Module 6: Beyond the Automatic Identification System Analysis Package (AISAP)

http://ais-portal.usace.army.mil/

K. Ned Mitchell, PhD

Research Civil Engineer ERDC Coastal & Hydraulics Laboratory (CHL)

Team Members:

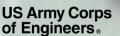
Patricia DiJoseph, PhD, Brandan Scully, P.E.,

Brian Tetreault (ERDC-CHL)

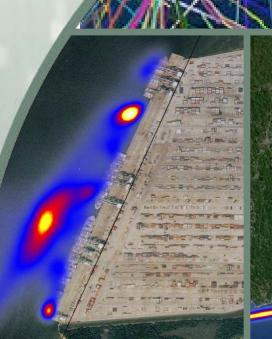
Rich Akers, Irven Ingram, Rachel Norris

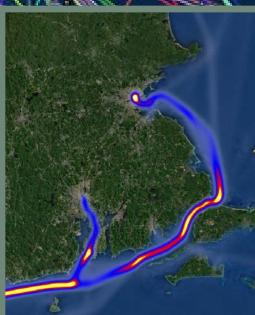
(SAM-OPJ)

Susan Herrle, Steven Antrim, Shannon


Langford (ARA, Inc.)

AISAP User Workshop


SWD – Dallas, TX 31 AUG 2016



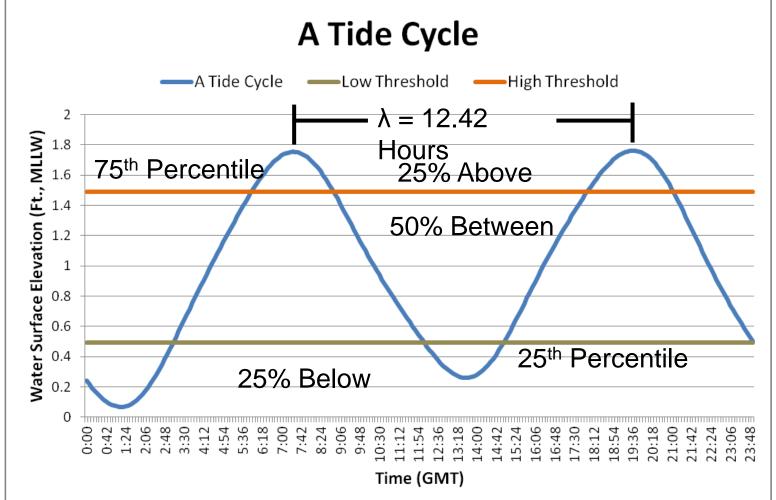
Outline

- 1. Tidal Analysis
- 2. Arrival Process Mining
- 3. Underkeel Clearance
- 4. Dredging Influence
- 5. Waterway Travel Time Statistical Profiles
- 6. Coastal Applications

Tidal Analysis

- AIS data used to describe "Tidal Dependence" of a port entrance.
- Method to compare ports in terms of reliance on tide

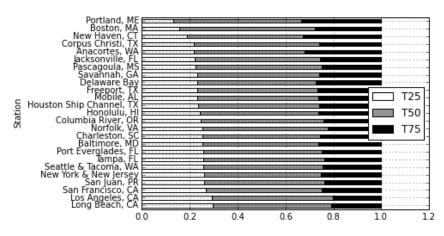
Assign Tidal Elevation

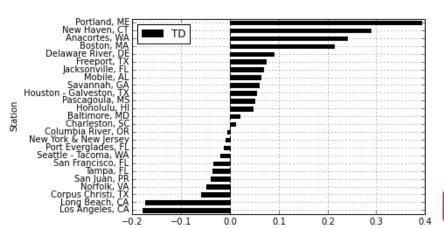

- Determine the time vessels cross a reference
- Use the time of crossing to interpolate an elevation from tidal (prediction) record.

ssing time and elevation.

