
RREND_2008 Rear-end crashes in 2008 
RREND_2009 Rear-end crashes in 2009 
RREND_2010 Rear-end crashes in 2010 
RREND_2011 Rear-end crashes in 2011 
RREND_2012 Rear-end crashes in 2012 
RREND_2013 Rear-end crashes in 2013 
ANGLE_2008 Angle crashes in 2008 
ANGLE_2009 Angle crashes in 2009 
ANGLE_2010 Angle crashes in 2010 
ANGLE_2011 Angle crashes in 2011 
ANGLE_2012 Angle crashes in 2012 
ANGLE_2013 Angle crashes in 2013 
SDSWPE_2008 Sideswipe crashes in 2008 
SDSWPE_2009 Sideswipe crashes in 2009 
SDSWPE_2010 Sideswipe crashes in 2010 
SDSWPE_2011 Sideswipe crashes in 2011 
SDSWPE_2012 Sideswipe crashes in 2012 
SDSWPE_2013 Sideswipe crashes in 2013 
Florida 1 = intersection located in Florida, 0 = otherwise 
Treated 1 = CGT intersection, 0 = comparison intersection 
Thru_Spd_35 1 = through road posted speed is 35 mi/h, 0 = otherwise 
Thru_Spd_40 1 = through road posted speed is 40 mi/h, 0 = otherwise 
Thru_Spd_45 1 = through road posted speed is 45 mi/h, 0 = otherwise 
Thru_Spd_50 1 = through road posted speed is 50 mi/h, 0 = otherwise 
Thru_Spd_60 1 = through road posted speed is 60 mi/h, 0 = otherwise 
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Descriptive statistics for CGT intersection variables included in the Florida analysis data files are 
provided in table 2 and table 3.  

Table 2. Descriptive statistics of continuous variables for Florida CGT intersections.  
Variable Mean Standard Deviation Minimum Maximum 

AADTThrough 28,822 10,189 14,400 47,000 
AADTIntersecting 11,269 9,997 500 40,000 
THRU_SPEED 45.63 5.51 35 55 
INT_SPEED 35.07 10.17 15 55 
SKEW 7.42 12.71 0 54.37 
INT_LW 11.42 0.84 10 14 
THRU_LW 11.30 0.67 10 12 
INT_SW 1.61 2.21 0 9 
IntNumLane 3.36 1.10 2 6 
THRU_SW 3.30 2.59 0 9 
ThruNumLane 5.51 0.88 4 8 
TOT_2008 3.36 2.64 0 13 
TOT_2009 4.00 4.42 0 24 
TOT_2010 3.93 4.82 0 25 
TOT_2011 3.33 3.70 0 18 
TOT_2012 4.96 4.38 1 23 
RREND_2008 1.14 1.86 0 9 
RREND_2009 1.37 2.27 0 11 
RREND_2010 1.33 2.54 0 13 
RREND_2011 1.37 1.94 0 9 
RREND_2012 2.19 2.10 0 10 
ANGLE_2008 0.36 0.68 0 2 
ANGLE_2009 0.26 0.53 0 2 
ANGLE_2010 0.37 0.63 0 2 
ANGLE_2011 0.37 0.69 0 3 
ANGLE_2012 0.42 0.64 0 2 
FI_2008 1.36 1.28 0 5 
FI_2009 1.78 1.40 0 5 
FI_2010 1.56 1.25 0 4 
FI_2011 1.67 1.57 0 6 
FI_2012 2.27 1.95 0 9 
SDSWPE_2008 0.32 0.61 0 2 
SDSWPE_2009 0.33 0.55 0 2 
SDSWPE_2010 0.19 0.40 0 1 
SDSWPE_2011 0 0.00 0 0 
SDSWPE_2012 0 0.00 0 0 
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Table 3. Descriptive statistics of categorical variables for Florida CGT intersections. 

Variable 
Proportion with a 

Value of 1 
AADTMiss 0.15 
RTOR Allowed 
Through 

1.00 

RTOR Intersecting 0.96 
THRU_RLT 0.60 
INT_RTL 0.85 
THRU_LTL 1.00 
INT_LTL 0.85 
RAILCROSS 0.03 
FRTH_LEG 0.11 
CURVE 0.26 
CHAN_RTL_THRU 0.38 
CHAN_RTL_INT 0.22 
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Descriptive statistics for the comparison intersection variables included in the Florida analysis 
data files are provided in table 4 and table 5. 

Table 4. Descriptive statistics of continuous variables for Florida comparison intersections.  
Variable Mean Standard Deviation Minimum Maximum 

AADTThrough 22,332 10,206 5,600 42,500 
AADTIntersecting 8,372 9,134 500 43,000 
THRU_SPEED 38.07 7.04 25 60 
INT_SPEED 32.44 7.15 15 55 
SKEW 5.21 8.13 0 29.40 
INT_LW 11.09 0.83 9 12 
THRU_LW 11.25 0.64 10 12 
INT_SW 1.50 1.77 0 6 
IntNumLane 3.53 1.01 2 6 
THRU_SW 2.63 2.39 0 8 
ThruNumLane 4.59 0.92 3 7 
TOT_2008 2.79 2.05 0 9 
TOT_2009 2.51 2.14 0 8 
TOT_2010 2.87 2.87 0 15 
TOT_2011 2.23 2.14 0 10 
TOT_2012 2.53 2.33 0 9 
RREND_2008 1.10 1.17 0 4 
RREND_2009 0.95 1.43 0 5 
RREND_2010 0.79 1.10 0 4 
RREND_2011 0.85 1.17 0 5 
RREND_2012 0.90 1.32 0 5 
ANGLE_2008 0.23 0.43 0 1 
ANGLE_2009 0.21 0.41 0 1 
ANGLE_2010 0.36 0.74 0 4 
ANGLE_2011 0.30 0.61 0 2 
ANGLE_2012 0.30 0.61 0 3 
FI_2008 1.28 1.38 0 7 
FI_2009 1.33 1.42 0 6 
FI_2010 1.41 1.80 0 9 
FI_2011 0.98 1.00 0 4 
FI_2012 1.13 1.45 0 6 
SDSWPE_2008 0.23 0.43 0 1 
SDSWPE_2009 0.05 0.22 0 1 
SDSWPE_2010 0.13 0.34 0 1 
SDSWPE_2011 0.00 0.00 0 0 
SDSWPE_2012 0.00 0.00 0 0 
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Table 5. Descriptive statistics of categorical variables for Florida comparison intersections. 

Variable 
Proportion with a Value 

of 1 
AADTMiss 0.279 
RTOR Allowed 
Through 

1.00 

RTOR Intersecting 0.98 
THRU_RLT 0.47 
INT_RTL 0.82 
THRU_LTL 0.92 
INT_LTL 0.90 
RAILCROSS 0.03 
FRTH_LEG 0.18 
CURVE 0.20 
CHAN_RTL_THRU 0.19 
CHAN_RTL_INT 0.13 

 



31 

SOUTH CAROLINA 

CGT intersections in South Carolina included in the database for this evaluation were  
installed between the period prior to 1990 through 2010. The South Carolina Department of 
Transportation (SCDOT) worked with the research team to identify the CGT and comparison 
intersections for use in the analysis.  

Traffic volume data for the major and minor approach roads for each intersection were obtained 
from SCDOT where possible. Traffic volumes for 2013 were available for all of the major roads. 
When SCDOT did not have traffic volume data for the intersecting roadway, the Trip Generation 
Manual was used to predict the traffic volumes based on the land use of land adjacent to the 
minor street approach.(34) After these steps were taken, there were no intersections from South 
Carolina with missing traffic volumes.  

SCDOT also provided crash data for 2009 through 2013. These files were used to identify all 
crashes (total crashes), fatal and injury crashes, rear-end crashes, sideswipe crashes, and angle 
crashes within 260 ft of the intersections for each of the years. The distance of 260 ft was 
selected due to the measurement values associated with the crash data. (It was not possible to use 
250 ft.) 

