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FOREWORD

This report describes an analytical approach to the problem of
defining changes in the water level of a basin connected to the ocean
by & channel or chammels. To illustrate use of the analytical approach,
the case of Indian River, Delaware, is examined in considerable detail.

The analytical method was developed and the report was prepared by
Dr. Garbis H. Kenlegan. The work was initiated while Dr. Keulegan was
employed as Physicist for the National Bureau of Standards and was com~
pleted while he was serving as Staff Consultant to the Hydraulics Divi-
gion, U. S. Army Engineer Waterways Experiment Station. '

The work reported herein was sponsored by the U. 8. Army Engineer
Committee on Tidal Hydraulics.

iii






CONTENTS

FOREWORD . ¢ « « ¢ o o 6 o s o o s o o o 5 5 o s o a o 5 a o s o =
GLOSSARY . . « o ¢ o o « o o o o s o o s « s s s s s a s o o s o
ABSIRACT & a ° ® o © - L2 ® - a - o ® L3 “« L4 L ® 2 ® - L2 - - ” - & »
PART I: THEORETICAL DEVELOPMENTS . ¢ ¢ ¢ 4 ¢« « o s o o s » « =
Introduction . . « « ¢« « & o & e s s s 6 s e e & a e v s e
Derivation of the Equation of Surface Changes . . . . + o =«
Typical Values of the Coefficient of Repletion . . . . . . .
Sinusoidal Fluctuationsg of Surface of Sea . . . . . « . .
Fourier Expansion of Ns8in 8 . . . + « « =« = < ¢ o « « &

Method of Approximate Solutions . . . - « « ¢ ¢« a2 o o o =
Surface Displacement Curves for the Case when K is Equal
toUnity . . . . « « « &+ &« & . . e e e o =
Range of Tides in the Basin and Lag of the Maxﬁma e o s o »
Tidal Prisms and Maximum Mean Velocity in the Communicating
Chamnel . . . s e c o s o s 5 6 o 8 e e s o 4 = s
Prismatic Equlvalence of Irregular Chamnels and

Multiplicity of Chamnels . . . . + « & e 4 e s e s e a e
Empirical Values of the Tidal Prism Formula e e e a6 s e s
Comparisons with COL Brown's Analysis . . . . « « . ¢ ¢ o &

Application to Barrier Cuts . o « & o o & « o 4 « o s s o

PART IT: APPLICATION TO INDIAN RIVER BAY . . . . « « « ¢« & o &

Popographic Conditions of Indian River Inlet . . . . . .
Indian River Tnlet . . « ¢ ¢ & o s o o o o a o o =

Profile of Tide in Indian River Bay . . « . . ¢ o ¢ = o o &

Tributary Discharges into the Bays . . . . + o & ¢ « &« « o &

Limiting Mean Elevation of Bay Waters . . . « o « o o o o o
Effeet of Inlet Cross Section on Bay Weter Levels o & e 8 e

Wind Tides in Indien River Bay . . . . . o e e o 8 o 4 4
Mamning's Roughness of Lewes and Rehoboth Canal o e e s & s
Manning's Roughness of Indian River Inlet . . . . . . . . .
Inertia Effect in Indian River Imlet . . . . . . . .
Indian River Bay Tides « « .« . e e s a4 4 o s a
The Hydraulics of "The Ditches” . . . . « - « « . .
Indian River Bay Tides After Correctiomn . . . o - « . + &

22

25
28
29
32
35

35
37

40
50
52

29
62

70

.72
82



Page

Erosion of Banks West of Highway Bridge . e . e e 83
LITERATURE CITED o . . . . « o . . e e o 4 4 e s e e o« w s 88
ACKNOWLEDGMENTS . © v ¢ 4 o o « o . e N . e e . . 89

TABLES 1-12



GLOSSARY

Part I

a Cross-sectional area of inlet water
aan,:L,fa,B;,‘t)3 Constents in the expansion of z , equation 32

A Surficial area of basin

C A dimensionless number relating £ to Qm , equation 56
C 3 Coefficient of discharge of barrier cuts

g Constant of gravity

h, Dimensionless ratio H /H
h; Dimensionless ratio H, /H

h, Dimensionless ratio HE/H

H Semirange of tide in sesa

Hl Elevation of basin water referred to msl
Hlm Semirange of tide in basin

H2 Elevation of sea water referred to msl

K Coefficient of repletion, equation 12

K, Coefficient of repletion for barrier cuts, equation 67

L Iength of inlet

m Coefficient resulting from velocity distribution, equation 2

n Mapning's roughness, equation 15

N ,N,,N; Constants in the expansion of "Vsin 6 , equation 27

Q@ Instantaneous discharge, rate of discharge

Q‘m Maximom rate of discharge

r Hydraulic radius of inlet cross section

s Surface slope

t Time, measured from the instant when the waters of sea and of

basin are at the same level and waters of sea are rising

vii



C‘l’ﬁl’a 3T

:orayqn‘m@bza’qé.fa

1m” om

L O O
H O

e MK

podo

Period of tide, 12.42 hr

Velocity in inlet channel

Maximum mean velocity in inlet channel
Difference in hl and h2 , Z = h2 - hl

Lag of tide maxima behind sea high-water tide
A quantity defined by eguation 20

Specific tidal time, 2mwt/T

Coefficient of friction, equation 3

Specific time when sea is at msl

Volume of tidal prism, 2 = 2HlmA

Part IT

Cross section of "The Ditches"
Depth of undisturbed water

Semirenge of tide in Indian River Bay and Rehoboth Bay,
respectively

Dimensionless constant appearing in equations 70 and T1
Factor of proportionality in equation 8k

Volume of inflow during ebb of a tidal cycle

Volume of outflow during flood of a tidal cycle

Volume of river discharge into bhgys during & tidal cycle
Net total outflow during a tidal cycle

Average depth in inlet between bridge and ocean

Time, measured from instant when sea tide is crossing msl and
is increasing
Duration of inflow

The instant when the waters of bay and sea are in the sanme
horizontal plane

Wind velocity

Mean velocity of the currents in "The Ditches"
Dimensionless parameters appearing in equation 82
Superelevation of the mean level of bay waters above msl
Dimensionless paramebers of wind tide equa,t::.on, equation 95 |
Dimensionless constant proportional to k , equation 78

viii



Density of water
Density of air
2/

Wind stress

Taylor stress coefficient






ABSTRACT

An analysis is made of the changes in water level in a basin con-
nected to the ocean by a relatively long chamnel. It is assumed that the
banks of the basin are vertical, that the connecting channel is many times
deeper than the tidal range, that there is no flow into the basin from
streams, and that, therefore, there are no density currents present. The
consideration of the storage equation shows that the coefficient of reple-
tion is a characteristic quantity for basins in general. The aim of the
analysis is to determine the range of tides within the basin, the lag
between the maximum surface deflections in the basin snd in the sea, and
the maximum mean velocity in the connecting channel. These quantities are
determined as functions of the coefficient of repletion. Tables are given
for ready reference for many of the quantities.

The application of the method for chamnels to flow through barrier
cuks is also discussed. Finally, the matters of the Indian River Inlet
are studied in detail to illustrate the practical meaning of the various
results of the main analysis.
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TIDAL FLOW IN ENTRANCES
WATER-LEVEL FLUCTUATIONS OF BASINS IN COMMUNICATION WITH SEAS

PART I: THEORETICAL DEVELOPMENTS

Introduction

The study of the water-level fluctuations in basins communicating
with seas can be undertaken with reference to a number of conditions,
nemely, shape (horizontal projections) of the basin, slopes of the banks,
amount of inflow from streams, mumber of connections with the sea, hydrau-
lic resistance of the connecting chamnels, type of tidal fluctuations of
the seas, relation between tidal range and depth of chamnel, and presence
or gbsence of density currents.

The movement of water in the channel in the horizontal direction is
affected in a very marked manner by the shape of the basin. If the basin
is narrow, shallow, and long and the communication with the sea is at one
end, the flow of water from the sea into the basin may be associated with
advancing waves. In this case, change of water level in the basin is not
uniform; hence the various tidal changes in the basin from place to place
must be considered. On the other hand, if the basin is square or circular,
or of some similar form, the change in elevation of the water surface will
be nearly the same for every point in the basin.

Tn the latter case, the accumulation of water in the bas1n obeys the
condition of the flow of reservoirs and, in particuler, the so-called stor~
age law. The equation representing the storage is also the differential
equation of the surface changes. The form of the equation and hence the
method of solving it are affected by inflow from stresms, slope of the
banks, ratio of the depth of the connection channel to the tidal range, and
way in which flood and ebb tides occur.

This report discusses the simplest set of conditions. It is assumed
here that the walls of the basin are vertical, that there is no inflow from
streams, that there are no density currents present, and that the tidal - '

fluctuations are given by a sine curve. The connecting charnmel is assumed



to be prismatic, and the depth of the channel is assumed to be large with
respect to the tidal range. It is also assumed that the flow in the chan-
nel is governed by Manning's formula.

Although this problem has been considered by COL Earl I. Brown, who
has given a solution,l it was believed that a new treatment should be at-
tempted with the object of establishing a better approximation. A novelty
in the solution presented here is the dimensionless form of the equation of
the surface changes. The aim of the analysis is to evaluate first the max-
imum displacement of the water surface in the basin, and second the maximum
mean veloecity in the channel during a tidal cycle.

Derivation of the Equation of Surface Changes

Let Q be the discharge at time t in the connecting channel,
V the mean veloecity, Hé the elevation of the open sea, and Hi the ele~
vation of the water surface in the basin. The elevations are all measured
with respect to mean sea level (msl). The difference, Hé - Hi s represents
the fall of the surface corresponding to the mean velocity Vv (fig. 1).

sea | CHANNEL

BASIN
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Fig. 1. Gradient of water surface over channel

This fall can be broken into two parts as follows:

T - = A o



The first difference gives the fall that is necessary to accelerate the

water from the sea entering the chammel from zero to the velocity V at
the entrance. Accordingly,

A\‘Ilmm-av-gjg- (2)

where m is a coefficient resulting from the velocity distribution and g
is the acceleration due to gravity. If the velocity distribution over the
cross section is uniform, m reduces to unity. In open-chammel flow the
exact value of m dis not known.

Since the jet issuing from the exit end of the chamnel is dissipated
in a process of turbulent expansion and the pressures in the medium where
the jet is being obliterated are hydrostatic, the difference Aﬁé gives
the fall necessary to overcome the resistance of the connecting channel..
Using the Weisbach type of formula:

v
ey (3)

r
where A 1is the friction coefficient, I is the length of the connecting
channel, and r is the hydraulic radius of the chammel. 'The relation that
exists between A and Manning's n will be considered later.

Combining the expressions in equations 2 and 3:

A‘ﬁ*%“(}‘%""m)g’z (L)

Introducing the difference, Hé - Hi s and solving for V2 s yields:

Vo= e (], - 1) (5)

It is desirable to express the elevations with respect to msl in terms of
the semiamplitude of the tidal displacements occurring in the sea. Denot~

ing the tidal range by 2H , and using H as a measure of the surface
fluctuations, yields: o
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or
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Vi rmVE-©T (6)
Writing b, = HE/H , and hy = Hl/H , then
2grH
V=ViTimr Vi - Iy (7)

Since there are no contributions from the inflow of streams and since

the banks are vertical, the storage equation of the water in the basin,
assuming that the tide rises and falls simultaneously throughout the basin,

is

! (8)

A'-&:E~= av

where A is the surficial area of the basin, and a is the cross-
Hence, ,

sectional area of the connecting prismatic channel.
)
=V (9)

=l

Denoting the tidal period by T permits introduction of the trang-

formation
(10)

ot
I
Plo

€ 1is specific tidal time in radians, and equation 9 becomes

where

dh
(11)

B
- 2%H

1
ao v

b b

Eliminating V between equations 7 and 11 and writing

_ T a 2erl e
K= i A ViDL 5 mr _ (12)




produces finally

Tty oy a3)

which is the differential equation of the surface fluctuations in the basin
when the surface of the sea is at a higher elevation than the surface of
the water in the bagin. When the condition is reversed, i.e. when the sur-
face of the sea 1s lower than the surface of the water in the basin, the

corresponding equation is

ahy
o= K\/i "By , by > by (1)

In the results that will be given later, the numerical quantity K
plays a decisive role. It sumarizes the effects of the channel and the
basin dimensions, of the roughness 6f the walls, and of the period and
range of the tidal fluctuations on the limits of the water-level changes in
the basin. Because of this significance it appears to be appropriate to
refer to K as the coefficient of filling or repletion.

Typical Values of the Coefficient of Repletion

Tt is desired to consider some typical values of the coefficient K
in order to form an idea of the variations in the values of the coefficient
which are ordinarily to be expected. The first step is to give the rela-
tion that exists between the coefficient of friction A and Manﬁing's n .
Menning's formula is

y = L6 L1/6

where s , the surface slope, is equal to AHé/L . and the units of meag-
urement are the foot and the second. But from equation 3



Comparing the latter two expressions for the velocity ylelds

= -—-————-—573’“ Vag (15)
V> 1.486r"

which is the desired relation connecting A with n . Some numerical
values relating A to n and »r are given in table 1.

If it is assumed that the distribution of the velocities at the en-
trance to the chamnel is uniform, m in equation 12 can be token as unity.