X_{ij1},Y_{ij1},T_{ij1}	Time	Elev.
$X_{ijC}, Y_{ijC}, T_{ijC}$	T_{ij1}	Z_{j1}
	T_{ijC}	Z_{jC}
$X_{ij2}, Y_{ij2}, T_{ij2}$	T_{ij2}	Z_{j2}
ije: ije: ije		(التقتنا)

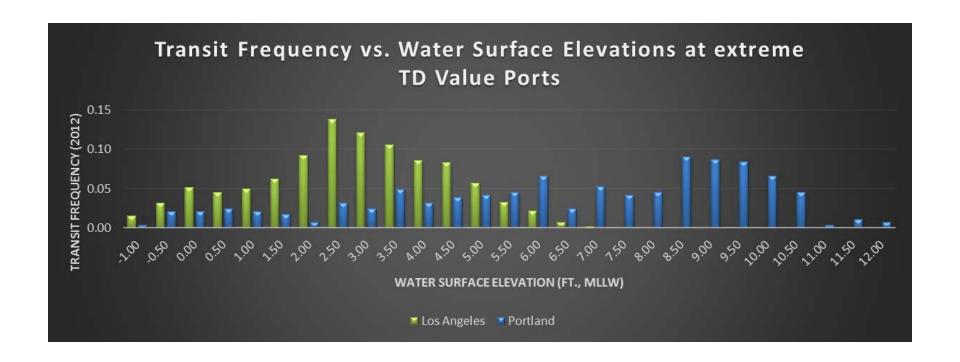
Measure Tidal Dependence



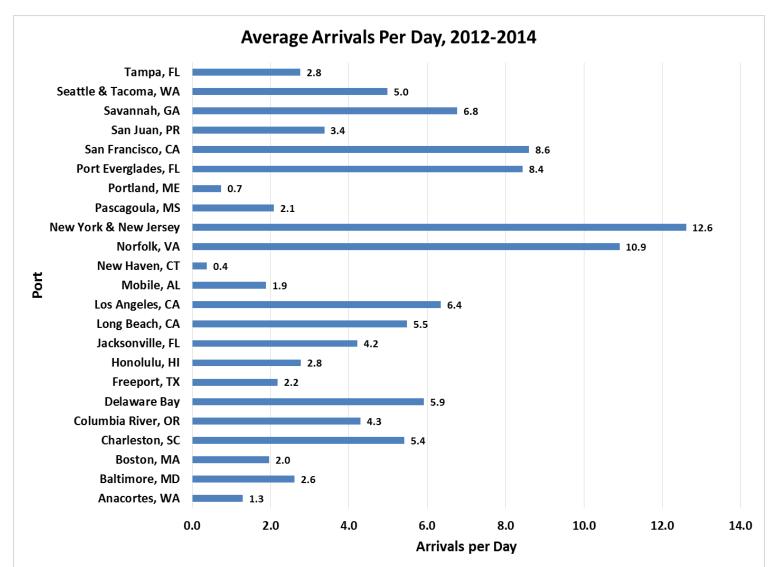


Traffic Classification

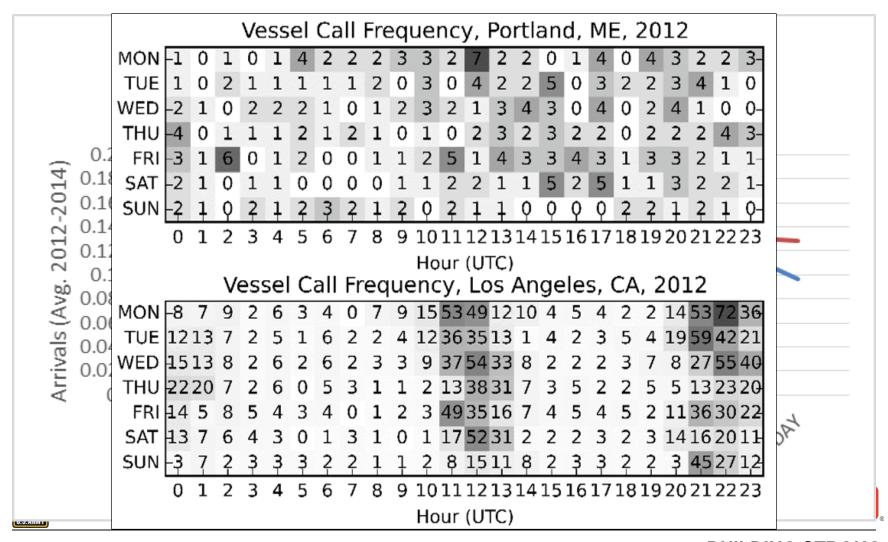
Average vessel traffic distribution 2012-2014