Google Earth™ was used to collect other geometric and traffic control data. The variables were 
the same as those collected for the Florida data.  

In total, there were 16 CGT intersections and 21 comparison intersections from South Carolina 
included in the analysis database. One CGT intersection was constructed in 2009, and one was 
constructed in 2010. Thus, data for the years of construction and the year before (in the case of 
the CGT intersection constructed in 2010) were excluded from the analysis period. The 
descriptive statistics for CGT intersections from South Carolina are provided in table 6 and  
table 7. 



32 

Table 6. Descriptive statistics of continuous variables for South Carolina CGT 
intersections. 

Variable Mean Standard Deviation Minimum Maximum 
AADTThrough 34,944 12,170 8,300 59,000 
AADTIntersecting 5,957 4,667 1,075 15,000 
THRU_SPEED 45.63 3.02 40 55 
INT_SPEED 31.56 4.94 25 45 
SKEW 6.84 12.74 0 35.34 
INT_LW 11.94 0.24 11 12 
THRU_LW 12.00 0.00 12 12 
INT_SW 0.00 0.00 0 0 
IntNumLane 3.19 0.53 2 4 
THRU_SW 0.19 0.73 0 3 
ThruNumLane 6.69 1.05 5 8 
TOT_2009 8.13 7.56 0 27 
TOT_2010 8.88 7.82 0 29 
TOT_2011 4.69 3.63 0 14 
TOT_2012 6.06 4.75 0 20 
TOT_2013 7.56 4.16 1 17 
FI_2009 2.31 2.09 0 7 
FI_2010 2.13 1.75 0 7 
FI_2011 1.19 1.05 0 4 
FI_2012 2.13 1.86 0 6 
FI_2013 1.50 1.55 0 4 
RREND_2009 3.88 4.49 0 16 
RREND_2010 5.38 6.26 0 24 
RREND_2011 3.06 2.82 0 11 
RREND_2012 3.69 3.55 0 14 
RREND_2013 3.25 2.41 0 7 
ANGLE_2009 2.25 2.96 0 9 
ANGLE_2010 1.44 1.31 0 4 
ANGLE_2011 0.88 0.96 0 3 
ANGLE_2012 1.06 1.06 0 3 
ANGLE_2013 2.13 1.89 0 6 
SDSWPE_2009 0.06 0.25 0 1 
SDSWPE_2010 0 0.00 0 0 
SDSWPE_2011 0.06 0.25 0 1 
SDSWPE_2012 0 0.00 0 0 
SDSWPE_2013 0 0.00 0 0 
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Table 7. Descriptive statistics of categorical variables for South Carolina CGT 
intersections. 

Variable 
Proportion with a Value 

of 1 
RTOR Allowed 
Through 

1.00 

RTOR Intersecting 1.00 
THRU_RTL 0.44 
INT_RTL 0.94 
THRU_LTL 1.00 
INT_LTL 0.94 
RAILCROSS 0.06 
FRTH_LEG 0.81 
CURVE 0.06 
CHAN_RTL_THRU 0.13 
CHAN_RTL_INT 0.13 
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The descriptive statistics for comparison intersections from South Carolina are provided in  
table 8 and table 9. 

Table 8. Descriptive statistics of continuous variables for South Carolina comparison 
intersections. 

Variable Mean Standard Deviation Minimum Maximum 
AADTThrough 22,452 10,499 8,500 45,450 
AADTIntersecting 8,462 7,419 1,950 30,100 
THRU_SPEED 42.62 3.68 35 45 
INT_SPEED 34.52 6.56 25 55 
SKEW 12.10 13.20 0 45.86 
INT_LW 11.81 0.36 11 12 
THRU_LW 11.79 0.37 11 12 
INT_SW 0.76 2.01 0 8 
IntNumLane 3.43 1.05 2 6 
THRU_SW 2.00 4.05 0 15 
ThruNumLane 5.57 1.18 4 9 
TOT_2009 7.67 9.18 0 37 
TOT_2010 6.71 8.14 0 31 
TOT_2011 5.33 5.24 0 24 
TOT_2012 6.57 5.30 0 22 
TOT_2013 6.81 5.60 0 22 
FI_2009 2.38 2.97 0 11 
FI_2010 1.76 2.23 0 8 
FI_2011 1.81 1.81 0 7 
FI_2012 2.10 1.95 0 6 
FI_2013 1.86 1.28 0 4 
RREND_2009 3.38 4.64 0 19 
RREND_2010 3.57 6.14 0 25 
RREND_2011 3.10 3.92 0 18 
RREND_2012 3.67 4.48 0 19 
RREND_2013 3.38 3.79 0 15 
ANGLE_2009 2.19 2.68 0 9 
ANGLE_2010 1.71 1.49 0 4 
ANGLE_2011 1.52 2.06 0 8 
ANGLE_2012 2.00 1.61 0 6 
ANGLE_2013 2.19 2.23 0 9 
SDSWPE_2009 0.33 1.11 0 5 
SDSWPE_2010 0.19 0.51 0 2 
SDSWPE_2011 0.00 0.00 0 0 
SDSWPE_2012 0.05 0.22 0 1 
SDSWPE_2013 0.10 0.30 0 1 
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Table 9. Descriptive statistics of categorical variables for South Carolina comparison 
intersections. 

Variable 
Proportion with a Value 

of 1 
RTOR Allowed 
Through 

1.00 

RTOR Intersecting 0.95 
THRU_RLT 0.57 
INT_RTL 0.86 
THRU_LTL 0.95 
INT_LTL 0.91 
RAILCROSS 0.09 
FRTH_LEG 0.29 
CURVE 0.33 
CHAN_RTL_THRU 0.33 
CHAN_RTL_INT 0.19 
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CHAPTER 6. MATCHING 

Since the intersections in Florida and South Carolina likely differ with regard to unobservable 
variables (e.g., reporting thresholds and driver demographics), matching was done separately for 
each State. As described in the methodology, binary logistic regression was used to estimate the 
propensity scores for both States. Since the goal of the binary logit model was to yield matches 
with good covariate balance, the functional form of the variables in the propensity score models 
differed between Florida and South Carolina. 

The binary logit models estimated the probability that the intersections were CGT intersections 
(i.e., the propensity score). The models were estimated at the intersection level (all years of data 
for each intersection). The propensity score model for Florida is shown in table 10, and the 
model for South Carolina is shown in table 11. For Florida, there were 68 observations, the 
pseudo R2 was 0.1850, and the log-likelihood was -37.546. For South Carolina, there were 37 
observations, the pseudo R2 was 0.3318, and the log-likelihood was -16.911. 

Table 10. Florida propensity score model. 
Variable Coefficient Standard Error p-Value 

AADTThrough 0.00009 0.00003 0.010 
AADTIntersecting 0.00001 0.00003 0.743 
AADTmiss -1.09534 0.99280 0.270 
THRU_RLT 0.13667 0.67546 0.840 
INT_RTL -0.29956 0.83036 0.718 
RAILCROSS 2.53527 1.60811 0.115 
FRTH_LEG -0.03758 0.95639 0.969 
CURVE 0.99022 0.70849 0.162 
SKEW 0.02244 0.02772 0.418 
THRU_SW 0.99344 0.79216 0.210 
INT_SW -0.48141 0.66091 0.466 
Intercept -3.33964 1.56424 0.033 
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Table 11. South Carolina propensity score model. 
Variable Coefficient Standard Error p-Value 

LN_AADTThrough 1.49003 1.37409 0.278 
LN_AADTIntersecting -0.70140 0.41815 0.093 
THRU_RLT -0.19744 0.92572 0.831 
INT_RTL 0.53584 1.55880 0.731 
FRTH_LEG 1.73509 1.14918 0.131 
CURVE -0.93645 1.36229 0.492 
Through_Shoulder -0.24410 1.50289 0.871 
Intercept -10.5416 13.05849 0.420 

 
The distributions of the estimated propensity scores for Florida and South Carolina (by 
intersection type) are shown in figure 17. The box plot of distributions of propensity scores for 
the unmatched groups show that the ranges of values were similar for Florida and dissimilar for 
South Carolina. Since the sample size for both States was small, the amount of overlap in the 
propensity score distributions between CGT and comparison intersections was not large enough 
to obtain covariate balance using NN matching. When NN matching was used, there were fewer 
than 10 total intersections from both States combined that matched well based strictly on the 
estimated propensity scores. 