The relation giving K can now be written as

AK.'\G/‘”IEETVEg,\/ iy (123)

2n AL + ¢

The quantity on the right side of the equation has been computed for
various channel depths and lengths and for different valuves of n . Compu-
tations are made for an assumed tidal period T equal to 12 hr. All
lengths are in feet and times in seconds in the computations. For the re-
sults see table 2. As an illustration of the use of the table, assume that
r=5§ft, L= 1000 ft, n= 0.03, and H= 1 Pt. Then from table 2:

L

x &

K= 2,734 x 10 1

so that if A/a is given the succession of values, 103, 10“, and 105,

K takes on the values, 27.3, 2.73, and 0.27, respectively.

Sinusoidal Flucbuations of Surface of Ses

Granting that the fluctuations in level of the surface of the sea can
be represented as a pure sine curve, the most general solution to describe
the fluctuations of water-surface level in the basin needs to be effected
with reference to the height of the water surface in the bagin at the
instant the basin is connected to the sea.

If, however, the basin has been in communication with the sea for a
long time, the fluctuations of the water surface in the basin bécémé'stéady
and fluctuate between limits that do not vary with tinme. Thé samé limits



are established no matter what the initial depth of water in the basin may
have been. Although the fluctuations of the surface of the water in the
basin are periodic, it cannot be said that they have the form of a pure
sine curve, because the frictional resistance of the connecting chamnel
varies as the square of the mean velocity.
Asgume that the displacements of the water surfaces in the sea and in

the basin are given on a common axis of time + or of the dimensionless
time parameter 6 (see fig. 2). The origin of time may be taken as the

S

2

SEA

L BASIN

-

Fig. 2. Surface fluctuations of sea and basin

instant when hg and hl are equal and h2 commences to become greaber
than hl - Then, =8 shown in fig. 2, h2 = (0 vhen @=17 . Accordingly,
the oscillation of the surface of the sea will be given by

hgmsin(e-ﬂ:),0<e<2ﬂ {16)

A congideration that will have a bearing on the method of solution to be

followed is the proportion of the time during which the water levelfiri the
sea is higher than the water level in the basin. It will be assumed tha"tv
during the period T/2 +the surface of the sea is higher than the surface



in the basin. The assumption will be verified later. During the following
period the reverse is true. Accordingly, the determination of hl will be
made separately for the ranges of values 0< @< and n< < 20 ;
these ranges will be referred to as the first range and the second range,
respectively.

The mathematical task involves the following relations for the first

range:
h,>h, ,0<0<x
h, = sin (6 ~ 1) (16)
dh,
W=K\/ ~ by (13)
hy=h, , =0
and

hezlﬁazﬁ

For the second range, the relations involved are:

by >hy, , 1< 6< 2n

h, = sin (6 - 7) (16)
%: -k by - hy (1)

= h 0 = 2%

Instead of determining hl directly, it is more convenient to obtain

the difference, hl - h2 « Thus, putting

z=hy -h ,0<6<m (17)

8



equation 13 reduces to

="k Vz+t g

After introducing the value of h2 from equation 16, the mathemati-
cal problem for the first range becomes that of determining 2z from the

following relations:

z>0,0< 8< 1

= Kz + cos O cos T+ s8in 0 sin 7

de

z=0, 6=0
z=0, 8=1
For the second range, putting
z=——~lr11m-1:12 s WM< B < 2n

equation 14 becomes

az

5= -kVz -

|\

Introducing the transformation

=% + B

and hence the relation

h, = -sin B - 1)

(18)

(19)

(20)

the mathematical problem for the second range involves the solution of the

conditions



z>0, 0<B<«<r=n

.‘3_2;:.«._}(-\[24- cos Pcos T+ sin P sin T (21)

dg

z=0, =20
z=0, pf==x

Comparison of the systems of relations in equations 18 and 21 indi-
cates that it should be sufficient to obtain the solution of 2z for the
first range. The behavior of z for the second range is readily deduced.
The same comparison shows also that the portion of the time during which
the surface of the sea is at a higher level than the surface in the basin
is T/2 . Thus the original assumption is confirmed.

Now since the solution of equation 18 is of the form

z = £(6) (22)
and since

h, = h

1 2~z,0<9<1r

the value of hl for this range is
h, = sin (6 - 1) - £(8) (23)

Again, since the solution of equation 21 is of the form
z = £(B) (2k4)

and since

hl=z+h2,0<6<:zt

10



the value of hl for the second range is

hla—-sin(ﬁ-'r)'*'f(ﬁ)a@”"*ﬁ‘ (25)

The geometrical interpretation of the above discussion is readily in-
ferred. The curve of hl for the first range is drawn. The curve is re-
flected and is moved along the axis of @ by an amount = . The curve
thus displaced is the curve of hl for the second range.

Fourier Expansion of Vsin 6

The determination of a form of 2z +that will satisfy the differential
equation, equation 18, can be effected in various ways. The solution can
be in terms of polynomials of @ or in terms of the circular functions of
8 . Since periodic changes are involved, it is preferable to obtain the
solution in circular functions. 8elect as a possible expression the series

oo' o0
Z = ZAn sin né + Z Bn[cos né - cos (n + 2)0] (26)
1 1

n=1, 3, 5, ... , 2m+ 1

since z vanishes for 0=0 and 6= x . Here, A and B are
constants.

It is obvious that the first term in the series, i.e. the guantity
Al sin €, is the predominant term. In equation 18 there is the term Vz 5
and it will be necessary in the course of the analysis, as will be seen
later, to have the Fourier expansion of W . Now, by the rule of the
Fourier expansion, if fl( 8) is single-valued, finite, and continuous be-

tween €= 0 and == , it can be developed into a series of the fo:t-m2

f‘l(e) = a; sin 6 + a, sin 20 + ag sin 36

where the coefficients have the values



a, mgfﬂf (8) sin mé 46
m N 1
o
Tn conformity with the rule and by inspection, the following equation can
be written:

"\/sin 0= Nl sin 6 + N3 sin 36 + NS sin 56 (27)

where
o™ 3\
Nl == ‘\/ sin 8 sin @ d6@
0

(28)

"

T
_ 2 . .
N3 = “‘I; ’\f sin 6 sin 3@ de@

i
2 - .
‘.N’5 = ;f() '\/sz.n o sin 50 4@ y

The N's can be determined numerically by replacing the process of
integration by a process of summation. For example:

2 "
Nl=;§:\/31n9sin 68, 0<0<m

The summstions are made by putting the interval A6 equal to 0.03491
radians. The camputations give

= 1.11 h
N, = 1.1107
N3 = 0.1580 $ (29)
Ny = 0.0711
-

The degree of convergence of the series in equation 27 will be exam-
ined best when the differences

Alx‘\/sin e "Nl sin 8

12



A,3= 51n3~le1n6~N3sin39

As == Vsin 6 - Ni sin @ - Né sin 30 - Ns sin 56

are computed and plotted (see fig. 3). The convergence appears to be sat-
isfactory. The larger deviations are confined to the end regions. The
effect of adding sine terms of the higher frequencies is to decrease the
interval length of the end regions where the maximum deviations occur. In

0.24

i}l!!

q
= e L

T st

0.08 ::

0.06 f—

0.04 f—

0.02 g

el v b b b by b b o bty

0 20 a0 60 60 100 120 140 160 180
€, DEGREES

Fig. 3. Residuals in the successive spproximstions of the.
Fourier expeansion of \/sinl & '

13



addition, the magnitudes of the devistions are decreased. It appears also
that for the ordinary spproximations, when very high accuracy is not needed,
it is sufficient to adopt:

\/sin @ = Ni sin ¢ + NS sin 36 (30)

Conforming to this selection, the terms of higher frequencies in the ex-

pression for z , equation 26, could be dispensed with.

Method of Approximate Solutions

As was mentioned sbove, it will be sufficient to determine =z for
the first range only, i.e. for the interval 0< < w . The differential
equation to be solved is

%%:z -K\z+ cog Qcos T+ sin 6 sin = (18)

The solution is teken to be of the form

z = a, sin 6+ aib3(cos 6 - cos 36) + a8, sin 3¢ (31)

an expression which vanishes for the points, 6 =0 and @= 7T . 8Since
terms of higher frequency are omitted, the solution represents an approxi-
mation. The unknown gquantities are the coefficients, B 5 8y > b3 . and
the phase angle 7 .

Factoring out the first term on the right side of equation 31 yields

- R cos @ - cos 38 sin 36
z = a, sin 6(1+b3 Tn G +8‘3Wsin6) (32)

Since the terms in parentheses remain finite when & is varied from 0 to

i, it iz admissible to take the sguare root of both sides. Hence,

M= /e oo (e e lpen 30, Falnde) ()

1k



It is conceived that a3 and b3 are fractiong; therefore, in writing the
square-root expression for the terms in the parentheses of equation 32, the
terms containing the squares of az and b3 and their product are ne-

glected. Introducing the Fourier expression of equation 30 yields

zl/e - ai/a(Nl sin 6 + N, sin 36) (l + -32'-'b3 oo8 ngncgs 39
sin 36
283 sin @ ) (34)

Removing the first set of parentheses and ignoring the terms multiplied by
N3b3 and N3 3 2 since these are small fractions, yields

b, N
/2 l/ [N s:Ln6+N3s1n36+ 3l(cose-cos36)

a. N
+ 22 sin 39} (35)

Differentisting equation 31 yields

de . .
55 = 8 cos 6+ alb3(~81n &+ 3 sin 30) + 3a.1a3 cos 30 (36)

Substituting the expressions from equations 35 and 36 in equation 18,
the latter equation reduces to

(1’/2 K~ab3-—sin‘r)sin6+ (l/gmb3+al—cos‘r)cose
N
+ [ai/a K (1\:3 +-2-32 a.3) + 3alb3] sin 36
+(-a.3'/2--—~b + 38, )cos 30 =0 (37)
1 2 3 13 -

This equation must hold for any value of @ . Hence it must hold
when multiplied by sin 6 6 and integrated between the limits 0 and
% . The same i3 true when it is multiplied by cos @ d8 , cos 36 d6 , or
sin 30 do and integrated between the same limits. Carrying out all}-.the
steps, it is found that

15



1/2

a’ " MK - alb3 - 8in T = 0 (38)
a%/g §é§‘b3 + a) - cos T=0 (39)
N
a%/e K (N3 + %?3) + 3a;by =0 (ko)
and
%@.*«b L+ 3aay = (41)

and these equations are sufficient to determine the unknowns, T , 8 5 8 5
and b3 .

Obviously the rigorous determination of the unknowns is involved.
Since ag and b3 are small quantities, the values obtained by the method
of approximations will be satisfactory. Discarding in equations 38 and 39
the terms multiplied by b3 s, these equations simplify to
a.ll/a NlK = gin T (42)

and

a, = €oS T (43)

Squaring and adding gives
2
+ K =1 (k)

Solving for 8y and denoting the positive root by aq ¢

PR
o=\ 1Y G- F (45)

The corresponding solution for T is
8, = €0s T (46)

The quantities a4 and T, are referred to as the first approximate
values of ay and T . “

Substituting a4 for a, in equations ho and 41 and solv1ng yields

16



N

3
3= E N \EE - s6e, i
and 6 1 /2
‘b3 = F,K ag (48)
With the values of as and b3 thus known, the second approximate

values of a,y and T can be obtained by reverting once more to equations
38 and 39. Writing

B = eyt O (o)
and
T =T+ BT (50)
it is found that:
28y * &y
and
a.
67:-%‘}”—”}“’1?1? b3 (52)
2agy * Ny
Bearing in mind that the fluctuations of the water surface in the
basin are given by hl = 7 + h2 and that 2z is given by equation 31, the

quantities 8 5 8y s b3 , and 7T are the parameters that determine the
form of the fluctuations in the basin as a function of time. These con-
stants depend individually on the coefficient of repletion K . Their
values, determined according to the scheme of relatioms discussed above,
are given in table 3.

Tn the method used, the results are obtained within the solution to a
second approximation of the differential equation, equation 18. The method
of analysis is such that one can go to higher approximations. This possi~
bility, however, has only a theoretical significance, since the computa-

tions to be made are very long and should be avoided.
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Surface Displacement Curves for the Case when K is Equal to Unity

By way of illustration, the surface curves for the cage in which the
coefficlent of repletion, K of equation 12, is equal to unity will be de-
termined., Table 3 shows that in this case the surface curve parameters are:

8, = 0.5451 cos T = 0.5178

ag = «0 .0165 sin © = 0.8555

b3 = -0),0664

Substituting these values in equations 16 and 31, the guantities h2

and 2 are determined. Since =z = hl - h2 R hl is computed by taking the

sum of =z and h2 . The results are shown in fig. 4. In preparing the

1.0

¢.8

0.6

0.4

a.2

U L L B B

'I!il!ll!llllllliiil‘!il!l!li!!!
80 100 140 140 180 220 260 300 340 380

B, neEGrEES

] ) 3 ]

[
a0 60

i
20

Fig. k. BSurface fluctuations of sea and basin waters for the case K= 1

plots, use was made of the fact that the solutions for the range 0< @<«
can be extended to the range =< 6 < 2rx . This matter has been discussed

previously.
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The solutions given are only approximate, and it would be instructive
to find how closely the differential equation, equation 18, is satisfied.
Because of the approximations, if the derived solution is reintroduced into
the differential equation, a remainder AR will be left; that is,

dh,
dz K ' pod )
AR&E?'* ‘\/""’H-G_ (53)

The smaller the difference AR , the closer the approximation will be
to the exact solution. In this case an idea can be obtained concerning the
sufficiency of the approximation by comparing the remainder AR with
dhg/de . TFor this comparison the quantities AR and d.hg/de are plotted
against € dn fig. 5. It can be seen that the remainder is small, and

TR
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Fig. 5. Residual from the second approximate solution for the case 'S =1
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that a good solution has been obtained in the case under consideration.