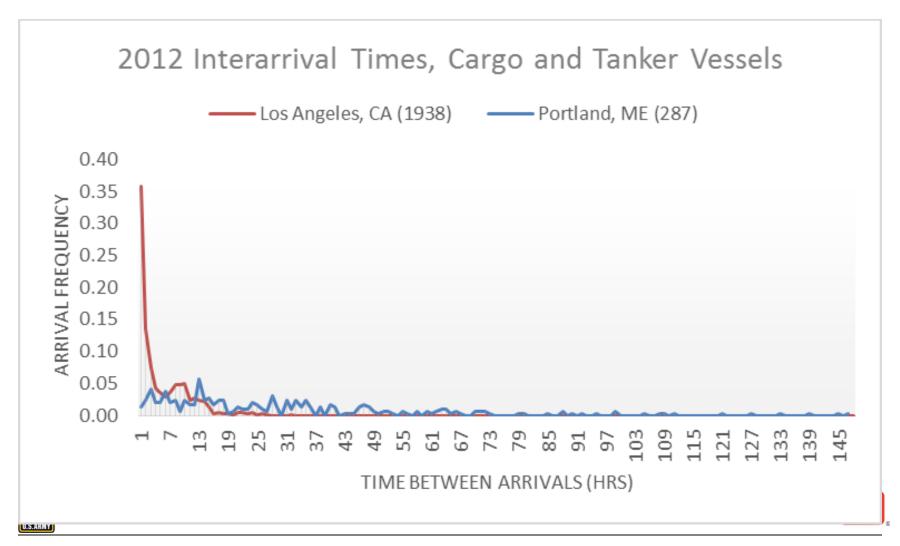

 $TD = (T_{75} - T_{25}) / T_{50}$

Tide Distribution of Extreme TD Ports


Arrival Process Mining

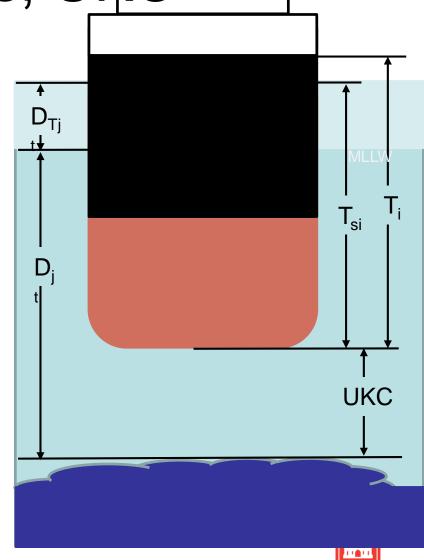
- Descriptive traffic measures extracted from reach-level AIS data
- Input to Planning Feasibility Studies
- Arrival rate
- Interarrival time
- Arrival Frequency


Arrival Rate



Arrival Frequency

Arrival Rate



Underkeel Clearance

- Dredging supports navigation by creating adequate keel space
- USACE tracks controlling depth via CCS
- AIS tracks vessel time of arrival, which gives time index for water level
- AIS has draft which can be validated with authoritative information
- Estimating UKC can tell where we're over
- dredging.

Parameters, UKC

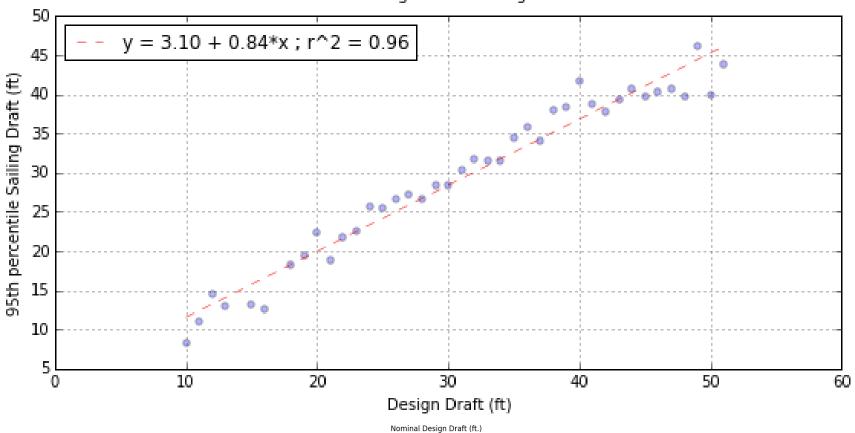
- Vessel Arrival times in each reach from AIS
- Estimate T_i from AIS
- Estimate T_{si} from ship specific sailing records or by ship type.
- Interpret D_{Tjt} from NOAA tide data using arrival time.
- Estimate D_{jt} by linear interpolation of channel condition record at arrival time.
- UKC components can be estimated from AIS data or applied deterministically.
- Result is a distribution of UKC_{iit}