 
Figure 17. Graphs. Plots of estimated propensity scores by State and treatment status 

(South Carolina left and Florida right).  

Since NN matching did not yield the desired covariate balance without a significant reduction in 
sample size, Mahalanobis matching was implemented. For the Mahalanobis matching using the 
Florida data, the propensity score, through and intersecting road traffic volumes, through and 
intersecting road posted speed limits, and intersecting road shoulder width were included as 
covariates. For Mahalanobis matching using the South Carolina data, the natural log of through 
and intersecting road traffic volumes, through and intersecting road posted speed limits, and 
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through and intersecting road lane and shoulder widths were included as covariates. Replacement 
was allowed. No CGT intersection was dropped from the dataset. The majority of comparison 
intersections were not duplicated for replacement. (Eight intersections were used more than 
once: seven in Florida and one in South Carolina.) 

The matching results for both States indicated no significant differences for the majority of the 
covariates based on the standardized bias. Plots of the absolute standardized bias for each of the 
covariates are shown for Florida and South Carolina in figure 18 and figure 19, respectively. For 
Florida, the variables with significant bias (greater than 25 percent) remaining after matching 
included the through road traffic volumes and posted speeds. For South Carolina, the variables 
with significant bias remaining after matching included the natural log of through and 
intersecting road traffic volumes, as well as the through road posted speeds. The Mahalanobis 
matching was effective at removing the bias in all of the other observed covariates. The variables 
with significant bias remaining were included in each of the CMF models (added as predictor 
variables) to account for the differences in the CGT and comparison intersections. By adding the 
variables with significant remaining bias to the regression model as a predictor variable, the 
regression model adjusts for the remaining differences in the data for the treated and untreated 
intersections. 

 
Figure 18. Graph. Absolute standardized bias for covariates in Florida. 
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Figure 19. Graph. Absolute standardized bias for covariates in South Carolina. 

Since there were still a number of covariates that were not balanced based on the standardized 
bias measures, genetic matching was also implemented to improve the matching. K-S tests were 
then done using the entire sample (both states combined) to help determine the level of covariate 
balance (for both matching methods and the unmatched data). The results of the tests are shown 
in table 12. 
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As shown in table 12, the K-S tests indicate that the following variables were all significantly 
different at the 95-percent confidence level using Mahalanobis matching:  

• AADTThrough.
• AADTIntersecting.
• THRU_SPEED.
• ThruNumLane.
• DEFLECTION.

The following variables were all marginally different when using Mahalanobis matching: 

• INT_SPEED.
• IntNumLane.
• THRU_LW.
• THRU_SW.

When using genetic matching, the covariate balance was improved over the Mahalanobis 
matching. The results of the genetic matching indicate that the only variables that were 
significantly different between the two groups were INT_SPEED, TruNumLane, and 
FRTH_LEG.
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CHAPTER 7. CMF ESTIMATION 

Due to the small sample sizes of the two datasets, the data from both States were combined to 
estimate CMFs for CGT intersections. The resulting CMFs indicated the average safety effect of 
the CGT intersections between the two states. CMFs for total, fatal and injury, and target crashes 
(rear-end, angle, and sideswipe) are described in the following subsections. 

Variable selection and model specification were based on the crash prediction model forms 
found in the HSM.(31) In addition, matching was used to remove the correlation between the 
treatment (CGT) and other variables in the model. The potential outcomes models considered 
these same variable forms, as well as the standardized bias, to further minimize the correlation 
between the treatment and other variables in the model. If the K-S test found that the difference 
was statistically significant, the variable was included in the regression model to adjust for the 
remaining correlation between it and the treatment (for both matching methods and the 
unmatched data). Failing to account for this correlation produces biased treatment effect 
estimates.(15,35) The decision to use indicator variables for the posted speed limit on the 
continuous flow lane was made to fully account for the correlation in the full distribution of 
posted speed limits between the CGT and comparison group. If the posted speeds were grouped 
into ranges (e.g., lower than 50 mi/h and greater than or equal to 50 mi/h), the aggregation led to 
bias resulting from correlation between the posted speed indicator variables and the treatment. 

As discussed in the Methods section, mixed effects negative binomial or Poisson regression was 
used to estimate the CMFs whenever possible. The optimal weights found using the genetic 
matching could not be accommodated using mixed effects regression, so weighted standard 
negative binomial regression with robust standard errors was used with the genetic matching 
results. The regression models for estimating the CMFs, along with the CMFs and 95-percent 
CIs, are shown in table 13 and table 14 for the genetic and Mahalanobis matching, respectively.  
For table 13, there were 297 observations used in the analysis. A weighted standard negative 
binomial regression model, with robust standard errors, was used to estimate the CMFs. The log-
likelihood for the total, fatal and injury, and target crashes was -717.62695, -491.9991, and  
-599.30626, respectively. For table 14, there were 434 observations and 73 group (i.e.,
intersections) used in the analysis. A mixed-effects negative binomial regression model was used
to estimate the CMF for total crashes, which had a log-likelihood of -938.44178. A mixed-effects
Poisson regression model was used to estimate the CMF for fatal and injury crashes, which
had a log-likelihood of -805.2616. Finally, a mixed-effects negative binomial regression
model was used to estimate the CMF for target crashes, which had a log-likelihood of
-665.20078.The statistical modeling output for the potential outcomes models for each crash
type shown in table 13 and table 14 is provided in appendix A.
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The weighted negative binomial model was used for total crashes, fatal and injury crashes, and 
target crashes (rear-end, angle, and sideswipe) using the genetic matched data. The models 
shown in table 13 included all independent variables that, theoretically, correlated with total, 
fatal and injury, or target crashes (based on the K-S tests in table 12). Variables that were not 
statistically significant in the negative binomial models were included in the model because 
Mannering and Bhat pointed out that parsimonious models are biased, are fundamentally flawed, 
and have little practical value.(36) Thus, the statistical models estimated in this evaluation were 
not specified based on statistical significance at the 95-percent confidence level. 

The coefficients for all of the models were consistent with engineering intuition. The purpose of 
CGT intersections is to improve traffic operations. The results indicate that there were no 
statistically significant differences (at the 95-percent confidence level) between signalized T 
intersections without continuous flow lanes and CGT intersections in terms of total, fatal and 
injury, or target crashes (rear-end, angle, and sideswipe). It is worth noting, however, that the 
point estimates of the CMFs for total, fatal and injury, and target crashes were all less than 1, 
suggesting that there is a potential reduction in crash frequency associated with the CGT 
intersection relative to the conventional signalized-T intersection and that the lack of statistical 
significance is likely due to the small sample size rather than the lack of an effect. Thus, it is 
concluded that CGT intersections can have a beneficial effect on crash frequency. The CGT 
CMFs for each crash type and severity, with the associated 95-percent CIs, are shown in 
table 13. 