Range of Tides in the Basin and Lag of the Maxima

The range of the tides in the basin is twice the maximum displacement
of the wabter surface in the basin measured from msl. The maximum and the
minimm displacements correspond to the zeroes of the difference z (i.e.
b, = l), since for these points the rate dhl/ds vanished (see equation
13). As 2z vanishes at the points 6=0 and 6= n , it is sufficient
to consider the value of hl at @= un , vhere hl is maximum. ILet this
value be hlm . Bearing in mind the dimensionless character of the quan-
tity, it is seen that hlm gives the ratio of the semirange of tides in
the basin to the semirange of tides in the sea. Since at 0= =x , hlm
equals h, , and the value of h, at O@=x is sin T (see equation 16),
the ratio of the semirange of tide in the basin to the semirange of tide in
the sea is

hy = sin7 (54)

The ratio of the range of tide in the basin to the range in the sea is also
sin v . The values of sin T as a function of K are shown in table k4.
Thus the tidal range of the water in the basin can be read directly from
the table, once the coefficient of repletion K is known for the particu-
lar basin (see also fig. 6).

The next question to consider is the lag between the maximum dis-
placement of the water surface of the sea and the maximum displacement of
the water surface in the basin. In order of time, the former precedes the
latter. Let the lag, expressed in radians, be denoted by « . The maximum

displacement of the surface of the sea occurs at qﬂ and has the value,
from equation 16,

The maximum displacement of the surface of the water in the basin occurs
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when 6= n . Hence the lag is:

= N - &
m

.oy

te]

it
o

8

3

(55)

The question of sin T was considered in the preceding paragraph.

Tidal Prisms and Meximum Mean Velocity in the Communicating Channel

The volume of water in the basin included between the two horizontal
planes, one giving the highest elevation of the wé,ter surface during a
tidal cycle and the other giving the lowest elevation of the surface, is
referred to as the tidal prism. Let the volume of the prism be @ . If
Qm is the maximum rate of discharge through the comnecting chamnel during
a half tidal cycle, the volume of the prism, the maximum rate of discharge,
and the period of the tides can be connected by an expression:

T

W = (56)

where C is a dimensionless muwber.
The value of C is close to unity, and its exact value depends on

the coefficient of repletion K . This dependence will be determined next.
With the maximum mean velocity being denoted by Vm »

%=y

Also, from the condition of continuity,
/2
Q= a f vat
0

Since z = h2 - hl » it can be seen from equation 7 that

v~z
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and
Vi ~ (VE)y
the suffix m indicating that maximum values are taken. Henece,

Q@ (VE)y

0

or, since 2ndt = TdO ,
q,  (Va),
o - ow
j Vzde
0

Tet 91 be the value of 6 which renders 2z a2 maximum., At this
point ‘\/E is also a maximum. Accordingly, dz/ds’:? = (0 , and from equa-
tion 36:

(57)

cos 6 + b3(—51n 6, + 3 sin 391) + 3a,3 cos 36; = O

It can be shown that the smallest root of this equation is:
4
91 = “2" + € (58)
where

€ BT nevweessesn [

1l - 9a3
and.

cos 91 & -
cos 391 = +3¢

sin elz 1, sin 391= =1
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From equation 35 the meximum value of /z is

1/2 . .
(\/E)m = a] [Ni sin 6, + N, sin 30,
b N,a

3" %3 ]
+ 5 (cos 6, - cos 361) + 5= sin 36,

Introducing the value of al from the preceding page, this reduces
to:

N
(VZE), = a:lL/2 (Nl - Ny - 2N boe - -%3-3—) (59)

Again, from equation 35, effecting an integration:

b (4
[ 230 — aai/ 2 (Nl + %: W, + %; NlaS) (60)
0

Substituting these expressions, equstions 59 and 60, in equation 57,

and then making use of the fact that N

3 aB R b3 » and T are all small

quantities, yields
T%m M i)
S -
pr 1 3R 2b

The right member of the equation is the expression for C appearing in
equation 56; that is,

1ok 2
C=1 = 3 - 2b.g ~ 3 @ (61)

It is obvious that C depends on X , since a, , b3 , and € de~
pend on K . Values of C computed using the latter expression are given
in table L. It is seen that as K is inereased from 0.1 to 100 the value
of C changes from 0.8106 to 1.0000 (see also fig. 6).

The formula for the tidal prism is the means by which the maximum
velocity in the connecting channel can now be evaluated. By the definition
of the tidal prism,

Q ﬂ=2hbﬁﬁﬁ
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where hlm is the ratic of the maximum displacement of the water surface

in the basin to the maximum displacement of the surface of the sea. Hence,
using equation 54

Q= 2AH sin 7
As before,

Qm:: Vﬁa

Introducing these into the formula for the tidal prism, equation 56,

gives

Egin (62)
T

This is the relation which connects the maximum mean velocity in the

connecting chamnel with the range of tides in the sea, 2H . In the ex-

pression H is measured in feet and T in seconds.

Prismatic Equivalence of Irregular Chanmels
and Multiplieity of Chammels

The determination of the coefficient of repletion K of the connect-
ing chamnel has been carried out, as discussed in the initial sections of
this report, on the basis that the chanmel is prismatic. An actual channel
may not meet this condition, the depth and width varying from point to
point. For the purpose of evaluating K , the actual irregular chamnel can
be replaced by a regular one having the same conductance as the irregular
channel. In finding the equivalent charmel it may be well to assume that
the chamnel length I and the roughness coefficient n remain the same;
also that the depth of the equivalent channel is equal to the average depth
T of the irregular chammel. Thus it remains to find the constant Cross
section 2y of the equivalent chamnel. If the end cross sections of the

actual channel arve not of the same size, the activity of thé chammel
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differs for the two directions of flow, one direction being the reverse of
the other. If then 8 is the equivalent cross section for one direction
and a0 for the opposite direction, it should suffice to take the mean
(asl + asg)/z ag the cross section of the equivalent channel. If the
length of the connecting channel is large in comparison with the depth, the
error arising from this difficulty will be reduced.

Let r. and a, be the depth and the cross-sectional area of the
irregular chamnel at the point x . Let a,m be the mean value of a s
avergged along the entire length of the channel. TLet & and a, be the
end cross sections of the channel, & being on the end toward the sea,

Assume that the flow Q is from the sea toward the basin (see fig. 7).

SEA a, a Q@ a, BASIN

7//////////////////////////l//////‘//////f/

—

R AN

Fig. 7. An irregular connecting channel

The surface fall may be broken into two parts, aﬂi and Aﬁé s having
the values

=
and a1
L
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Hence,

L
A _dx 2
9. x 8 [L
ra.2 2g1 2
0 XX )
For the equivalent channel,
= Ef.lmL . 2 1
2z r a? 2gl 2
m s 8

In these expressions lx is the coefficient of friction correspond-
ing to the hydraulic radius T and n , and lm is the coefficient of
friction corresponding to the hydraulic radiuvs T and n . Since chan-
nels are very wide, the average depth of a cross section can be taken equal
to the hydraulic radius of the section. In channels having equal conduct-
ances, the quantity EgAH/Q? is the same for the same value of Q .
Applying this Lo the above gives

1 lm; lkgx 1
—_—f et L] = + —

T a? 2
A o Tz %2

If it is assumed that along the channel the variation in depth is not
very great, the above expression can be simplified. Putting T, = rm_+ or ,
it can be inferred from equation 15, since &r is small with respect to

T oo that

Substituting this in the above eqkatlon, multiplying the resulting
equation by gi s, and then dividing by'--+ 1 yields

m
1
a? AL a? r a?
. U _tgr\m,fx) , _m m (63)
2 AL+r 3 r 2 L AL+r 2
a n hiil ms a m maz.
5 0 X

which is the formula for determining the cross section of the equivaieht
chamnel when the flow is from the sea to the basin. If a, is replaced by
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a. in equation 63, the result gives the cross section of the equivalent

ciannel for flow in the other direction.

When there is more than one connecting chammel, it is a simple matter
to determine the equivalent single channel. TIn fact, if Ki 5 Ké s KS R
... are the coefficients of repletion of the individual channels, the co-

efficient of repletion of the single equivalent chammel is

K= Ki + Ké + K3 I (64)

This fact will be readily understood if the derivation of equation 13

is borne in mind.

Empirical Values of the Tidal Prism Formula

Keulegan and Hall have given an empirical determination of the con-
stant C in the tidal prism formula.> Based on the observed values of the
actual discharges for the inlets at Nantucket, Manasquan, Beaufort, and
Baker's Haulover, the average value of ¢ is found to be 0.86.

Considering further the tidal ranges in the basins involving these
inlets and the ranges of the seas outside during the period of the dis«,>
charge observations, it will be possible to obtain theoretical values of
C according to the methods discussed previously. In table U4 the quanti-
ties by (i.e. sin ) and € are given. Thus it will suffice to take the
ratios of the tidal ranges in the basins and the seas and deduce therefrom
by referring to table 4 the corresponding velues of ¢ . This is shown

below for the inlets under considerstion.

Tidal. Range, £t

h

Inlet Inside Outside Im C
Nantucket 2.0 2.5 0.800 0.8h1
Manasquan 2.5 3.7 0.676 0.825
Beaufort 3.5 .o 0.878 0.862
Baker's Haulover 3.0 3.3 0.910 0.872

For these four inlets the average theoretical value of € 4is 0.85,
and this compares well with the empirically determined value. "
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Despite the irregular and rugged shape of the basin areas of the
respective basins, the above agreement would indicate that probably in the
basins considered the total variations are nearly constant over the entire

areas of the basins.

Comparisons with COL Brown's Analysis

The original idea that the flow through an inlet is essentially hy-
draulic stemmed from COL Brown,l The problem was approached by assuming
that if the surface fluctuations in the sea are sinusoidal, then the fluc-
tuations of the lagoon also are sinusoidal. Since the resistance of the
inlet chamnel is best described by quadratic laws, the fluctuations in the
lagoon fail. to conform to a pure simusoidal variation. The developments on
the preceding pages were meant to improve the rigor of analysis. There-
fore, it may be worthwhile to make a comparison between the method reported
herein and those of COL Brown's amalysis for a hypothetical basin. In the
review of this report Mr. Wicker made this comparison, and the results are
reproduced below from the commentary kindly offered.

Assume: A basin with A = 40O x .106 £t°
A chamnel with » = 15 £t

a = 10,000 62
L= 5,000 ft
n= 0.04

An ocean tide 2H = 4 ft
H= 2 ft

Then, according to the procedure reported herein, from table 2

A—%@ x 10™% = 2.040

and thus
K= 0.36

From table 4 for K= 0.36 (see also fig. 6)

sin 7 =0.40 and C = 0.81k4
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Then from equation 62
Vv, = 3.78 ft/sec

According to the procedure of COL Brown,
Q% = Ah

Ly

vhere notation is the same as used herein except that

Q, = total inflow (or outflow)

Hé = range of tide in sea; i.e. 2H in
the notation of this report

h = range of tide in basin;
i.e. 2Him in the notation of this
report

Assuming that h= 1.8,

Q = 720 X 10° £43

Also, from the second expression for Qt in the above,

Q, = 730 x 10° 13

Assuming that h = 1.9 ,

6

Q, = 760 x 10° £t

Q = 723 X 1% 43
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Assuming that h = 1.82 ,

6

q, = 728 x 10 £43

Q’t = 727 X 106 ft3

Evidently h will be approximately 1.82 ft. Taking this value,

L
_ 1.h486 2/3.‘/1.‘/ 2
=" * i Hi"hl

v, = k.26 ft/sec

This compares with the 3.78 value obtained by the method herein. COL
Brown's procedure overestimates by 12.7 percent as compared with results of
the procedure herein.
To take another example, assume:
A basin with A= h0O X 106 2
A chapnel with r = 10 't
a = 5,000 £t°
L = 10,000 ft

n = 0.03
An ocean tide 2H= 6 ft
H= 3 ft

According to the procedure herein, from table 2

é-K—;ﬁ % 107 = 1.519
and thus
K= 0.1095

From table 4, or fig. 6, for K= 0.1095 ,
sin T = 0.125 and C = 0.8107

Then from equation 62,
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V= 3.52 £t/sec

According to the procedure of COL Brown, assuming that h= 2 ,

6

q, = 800 x 10 ££3

q, = 329 X 10° £3

Assuming that h =1,

Q = Loo x 106 £t

Q, = 337 x 10° £t3

Assuming that h = 0.8,

Q, = 320 X 10° 43

g, = 338 x 10° £t3
Evidently h will be spproximately 0.8. Taking this value,

V, = 3.96 ft/sec
vhich compares with the value of 3.52 from the procedure reported herein.
COL Brown's procedure again overestimates as compared with the results of

the method herein. The difference is about the same as previously computed.