Available Channel Depth

eHydro data used in channel condition maps and reports

Maps and reports are communicated to NOAA and local pilots

Time series of channel condition reports provides a history of channel


bottom elevation

Vessel Draft

Pilotd Vessels, Charleston, SC, 2011

Vessel Sailing Draft vs. Design Draft

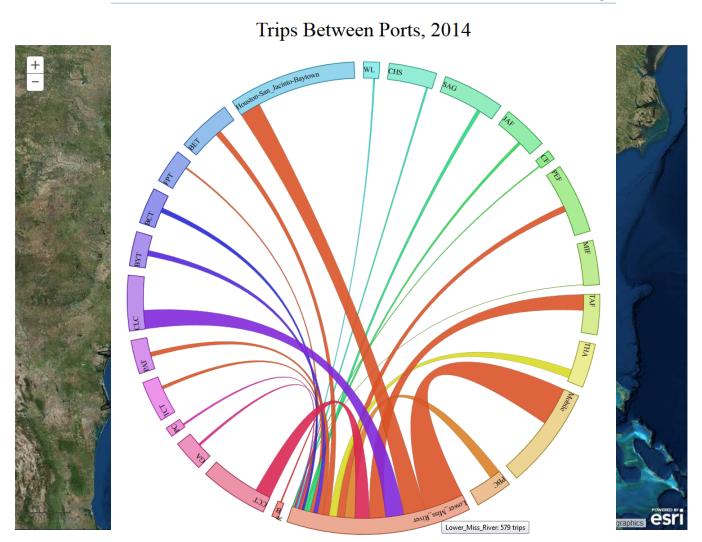
Reach Net UKC

Fort Sumter Range, Charleston Harbor, 2011 Net Underkeel Clearance 0.07 0.06 0.05 0.04 Frequency 0.03 0.02 0.01 0.00 0 10 20 30 40 Net Underkeel Clearance (ft.)

Reach Performance

Daniel Island Bend failed: 0.0 total: 1301.0 reliability: 1.0 unique: 246 squat, mean, std: 0.797 0.245 KM, mean, std: 1.83 0.245 \$119,988	Hog Island Reach failed: 175.0 total: 3262.0 reliability: 0.9464 unique: 700 squat, mean, std: 1.14 0.33 KM, mean, std: 1.91 0.327 \$432,383	Shipyard River failed: 1.0 total: 36.0 reliability: 0.9722 unique: 10 squat, mean, std: 0.296 0.288 KM, mean, std: 1.48 0.288 \$830,842
Daniel Island Reach failed: 17.0 total: 1299.0 reliability: 0.9869 unique:246 squat, mean, std: 0.854 0.26 KM, mean, std: 1.89 0.26 \$839,114	Myers Bend failed: 8.0 total: 1505.0 reliability: 0.9947 unique: 338 squat, mean, std: 0.801 0.286 KM, mean, std: 1.57 0.288 \$54,078	Tidewater Reach failed: 21.0 total: 257.0 reliability: 0.9183 unique: 46 squat, mean, std: 0.213 0.0928 KM, mean, std: 0.833 0.0928 \$195,742
Drum Island Reach failed: 8.0 total: 1505.0 reliability: 0.9947 unique: 338 squat, mean, std: 0.787 0.239 KM, mean, std: 1.56 0.242 \$240,403	Navy Yard Reach failed: 5.0 total: 1276.0 reliability: 0.9961 unique: 217 squat, mean, std: 0.83 0.407 KM, mean, std: 1.87 0.407 \$91,557	Town Creek Lower and Columbust St. Turn Basin failed: 1.0 total: 88.0 reliability: 0.9886 unique: 58 squat, mean, std: 0.735 4.6 KM, mean, std: 1.36 4.6 \$123,659
Fort Sumter Range failed: 658.0 total: 3931.0 reliability: 0.8326 unique: 699 squat, mean, std: 2.03 0.643 KM, mean, std: 4.81 0.65	Port Terminal Reach failed: 0.0 total: 688.0 reliability: 1.0 unique: 176 squat, mean, std: 0.308 0.298	Wando Lower Reach failed: 145.0 total: 1756.0 reliability: 0.9174 unique: 214 squat, mean, std: 0.949 0.35 KM, mean, std: 1.57 0.35

