Optimization of Inlet Borrow and Beach Nourishment, St. Johns County, FL

Tanya M. Beck

Research Physical Scientist Coastal & Hydraulics Lab, ERDC Vicksburg, MS

Kelly Legault

Coastal Engineer HH&C, Jacksonville District Jacksonville, FL

US Army Corps of Engineers
BUILDING STRONG®

CMS Shark River Inlet, NJ

CPT Grays Harbor, WA

Draft, ft

GenCade Matagorda Ship Channel, TX

Outline

- Background Information & Historical Change at St. Johns County
- Recent Activity at Inlet & Present Conditions
- Problem Statement
- GenCade Calibration to Measured Datasets
- Optimization of Alternatives using Measured Data, CMS Results, and GenCade
- Results, Discussion, and Summary

Coastal Inlets Research Program

St. Johns County, FL, General Information

St. Augustine Inlet Federal Navigation Project; St Augustine Beach Shore Protection Project (SPP); Feasibility Study for Vilano Beach SPP

St. A Inlet: Dual-inlet, lagoonal bay system, mixed-energy with St. Augustine the dominant inlet

St. A Beach: Erosional Hotspot with seawall and pier (only beach structures)

The Erosional Hotspot: Relic protruded platform now eroding

1862 Navigation Map

Coastal Inlets Research Program

search & Develop

R-Monument Profile Locations

R-Monument Profile Locations

Inlet Ebb-shoal Mining/Beach Protection Projects at St. Augustine Beach

CIRP

Vilano Reach Feasibility Study St. Augustine Navigation Project	1998	- Bathymet	ry 1998	– 2003 Di	4.5 MCY fference
Salt San San	Project	Volume Dredged (CY)	Volume Placed (CY)	Placement Area	Construction Dates
Sebastian River State Park	2003			R-145 to	Sept 2001-
st	Project Phase 1			R-151	Oct 2001
Augustine Beach		4.5 mcy	4.2 mcy		
Nourishment Project	2003			T-132 to	Apr 2002 –
	Project Phase 2			R-151	Jan 2003
	2005	2.9 may	2.9 may	R-137A	Jun 2005 –
St. Johns County of Real	Project	2.0 IIICy	2.0 IIICY	to R-151	Nov 2005

What is the optimal dredging volume and interval, and beach placement volume and interval that will supply adequate sand to maintain two Shore Protection Projects in St. Johns County?

GenCade used to help answer:

What is the volumetric limit (cubic yards of sediment) that can be mined regularly from the ebb shoal in its present condition which does not cause a significant long-term effect on the morphology and volumetric recovery of the shoal?

How much sediment and what nourishment interval is required to maintain present volume of the active and planned Shore Protection Projects?

Setup the GenCade Grid

Input:

- 1986, 1999 Shorelines
- Waves
- Dredging/Placement Information
- Structures

Model Calibration Also Dependent On:

- Equilibrium Shoal Volumes
- Inlet Bypassing Rates & Locations
- Regional Contour
- Interpolation of Waves Between Gage Stationing

Calibrating GenCade: 1986-1999 Measured Volume Change

Calibrate:

- Est. Sand Transport Rates (K₁ & K₂)
- Waves (WIS does not capture local reversal)
- Bypassing Location & Coefficients
- Groin Permeability
- Background Erosion Rate
- Timestep

Measured Volume Change (cy/lft)

Calibrating GenCade: 1986-1999 Measured Shoreline Change & Final Coefficients

Shoreline Change:

- Spatially varying grain size and resultant equilibrium profile
- Inlet adjacent beaches are dominated by inlet processes not captured in GenCade

Feature	Value	Feature	Setting
K1 Coefficient	0.6	Background Erosion Rate (Bypassing Rate)	-80 cy/hr
K1 Coefficient	0.4	Left (north) Lateral Boundary Condition	Moving; 0 ft per simulation
D50 (mm)	0.2	Right (south) Lateral Boundary Condition	Moving; 0 ft per simulation
Berm Height (ft)	5	Inlet Left (north) Jetty Bypassing Coefficient (JBCL)	0.5
Depth of Closure (ft)	20	Inlet Right (south) Jetty Bypassing Coefficient (JBCR)	70
Ismooth (averaging window)	1	Inlet Left (north) Jetty Porosity	0.8
Time Step (hr)	0.0625	Inlet Right (south) Jetty Porosity	0.3

Final Coefficients

CIRP

Calibrating Statistics for GenCade

Volumetric Change:

- A one on one comparison of profile volume change over R-Monument reaches (~1000 ft) and found a NRMSE 6.8%
- Calculated and measured volume change for the greater areas was found to have an NRMSE of 10.5%
 - the result of compounded error in summed volume change and different normalization values

Statistics By Reach

Oldrichico By TC Mon					
RMSE	70.7 cy/lft				
NRMSE	6.8 %				
Correlation Coefficient	0.61				
Pattern Correlation (Erosion/Accretion)	93.9%				