Application to Barrier Cuts

The procedure of evaluations relating to inlets, as discussed previ-
ously, is equally applicsble to barrier cuts separating two bays or the two.
parts of a bay, provided the coefficient of repletion K is determined
anew.
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Let Q be the discharge at the cut, V the mean velocity, H2 the
elevation of water surface on one side of the cut, and H'_L the elevation
in the protected bay. As before, the elevations are measured with respect
to mel. The flow through the cut will be thought to be analogous to flow
through an orifice connecting two reservoirs. Then, let c a be the coef-
ficient of discharge and a +the mean cross section of the current at the

cut. Hence

Q= Csa -‘/ 2g(H, - H) (65)

Using the half tidal range H in the outer bay as a measure of surface de~

flections,

V= cd-\/egH Vhe - b, (66)
Using the surface area of the protected bay A , the storage equation is

v (1)

]

218

S5

T
E(8

e B

Eliminating V Dbetween equations 11l and 66 yields

dh

1
= Kl'\/hz ~hy , by > by (13)
dhy :
= "Kl"/hl - By 5 by > by (1)

where the coefficient of repletion Kl now has the new value

K = _;V?%:_ﬂ % Ca (67)
Once Kl is obtained, the values of C eand sin T are read from table b
or from fig. 6. Using these determinations, the maximum water elevation in
the protected part of the bay, the maximum mean current through the éﬁt;
and the lag in the oscillations in the protected part are established
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from equations 54, 62, and 55, respectively.

Similar to the case of a canal, assuming that the surface oscilla-
tions on the two sides of the cut for points sufficiently removed from the
cut are nearly simusoidal, a would be the cross section of the cut when
the waters on the two sides of the cut are at msl. As regards the coef-
ficient of discharge C q ignoring the effects of the geometry of the cut
and the roughness of the passage, this may be put equal to unity.
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PART II: APPLICATION TO INDIAN RIVER BAY

Topographic Conditions of Indian River Inlet

At the suggestion of the Committee on Tidal Hydraulics, the case of
Indian River Bay, Del., was examined in detail to illustrate the applica-
tion of the formulas of the present analysis.

Indian River Bay is a lagoon about 2 miles wide from north to south
and 6 miles long, the surface area being 15 square milesg.lL The main trib~
utary is the Indian River, which flows into the bay from the west. TFor
ahout 3-»1,/2 miles above its mouth the river is broad and relatively shal-
low, having a depth of about 7 £t at local mean low water (mlw). From
this point to the head of navigation, a distance of about 8 miles, it is
narrow and sluggish with a meandering course, bordered by mud flats and
swemps. Depth of water in the bay averages about 3 £t at local mlw. The
bay is connected with the ocean through the Indian River Inletb.

This bay is connected with Rehoboth Bay through two waterways known
as "The Ditches," see fig. 8. These passages had a controlling depth of
only 2 or 3 £t below the local mlw prior to 1956.

Rehoboth Bay is a shallow-bordered lagoon separated from the ocean
by a barrier beach. It is 3 miles wide from esst to west and i miles long,
with a surface area of approximately 13 square miles. The controlling
depth is 3 £t below mlw. Two bributary streams, Herring Creek and Love
Creek, enter the bay from the west. Lewes and Rehoboth Canal is an inland
waterway from Rehoboth Bay to Delaware Bay. From the jettied entrance on
the north shore the inland waterway follows a northerly course through
marshland, entering fastland in the vicinity of Rehoboth, then in a north-
westerly direction it again passes through marshland to an inlet from Del-
aware Bay, and thence to a comnection with Broadkill River. Prior to 1937
the total length was 11.8 miles. The project depth is 6 ft below local
mlw and bottom width varies from 50 to 100 £t. It must be kept in mind
that the comnection of Lewes and Rehoboth Canal with Delaware Bay via Roo-
sevelt Inlet was not in existence in 1928-1929. The length given here is

for a comnection with Delaware Bay via Broadkill River.
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Indian River Inlet

> Prior to the mod-

ern improvements it was an unstable passage, opening and closing alter-

Indian River Inlet has an interesting history.

nately. Under such conditions an inlet is likely to move from one place
to another, and evidence suggests that during the period from 1847 to 1910
this inlet migrated northward a distance of 2 miles. About 1910 the nat-
ural inlet had shoaled to an extent that a closing was impending. In
fact, about the year 1925 the closing was complete and little hope could
be entertained for the opening under natural causes. In the summer of
1928 the Indian River Commission undertook to open the inlet by making a
cut through the barrier reef at a point almost opposite the center of
Indian River Bay and 1 mile south of the final position of the natural
inlet. A channel 60 ft wide and 4 £t deep at mlw of the ocean was exca-
vated from the bay, beginning where the water was 4 £t deep on the same
datum, extending eastward through the marsh, and then partly through the
barrier reef to within 115 £t of the high~water mark on the ocean beach.
Actual work begen on 23 June 1928 and was finished in October. TFrom the
eastern end of the dredged cut an attempt was made to complete the open~
ing to the ocean by first removing a part of the sand with scrapers and
then blasting out a chamnel. The final attempt in November 1928 was not
successful, and as the funds were exheusted, work was suspended. About a
month after the work had stopped the locality regained its former appear-~
ance except for the opening through the dunes and the cut in the marsh.
The trench made by the explosions was obliterated. The ocean end had been
filled to above low water for a distance of 125 ft. At the end of April
1929, locally interested people made a small cut , and the impounded water
eroded an opening through the remainder of the barrier beach. The cross
section of this opening was estimated to be 100 £t wide and 4-1/2 £t deep
in June 1929, but late that summer it was evident that the inlet was shoal-
ing rapidly and again was about to close entirely. In November 1929,
dredging of a channel 60 ft wide at the bottom and 8 ft deep at mlw wa.s
commenced, beginning in the marsh about 3700 £t from the ocean. The ex-
cavation followed the line of the previous cuts, and by J anvary 1930 it
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had reached the outer bar. The work provided an inlet that was con-
sidered to be comparable in size to the old inlet that existed prior to
1910. However, by November 1930 the inner bar was sbove mlw and the con-
trolling depth over the outer bar was 2 ft. By 1935, the inlet was vir-
tually closed and the State of Delaware decided again to appeal to the
Federal Government for asssistance in providing a staebilized inlet.

As expressed by the state and local interests, the purposes of a
stable inlet were as follows: to provide for an adequate exchange of
water between the bays and the ocean in order +o relieve sbagnation and
t0 increase the salinity of the bays sufficiently to support a seafood in-
dustry, and to provide a satisfactory chamnel for navigation from the ocean
to points within the bays. The project designed by the U. S. Army Corps
of Engineers for these indicated purposes consisted of jetties at the in-
let entrance extending to the 1h-f% depth contour in the ocean, a channel
15 % deep and 200 ft wide from the end of the Jjetties to a point 7000 £t
inside Indian River Bay, and thence a chamnnel 6 £t deep and 100 £t wide to
the natural 6-ft depth contour in Indian River Bay. This project was ap-
proved by Congress, and construction was completed in 1939. A generally
satisfactory inlet has existed since that time; as of 1966, a total of ap-
proximately 100,000 cu yd of meintenance dredging had been performed and
the controlling depths in the inlet have approximated 9 ft, which is ade-
quate for navigation. The quality of the water within the bays apparently
has been satisfactory since opening of the inlet.

Profile of Tide in Indian River Bay

One of the assumptions used in the derivation of the formulas relat-
ing to the regime of tides in an internsl basin was that the mean levels
of the water in the basin and of the sea outside are contained in the same
horizontal plane. Iﬁ is necessary to exeamine how nearly this assumption
is satisfied for Indian River Bay. In table 5, which was prepared by
Mr. Wicker for the guidance of the discussions herein, the longtime_tide
data of the various stations of the two bays are given. The observations
of the surveys of the two periods, 1938-1939 and 1948 and 1950, appear to
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be distinct. The former covers a period of 1 months. From the 1938-1939
survey a superelevation of mean tide level (mtl) of about 0.15 ft is in-
dicated. The corresponding value in Rehoboth Bay, taking the average from
Dewey Beach and Love Creek, is 0.08 ft. With reference to the 1948 and
1950 survey covering a period of 6~1/2 months, a much augmented super-
elevation of mtl at Oak Orchard and Dewey Beach over that observed in 1938~
1939 is indicated.

The averaged 1948~1950 values are shown in fig. 9. These were
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Fig. 9. Indian River Inlet and Bay 1948-1950 tides
reduced to longtime means
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selected for detailed study in lieu of 1938-1939 values because current
velocity observations were made in 1948 in Indien River Inlet and at sta-
tions in the bay. Ocean values were pot observed. Some measurements
would place the range of tide at the ocean as 3.77 ft. However, in a
memorandum dated 12 December 1939, Mr. Wicker rejected this value on the
ground that the observations were very poor and very few in number. On
the premise that the tide at Indian River Inlet is most likely similar to
the tide at Lewes, the value 4.1 £t was proposed for the range. The value
of tide at Lewes is well esbablished. This value is shown in fig. 9,

H =2,05 , and will be used in all the subsequent computations.

Fig. 9 also shows that the range of tide along the inlet decreases
almost uniformly. In the bay area, tidal displacements are nearly con-
stant. 'The mtl at the Inlet Bridge coincides with msl, whereas in the bay
interior a superelevation of 0.3 £t is established. Thig is a superele-
vation much higher than that observed during the surveys of 1938-1939.

The tribubary discharges, the shallowness of the inlet, and the wind ef-
fects must have a bearing on the superelevations. It is desirable, there-
fore, that each of these factors be separately examined in order to es-

tablish a reasonable limiting value for the superelevation.

Tributary Discharges into the Bays

In 1930 the Indian River Inlet Commission (IRIC) conducted a field
investigation to ascertain the inflows from the sea and the oubflows dur-
ing a tidal cycle, and also the changes in the water level within the
bays. The level changes were noted for a period of about two years at
Holts Wharf, and these are shown in fig. 10 together with the monthly pre-
cipitation in the area. The flows were measured by means of current
meters at the Rehoboth Bay end of Lewes and Rehoboth Canal and at Indian
River Inlet. There was no need for flow observation in Assawoman Cenal as
this waterwvay was closed during this study. Observations of currents were
made continuously each day except Sunday for a period of three months.
Average values from these observations for consecutive periods are shown ‘i
in table 6 together with the average durations of inflow and uou*c:f,‘low.
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Fig. 10. Bay water elevation and precipitation
(Survey of Indian River Inlet Commission)

For inlet and canal alike, the outflow is greater than the inflow.
This is attributed to the fact that at the time the average level of the
water of the bays was above that of the sea. The value of the superele-
vation can be determined analytically, since the disparity in the 1nflow
and the outflow durations is known. Let A be the superelevation, H the

semirange of the tide in the sea, and H2 the sea tidal elevation
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Fig. 11. Notation diagram. Ocean tide and bay superelevation

measured from msl, approximately H = 2.05 £t (see fig. 11). The tide of

sea is
H, = H sin ot , 0 = 2n/T

if t 1is measured from the instant when the tide is crossing the msl
plane and is increasing in value. The period of tide is T . Let tl be
the first instant when the waters of the bays and of the sea are in the
same horizontal plane. Let ti be the duration of the inflow. Then

t; *t, =% - t, is the next instant when the waters of the bays and of
the sea are again in the same horizontal plane. Since the internal tides
of the bays at the time of the flow measurements were negligible, it can

be written that

A =H sgin th
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and also that
A = H sin (ctl + o’ci)

Eliminating A between these two equations, expanding the result, and col-
lecting terms, it can be seen finally that
sin c“hi
tan th =71 < cos Uti

Since otl igs a small angle

tan ot, = Ot, = Va¥y:! (68)
and
' sin o‘ti
o/ = 1 - cos cﬁi (69)

From table 6 it is seen that the average inflow duration is 4. 46 hr,
whereas the average outflow duration is 7.1% hr. Since the sum of these
two qurations, 11.60 hr, is less than 12.42 hr, the period of the tides,
the observed inflow and outflow duration values need to be increased 1.072
times. Thus the adjusted value of the inflow duration is 4,79 hr and then
c’ci = 139.2 degrees. Evaluating the right side of equation 69 yields

AM = 0.372
and
A =0.372 X 2.05 = 0.76 £t
Accordingly, if it is assumed that during the study the msl was 1.95 £t
above the 1929 datum, the mean level elevation in the two bays should bg

2.7L ft. This is shown also in fig. 10, and it appears that the value is '
in close agreement with the Holts Wharf measurement of the time. In the
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subseguent analysis the notation Ab will stand for 0.76 ft
superelevation.

Examination of the lower plot in fig. 10 shows that the level of
the bay waters fell about 1/2 £t from June 1929 to April 1930. It might
be helpful to obtain a theoretical relation to show the dependence of the
rate of fall upon the tributary discharges.