KM, mean, std: 1.28 0.298


\$61,525

\$2,074,169

\$244,654

Port Interconnectivity

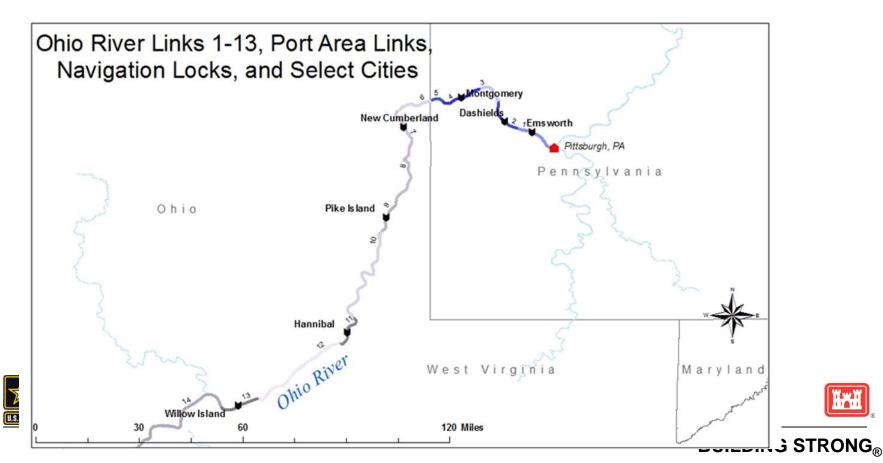
Waterway Travel Time Statistical Profiles

Study Objective: Create a statistical profile of waterway system travel times by analyzing vessel position reports

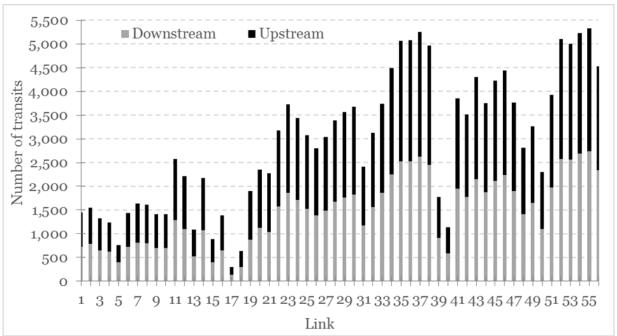
Potential Applications

- Measure Marine Transportation System (MTS) performance
- Quantity system resiliency (withstand, recover)
- Locate system bottlenecks and areas with most critical needs
- Compare performance pre and post operations and maintenance
- Voyage planning, River Information Services (RIS)

Adapt


Withstand

Recover


Sample Case Study: Ohio River Travel Time Atlas

Objective: Develop a statistical profile of waterway travel times between origins and destinations.

- Waterway segmented into shorter links DEFINED BY THE USER:
 - Isolates travel behavior
 - Increases sample size

Case Study Results: Waterway Usage

Ohio River link number of transits by direction of travel, 2014

Ohio River number of transits via AIS and ground truth, 2014.