The signs and magnitudes of the coefficients for traffic volumes are consistent with the major 
and minor road coefficients for at-grade intersections found in the HSM.(31) For the through 
street posted speed limit, the baseline condition was a posted speed limit of 35 mi/h. For the 
intersecting street posted speed limit, the baseline condition was a posted speed limit of 20 mi/h. 
A positive coefficient indicates that the expected number of crashes is higher for the speed limit 
shown relative to the baseline condition. The posted speed limit indicator variables, while mostly 
insignificant, were retained in the model to minimize bias associated with the covariates in the 
matched data used to estimate the potential outcomes model that were not balanced after 
matching. The indicator variable for Florida indicated that there were fewer crashes in Florida 
than in South Carolina, which matches the descriptive statistics. The indicator variable for five or 
more through lanes was used because using individual indicator variables for the individual 
number of through lanes resulted in estimates that were nearly identical for any indicator 
variables for five or more lanes. The negative signs that indicate whether there were shoulders on 
the through and intersecting roads are logical because shoulders provide a recovery area for 
vehicles that leave the travel lanes. The variable Thru5UpShoulder is an interaction variable 
between five or more through lanes and the existence of a shoulder. The positive value indicates 
that intersections with five or more through lanes and shoulders on the through street did not 
receive the same safety benefits from the shoulders as intersections with fewer than five lanes on 
the through street. Finally, the presence of a fourth leg at the intersection that only allowed right-
in and right-out movements correlated with lower crash frequencies. This was likely due to the 
fourth leg only being allowed on intersections with specific characteristics that were not 
collected as a part of this study but that are associated with lower crash frequencies. 

Since traffic volume data were missing for several of the Florida intersections, a sensitivity 
analysis was performed by varying the traffic volumes for the missing locations. Traffic volumes 
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of 500, 1,000, and 3,000 vehicles per day were tested. (As mentioned in the Data Collection 
section, a local jurisdiction performed a traffic count for one of the missing locations and found 
the AADT to be 500 vehicles per day; most missing minor street approaches had similar land use 
characteristics.) The difference in results was minimal when using 500, 1,000, and 3,000 vehicles 
per day for the missing minor street approach traffic volumes. Thus, only the results with the 
missing traffic volumes set at 500 vehicles per day are provided in this report. 

The mixed effects negative binomial model was used for total crashes and target crashes (rear-
end, angle, and sideswipe) using the Mahalanobis matched data. For fatal and injury crashes, the 
overdispersion parameter was not statistically significant when the mixed effects negative 
binomial was used, so the mixed effects Poisson was used for the final model. The random 
intercept was statistically significant in all of the models. 

The results of the models in table 14 indicate that there were no statistically significant 
differences (at the 95-percent confidence level) between signalized T intersections without 
continuous flow lanes and CGT intersections in terms of total, fatal and injury, or target crashes 
(rear-end, angle, and sideswipe). As with the results from the genetic matching, the point 
estimates of the CMFs for total, fatal and injury, and target crashes are all less than 1.0, 
suggesting that there is a potential reduction in crash frequency associated with the CGT 
intersection relative to the conventional signalized T intersection. The lack of statistical 
significance is likely due to the small sample size rather than the lack of an effect. The CGT 
CMFs for each crash type and severity, with the associated 95-percent confidence level, are 
shown in table 14. 

The signs and magnitudes of the coefficients for traffic volumes are consistent with the major 
and minor road coefficients for at-grade intersections found in the HSM.(31) For the posted speed 
limit, the baseline condition is a posted speed limit of 35 mi/h. A positive coefficient indicates 
that the expected number of crashes is higher for the speed limit shown relative to the baseline 
condition. The posted speed limit indicator variables, while mostly insignificant, were retained in 
the model to minimize bias associated with the covariates from the Mahalanobis matched data 
that were significantly different (based on the K-S tests in table 12). 

The sensitivity analysis for the missing traffic volumes that was used with the genetic matching 
CMF models was also performed with the Mahalanobis CMF models. The results were the same, 
and the missing traffic volumes were set to 500 vehicles per day. 

The models in table 14 also indicate that crash frequency increased as intersection skew angle 
increased. This is consistent with the HSM.(31) The finding that the expected crash frequency in 
Florida was lower than in South Carolina was consistent with the descriptive statistics. 

As noted earlier, the propensity scores-potential outcomes framework reduced the overall sample 
size from the original data due to matching (i.e., some intersections are dropped). As such, cross-
sectional models using the unmatched data were also estimated for comparison. The CMFs 
estimated using the full, unmatched database were provided to show the magnitude of bias that 
the CMFs would have had if matching was not used. The regression models and CMFs for total, 
fatal and injury, and the target crashes using the full dataset (i.e., no matching) are shown in  
table 13. The statistical modeling outputs for the models shown in table 13 and table 14 are 
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provided in appendix A. The statistical modeling outputs for the models shown in table 15 are 
provided in appendix B. For table 15, there were 516 observations and 104 groups (i.e., 
intersections) used in the analysis. A mixed-effects negative binomial regression model was used 
to estimate the CMF for total crashes, which had a log-likelihood of -1134.5724. A mixed-effects 
Poisson regression model was used to estimate the CMF for fatal and injury crashes, which had a 
log-likelihood of -795.8822. Finally, a mixed-effects negative binomial regression model was 
used to estimate the CMF for target crashes, which had a log-likelihood of -960.89489. 

The CMFs estimated using the unmatched data are more likely to be biased than the estimates 
using the matched data, so the CMFs from the latter should be regarded as more robust. It is 
encouraging that the CMFs estimated using the unmatched data are similar to the CMFs from the 
matched data, although the safety benefit estimated with both sets of models is statistically 
insignificant. Based on the K-S test results, the genetic matching resulted in the best covariate 
balance. Thus, the CMFs estimated from the genetic matching are preferred over the other  
two methods.
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CHAPTER 8. ECONOMIC ANALYSIS 

A B/C analysis compared the safety benefits with the construction costs of a CGT relative to a 
conventional signalized three-leg intersection. This chapter describes the assumptions used in the 
analysis, describes the differences in the construction costs between the CGT and the 
conventional signalized three-leg intersection, derives the safety benefits associated with the 
CGT, and computes the B/C ratio for the CGT relative to a conventional signalized three-leg 
intersection. 

ASSUMPTIONS 

Because this study was unable to use an observational before-after study methodology, the B/C 
analysis presented in this report compared two different intersection forms (CGT versus 
conventional three-leg signalized intersection). To complete the B/C analysis, the following 
assumptions were made: 

• The median width was as wide as the left-turn lane adjacent to the continuous flow lane 
on the major street. 

• The median was unpaved. 

• There were shoulders on both the major and minor streets. 

• There was no fourth leg at the intersection. 

• There were fewer than five through lanes. 

• The comparison intersection was a signalized T intersection. 

• The pavement design life was 20 years. 

• The average traffic volume for the comparison group was constant over the 20-year 
period (to be used for predictions). 

• All safety benefits were derived using the South Carolina data, so the Florida indicator 
variable in table 13 was set equal to zero. It should be noted that the Florida indicator 
variable was negative, so the B/C ratios for Florida were larger than those computed 
using the South Carolina data. 

• There were no maintenance costs because the project design life was equivalent to the 
pavement design life. 

• The existing traffic signals could be used for the CGT intersection. 

• The only cost associated with the treatment was the additional pavement for the 
acceleration lane, as shown in figure 20. 
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Traditional T Intersection

Continuous Green T Intersection
Paved Area for

Acceleration Lane

  
Figure 20. Schematic. Traditional and CGT intersections. 
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The CMFs used for the evaluation were those estimated using the propensity scores-potential 
outcomes framework (genetic matching results (table 13)). The treatment cost was dependent on 
the posted speed limit. A minimum (35 mi/h on the major road) and maximum (55 mi/h on the 
major road) cost for the treatment are estimated in figure 21 and figure 22. 

For the new pavement, the low (posted speed = 35 mi/h) value required is as follows: 

• 210 ft to the beginning of the taper at 12 ft wide = 210 x 12 = 2,520 ft2. 
• 125-ft taper with an average of 6 ft wide = 125 x 6 = 750 ft2. 