First an expression is derived relating the net total outflow QT
during a tide, for a superelevation A , assuming in the analysis that the
variations of canal and inlet cross sections during ebb and flood are ig-
norable, and, mwore important, that the tidal changes inside are insignifi-
cent, H =A . According to equation 6 the inflow during a tidal cycle
is given by, after putting m =1 and Hl =0,

T
5%y I,
Qi"‘k"‘f | & -g§a (70)
%
L

and the outflow by

T4,
Q = ka E+é& (1)
(o} H H
T
5%
_1, 2grH
k = AL+

B

otl AH

where

{H

H sin ot , 0 = 2r/p

i

and a 1is the crosswsectional area of canal or inlet. Inspecting fig. 11
it will be inferred that as a good approximation
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Since % is a small fraction, sufficient approximation is obtained by
using

H oAl 1A} .. 219

ﬁ““H“El(l"aﬁ)smT-Etl | (72)
and

B A 1A\ . one

»ﬁ-+-ﬁ-Nl(l+»é-H)31nT+ T (73)

Substituting in equations 70 and 71 from equations 72 and 73, respece

tively, and carrying out the required integration, yields

:ﬁ l_.];é 1,.&:%
Q‘i 7 2H T
and
N bt
-t 1a 1t
Q0~—,K (1+2H) 1+T Tka
Since
By B _2p
T t = wH
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and since the square of A/H is negligible with respect to unity, the
expressions of inflow and oubtflow simplify to

N
1 1.2)aA
Qiz;t——{l'-(-é-i'%-)’ﬁ]m (74)
and
el P L4+2)2) g (75)
@ =% 2 wnJH

For A positive, the inflow is smaller than the outflow. That is,

Qp = Q) - Q (76)

Introducing from equations Th and 75, the net outflow becomes

Qp = va TA/MH (77)
where
N
u=~£}-(1+ei{-)k (78)

The product upa is referred to as the conveyance of an inlet or
canal. It is not a dimensionless quantity; its dimensions are (pa) =
(L3T"l) > i.e. volume per unit time. In the early periods when the Indian
River was being developed, the dimensions and hydraulic characteristics of
the inlet were somewhat uncertain; therefore, for the analysis of the
tidal regime of that time, the conveyances could not be evaluated and an
alternate approach was necessary. During the period from June 1930 to
September 1930, the net total outflow of the inlet and canal was recorded.
Let QTO be this outflow and Ab represent the prevailing superelevation
of the bay waters at the time. From table 6, the combined value of the
net outflow is Qp, = 12.76 X 106 ft3¢ Analysis places Ab at 0.76 £t.
Let QT be the total net outflow at some other superelevatipn A‘f Then
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and

i

U pa T A/M
(It is assumed that the longtime ocean range of tide is invariable.)
Taking the ratio, it follows that

Qo = Q,I,o Y/ (79)

showing that net outflow is proportional to superelevation.
The longbime storage equation for the two bays is, ignoring inter-

nal tides,

where QT is the river inflow for one tidal cycle. According to weather
bureau data, the normal annual average evaporation, as judged from the
evaporation in Class A pans, is about 39 in., whereas the normal annval
precipitation is 40 in. in northern Delaware. Since these two values are
nearly equal, the matter of precipitation and evaporation does not enter

into the storage equation. Introducing from equation 79,
da _ x Q’fo Py (80)
To place the equation in a dimensionless form, first introduce T, , the

number of seconds in a year, and Ai , the initial elevation of the bay

water at time t = 0 . Adopbing the new variables,

3 = agbi
and A (81)
Ty = b1
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and introducing them in equation 80, the latter changes to

T =0 - BB (82)
1
where
o -
LV
and
oo T A
1L An T 4

The solubtion for & , subject to the condition that & = 1 when T = o,

..5 T
1 11
= -BZ [Oll - (CXI - ﬁl) e ] (83)

This equation can be used to determine the discharges from the rivers if

is

the fall of the surface waters in the bays is known and, conversely, the
fall of the water surface if the river discharges are known.

According to page 3 of the IRIC report, the freshwater flow into the
bays amounts to 30 X 106 fts per day. This is 15 X 106 during 12 hr,
which amounts to 348 ft3/éec. The drainage area of the bays, including
their water-surface areas, is 254.5 square milés. Deducting the water-
surface areas, amounting to 29.5 square miles, assuming that evaporation is
nearly of the same value as the precipitation, the net drainage area equals
225 square miles. Thus, the unit-runoff is 1.55 ft3 per second per square
mile. The only area currently geged is a tributary of Indian River with a
drainage area of 5.24 square miles. The average discharge through 1963 is
Thi ft3/%ec, and the unit runoff is 1.41 £t per second per square mile.
The total drainage area of 225 square miles does not differ materially asg
to runoff characteristics from any part thereof. It appears thatvthe'IRIC :

value of 30 x 10° #t3 per dasy or 15 x 10° for 12 hr is a reasonably
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accurate value and will be used in the subsequent computations.

It would be instructive to find how closely the fall of the water
level during the period from June 1929 to August 1930 could be determined
using equation 83. It will be assumed that the discharges from the tribu-
taries were in proportion to the precipitation of the area, and that during
this period the conveyances of Indian River Inlet and Lewes and Rehoboth
Canal remained constant. In particular, on the yearly average basis, Qr =
15 x 106 £t3 per tidal cycle and Qp = 12.76 X 106 £t per tidal cycle
when the superelevation is Ab = 0,76 ft. Examining the upper graph in
fig. 10 it is seen that the aversge monthly precipitation from June 1929
to Janusry 1930 was 2.84 in., whereas from January 1930 to August 1930 it
was 1.64 in. It is now inferred that for the former period Q =
19.0 x 10° £63, and for the later period Q_ = 11.0 X 100 £t3. Accora-
ingly, the computation of the fall of water surface in the bays should
be made separately for each period.

For the first period it is noted that the water-surface elevation in
June 1929 was about 2.95 £t. This makes le = 1 ft. The relevant data
for the fall computation are:

o =11t &, = 0.76 £t

A = 8.2 x10° %7, T/T, = T30

QT==19X106;€‘{;3, o - 12.8 x 10° £t
o]

Accordingly, al = 13.8 and ﬁl = 15.1, and with these values equation 83
becomes

-15.171

o2
i

0.91 + 0.09 e
and as Ai = 1 f%
A= 0.91 + 0.09 e~ 1217

The fall curve corresponding to this is shown in fig. 10. "In January 1930
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the water-surface elevation is 2.86 £t and this makes A = 0.9L £t. The
relevant data for the fall computation in the second period are:

A = 0.91 £t , Ao=o.,76ﬁ;
A =82 x10° a2, T/1, = 730

6 .3

QT =11 X 107 % 6 o3

, QToala.leO £t

Accordingly, & = 10.7 and Bl = 15.1, and with these values equation 83

becomes

5 = 0.7 + 29 e~17-17

and as £i = 0.91L It

A=0.65+0.26 ¢ 1217
The fall curve corresponding to this is also shown in fig. 10. The agree-
ment between the observed and computed falls is sufficiently close, sug-
gesting that the use of equation 83 is permissible to obtain the 1imiting
mean elevation of bay waters for the later periods with the Indian River

Inlet cross section greatly avgmented.

Limiting Mean Elevation of Bay Wabers

With the later enlargement of Indian River Inlet the conveyance was
increased and the mean level of the bay waters descended to a lower plane.
It will now be examined as to what the limit would be for the inlet con-
dition present during the surveys of 1938-1939. First, however, it is
necessary to establish the conveyance of the enlarged channel.

According to the IRIC report, the inlet cross section during the
study varied from M40 to 750 fte. Similar changes also occurred in +the
depth of channel. For example, the cut through the barrier reef had
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shoaled from -8.0 ft (zero at 1929 mlw) to which it was dredged to an aver-
age of about -2 ft, indicating a general fall of 6 ft. This would mean
that the depth varied from 4 to 10 ft. Taking the mean of the extremes,
the lower vealue repeated, the channel cross section would be 543 fte and
the depth 6 ft. It is seen, next, from table 7 that in 1938-1939 the av-
erage cross section of the inlet channel in the part next to the sea, east
of sta 22400, was 6240 ftz, whereas the depth was 1l.15 ft. Since the
conveyance of the chamnel would be proportional to

2/3

r/-a

then the conveyance of the inlet chennel in 1938-1939 was about 17.6 times
as large as the conveyance of the chammel of 1930. During the period of
the IRIC study, the net outflow per tidal cycle through the inlet channel
as discussed previously was 6.38 x 106 ft3, corresponding to a superele-
vation of bay waters of 0.76 £t from msl. The corresponding outflow capa-
bility through the 1938-1939 inlet channel would be 17.6 times as large,
i.e.,

17.6 x 6.38 x 106 = 112.2 X 3.06 P43

Meanwhile, since no significant changes had occurred in the Iewes and
Rehoboth Canal, the net outflow per tidal cycle through the canal remained
the same and thus it is

6.38 x 106 ft3\

Then, adding these two, the net oubflow capability per tidal cycle in
1938-1939 through the two waberways was

QT = 118.6 X 106

o)

ft3, B = 0.76

The tributary discharges also remained the ssme:
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Qr =15 X 106 ft3

To determine the superelevation of the bay waters, assume that at
t=0, 46 =4 = 0.76. Algo:

A =8.2 x10° £t°
6 .3 .
Q. =15 X 107 £t~ per tidal cycle
@ = 118.6 x 106 £53 per tidal cycle

3
=
[
i

730

Hence, @, =17.5 and By 138.2, and equation 89 reduces to

it

i

e~1387

8 = 0.127 + 0.873

and since A = 0.76 ft, also

A =0.097 + 0.664 ¢ 1387

Accordingly, the terminal superelevation which is reached in about 30 days
has the value 0.097 ft. This agrees fairly well with the longtime ob-
served superelevation of the 1938~1939 surveys at Osk Orchard and Love
Creek (see table 5).

Effect of Inlet Cross Section on Bay Water Levels

In inlets where the mean depth of water is small, the cross section
during a flood would be gréater than that during an ebb. Assuming that
there are no tributaries leading to 2 basin and that the water level of
the bay has attained its equilibrium position, the inflow and oubflow
volumes for a tidal cycle would be the same. Since the currents of a
flood would be greater than those of an ebb, the duration of flood would
be smaller than the duration of ebb. This circumstance leads to &
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superelevation A vwhich may be related to the half tidal range of the
sea H . It should be sufficient to examine this relation for the simple
cagse of insignificant internal tide.

Because surface width is very large in comparison with depth, the
changes in the cross section wowld come from the changes in the depth, r .
Thus, for the instantaneous discharge,

m =w, /3 \[m (8k)

where /M is the differential head between the bay and the ocean water
and M.L a factor of proportionality involving inlet length, roughness,
and surface width. The depth of water at mid-inlet can be taken to give
the effective hydraulic radius, and on the assumption that the surface
water in the inlet is nearly straight, its value accordingly would be

AL, H

raro+-§+§sin9,9zdt " (85)

if the ocean tide is given by
H2 =¥ gin ot
Here r, is the water depth at time ¢ =0 , t being measured from the

instant the tide is rising from the msl plane. Equation 85 can be written
in the form

i A, E
- r-ro(l+2r +2r s:LnG)
o o
end since A/2r = is small, also
_ A o
ro=r, (1, + aro) (ZL + ero sin 9) (86)

Denoting by Aqi the 1nstantaneous discharge during an ebb and by Aqo
the instantaneous discharge during a flood, substitubting in equa,tlon 8k
from equation 86, and recalling the meaning of H:

53



Aq_lzmg (1+~2%;sin9)"\/sin9~§ (87)

and
mo=M2(l+fé%;Sin9)“\/§"Sine (88)
where

My =M \[H = (1+-§§;)

and this is a constant.

At the instants t % - %, , and T+t , the waters of the bays
and of the ocean are at the same level. Denote ctl by 91 .
A=H gin 91
and since 61 is a small angle
6, = o/ (89)

Denote total inflow during an ebb by Qi and total oubflow by Qb . From
equations 87 and 48:

-G

1
Q =M, (1+§-—sma) sin 0 - £ a6
o) °
and
2n+6
Q, =M, (1+§%sin9)’\/§~sin6a8
n-@l
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In the absence of the tributaries Q’i = Q’o and hence

:nf—-(:fl
H . . A
ercres [2 B~
(l+2r s:.ne) '\/s:m Hae
o o
1
&g
2%+ 1

H ' A .
- Hoo w/-- 0 ao
(1 + 5 sin e ) T - sin a (90)

nnel

which defines implicitly the relation between A/H and H/?ro . A simple
relation can be derived if it is assumed that both 4/ and H/2r are
small quantities, so small that the products or the squares of these
ratios are negligible in comparison with unity. This will be granted.

Then quite adequately one can put

. A - lA © A o]
\/s1n9~-~H ~(l+~2"'ﬂ)sm9~“}{;91<9<ﬂ- 1

e gz 1 s am e smew 3 -
\/H Sin e‘"——‘H (l 2H)Sln 6 5 k14 91<9<21(+ 91

Introducing these in equation 90 and carrying out the integrations and

neglecting in the result the second-order quantities, one has

s (sn)

O

Applying the result to the case of the Indian River Inlet with H =
2.05 £t and r, = 12 £t one finds that

A= 0.088 £t

The deduction to be made from the diseussions of the last two sec-
tions is that although there are river discharges and the inlet waterway
is moderately shallow, nevertheless, the level of the waters of the two.
bays is expected to be only slightly elevated. According to the éstimates
made, the superelevation from msl could hardly be greater than 0.20 £,
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a value considerably less than that shown in fig. 9, but close to that

of 1938-1939, and could very well be ignored in the computations to be
entered subsequently.

Wind Tides in Indisn River Bay

Examining agein in fig. 10 the course of the elevation of the bay
waters, it is seen that there was a fall from September 1929 to April 1930
and then a continued rise up to about 2.80 ft. This rise may be explained
in part by the shoaling of the inlet. The consequent decreases in the out~
flow amounts could account for the impounding of the wabers of the bays.