Case Study Results: **Average Travel Time**

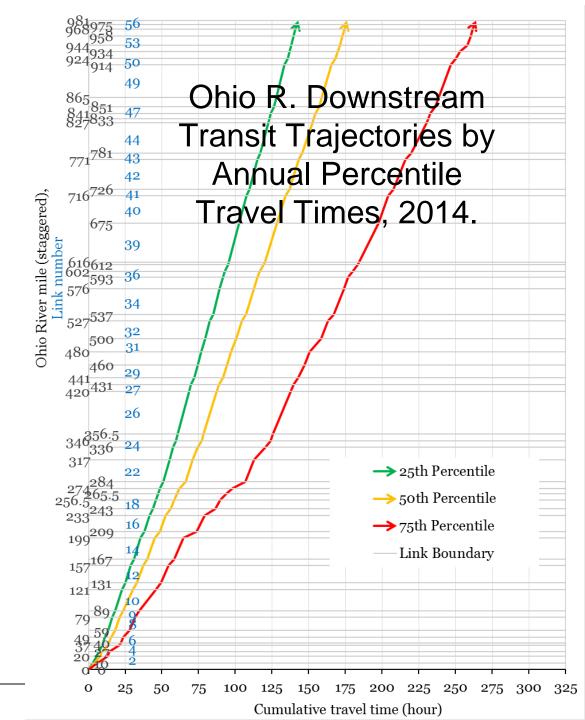
and Standard	Link	Average Travel Time	Standard Deviation of Travel Time	Average Travel Time
Deviation	1	4.97	3.93	5.54
Deviation o R. Link Annual Average and ndard Deviation of Travel Time, 4 ne cell shading (conditional matting) highlights the lowest	2	7.30	9.39	7.65
	3	1.53	1.37	1.99
Nais D. Limb Americal Accordance and	4	5.87	7.36	6.33
nio R. Link Annuai Average and	5	1.06	0.95	1.15
tandard Deviation of Travel Time.	6	1.91	1.37	2.48
•	7	5.65	9.21	5.12
014	8	3.93	3.21	5.59
	9	3.03	2.86	3.78
	10	9.19	7.57	9.05
	11	3.56	3.50	4.41
The cell shading (conditional	12	4.69	3.38	5.55
U	13	5.92	11.35	6.58
· · · · · · · · · · · · · · · · · · ·	14	6.02	4.07	8.17
formatting) highlights the lowest relative values in green and the	15	13.17	19.66	12.49
highest in red.	16	6.35	age rel Deviation of Travel Time Average Travel Time 7 3.93 5.54 9 9.39 7.65 3 1.37 1.99 7 7.36 6.33 3 0.95 1.15 1 1.37 2.48 5 9.21 5.12 3 3.21 5.59 3 2.86 3.78 9 3.50 4.41 9 3.38 5.55 2 11.35 6.58 2 4.07 8.17 7 19.66 12.49 5 6.57 6.61 4 19.52 10.08 0 3.15 3.93 2.88 3.12 6 2.46 3.33 2 11.68 6.95 3.46 8.92 4.43 5.50	
riightest iir rea.	17	12.74		
	18	3.30	3.15	3.93
	19	3.19	2.88	3.12
	20	2.86	2.46	3.33
	21	8.52	11.68	6.95
	22	5.40	3.46	8.92
U.S.ARMY)	23	5.62	4.43	5.50
	24	3.08	2.22	3.49
	•	1	0.04	0.00

Direction

of Travel **Upstream Downstream Standard Deviation** rage of Travel vel **Time** me 4.91 54 65 9.36 1.33 33 6.73 15 0.80 48 1.55 12 7.38 59 3.26 5.06 78 05 6.78 5.91 41 **55** 2.86 58 12.32 4.44 18.90 49 61 4.29 .08 15.39 93 2.49 12 2.39 33 2.62 95 8.37 92 4.28

4.05

2.38


Case Study Results: Percentile Travel Times for a Waterway by Link

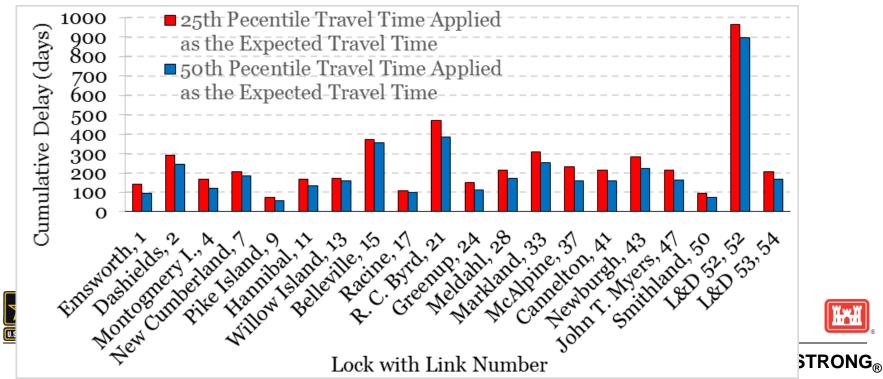
Travel times estimated as the amount of time for a vessel to travel from one end of the link to the other.

Future study:

Categorize by environmental conditions and/or vessel characteristics.