Total Pavement Required = 2,520 ft + 750 ft = 3,270 ft2 = 363 yd2  
Figure 21. Equation. Total pavement required for low posted speed. 

For the new pavement, the high (posted speed = 55 mi/h) value required is as follows: 

• 435 ft to the beginning of the taper at 12 ft wide = 435 x 12 = 5,220 ft2. 
• 540-ft taper with an average of 6 ft wide = 540 x 6 = 3,240 ft2. 

Total Pavement Required= 5,220 ft + 3,240 ft = 8,460 ft2 = 940 yd2  
Figure 22. Equation. Total pavement required for high posted speed. 

The cost for asphalt pavement used for the analysis was $28/yd2. The cost for concrete pavement 
was $70/yd2. Thus, the cost for 35 mi/h was $10,173.33 for asphalt and $25,433.33 for concrete. 
The cost for 55 mi/h was $26,320 for asphalt and $65,800 for concrete.(35) 

The number of crashes (total, fatal and injury, and property damage only (PDO)) with and 
without the CGT, using the average AADTs from the comparison group, were predicted for the 
20-year service life. For example, the total expected number of crashes for the untreated 
intersections were computed using the equation in figure 23, assuming that the posted speed limit 
on the major road was 35 mi/h (indicator variable for Thru_Spd was set equal to zero because it 
is the baseline value), minor (intersecting) roadway was 35 mi/h (indicator variable for 
Int_Spd_35 in table 13 was 0.494), the site was a comparison site (treated variable was set equal 
to zero), and the intersection was located in South Carolina (Florida indicator was zero). 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒−4.542 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ0.492 × 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖0.216 × 𝑒𝑒0 × 𝑒𝑒0.494 × 𝑒𝑒−0.295 × 𝑒𝑒−0.566   
Figure 23. Equation. Total number of expected crashes for untreated intersections. 

Ntotal = Total number of expected crashes. 
e = The exponential function. 
through = The subscript related to through street traffic volume (veh/day). 
intersecting = The subscript related to the intersecting road traffic volume (veh/day). 

The descriptive statistics for the South Carolina comparison group are shown in table 8 and  
table 9, and the average through and intersecting roadway AADT volumes are 22,452 and  
8,452 vehicles per day, respectively. Inputting these values produced the expected number of 
total crashes per year, as seen in figure 24. 



56 

𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑒𝑒−4.542 × 22,4520.492 × 8,4620.216 × 𝑒𝑒0 × 𝑒𝑒0.494 × 𝑒𝑒−0.295 × 𝑒𝑒−0.566 = 720 crashes/year  
Figure 24. Equation. Total number of expected crashes per year for the untreated 

intersections. 

As such, the expected annual total crash frequency for the South Carolina comparison group sites 
was 7.20 crashes per year, as shown in table 16. Multiplying the annual crash frequency by 
20 years produces 144 crashes. The number of property damage only (PDO) crashes was 
estimated by subtracting the number of fatal and injury crashes from the total crashes. The 
treated crash frequency predictions were derived by applying the CMFs shown in table 13. The 
total treated crash frequency estimates were derived by multiplying 144 crashes (untreated 
crashes) times the CMF for total crashes. This resulted in 144 times 0.958, which equals 137.95 
crashes over a 20-year period. All of the predicted crash frequency estimates for the untreated 
and treated intersections are shown in table 16.  

Table 16. Annual predicted crash frequencies. 

Posted 
Speed 
(mi/h) 

Untreated Treated 
Reduction  

(Untreated - Treated) 

Total 

Fatal 
and 

Injury PDO Total 

Fatal 
and 

Injury PDO Total 

Fatal 
and 

Injury PDO 
35 7.20 1.57 5.63 6.90 1.33 5.57 0.30 0.24 0.06 

55 9.97 2.19 7.78 9.55 1.85 7.70 0.42 0.34 0.08 

Bold = Reduction in annual crash frequencies.  

The comprehensive crash costs used for this analysis were derived using 2001 dollar values from 
Council et al.(38) As suggested by the authors, the crash cost values were multiplied by the ratio 
of the Consumer Price Index for 2001 and 2014. This ratio was 2.425. The 2001 comprehensive 
crash costs were $129,418 for fatal and injury crashes and $10,249 for PDO crashes on roads 
with posted speed limits below 50 mi/h. The 2001 comprehensive crash costs were $146,281 for 
fatal and injury crashes and $4,015 for PDO crashes on roads with posted speed limits equal to or 
above 50 mi/h. This produces crash cost savings of $1,536,250 for the 35 mi/h posted speed and 
$2,427,752 for the 55 mi/h posted speed limit for the 20-year project life. The annual benefits 
(from crash costs) were $76,813 for the 35 mi/h posted speed limit major roads and $121,388 for 
the 55 mi/h posted speed limit major roads. Thus, the B/C ratio, by pavement type and posted 
speed limit, were estimated and are provided in table 17. 
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Table 17. B/C ratios for different pavement types. 
Posted Speed Limit (mi/h) Asphalt Pavement Concrete Pavement 

35 76,813/956.30 = 80.3 76,813/2,390.70 = 32.1 
55 121,388/2,474.10 = 49.1 121,388/6,185.20 = 19.6 

 
The annual costs (based on the initial paving costs and no maintenance over the 20-year project 
life), discounted at 7 percent over the 20-year project life, were $956.30 for asphalt and $2390.70 
for concrete pavements at 35 mi/h intersections and $2474.10 for asphalt and $6185.20 for 
concrete at 55 mi/h intersections, respectively.  

Sensitivity Analysis 

In order to test the sensitivity of the B/C ratios to variability in the safety benefits, the upper and 
lower bound of the 95-percent CI of the CMF estimate for total crashes in table 13 was applied to 
the safety benefit estimates shown in table 17. This produced B/C ratios that ranged from 62.0 to 
95.5 for the 35 mi/h posted speed limit on asphalt pavements and from 37.9 to 58.4 for the 
55 mi/h posted speed limit on asphalt pavement. The B/C ratio ranged from 24.8 to 38.2 for 
35 mi/h posted speed limits on concrete pavements and from 15.1 to 23.3 for 55 mi/h posted 
speed limits on concrete pavements.  

Further sensitivity analysis was done to determine the construction costs that would still achieve 
a B/C ratio of 2.0 (lower bound) for the 35 and 55 mi/h posted speed limits. (The crash costs 
were equal for asphalt and concrete pavements.) For the 35 mi/h posted speed limit, a B/C ratio 
of 2.0 could be achieved with annual construction costs up to $38,407. For a 55 mi/h posted 
speed limit, annual construction costs up to $60,694 produce a B/C ratio up to 2.0.  
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CHAPTER 9. SUMMARY AND CONCLUSIONS 

The objective of this study was to evaluate the safety impacts of CGT intersections. Total, fatal 
and injury, and target (rear-end, angle, and sideswipe) crash types were considered. Data from 
Florida and South Carolina were used for this study to estimate CMFs for CGT intersections 
relative to conventional signalized T intersections. The propensity scores—potential outcomes—
was used to estimate the CMFs. Genetic matching provided better matching results than NN or 
Mahalanobis matching. The CMFs were estimated using weighted negative binomial regression 
with the genetic matched data. 

Based on the propensity scores-potential outcomes results (with genetic matching), the CMF 
point estimates for total, fatal and injury, and target crashes were 0.958, 0.846, and 0.920, 
respectively, suggesting that there was a potential reduction in crash frequency associated with 
the CGT intersection relative to the conventional T signalized intersection. Although the results 
were not statistically significant, it was likely due to the small sample rather than the lack of an 
effect. Because the CGT was not expected to compromise safety performance relative to a 
conventional signalized T intersection but affords improved traffic operational performance and 
fewer environmental impacts (lower vehicle emissions), it should be considered as a candidate 
alternative intersection form when conditions exist to effectively implement. 