Statistics By R-Mon

Measured and calculated volume change for St. Johns County beaches and inlet.							
	Reach (R-	Measured	Calculated 1986-				
Location	Mon)	1986-1999	1999 Volume	Relative Error			
		Volume Change	Change				
Ponte Vedra	R1 - R109	-7 047 494	-5 570 854	21 0%			
Beach	KT – KT03	-7,0+7,+34	-0,070,004	21.076			
S. Ponte Vedra &	P100 - P122	-003 020	-1 750 050	-76 1%			
Vilano Beach	1109-1122	-995,920	-1,730,030	-70.170			
St. Augusting Inlat	Ebb & Flood	5 071 250	3 710 711	-36%			
St. Augustine inlet	Tidal Deltas	5,071,250	5,719,711	-30 //			
Anastasia Island	D100 D100	916 974	1 029 050	126.0%			
Headland	R123-R120	010,074	1,920,059	130.0%			
St. Augustine	D100 D151	2 206 012	2 526 604	7.09/			
Beach	R120-R151	-3,290,013	-3,520,004	-7.0%			
Crescent Beach	P151 P105	2 229 479	2 086 060	27 70/			
to Matanzas Inlet	K151 - K195	-2,330,470	-2,900,900	-21.170			

Dredging Boundaries: Historical Data & CMS Results

CIRP Pasarch & Development

Ebb Shoal Recovery:

- Cannot remove so much as to force the inlet out of "equilibrium": <4MCY
- Account for inlet recovery by historical evidence for infilling: Rate of volume change (growth) determined from 2001-03 and 2005 mining events

Defining Dredging Interval Alternatives for 50-YR Planning Horizon

CIRP

search & Develop

Alternative A: Dredging Interval Results

Coastal Inlets Research Program

esearch & Develops

R BI

Refined Nourishment Interval Alternatives

191 195 195 195 103 110 112 112 112 112 112 112 112	nd					
Beach	Optimize	ed beach fill placement	scenarios following	g the results of	the Alternative A o	redging scenarios.
R148 R152 R156	Scenario	Dredged Volume	Dredging Interval	Beach Placement Volume		Beach Placement Location & Length
Rife Crescent	Alt B1	1.35 MCY	5 Years	1.35 MCY	70 cy/lft	T132 – R151 (20,000 lft)
R173 R172 Beach	Alt P2	1.65 MCY (Includes	5 Voors	1.65 MCV	40 cy/lft	R109 – R120 (11,000 lft)
R178	All D2	~300KCY)	5 Teals	1.05 MCT	80 cy/lft	T137a – R151 (15,000 lft)
		2.0 MCV	10 Vooro	2 0 MCV	50 cy/lft	R109 – R120 (11,000 lft)
	AILCT	3.0 MC 1	TO Teals	3.0 MC 1	125 cy/lft	T132 – R151 (20,000 lft)
					100 cy/lft	P100 P120 (11 000 H)
	Alt C2	3.0 MCY	10 Years	3.0 MCY	125 cy/lft	T137a – R151 (15,000 lft)

Coastal Inlets Research Program

CIRP

Research & Develops

Alternative A: Dredging Interval Results

Final beach profile volume change (cy) of each 50-year simulation and the relative percent difference from the total profile volume (from R-Monument to -20 ft MLW).

Shoreline	B1		B2		C1		C2	
Reach	СҮ	%	CY	%	CY	%	CY	%
Vilano Beach	-1,028,289	-11.2%	-395,760	-4.3%	252,132	2.7%	1,272,387	13.8%
Anastasia Island Beach	894,035	6.2%	622,731	4.3%	1,440,646	10.0%	1,137,457	7.9%
St. Augustine Beach	-4,357,511	-31.0%	-5,257,507	-37.4%	-5,039,507	-35.8%	-6,347,988	-45.1%

Example of Results Plotted on SMS Grid

CIRP

Discussion of Optimization Results In Terms of Beach Stabilization

St. Augustine Beach (Erosional Hotspot):

- All alternatives had a negative volume adjustment over the 50-year simulation
- Once the shoreline recedes to the seawall position, erosion accelerates
- This scenario persists for all Alternatives and may only be remedied through increased beach fill volume and placement intervals
- Maintaining the shoreline location and profile volume of 2010 with ebb-shoal mining alone cannot be done based on the results (there is a need for new sediment sources)

Vilano Beach SPP (Feasibility Study):

- Maintained or grew with >50 cy/lft beach fill volumes at 10 year intervals
- Lengthening and coordinating the Vilano Point dredging interval with the ebb-shoal mining for the St. Augustine Beach SPP will provide more than enough sand to maintain this SPP

Augustine Island Beach (State Park):

- Inlet adjacent beaches are dominated by inlet processes not captured in GenCade
- The calculated volume growth at this beach represents sediment volumes that might otherwise make it to the inlet shoals
- Needs a process-based morphology model, but inferences can be made on what the volume represents based on morphological observations

ակափակակակակակակ

Summary:

- The performance and estimate of certainty in GenCade as a sediment management planning tool is relative to the accuracy of the calibration. Furthermore, extensive analysis of measured data must be performed to properly inform the model on realistic bounds in a 3-dimensional morphologic environment.
- Though not all 3-dimensional morphologic processes are represented in the model, most general inferences about sediment transport and bypassing within the coastal zone can be applied to calculating future sediment budgets with GenCade.
- The benefits of coordinating and modifying dredging intervals can be explored simultaneously with varying beach fill volumes and intervals.
- The greatest benefit lies in determining optimal mobilization periods and coordinating regional efforts to save in mobilization and demobilization costs for dredging and beach fill placement.

Thank You!

Questions?