Safety Performance Management achieved through Predictive Methods

Today's Presenter

Dr. Kohinoor Kar, PE, PTOE Arizona DOT, Traffic Safety Section Transportation Safety Engineer <u>KKar@azdot.gov</u>

HSM Predictive Methods Arizona Applications

Kohinoor Kar, Ph.D., P.E., PTOE

Arizona Department of Transportation

March 25, 2013

Outline

Fundamental Issue
AZ HSM Implementation
AZ Pilot Applications
Why Implement HSM?

Fundamental Issue

Crash Frequency and AADT

HSM Implementation...1 Completed

Purchased 100 copies of HSM
HSM Overview training (NCHRP 17-38)

3 x 2-day sessions

IHSDM training (NHI)

1 x 2-day session

Safety Management System Workshop (DiExSys)

1 x 2-day session

Pilot Applications of HSM Predictive Methods

3 projects on the State Highway System

HSM Implementation...2 Ongoing/Planned

- Feasibility Study for Arizona's Roadway Management Process using HSM and SafetyAnalyst
- Framework for Integration of Substantive Safety into the ADOT Project Development Process
- Data Needs for Tree Removal CMFs on Arizona State Highways
- ▶ I-10, 35th Ave to Sky Harbor Blvd, Safety Planning Study

HSM Implementation...3 Pilot Applications

- SR 260 Segment Convert 2-lane undivided to 4-lane divided highway
 - HSIP funding justification using HSM-based NCHRP 17-38 spreadsheet
- I-8 at Araby Road Convert signalized intersections to roundabouts
 - HSIP funding justification using HSM-based NCHRP 17-38 spreadsheet
- SR 264 Segment Evaluate safety benefits of widening shoulder to 5-feet vs. 8-feet
 - Quantifying the safety effects of geometric design elements using IHDSM software

SR 264 Project in Northeast Arizona

Project Information

- Rural Minor Arterial
- ▶ Navajo County, Arizona
- Undivided Two-Lane, Two-Way Road
- ▶ 12-Foot Travel Lanes
- ▶ 0-1-Foot Shoulders
- Intermittent Right and Left Turn Lanes
- Intermittent Passing Lanes

Crash and AADT Data

SR 264 Crash Data	2007	2008	2009	2010	2011*	Total
Fatal	0	4	0	2	1	7
Incapacitating Injury	0	3	0	0	0	3
Non-Incapacitating Injury	0	0	1	0	0	1
Possible Injury	13	7	0	4	0	24
Property Damage Only (PDO)	8	6	1	7	1	23
Total	21	20	2	13	2	56

*At the time of this study, the 2011 crash data input was still in progress and was therefore omitted from the analysis.

SR 264	Observed 2010 AADT (vpd)	Projected 2016 AADT (vpd)	Projected 2036 AADT (vpd)
MP 441.02-MP 446.18	5,010	7,400	9,900
MP 446.18-MP 446.91	6,429	8,600	12,150
MP 446.91-MP 448.37	5,199	6,000	7,350
MP 448.37-MP 475.50	4,102	4,350	5,400

Alternative Analysis Major Design Elements

- Widening to 5-Foot shoulders
- Widening to 8-Foot shoulders
- Improving superelevation to bring into compliance with AASHTO recommendations

Additional Elements

- Centerline and shoulder rumble strips
- Flattening of side slopes
- Installing guardrail

Segment Prioritization Budgetary Consideration

Split into two separate segments to be constructed independently:

- Segment I MP 441.19 to MP 452.00
- Segment II MP 452.00 to MP 465.74
- Each segment was evaluated for prioritization

 Potential reduction in the total number of crashes over the 20-year analysis period

Crash Severity Distribution Navajo and Hopi Rural 2-Lane

Rural 2-Lane 2-Way Parameters

Roadway Element	HSM Base Condition	Existing SR 264 (1-Foot Shoulders)	Alternative A (5-Foot Shoulders)	Alternative B (8-Foot Shoulders)
Lane width	12-Foot	12-Foot	12-Foot	12-Foot
Shoulder width	6-Foot	1-Foot	5-Foot	8-Foot
Shoulder type	Paved	Paved	Paved	Paved
Roadside hazard rating	3	Varies (6 or 7 most frequent)	Varies (1 or 2 most frequent)	Varies (1 or 2 most frequent)
Driveway Density	≤ 5 per mile	Per survey & Holbrook District turnout database	Per survey & Holbrook District turnout database	Per survey & Holbrook District turnout database
Horizontal curves: length, radius, and presence or absence of spiral transitions	None	Per best fit alignment	Per best fit alignment (match existing)	Per best fit alignment (match existing)
Horizontal curves: Super elevation	None	Per as-builts & Survey	Per as-builts & survey (match existing)	Per as-builts & survey (match existing)
Grades	≤ 3%	Per as-builts & survey	Per as-builts & survey (match existing)	Per as-builts & survey (match existing)
Centerline rumble strips	None	None	Present	Present
Passing lanes	None	Per survey	Per survey (match existing)	Per survey (match existing)
Two-way left- turn lanes	None	Per survey	Per survey (match existing)	Per survey (match existing)
Lighting	None	Present @ US 191 Intersection	Present @ US 191 Intersection (match existing)	Present @ US 191 Intersection (match existing)
Automated speed enforcement	None	None	None	None

Major Variations

- Shoulder Width
- Roadside Hazard
 Rating
- Centerline Rumble
 Strips

Expected Crash Output

Expected Number of Crashes Segment Prioritization

	2016-2036 Expected Total Number of Crashes For Entire Project Limits			
	Existing Conditions	Segment I 5-Foot Shoulders with Segment II Existing Conditions	Segment II 5-Foot Shoulders with Segment I Existing Conditions	
Total	636.38	593.09	574.87	
Reduction in Total Crashes over Existing Conditions	N/A	43.29	61.51	
Percentage Reduction in Total Crashes over Existing Conditions	N/A	6.8%	9.7%	

Benefit-to-Cost Ratio Design Alternatives

Benefit / Cost (5-Foot Shoulders)			
Annual Benefit	Annual cost	Benefit / Cost Ratio	
\$3,873,681	\$1,680,561	2.30	

Benefit / Cost (8-Foot Shoulders)			
Annual Benefit	Annual cost	Benefit / Cost Ratio	
\$5,084,207	\$2,678,713	1.90	

Benefit / Cost (Superelevation Improvements)			
Annual Benefit	Annual cost	Benefit / Cost Ratio	
\$41,807	\$135,464	0.31	

Conclusions Lessons Learned

 IHSDM provides a user-friendly interface for implementing the HSM Predictive Method to real world project applications

- IHSDM can be used to quantify the safety benefits for a wide variety of proposed improvements
- Improvements that can be evaluated using IHSDM is restricted to those identified in Part C of the HSM
- Based on the analysis outcome, 5-feet shoulder provides greatest safety benefit per dollar spent

Why Implement HSM? Better Safety Performance

- Better safety analysis using quantitative approach to support decision-making
- Cost effective investments to reach our safety goals
- More directly integrate safety in the overall program and project development process
- Better assess tradeoffs with other values such as, cost, environmental concerns, right-of-way, and operations
- Communicate direct and meaningful return on investments in safety

Bottom line: More lives and injuries saved per dollar invested

Thank You! Questions? Comments?

Disclaimer: Information contained in this presentation are for informational purpose only and may not necessarily reflect current ADOT policies or guidelines.

> For additional information, please contact Kohinoor Kar <u>kkar@azdot.gov</u>