Based on the findings of this research and the literature review, CGT intersections are likely to 
be favorable over traditional signalized intersections when there are high through traffic volumes 
on the major street approach on the far side of the intersection (opposite the minor street 
approach). This approach could function as the continuous flow lane. The CGT intersection is 
also likely to be a favorable form if there is low cyclist demand and either no pedestrian demand 
or an alternative pedestrian crossing nearby. 

The B/C analysis confirmed that the CGT is a cost-effective intersection design alternative to the 
conventional signalized T intersection (based on the point estimates of the CMFs). The B/C 
ratios for both asphalt and concrete pavements, as well as 35 and 55 mi/h posted speed limits on 
the major road, produced B/C ratios that significantly exceeded 1.0. 

Potential Issues with CGT Intersections 

Throughout the course of the present study, it was learned that several CGT intersections were 
being converted to conventional signalized T intersections in Florida. Anecdotal feedback 
indicated that non-motorized users at these locations have expressed concern with the high-
speed, continuous flow lanes on the major approach. Pedestrians and bicyclists wishing to cross 
from the minor street approach to the far side of the high-speed continuous flow lanes may have 
difficulty identifying adequate gaps. As such, implementation of the CGT intersections at 
locations with anticipated pedestrian and bicycle users should be weighed against the operational 
and environmental benefits. 
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APPENDIX A. MATCHED DATA MODELS 

This appendix contains the regression output for the models using the matched data (genetic and 
Mahalanobis matching). These models were used to develop the CMFs. 

GENETIC MATCHING 

Total Crashes 
 
Negative binomial regression                      Number of obs   =        297 
Dispersion           = mean                       Wald chi2(19)   =     287.53 
Log pseudolikelihood = -717.62695                 Prob > chi2     =     0.0000 
 
------------------------------------------------------------------------------- 
              |               Robust 
          TOT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.0425862   .1101659    -0.39   0.699    -.2585075    .1733351 
    LNAADTMaj |   .4923199   .1459936     3.37   0.001     .2061778    .7784621 
    LNAADTMin |   .2154684   .0385375     5.59   0.000     .1399363    .2910006 
      Florida |  -.6362596    .162479    -3.92   0.000    -.9547125   -.3178067 
  ThruLane5Up |  -1.065885    .212755    -5.01   0.000    -1.482878   -.6488932 
  IntShoulder |  -.2946033   .1243796    -2.37   0.018    -.5383828   -.0508239 
 ThruShoulder |  -.5656151   .4716386    -1.20   0.230     -1.49001    .3587795 
Thru5UpShlder |   1.115338   .5175464     2.16   0.031     .1009653     2.12971 
     FRTH_LEG |  -.2411121   .1375897    -1.75   0.080     -.510783    .0285588 
              | 
    INT_SPEED | 
          25  |   .2900747    .354013     0.82   0.413    -.4037781    .9839275 
          30  |   .4594779    .326298     1.41   0.159    -.1800544     1.09901 
          35  |   .4942091   .3434051     1.44   0.150    -.1788526    1.167271 
          40  |   .3111814   .3817203     0.82   0.415    -.4369766    1.059339 
          45  |   .6799561   .3540597     1.92   0.055    -.0139882      1.3739 
          55  |   .4608651   .3985745     1.16   0.248    -.3203266    1.242057 
              | 
   THRU_SPEED | 
          40  |  -.1062967   .3269923    -0.33   0.745    -.7471898    .5345964 
          45  |   .2109157   .2818383     0.75   0.454    -.3414772    .7633087 
          50  |  -.6465204   .3619147    -1.79   0.074     -1.35586    .0628194 
          55  |   .3262764   .3029884     1.08   0.282      -.26757    .9201229 
              | 
        _cons |  -4.541765   1.447841    -3.14   0.002    -7.379481   -1.704048 
--------------+---------------------------------------------------------------- 
     /lnalpha |  -1.429498   .1727079                     -1.767999   -1.090997 
--------------+---------------------------------------------------------------- 
        alpha |    .239429   .0413513                      .1706741    .3358815 
------------------------------------------------------------------------------- 
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Fatal and Injury Crashes 

 
Negative binomial regression                      Number of obs   =        297 
Dispersion           = mean                       Wald chi2(19)   =      56.78 
Log pseudolikelihood = -491.09991                 Prob > chi2     =     0.0000 
 
------------------------------------------------------------------------------- 
              |               Robust 
           FI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.1669481   .1334598    -1.25   0.211    -.4285246    .0946283 
    LNAADTMaj |   .3027534   .1719295     1.76   0.078    -.0342222    .6397291 
    LNAADTMin |   .1910633   .0442966     4.31   0.000     .1042436     .277883 
      Florida |  -.3316629   .1961931    -1.69   0.091    -.7161943    .0528685 
  ThruLane5Up |  -.5849208   .2753746    -2.12   0.034    -1.124645   -.0451965 
  IntShoulder |   -.232926   .1670391    -1.39   0.163    -.5603168    .0944647 
 ThruShoulder |  -.7050994   .5639856    -1.25   0.211    -1.810491     .400292 
Thru5UpShlder |   .9365371   .6267288     1.49   0.135    -.2918288    2.164903 
     FRTH_LEG |  -.2530672   .1826752    -1.39   0.166    -.6111041    .1049696 
              | 
    INT_SPEED | 
          25  |   .1490696   .3936889     0.38   0.705    -.6225465    .9206857 
          30  |   .4573904   .3566774     1.28   0.200    -.2416845    1.156465 
          35  |   .2598806   .3846343     0.68   0.499    -.4939888     1.01375 
          40  |    .195327   .4051539     0.48   0.630    -.5987601    .9894141 
          45  |   .3861851   .3871922     1.00   0.319    -.3726977    1.145068 
          55  |   .3522804   .4505391     0.78   0.434      -.53076    1.235321 
              | 
   THRU_SPEED | 
          40  |    .047759   .3633107     0.13   0.895     -.664317     .759835 
          45  |   .1691577   .3103545     0.55   0.586     -.439126    .7774414 
          50  |  -.2235057   .4191268    -0.53   0.594    -1.044979    .5979676 
          55  |   .3347177   .3418134     0.98   0.327    -.3352244     1.00466 
              | 
        _cons |  -3.635727   1.696434    -2.14   0.032    -6.960676   -.3107779 
--------------+---------------------------------------------------------------- 
     /lnalpha |  -2.569357   .5916134                     -3.728898   -1.409816 
--------------+---------------------------------------------------------------- 
        alpha |   .0765848   .0453086                      .0240193    .2441883 
------------------------------------------------------------------------------- 
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Target Crashes 
 
Negative binomial regression                      Number of obs   =        297 
Dispersion           = mean                       Wald chi2(19)   =     324.75 
Log pseudolikelihood = -599.30626                 Prob > chi2     =     0.0000 
 