Besides this, setup produced by the winds would be another factor
to bear in mind. The frequently occurring strong winds can have a
measurable bearing on the exchange of waters between the two bays and
the ocean. A strong wind blowing westward would lower the water surface
at the interior ends of inlet and canal and at the same time increase the
height of the ocean waters at the exterior ends of the two passages. The
additional head thus created may augment the inflow to a degree that a net
inflow is realized during a complete tidal cycle.

Wind setup is governed by the equation

T

_ s

dx DgzDo'*'AS
= A

e ¥

8

(92)

Where A 1is the setup, i.e. the displacement of the surface of woter

from the undisturbed level; Do is the depth of the undisturbed water;

Ty is the wind stress; p and P, are the densities of water and air,
respectively; V is the wind velocity; and X is the Taylor stress coef-
ficient. The analysis of setup in Lake Erie due to severe storms suggests
that X ¥ 0.0025 (reference 6). Let 4 denote the lowering of waters,
measured from the undisturbed level, at the inlet interior end. TIf 1, is
the length of the bays, the solution of equation 92 subject to thé ,cbr‘ldition
that A 1is small in comparison with IDO s 1is
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1
A =5%0, ‘VZL/g D P (93)

Taking the average of the lengths of the two bays as the operative basin
lengths, L = 4.5 miles (approximately). Putting p/pa = 840 , one finds
from equation 93 that A = 0.045, 0.18, 0.40, 0.72, and 1.10 £t corre-
sponding to wind velocities V = 10, 20, 30, 40, and 50 mph, respectively.
Next, one should consider the rise of water surface at the ocean end
of the inlet or canal. Assume that the Continental Shelf is of length L
and that the depth of water at the point where the shelf terminates is of
value Do . Assume that the shelf is a uniformly inclining surface of
inclination Otg so that I)o = C!QL . Since the depths are great beyond
the shelf, it would be appropriate to suppose that wind setup vanishes at
the ocean end of the shelf. Measure x from the shoreline, and denote

the wind tide at xo as .Ao .

Writing

T 1 ™

K = —= s T =Xp V2
2 s a

Pg D

JAY AD > L!.
q"“ﬁ;’:no“‘ﬁ‘; (9)

and
£ =%/
W,

the wind tide equation, equation 92, takes on the form

K

A3

with the boundary conditions
N o= TlO 2 § =0
1=0, =1

For the problem at hand an epproximate solution of eqguation 95 ghould -
suffice. As the water-surface height should not differ substantially
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from a straight line disposgition,
n=1(1~¢)

When substituted in the right-hand member of equation 95, the result of this

is

a .. K
at = o, v (1-m) ¢

The solution of the latter, subject to the condition that 7n =0 at
f =1, is
K

R log [  + (L -n.) €]

M = -

and as M = 0, when £ = 0, by substitution

ﬂo 0

T log &= = 1 (96)
o
an expression that relates, implicitly, the rise of ocean water at the
coastline with the velocity of the wind.

Assume that the Continental Shelf seaward of the inlet is 25 miles
long and that the slope is ¢ = 1/100 . According to equation 96 the wind
which should raise the inlet ocean waters by 1/10 £t is of the strength of
62 mph.

An additional rise of water level would be due to the drift current
from the wind. The wind velocity being V , the drift current (i.e. the
velocity of water at the surface) would amount to 0.03 V . Besides the
rigse of the water surface at the coastline, the wind will cause a drag on
the waters of the inlet, auvgmenting the flow that would result from a
difference of water levels at the two ends of the inlet. Since the com-
putations needed to determine the additional current are too involved,

they will be ignored at this time.
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Manning's Roughness of Lewes and Rehoboth Canal

The main difficulty in the snalytical evaluation of the surface
fluctuation of a bay connected with the ocean through an inlet or a navi-
gation capal is the assignment of a proper value of the Manning's n for
the roughness. Not many references to this question are mentioned in the
literature, and it was thought to be worthwhile to atbempt to obtain the
hydraulic roughness of the Lewes and Rehoboth Canal on the basis of the
field investigation results of the summer of 1930 relative to the amounts
of inflow and outflow transpiring during complete tidal cycles.

As indicated previocusly, the mean velocity through the canal can be

__ | cgrH /A
V=g rrVE (1)

where H is half of the tide range in ocean, r is the hydraulic radius

expressed as

of the caenal, and A is the coefficient of frietion. The connection
between A and n is given by equation 15. The guantity AH is the
difference between the levels of the waters of Delaware Pay and Rehoboth
Bay. Observations have shown that during the period of field investi-
gations the internal tides of the two bays, Rehoboth and Indian River,
were insignificant. On the other hand, the bay waters showed a superele-
vation Ab with respect to msl. Analysis places this at the value Ab =
0.76 £t. Measuring from the instant that the ocean tide is rising from
the mtl, during the inflow or the flood

M, =Hsinot -4, 0= 2n /T
and during the outflow or the ebb
AHG = Ab - H sin ot

Let tl be the first instsnt when the waters of Rehoboth Bay and of -

Delaware Bay are at the same level. Then, the inflow during a tidal
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cycle Qi and the outflow QO are

T
§~tl T+ﬁ1
Q = Vadt and Q, = Vadt
t T
1 §_t1

Introducing V from equation 7 and denoting the canal cross section

during flood and ebb by al and &y respectively, and the correspond-

ing hydraulic radii by », and r., , one has

2

. - i%; QgrlH .
i 0 A+ ry i

1

where
=gt
1 aHi
1, = 5 dot
Utl

and

o - i@ Qgrgﬁ .

o o AL+ r, “o
where

2ﬂ+0tl
AH()
IO E=] "'E—- dat

ﬁ»atl
The integrals Ii and IO were evaluated numerically using the datas
Utl = 0.38 radian, éb w= 0.75 ft, and H = 2,09 £t. It was found that
I, = 1.4k and I, = 3.45;

aQi 2gr H
" 1
0.69 5 C\/NE T (97)

then
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and

g Do - (98)
0.2 =
ag AEL + rg

With the values of the discharges known, i.e. Qi = 9,73 x 106 ft3 and

Q = 16.1 x 106 £t (see table 6), equations 97 and 98 can be used to
evaluate two values of A and then, through equation 15, the correspond-
ing n wvalues.

To complete the computation, the canal dimensions need to be estab-
lished. The canal length was about 11.7 miles between the southern end of
the canal and the northern end which connects with Delaware Bay via Broad-
kill River mouth. At some places the Lewes and Rehoboth Canal passes
through marshland, a circumstance that prohibits an accurate desceription of
an effective cross section from a hydraulic point of view. For the problem
at hand it may be sufficient to assume a uniform trapezoidal cross section
throughout the channel with a bottom width bQ and with the gide embank-
ments l:m, and depth 4 . In a trapezoidal channel the area equals
(md + bo)& 3 the wetted perimeter, 2dm +b, . It is gathered from the IRIC
repoxrt that the bobttom width was bo = 50 f't , whereas the water depth was
6 £t referred to mlw. Recalling that A, = 0.76 £t and H = 2.05 £%, the
average depth in the channel was 4, = 9.4 £t during high tide and
d, = 7.4 £t during low tide. Assuming that m = 2 , known as a good
aversge value,

&y = 651 fte
ry = 7.4 £t
and
2
a, = 480 £t
T, = 6.0 £t

Introducing these values in equations 97 and 98 and the proper values of
Qi s Qb > and L one finds finally that during ebb

A= 6.6 x 1073
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and during flood
A= Tohox 1073
Correspondingly, during ebb

0.020

=]
i

and during flood
| 0.022

s
it

Manning's Roughness of Indian River Inlet

The velocity measurements of 27 July 1948 are sufficientdly complete
for the determination of Manning's n of the inlet passage. The measure-
ments were made at the-locatjon of the bridge, sta 20400, The cross sec-
tion of the inlet at this place had been divided into six parts and the
velocities in them determined by current meters placed at 0.6-ft depths.
Assuming that the distribution of velocities in a vertical line is in ac-
cordance with Manning's law, velocity readings at such depths would give
the value of the mean velocities. The channel mean velocities as deter-
mined from the individual meters are entered in table 8. Also shown in
this table are the time of measurement, the local tides, the tides at
Atlantic City, and the magnitude of instantaneous cross sections.

Tt will be assumed that the range of tide at the ocean end of the
inlet is similar to that at Atlantic City. On the day of the veloclity
measurements the range at Atlantic City was 3.30 £t from low to high and
next 2.70 £t from high to low, an&'3.00 t from low to high. The mean,
3.00 ft, will be taken as the apparent ocean tide at the inlet during the
day of the observations. Accordingly, H = 1.5 ft. It is preferable to
congider the gquantity V/'\fgég to study the variation of mean velocity
with time. In this manner the validity of the velocity data can be ex~
tended to any ocean tide range. Making the reductions of the velocity
data from table 8 on this basis, and using H = 1.5 ft, the results are
shown in fig. 12.

Obviously, the velocity obserwved at the bridge should depend on the
difference of the tides, H2 , of the ocean at the inlet and H& at the

bridge. The latter was observed and the former may be deduced from the
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Atlantic City tide of the time of the velocity measurements. It will

be assumed that the static water levels in the ocean and in the inlet at
the bridge are at approximately the same elevation and that the range of
tide at inlet ocean is nearly the same as the range at Atlantic City. Let
H . and H,, denote the tides at the inlet bridge and at Atlantic City,
respectively, when referred to Indian River Bay datum. These are entered
in the second and third columns of table 9. The average value of er is
2,16 ft and the average value of Hér , 2.42 £t. These differ but little
from the corresponding mtl's of 2.07 and 2.35 ft. According to the
assumption, the ocean tide Hx and inlet bridge tide Hg wikth refer~

ence to the msl of the time are:

-

Hx = er -~ 2,16
and
H2 = HEl" -~ 2.4

These are entered in table 9. In the same table are also shown the values
of h.X and h2 , representing, respectively, the ratios H&/H and

H,/H with H=1.5ft. The variation of h  and h, with time is
shown graphically in fig. 13. Examining the velocity curve in fig. 12,
it is seen that the slacks occur approximately at the times of hours G,
14.5, and 21. At the times of the slacks the tide curves of ocean and
bridge locale should intersect. This would be fulfilled if the ocean
curve based on Atlantic City tide in fig. 13 were moved to the right a
distance eguivalent to 1/2 hr. The curve thus adjusted should now repre-
sent the ocean tide at the inlet. On this basis, the lag of tide between
Atlantic City and the inlet is 1/2 hr.

The velocity formula of eguation 7 can now be written as

e [2EXH -
vm XLX + T h2 hx -
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where Lx is the distance between the bridge and the ocean end of the
inlet, r 1is the average depth in the inlet between bridge and ocean, and
Vm is the maximum velocity in mid-channel corresponding to the maximum

value of the difference hg - hx . The last equation can also be written

Vm _ T -
“ngH \J/XLX + T \v/ﬁQ hx n (99)

From fig. 12 the maximum current velocities observed during flood, time

as

11.7 hr, and during ebb, time 17.0 hr, appear to be of like absolute

values; that is, o~

m
W/ 2gH

The differences in head for the corresponding times, see fig. 13, are also

= 0.84

of like absolute values; that is,

<h2 - gx) = 0,27
max

At time 11.7 hr the cross section at the bridge, see table 8, is 10,740
ftg, and at time 18.0 hr, it is 9,920 ftg. As is expected, the mean of
these extremes, 10,330 ftg, is the same as the cross section correspond-
ing to low-water slack time, or the area under msl.

Since the average cross section in the inlet between the bridge and
the ocean is smaller than the cross section at the bridge, the maximum
velocity for the inlet belween the ocean and the bridge, a distance of
L, = 1430 ft, would be greater than the value shown above. The cross-
sectional areas and the mean depths for various yvears are shown in
table 7, and corresponding graphs are given in fig. 14. TFrom the 1948
curve it is estimated that the average channel cross section, under msl
and between sta 6+00 and 20400, is 8390 ftg. To arrive at this value, the
stretch between the end stations was divided into 14 intervals, the

areas at the intervel midpoints were read from the plot, and the mean
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was established. In the same manner the channel average depth was esti-
mated to be 16.8 ft. The ratio of the cross-sectional area at the bridge
to the channel mean cross section is 1.23. Thus, the effective maximum

current velocity is

V.
m

= 0.24 x 1.23 = 0.296
V2sH

Taking this and remembering that

<h2 - hx> = 0,27
max
r =16.8 £t
LX = 1430 ft
equation 99 yields
-k
A= 246 x 10
and from equation 15
n = 0.0k

As this is a roughness value considerably higher than the value
ordinarily ascribed to water courses, it should be determined whether the
ocean tide range was overestimated when basing it op the Atlantic City
tide. The tide in the ocean north of North Jetty at the gglet mouth was
obgserved. The obs?rv&tions as referred to mlw ocean datum, ng , are
entered in the second column of table 10. Subtracting 2.16 from these
gives the ocean tide as referred to the mean level of the tidal oscil~
lations at the bridge. The value 2.16 ft was established previously, see
table 9. The results, H, , are entered in the third column of table 10.
The entries of the last column are h, , the ratio H,/H , H being 1.5

2
ft. The data from the last column are plotted in fig. 15. The curve of
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the ocean tide which was originally deduced from the Atlantic City data
is reproduced therein from fig. 13. The two curves, one relating to
Atlantic City and the other to the observations made at the inlet mouth,
are closely aligned, showing that determination from the Atlantic City
data is reliable.