Case Study Results: O-D Percentile Travel Times

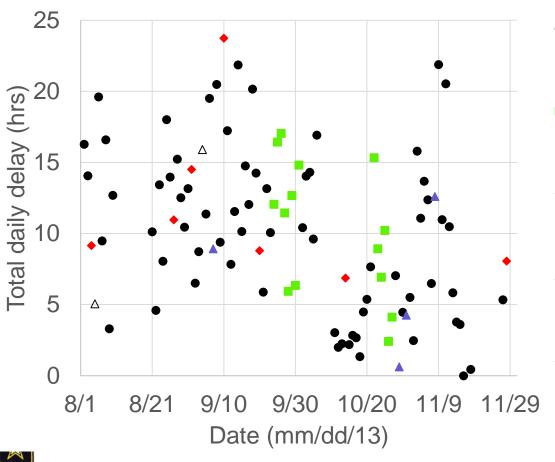
Desti- nation Origin (Ohio River Mile)	Ohio River Upstream End / Pittsburgh Upstream Boundary (o)	Finisburgh Downstream Boundary (40)	Huntington Tri-State Upstream Boundary (256-5)	Huntington Tri-State Downstream / Cincinnati Upstream Boundary (358-5)	Cincinnati Downstream Boundary (576)	Louisville Upstream Boundary (592)	Louisville Downstream Boundary (6s6)	Mount Vernon Upstream Boundary (827)	Mount Vernon Downstream Boundary (833)	Ohio River Downstream End (981)
Ohio River Upstream End /		9.9	46.1	60.9	93.1	95.1	99.2	126.2	127.0	146.3
Pittsburgh Upstream Boundary		14.0	58.5	78.4	122.2	124.5	129.4	162.0	162.9	185.6
(o)		21.9	89.8	125.6	187.0	189.7	197.2	243-4	244.6	276.9
Pittsburgh Downstream Boundary (40)	12.1		36.2	51.0	83.2	85.2	89.3	116.3	117.1	136.4
	16.3		44-5	64.4	108.2	110.5	115-4	148.0	148.9	171.6
	23.2		67.9	103.8	165.1	167.8	175.3	221.5	222.7	255.1
Huntington Tri-State Upstream Boundary (254-5)	57-3	45.1		14.8	47.1	49.1	53.1	80.1	80.9	100.2
	71.7	55-4		19.9	63.7	66.0	70.9	103.5	104.4	127.1
	97.6	74-4		35-9	97.2	99.9	107.4	153.6	154.8	187.1



Ohio R. Annual Percentile Travel Times between O-Ds (hours), 2014

Case Study Results: Link Travel Time Delay

- Link travel time delay: travel time over the expected travel time
- Expected travel time proxy: annual 25th or 50th percentile travel time
- Cumulative delay is the sum of the delay of each individual transit experiences – dependent on both traffic volume and delay per vessel
- Different definition of delay than the USACE Lock Performance Monitoring System (LPMS). The two approaches provide different information and both provide meaningful results.


Ohio River 2014 Cumulative Delay

Case Study Results:

Delay by Event for L&D 52 in 2013

- Analyze AIS data to estimate link delay
- Apply LPMS records to determine lockage closure events by type

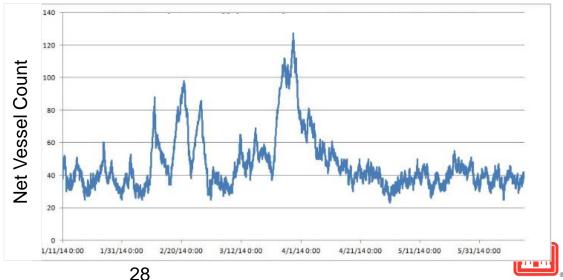
lockage

- scheduled closure-repair or maintenance
- unscheduled closurerepair or maintenance
- △ unscheduled closureaccident or collision
- unscheduled closureweather

AIS Data Coastal Ports Applications

Derived coastal information:

- Travel times within navigation channels
- Dwell times at anchorages
- Port Connectivity/ Systems Analysis
 - Cascading effects from "isolated" project events
 - Identification of critical network components
 - System decision
 making



Costal Navigation Resiliency Analysis Examples – Quantifying the Effects of Events

Terminal dwell times during the West Coast slow down

300 250 200 100 50 9/30/14 10/20/14 11/9/14 11/29/14 12/19/14 1/8/15 1/28/15 2/17/15 3/9/15 3/29/15

Number of vessels waiting to enter Galveston Bay with queuing caused by fog and a vessel accident

Takeaway

This is just a fraction of what we've already thought of...