------------------------------------------------------------------------------- 
              |               Robust 
       Target |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.0835338   .1294228    -0.65   0.519    -.3371979    .1701303 
    LNAADTMaj |    .562835   .1689981     3.33   0.001     .2316047    .8940652 
    LNAADTMin |   .2251839   .0441408     5.10   0.000     .1386696    .3116982 
      Florida |  -1.173519   .2142147    -5.48   0.000    -1.593372   -.7536656 
  ThruLane5Up |  -1.448441   .3416042    -4.24   0.000    -2.117973   -.7789092 
  IntShoulder |  -.5076138   .1700634    -2.98   0.003     -.840932   -.1742957 
 ThruShoulder |  -1.920895   .7262517    -2.64   0.008    -3.344322   -.4974676 
Thru5UpShlder |   2.536511   .7922779     3.20   0.001     .9836746    4.089347 
     FRTH_LEG |   -.273681   .1758453    -1.56   0.120    -.6183315    .0709695 
              | 
    INT_SPEED | 
          25  |    .256837   .5060215     0.51   0.612     -.734947    1.248621 
          30  |   .6727153   .4797619     1.40   0.161    -.2676008    1.613031 
          35  |   .6383726   .5020733     1.27   0.204    -.3456729    1.622418 
          40  |   .1977973   .5548589     0.36   0.721    -.8897061    1.285301 
          45  |   .9045994   .5159448     1.75   0.080    -.1066339    1.915833 
          55  |   .4433076   .5625622     0.79   0.431     -.659294    1.545909 
              | 
   THRU_SPEED | 
          40  |  -.4655281   .4043569    -1.15   0.250    -1.258053    .3269969 
          45  |  -.0891576   .3453978    -0.26   0.796    -.7661249    .5878096 
          50  |  -1.248241   .4890602    -2.55   0.011    -2.206782   -.2897009 
          55  |  -.1768242   .3604577    -0.49   0.624    -.8833083    .5296598 
              | 
        _cons |  -4.831303   1.644516    -2.94   0.003    -8.054495    -1.60811 
--------------+---------------------------------------------------------------- 
     /lnalpha |  -1.257409   .2205592                     -1.689697   -.8251205 
--------------+---------------------------------------------------------------- 
        alpha |   .2843901   .0627248                      .1845755    .4381822 
------------------------------------------------------------------------------- 
 
 

MAHALANOBIS MATCHING 

Total Crashes 
 
Mixed-effects nbinomial regression              Number of obs      =       434 
Overdispersion:            mean 
Group variable:        Location                 Number of groups   =        73 
 
 
                                                Wald chi2(11)      =     76.07 
Log likelihood = -938.44718                     Prob > chi2        =    0.0000 
------------------------------------------------------------------------------ 
         TOT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     Treated |  -.0464587    .160353    -0.29   0.772    -.3607448    .2678274 
   LNAADTMaj |   .5911802   .2070058     2.86   0.004     .1854563    .9969041 
   LNAADTMin |   .1827335   .0580069     3.15   0.002     .0690421    .2964249 
             | 
  THRU_SPEED | 
         40  |   .1020133    .322451     0.32   0.752    -.5299791    .7340057 
         45  |   .3045244   .2456019     1.24   0.215    -.1768465    .7858953 
         50  |  -.2461067   .3788936    -0.65   0.516    -.9887245    .4965112 
         55  |   .7239126   .3226377     2.24   0.025     .0915543    1.356271 
         60  |  -.3522544   .6128105    -0.57   0.565    -1.553341    .8488322 
             | 
 ThruLane5Up |  -.6136113   .3164582    -1.94   0.053    -1.233858    .0066354 
  DEFLECTION |    .008991   .0058116     1.55   0.122    -.0023995    .0203816 
     Florida |  -.7244923   .1486832    -4.87   0.000    -1.015906   -.4330787 
       _cons |  -5.541216   1.969354    -2.81   0.005    -9.401079   -1.681353 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -3.567961   .4746443    -7.52   0.000    -4.498246   -2.637675 
-------------+---------------------------------------------------------------- 
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Location     | 
   var(_cons)|   .2120851   .0475991                      .1366066    .3292674 
------------------------------------------------------------------------------ 
 
LR test vs. nbinomial regression:chibar2(01) =   133.20 Prob>=chibar2 = 0.0000 
 
Fatal + Injury Crashes 
 
Mixed-effects Poisson regression                Number of obs      =       434 
Group variable:        Location                 Number of groups   =        73 
 
 
                                                Wald chi2(11)      =     33.52 
Log likelihood = -665.20078                     Prob > chi2        =    0.0004 
------------------------------------------------------------------------------ 
          FI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     Treated |  -.1341782   .1386713    -0.97   0.333     -.405969    .1376126 
   LNAADTMaj |   .4430583   .1845915     2.40   0.016     .0812656    .8048511 
   LNAADTMin |   .1164183   .0520172     2.24   0.025     .0144663    .2183702 
             | 
  THRU_SPEED | 
         40  |   .4292983   .2915357     1.47   0.141    -.1421011    1.000698 
         45  |   .4049865   .2221222     1.82   0.068    -.0303651     .840338 
         50  |   .1067951   .3398837     0.31   0.753    -.5593647     .772955 
         55  |    .880773   .2837816     3.10   0.002     .3245713    1.436975 
         60  |  -.6526719   .6898198    -0.95   0.344    -2.004694    .6993501 
             | 
 ThruLane5Up |  -.5191403   .2780189    -1.87   0.062    -1.064047    .0257668 
  DEFLECTION |   .0038474   .0051373     0.75   0.454    -.0062215    .0139162 
     Florida |  -.1913353   .1319369    -1.45   0.147    -.4499269    .0672564 
       _cons |  -4.805059   1.750959    -2.74   0.006    -8.236877   -1.373242 
-------------+---------------------------------------------------------------- 
Location     | 
   var(_cons)|   .1022855   .0363784                      .0509425    .2053754 
------------------------------------------------------------------------------ 
LR test vs. nbinomial regression:chibar2(01) =    24.23 Prob>=chibar2 = 0.0000 
Target Crashes 

 
Mixed-effects nbinomial regression              Number of obs      =       433 
Overdispersion:            mean 
Group variable:        Location                 Number of groups   =        73 
 
 
 
                                                Wald chi2(11)      =     91.98 
Log likelihood = -805.26016                     Prob > chi2        =    0.0000 
------------------------------------------------------------------------------ 
      Target |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
     Treated |  -.0337268   .1915727    -0.18   0.860    -.4092025    .3417488 
   LNAADTMaj |   .5266724   .2497115     2.11   0.035     .0372468    1.016098 
   LNAADTMin |   .1948996   .0712121     2.74   0.006     .0553264    .3344728 
             | 
  THRU_SPEED | 
         40  |  -.0171329    .398288    -0.04   0.966    -.7977631    .7634973 
         45  |   .3838796   .3013736     1.27   0.203    -.2068017     .974561 
         50  |  -.1985112   .4589208    -0.43   0.665    -1.097979     .700957 
         55  |   .6631016    .393477     1.69   0.092     -.108099    1.434302 
         60  |  -.4246656   .7859793    -0.54   0.589    -1.965157    1.115826 
             | 
 ThruLane5Up |  -.8200212   .3790982    -2.16   0.031     -1.56304   -.0770024 
  DEFLECTION |   .0100721   .0069324     1.45   0.146    -.0035152    .0236594 
     Florida |  -1.158089   .1774422    -6.53   0.000    -1.505869   -.8103083 
       _cons |  -5.133955    2.36076    -2.17   0.030     -9.76096   -.5069502 
-------------+---------------------------------------------------------------- 
    /lnalpha |  -3.240642   .5155851    -6.29   0.000    -4.251171   -2.230114 
-------------+---------------------------------------------------------------- 
Location     | 
   var(_cons)|   .2840945   .0674521                      .1783871    .4524413 
------------------------------------------------------------------------------ 
LR test vs. nbinomial regression:chibar2(01) =   108.78 Prob>=chibar2 = 0.0000 
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APPENDIX B. UNMATCHED DATA MODELS 

This appendix contains the regression output for the models using the unmatched data. These 
models were used to develop the CMFs. 