In the above comparison the closer agreement is in regard to the
rapge of tide and not in the temporal varistion of tide for the two deter-
minations. The form of the tide curve from the North Jetty observations
seems to be an irregular one and therefore hardly useful for the pregent .
computation. Apparently, the determination of n made in the above
should be acceptable. Since its value is large it would seem that other

69



causes are present to augment the resisbance of the inlet chamnnel. The
interferences of the bridge piers should be considered if the tide gage
for the bridge is placed west of the bridge. Fig. 16 shows that a se-
vere movement of sand is connected with the channel depth changes, and
these procésses imply considerable energy dissipation, perhaps to such a

degree as to augment the resistance in the chamnel.

Inertia Effect in Indian River Inlet

In the treatment of the problem of the preceding section it was
assumed tacitly that the inertia effect in the Tlow through the inlet
channel is ignorable. ~In the event that inertia effect is not ignorable,
then at the times of slacks there would be a difference in head between
the waters of the inlet at the bridge and of the occean. It is now nec-
essary to determine what this difference might be.

Expressing more precisely, the flow formula through & channel of

uniform cross section would be

av dh v|v]
- e Ay

where the left term is the acceleration of waters and h is the surface
displacement measured in terms of X , the semirange of tide in the

ocean. Integrating between x =0 and x = Lx :

Y S W A
gH dt X 2 gry

‘Acceler&tion attaing ites maximm value at slack times when V = 0 . The

differential head due to inertia is

L
o), - (2)
0 0

) 2 LX ] 1 ng)
Ver  +zer \¥/ o
For the mean velocity of flow in the channel at the bridge, fig. 12
shows that

(100)
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—__

= 0,24 gin ot , o = 2%/T
\/2gH

The corresponding expression for the channel between the bridge and the
ocean would be 1.23 times as large, as explained in the previous section,

and accordingly,

a v 21 o
P S = = 3 0,28 X 1.23 = 0.59 =
& o |, T !

Substituting in equation 100,

and hence,

(H H> -08335LX H

with L = 1430 ft, H = 1.5, and T = k.47 x 102“ sec, it follows that

H]

(He - HX)Q = 0.018 ft

which is the maximum value for the head from inertia during a tidal

period. It is indeed a small quantity and can be ignored.

Indian River Bay Tides

The formulas shown in the earlier sections were derived under a set
of assumptions, and thus it is necessary to know how closely these assump-
tions are verified in the overall hydraulic conditions of the bay. One of
the requirements of the assumptions was that there are no discharges into
the basin from tributaries. There are tributaries emptying into the two
bays, and by an analytical process it was found that the fall of water
surface in 1929 and 1930 could be explained if the volume of water prought
during a complete tidal period is about 15 X 106 ft3. Since the velocity

measurements at the inlet bridge, surveyed on 27 July 1948, indicate an



ebb outflow of nearly LOO x 106 £t3

per tide, the discharges of rivers
into Indian River Bay can be ignored. A second requirement was that the
mean level of the water in the bay is In the same plane as the msl. The
1938-1939 observations indicate that the longtime mean superelevation
was 0.15 £t in Indian River Bay and 0.08 ft in Rehoboth Bay (see table 5).
Analytical considerations indicate that the actual superelevations may be
lower, and it can be assumed that there is no significant superelevation.
A final requirement is that the connection of the basin is with the ocean
through a single inlet or with a multiple inlet system. This is not true
for the Indian River Bay as there is an exchange of water between it and
Rehoboth Bay through "The Ditches.” However, since the volume of the
water of the exchange is small in comparison with the volume of water
traversing the inlet channel, one may determine the Indlan River Bay tides
assuming first that "The Ditches” are closed. Finally, these first eval-
uations can be corrected based on the hydraulics of "The Ditches."

The determination of the tides of the bay would be in reference %o
the three quantities: (1) the height of mean high tide in the bay, Hy 5
(2) the lag of tide, @ ; and (3) the maximum current velocity, V ., in

the inlet passage. The formulas to evaluate these are:

Hlm = H gin 7 (5L)
Qo= rc/2 -7 (55)
AH . .

Vo= an ¢ = & sin 7 (62)

3

In table 4 the dependence of sin v and C on the‘;epletion coefficient
K 1is shown. If, however, the ratio of the inlet cross gection a to the
surface area of the basin A iz & small quantity, the use of the table
can be dispensed with since in this case it suffices to write, for K
less than 0.3 ,

sin T = 1.1k X :
and (101)

C = 0.812

i
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These relations can be verified by referring to table 4 and fig. 6. As

regards K , the coefficient of repletion, it ig simply, taking m =1 ,

Tﬂvggﬁw/lL_§z.% (12)

the relation between X and n being

~ n Veg
Va- 1.486 /0 (15)

As can be seen from the entries in table 7, the inlet cyoss sections

are far from uniform. It is necessary to normalize the cross gections to
arrive at a prismatic channel of uniform cross section, its length the
same as that of the actual cﬁannel, the hydraulic radius r equal to the
averaged hydraulic radius of the actual channel, and its n wvalue the
same as that of the actual chaunel. Thus, the normalization establishes a
new value for the cross section. Using the results of the cross-section
gurvey of 1948 it is found that r, = 12.24 £t and & = 10,350 f%e at
msl. These values are obtained. from the 1948 curves in fig. 14 after di-
viding the stretch between sta 6+00 and 60+00 into 20 equal segments and
taking the mean of the areas or the depths for the midpoints of the seg-
ments. Application of equation 63 for normalization yields &g =

0. 94l a, end a, =.0.924 a  for outflog, and thus the cross section
of the normalized channel is a = 9660 ft . Recalling that the n for
the inlet is 0.046 and r = 12.24 ft, equation 15 yields

A= 243 x 1074

The data for the determination of K from equation 12 are:

A = 420,000,000 £t°
a = 9660 £t2
L = 5500 ft
r = 12.24 £t

Th



L

T = 12.42 hr or 4.47 x 107 sec
H=2.057Tft
2
g = 32.2 ft/sec
and L
A= 243 % 10

On the basis of these, egquation 12 gives
K = 0.254
And using equation 101, it is found that

gin T = 0.289

¢ = 0.812

Theoretically then, using equations 5k, 55, and 62, the range of tide in
the bay, zﬂlm , i8 1.19 ft, the lag of tide @ = 1.276 radians or 2.52
hr, and the maximum current velocity in the inlet is Vm = 2,94 ft/sec.
Tt is seen from table 5 that for the years 1948 and 1950 the mean
range of tide at Oak Orchard was 0.93 ft and at Maple; 0.99 ft. The mean
of these, 0.96 ft, can be taken to represent the range of tide realized
at Indian River Bay. This mean is close te the theoretically computed
range. In table 11 are shown longtime mean high- and low-water lunitidal
intervals for different localities. It was argued in one of the preced-
ing sections that the ocean tide at the inlet is about 1/2 hr later than
the tide at Atlantic City. Adopting this and since lag of tide at Oak
Orchard with reference to the tide at Atlantic City is about 3.33 hr, then
the lag of the internal tide from the ccean tide at the inlet ghould be
2.83 hr, which is a value not far from the compubed value. It was shown
previously that the velocity survey of 27 July 1948 gives for the maximum

current in the bridge area
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v = 0.24 v/ 2gH
m :
With H = 2.05 ft , the maximum current to be had in a cross section at
the bridge would be Vo = 2.76 ft/sec . Since the ratio of the cross
gection at the bridge to the uniform cross section of the normalized
channel of the computations is 10,330 to 9,660, then in the normelized
channel Vm = 2.95 ft/sec , a value which is also close to the computed
value.

The theoretical values of the gquantities relating to the internal
tides were carried out in the above, assuming that the water exchange
through "The Ditches" is negligible. As there is some exchange of water,
the next task should he to dgtermine the effect of the exchange on the

magnitude of the internal tides.

The Hydraulics of "The Ditches"

Table 11 shows the following data for 1948:

Location HW Time, hr Range of Tide, ft
Inlet Ocean 7.54 k.10
Oak Orchard 10.24 0.93
Dewey BReach 12.18 0.47

It will be assumed that the guantities observed at Oak Orchard and Dewey
Beach are representative of Indian River Bay and Rehoboth Bay, respecw
tively. On the basis of this data the courses of the tides in the three
areas (i.e. the ccean, Indian River Bsy, and Rehoboth Bay) would be as
shown in fig. 17. During the entire time that the level of the water of
the ocean continues to be higher than the level of the water of Indian
River Bay, the respective positions of water levels in Indian River Bay
and in Rehoboth Bay undergo a reversal. Thus, when an ebb of the inlet is
filling Indian River Bay, there first is an inflow into Indian River Bay
from Rehoboth Bay and next, an outflow. The balance of the discharges of
these two flows has a bearing on the magnitude of the tides in Indian River
Bay .

Let Hl and HQ denote the tides in Indian River Bay and in
Rehoboth Bay, respectively, and Hlm and Hom the maximum values of
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these tides. Let time 1+ be measured from the instant when the waters

of Indian River Bay and the ocean are at the same level and the tide in
the ocean is increasing. Let 1 denote the lag of tide in Rehoboth Bay
with respect to the tide in Indian River Bay. The internal tides of the
two bays are very nearly sinusoidal. Actually, there are higher harmonics,
but these will be ignored. Accordingly, the expressions of the internal

tides are:

H = e B cOs 6 3 3 ko4 23“[2,}‘

H =-H_cos (6-1), 7 =2nt /T

These are the inferences from the set. Ignoring the glight dependence of
the lag of tide in Rehoboth Bay with respect to the tide in Indian River
Bay upon the magnitudes of the internal tides, the value of the lag can be
placed at tO =2 hr . The ratio of the tides in the two bays is constant,
Him/Hom =2

Let tl be the time when the waters of the two bays are at the same
level. At t = t, +the flow through "The Ditches" reverses its direction.

1

Place Ql = Qﬂtl/? . Relative time Gl is determined from the condition

which in view of equation 102 becomes

H
om
cos 0. = = cog (6, ~ T_)
1 Hlm 1 o]
Lag t_  was shown to be 2 hr, and thus 7 = 60° . It was also shown

that Hom/Hlm = 1/2 ; with this value the last relation reduces to

V3

1 .
cos 91 =T, cos 91 + ~~ sin 91
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yielding

. £A0
6, = 60
It is not necessary to consider the flows through the two "Ditches"
separately, and for the purpose at hand one may as well take that the two
"Ditches" can be replaced by a single one of cross section a which is
the sum of the cross-sectional areas of the individual "Ditches.” The ve-

locity of inflow Vi into Indian River Bay is

HO Hl
Vi = Kk T F 0<e< 61
and the velocity of oubtflow is
1 Ho
v0$k ﬁm-ﬁmyelieiﬁ

Since a 1is the cross section, the volume of inflow is

61
2 o V'im fin

and the volume of oubflow is

kit
o - ek e R T
o on . H oo H
1

Substituting from equation 102 and integrating, one has

' Q =0.63 33 (103)
and
q, = 1.58 2% (10k)

Accordingly, the volume of outflow into Rehoboth Bay during the entire
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time that Indian River Bay is being filled from the ocean is

q, =0.95 22 (205)

00
For the determination of k , which is a quantity having dimen-
sions (L/T“l), proceed as follows. Place

lm (106)

where Gn is a dimensionless number, a cbefficient. Comparing the ex-
pression for the Vi velocity given above with eguation 7 it will be
inferred that

r
Cp VT FT (o)

The two "Ditches" were surveyed in 1935, and the cross-sectional Propor-
tions are shown in table 12. Combining the two "Ditches," the average
value of r when the waters are at msl is 5.8 ft. The passages are re-
garded to be very inefficient for the exchange of water between the two
bays. In accordance with this idea it is proper to assign to n the
value of 0.10. With r = 5.8 ft and n = 0.10 , equation 15 yields

A = 0.161 . Appearance of the topography of the island separating the
two "Ditches," see fig. 8, suggests that the chanmel length of "The
Ditches" is about the same as the maximm width of the island, i.e.

L =600 ft. With A =0.161 , r =5.8 ft , and L = 600 £t , equation
107 yields

o = 0.2

and

k = 0.24/2eH



Inserting this in egquation 105, the volume of outflow into Rehoboth Bay

during the entire time that Indlan River Bay is being filled from the
ocean is

q,, = 0.23 %% 2gH, (108)
This applies independent of the magnitude of Him » provided the tide in
Rehoboth Bay lags 2 hr behind the tide in Indisn River Bay and the ampli-
tude of the tide in Rehoboth Bay is half the amplitude of the tide in
Indian River Bay.