Total Crashes 
 
 
Mixed-effects nbinomial regression              Number of obs      =       516 
Overdispersion:            mean 
Group variable:        Location                 Number of groups   =       104 
 
 
                                                Wald chi2(21)      =    121.79 
Log likelihood = -1134.4724                     Prob > chi2        =    0.0000 
------------------------------------------------------------------------------- 
          TOT |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.0651048   .1452097    -0.45   0.654    -.3497105     .219501 
    LNAADTMaj |   .8827815   .1499963     5.89   0.000     .5887942    1.176769 
    LNAADTMin |   .1138795   .0520072     2.19   0.029     .0119472    .2158118 
              | 
   THRU_SPEED | 
          30  |  -.0663538   .6472018    -0.10   0.918    -1.334846    1.202138 
          35  |   .1191612   .6194883     0.19   0.847    -1.095014    1.333336 
          40  |   .3005828   .6417147     0.47   0.639    -.9571549    1.558321 
          45  |   .3793965   .6377301     0.59   0.552    -.8705315    1.629325 
          50  |  -.3578762   .7042309    -0.51   0.611    -1.738143    1.022391 
          55  |   .6114627   .6921769     0.88   0.377     -.745179    1.968104 
          60  |   .4465226   .9637542     0.46   0.643    -1.442401    2.335446 
              | 
    INT_SPEED | 
          25  |     .40674   .4660948     0.87   0.383     -.506789    1.320269 
          30  |     .62461   .4456572     1.40   0.161     -.248862    1.498082 
          35  |   .6398991   .4503864     1.42   0.155    -.2428419     1.52264 
          40  |   .6039956   .4907412     1.23   0.218    -.3578394    1.565831 
          45  |   .9291992   .4785334     1.94   0.052     -.008709    1.867107 
          55  |   .9122952    .528974     1.72   0.085    -.1244748    1.949065 
              | 
      THRU_LW |   .1335091   .1174843     1.14   0.256    -.0967559    .3637741 
  ThruLane5Up |  -.4314039   .2038598    -2.12   0.034    -.8309617    -.031846 
     FRTH_LEG |  -.0529904   .1514085    -0.35   0.726    -.3497457    .2437649 
   DEFLECTION |   .0075639   .0051582     1.47   0.143     -.002546    .0176739 
      Florida |  -.5879068    .158542    -3.71   0.000    -.8986434   -.2771703 
        _cons |  -10.38209   2.287736    -4.54   0.000    -14.86597    -5.89821 
--------------+---------------------------------------------------------------- 
     /lnalpha |  -2.793322   .3145283    -8.88   0.000    -3.409786   -2.176858 
--------------+---------------------------------------------------------------- 
Location      | 
    var(_cons)|   .2162566   .0420769                      .1476902    .3166556 
------------------------------------------------------------------------------- 
LR test vs. nbinomial regression:chibar2(01) =   112.31 Prob>=chibar2 = 0.0000 
 



66 

 

Fatal + Injury Crashes 
 
Mixed-effects Poisson regression                Number of obs      =       516 
Group variable:        Location                 Number of groups   =       104 
 
 
                                                Wald chi2(21)      =     69.20 
Log likelihood =  -795.8822                     Prob > chi2        =    0.0000 
------------------------------------------------------------------------------- 
           FI |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.1258947   .1468064    -0.86   0.391    -.4136299    .1618406 
    LNAADTMaj |   .7880994   .1538588     5.12   0.000     .4865418    1.089657 
    LNAADTMin |   .1330427   .0530407     2.51   0.012     .0290847    .2370006 
              | 
   THRU_SPEED | 
          30  |   .3913529   .6747264     0.58   0.562    -.9310865    1.713792 
          35  |   .2297819   .6552667     0.35   0.726    -1.054517    1.514081 
          40  |   .5284284   .6771754     0.78   0.435    -.7988111    1.855668 
          45  |   .6428837   .6733534     0.95   0.340    -.6768647    1.962632 
          50  |   .2340186   .7384256     0.32   0.751    -1.213269    1.681306 
          55  |   1.067968   .7230297     1.48   0.140    -.3491446     2.48508 
          60  |   .0281176   1.067012     0.03   0.979    -2.063187    2.119422 
              | 
    INT_SPEED | 
          25  |   .3085697   .4771768     0.65   0.518    -.6266796    1.243819 
          30  |   .4888562   .4565184     1.07   0.284    -.4059034    1.383616 
          35  |   .3264459     .46244     0.71   0.480    -.5799198    1.232812 
          40  |   .5251068   .5007958     1.05   0.294    -.4564349    1.506648 
          45  |   .4338082   .4880265     0.89   0.374    -.5227062    1.390323 
          55  |   .5979823   .5404798     1.11   0.269    -.4613386    1.657303 
              | 
      THRU_LW |   .0928152   .1228663     0.76   0.450    -.1479983    .3336287 
  ThruLane5Up |  -.3819944   .2096644    -1.82   0.068    -.7929291    .0289403 
     FRTH_LEG |   -.191284   .1558754    -1.23   0.220    -.4967942    .1142263 
   DEFLECTION |   .0018598   .0053054     0.35   0.726    -.0085386    .0122583 
      Florida |  -.2244251   .1642601    -1.37   0.172     -.546369    .0975188 
        _cons |  -10.22665   2.353285    -4.35   0.000      -14.839   -5.614294 
--------------+---------------------------------------------------------------- 
Location      | 
    var(_cons)|     .15825   .0429838                      .0929268    .2694924 
------------------------------------------------------------------------------- 
LR test vs. nbinomial regression:chibar2(01) =    33.71 Prob>=chibar2 = 0.0000 
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Target Crashes 
 
Mixed-effects nbinomial regression              Number of obs      =       515 
Overdispersion:            mean 
Group variable:        Location                 Number of groups   =       104 
 
 
                                                Wald chi2(21)      =    161.72 
Log likelihood = -960.89489                     Prob > chi2        =    0.0000 
------------------------------------------------------------------------------- 
       Target |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 
--------------+---------------------------------------------------------------- 
      Treated |  -.1857775   .1645152    -1.13   0.259    -.5082214    .1366663 
    LNAADTMaj |   .9044383   .1715841     5.27   0.000     .5681397    1.240737 
    LNAADTMin |   .1174335    .059866     1.96   0.050     .0000983    .2347687 
              | 
   THRU_SPEED | 
          30  |   1.081438   .9507476     1.14   0.255    -.7819933    2.944869 
          35  |   1.167648   .9267098     1.26   0.208    -.6486698    2.983966 
          40  |   1.464637   .9456078     1.55   0.121    -.3887202    3.317994 
          45  |   1.642442   .9423246     1.74   0.081    -.2044807    3.489364 
          50  |   .8048887   1.001211     0.80   0.421    -1.157449    2.767226 
          55  |   1.700048   .9904233     1.72   0.086    -.2411461    3.641242 
          60  |   1.461301   1.296715     1.13   0.260    -1.080214    4.002816 
              | 
    INT_SPEED | 
          25  |       .394   .5664751     0.70   0.487    -.7162708    1.504271 
          30  |   .6714898   .5448975     1.23   0.218    -.3964897    1.739469 
          35  |   .6295828   .5501377     1.14   0.252    -.4486673    1.707833 
          40  |   .4781859   .5966062     0.80   0.423    -.6911408    1.647513 
          45  |    1.09181   .5774279     1.89   0.059    -.0399283    2.223548 
          55  |    .967884   .6306965     1.53   0.125    -.2682584    2.204026 
              | 
      THRU_LW |   .1072025   .1375266     0.78   0.436    -.1623447    .3767496 
  ThruLane5Up |  -.5540126    .234327    -2.36   0.018    -1.013285     -.09474 
     FRTH_LEG |   .0024002   .1702609     0.01   0.989    -.3313051    .3361054 
   DEFLECTION |   .0072983   .0057975     1.26   0.208    -.0040647    .0186612 
      Florida |  -1.003687   .1794622    -5.59   0.000    -1.355426   -.6519472 
        _cons |  -11.66765   2.713689    -4.30   0.000    -16.98638   -6.348917 
--------------+---------------------------------------------------------------- 
     /lnalpha |  -2.431527   .3402199    -7.15   0.000    -3.098346   -1.764709 
--------------+---------------------------------------------------------------- 
Location      | 
    var(_cons)|   .2455567   .0538776                      .1597311    .3774975 
------------------------------------------------------------------------------- 

LR test vs. nbinomial regression:chibar2(01) =    75.34 Prob>=chibar2 = 0.0000 
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