The above treatment is imtroduced for the main purpose of formulat-
ing the correction needed in the evaluation of Indian River Bay tides.
Although the flow through "The Ditches" reverses its direction during the
time Indian River Bay is being filled by the flood of the inlet, for the
correchbion it suffices to assume that the flow is in phase with the flov
through the inlet and that the total flow is of the same magnitude as
actually realized by the currents of "The Ditches.” This is permissible.
Denote now the assumed hypothetical flow through "The Ditches" as:

. ¥ 3
Vo = Vom sin 6
This glves
i
Ta. .
T ¢ 6 a6
ch Sn Vam sin € 4
0
or
Q, ===V

Comparing this with equation 108 yields

V(;m = 0,115 “\/agﬁlm (109)
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Indian River Bay Tides After Correction

In the presence of "The Ditches," the storage equation of Tndian
River Bay is

oty

Ag-=aV-a Vv (110)

where Hi is the elevation of the waters of Indian River Bay referred to
msl, A is the surface area of the bay, V is the mean velocity of the
inlet currents, Vé is the mean velocity of the currents of "The Ditches,”
& 1is the cross-sectional area of the inlet, and a, is the cross-
sectional area of "The Ditches.” From above

dHy

A*&:g-'=av 1~

@loﬂ
*<1d¢

which, after using the transformation relating to equations 11, 12, and

13, will become
dhy ( abV§) ‘
AR VA S B ) R R

The value of the expressions contained in the parentheses is close to
unity, so that in forming the value it suffices to take the velocities
separately as being sinusoidal. Consequently,

¥
zg ) V&m 8in & a‘vém
v Vﬁ gin & VQ

and the last differential equation simplifies to

O ()

where

K' =K [1 - =28



The latter represents the correction in the coefficient of repletion K
made necessary by the presence of “"The Ditches."

The first estimate of ﬂim was Eim = 0.59 ft . Using equation 109,
Vc;m = 0.7h ft/sec . Also in the first estimate it was found that Vm =
2.96 ft/sec . It is seen from table 12 that the combined area of the two
"Ditches," surface waters at msl, is & = 5322 ftg. It will be recalled
that the inlet cross section after the normalization of the chaonel is

a = 9660 ftg, Hence,

a Vv
o ‘om _
ok A 0.138
m

and the corrected repletion coefficient is
K' = 0.86K
and
K' = 0.86 x 0.254 = 0.218

Accordingly, one now finds that the range of tide in Tndian River Bay is
1.02 't instead of 1.19 £t and the lag of tide is 2.62 hr instead of 2.52
hr. These are quite close to the measured values of 1948 or 1950. As
regards the maximum current velocity in the inlet, this now is 2.77 ft/kec
instead of 2.95, and is an estimate lower than the observed value.

Erosion of Banks West of Highway Bridge

Among the numerous manifestations involving the movement of sand in
Indian River Inlet, such as the formation of bars, depositions in the in-
let chammel, and the stability of dredged forms, attention perhaps should
be given to the erosion of banks west of the highway bridge. Subseguent
to the dredging in June 1938, it had been observed that the water widths
experienced rapid- and continued increases. The changes thet did oceur -
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between sta 22400 and 29+00 from October 1938 to April 1941 are shown
in fig. 18. The underlying causes of this widening, a gingular and re-
markable phenomenon, were examined by Mr. Wicker. The following exposi-
tion is taken verbatim from Mr. Wicker's memorandum of 25 July 1939, ad-
dressed to the District Engineer, Philadelphia District.

1. In accordance with your instructions, I visited Indian
River Inlet and made sufficient observations on July 17, 18, and
19, 1939 to ascertain the cause of the erosion of Indian River
Inlet channel banks west of the highway bridge. I am convinced
that wave abtback is responsible.

2. The waves apparently occur only during flood current
and the weaker parts of the ebb current. During my three days
of observation, the maximum wave height above still water level
was about one foot, the direction of approach was approximstely
normal to the bank throughout the embayment extending westward
about 700 feet from the highway bridge, and the period of the
waves was about 15 seconds, within + 2 seconds. These waves do
not appear to have a trough, but look and act like mounds of
water moving rapidly toward the bank. This appearance, together
with consideration of thelr period and height, suggests that the
waves are of the translatory type. Translabory waves are often
derived waves. In this case, it is believed that they are de-
rived from the ocean waves, which probably impart impulses to
the incoming flood current or check briefly the feebler portions
of the ebb current. When the current is strongly ebb, it is be-
lieved that the energy of the ocean wave is rapidly sapped by
the adverse current and there remains no energy to be dissipated
by translatory waves.

3. Current velocities and directions in the embayment
were measured. The situation on flood current is, briefly, as
follows: The south embayment conbtains a counter-clockwise eddy
which reverses the flow along the south bank from s point about
40O feet west of the bridge to the bridge. The maximum observed
current velocity in the shoreward side of the eddy was aboub
7/10 feet per second, which occurred at a time when the main
flood current thread had about 4 feet per second velocity. Tt
is believed that ?/10 feet per second is not a scouring wvelocity.
The embayment on the north has a clockwise eddy. Details were
not observed, but it is believed that they would have been simi-
lar to those found on the south side. The ebb current moves
past the embayments without creating any well-defined movement
of water within them. The zone of moving water is sharply de-
fined, as if there were bulkheads separating the waters of the
embayments from the main threads of current.

k., The waves do their erosive work in the following manner:
On the uprush, they strike the marsh mud or the scarp of the .

8l
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spoil area, according to the stage of tide, with considerable
force. The backwash is very strong, and sand moves steadily
with it. The marsh mud is attacked, when the tide is suffi-
ciently low, by removing the sand layer under it. When this
has occcurred, a plece of marsh mud held together by roobts is
broken off and eventually disintegrates. The material eroded
is deposited on the bobtom in the form of ridges. There were
three such ridges apparent a short distance from the low waber
line, in depths of water from 0.5 to 1.5 feet. They were sbout
four feet apart and about 6 or 8 inches high. Evidently the
normal backwash cennot caxrry the sand that 1t erodes from the
bank any farther. However, waves occurring during wususlly
low tides, or unusually large waves, could move the material
farther chammelwards, where 1t would be picked wp by the inlet
currewts.

5. Erosion due to wave abtlack can be checked only by
longitudinal works. In the case at hand, revetments appear to

be an adequate form of protection. There is no evidence of

settlement of the rip~rapping placed by the Stabte, bubt it is

being flanked on its westward end. The work should be done

as soon as possible, for the erosion has now progressed Lo the

spoil bank, and there is no reason for supposing it will be less

rapid in the near fubture. Delay will result in the evenbual
deposition of a considersble gquantity of sand in the channel.

It would appear that some of the facts singled oub iv Mr. Wicker’s
observabtions could be explained on the basis of turbulent expansion of the
main current entering into an area with embayments on two sides. Ac-~
cording to analysis, in an expanding Jjet there will be a lateral flow from
two sides induced by turbulence and directed to the main current,! If the
embayments are limited in srea, the longitudinal flow alt the edges of the
expanding jet together with the lateral flow to the edges will enbhance the
formwation of eddies in each embayment. The eddies were cobserved.

In & current moving between two embayments and experiencing laberal
turbulent expansion, the current velocities decrease when moving laterally
from the center line of the current toward embayment banks. Also, very
likely the depth of water decreases from the center line away to the banks.
These two conditions will cause the refraction of waves. If U is the
current velocity and d the depth at a place, a point on the wave crest

‘would be moving, in space, with velocity

W o= J@E + U

¥W



Accordingly, when a solitary wave with crest originally normal to the
inlet channel walls enters into the area with embayments, the point of
the crest at the center moves away with greater velocity of propagation
and points farther away from the center with lesser velocities. Conse~
quently, the original wave breaks into two waves eventually, with align-

ments parallel to the banks and moving toward the bank. This also was
observed.
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Table 1

Relation Between the Coefficient of Friction A and Manning's n

A X 3.0}"

r , ft n = 0,02 n = 0.03 n = 0.04 n = 0.05
5 Ok 153.26 272.58 4o5.18
10 54 .02 121.66 216.38 337.82
15 .20 106.29 189.06 295.15
20 Lo .93 96.63 171.87 268.30
30 37.45 84.33 150.06 234.09
Lo 34.05 76.67 136.42 212.87
50 31.62 71.18 126.56 197.68
60 29.72 66.93 119.02 185.78
7O 28.25 63.60 113.21 176.62
80 27.02 60.82 108.16 169.00
g0 25.97 58.49 10k .0k 162.31
100 25.05 56.43 100.00 156.75




Table 2
Pabular Values of the Coefficient of Repletion for T = 12 hr
and n = 0.02, 0.03, 0.0h, and 0.05

(88 4fH/a) x 10k

v L= 0.1 X 10“ :z,:so.exml‘ L=o.5><1o"“ le.ox:uf* 1 =2,0X 10" L= h.oX 101*
n = 0,02
5 3.697 2.859 1.97h 1.443 1.132 0,741
10 k557 3,825 2.867 2.180 1.606 1.360
15 k. 810 b, 364 3.437 2.708 a,0kg 1.hos
20 5.00k k611 3.830 3,110 2.397 1.780
30 5.203 5.028 L.637 3728 2.952 2.25h
bo 5.29%5 5,180 4.618 k,053 3.209 2.626
60 5.383 5.327 4.938 L. 537 3.909 3.195%
8o 5.426 5.338 5,101 Y. 770 k.g6e 3.596
100 5549 5.383 5.195 L.925 §.500 3.899
n = 0,03
5 2.734 2.06% 1.36% 0.980 0.699 0.496
10 3. 704 2.975 2.098 1.519 1.097 0.783
15 ko219 3.548 2.580 1.939 1.416 1.019
20 4,528 3.933 2.98% 2,28k 1.689 1.223
30 4,871 b ik 3.556 2.825 2.290 1.577
ho 5.051 k688 3.941 3.230 2.508 1.873
60 5,233 4,985 L. hop 3.75% 3.067 2.358
80 5.323 5,140 k85596 I, a5k 3.473 2.7583
100 5.366 5.008 & 870 406 3. 718 3.05%5
n = 0,0k
5 2.171L 1.598 1.038 0.740 0.525 0.385
10 3,101 2.389 1.60k 1,158 0.828 0.589
15 3.732 3.264 2,040 1495 1.077 0.769
20 Lol 3.34% 2.397 1.780 1.292 0.987
30 b 50k 3.900 2.948 2.245 1.662 1.18%
Lo k761 k252 3.328 2.626 1.971 1.0l
60 5.037 4.665 3.909 3.191 2.k73 1.846
80 $.175 k. 89k k. 262 3.596 2.866 2.180
100 5.261 5.035 k.500 3.804 3.182 a.h6o
n = 0.0
5 1.793 1.311 0.836 0.59h 0.hpp 0.208
10 2.675 1.979 1.303 0,935 0.666 0.473
15 3.208 2.668 1.675 1.213 0.869 0.637
20 3.603 2.873 1.985 1.h452 1.036 0.745
30 §,333 G 1.580 1.858 1.353 0.973
4o L b5k 3.837 2.881 2.19h 1.615 1.168
60 L.819 h.336 3.h52 2.726 2.055 1.512
80 5,012 h.62e 3.843 3.428 2.412 1.796
100 5.183 4,815 %.131 3.392 2.713 2.0h8

Note: H , L , and r are in feet.



Table 3

Parameters of the Fluctuation of Water Surface

in the Basin ag a Function of K

jm

10

OO =IOV W W R OO0 0 OOOO'O

%

®

%

%

B OO O0 OWMEN OW Do W W

&

0.9936
0.9745
0.9435
0.9020
0.8515

0.7942
0.7325
0.6689
0.5997
0.5451

0.4369
0.3489
0.2811
0.2294
0.1893

0.8830 X 1071
0.5032 X 10t
0.3232 X 1071
0.22h9 X 10°1
0.1653 X 10~1

0.1266 % 101
0.1001 X 101
0.8105 X 1072
0.2026 X 1072
0.9007 X 10~3

0.5066 X 103
0.3242 X 1073
0.2252 X 103
0.165k X 1073
0.1267 X 10-3

0.1001 X 10*3
0.8105 X 10~

8
_—3
-0.0001
-0.0004
-0.0009
~0.0017
~0.0028

~0.0043
~0.0063
~0.0089
-0.0123
-0.0165

-0.0281
~0.0448
~-0.0661
-0.0910
-0.1177

~0.2207
~0.2606
~0.2740
-0.2794%
-0.2017

~0.2828
~0.2835
~0.28h5
-0.2845
-0.2845

~0.2845
-0.2845
-0.2845
-0.2845
-0.2845

~0.2845
~0.2845

b
—
-0.0052
-0.0106
-0.016k
-0.0220
-0.0282

-0 .0347
-0.0418
~-0.0495
-0.0579
~0.0664

-0.0849
-0.1038
-0.1201
-0.1327
-0,1401

~-0.1187
-0.0802
-0.0532
-0.0377
-0 .0280

-0.0215
~0. 0170
-0.0138
~0.0035
~-0.0015

-0.0009
-0.0006
~0.000k
-0.0003
-0.0002

~0.0002
~0.0001

cos T sin T
0.99327 0.115804
0.97334 0.22934
0.94086 0.3387h
0.89735 0.44137
0.84k425 0.53593
0.78386 0.62091
0.71856 0.69549
0.65091 0.75917
0.57732 0.81649
0.51783 0.85551
0.39949 0.91676
0.30119 0.95357
0.224h9 0.97446
0.16588 0.9861k4
0.12160 0.99258
0.02953 0.99956
0.01037 0.99995
0.00575 0.99898
0.00363 0.99999
0.00256 1.0000
0.00192 1.0000
0.00150 1.0000
0.00119 1.0000
0.00030 1.0000
0.00013 1.0000
0.00008 1.0000
0.00005 1.0000
0.0000k 1.0000
0.00003 1.0000
0.00002 1.0000
0.00001 1.0000
0.00001 1.0000



Table b
Coefficient € in Tidal Prism Formula

and Range of Tide in Basin

|

PO bt bt e D00 COOO0
» 8 s 2 ¢ 8 @ ® s 5 @ &
80 o= 0 N R D

oo EN

L
o

sin T G K sin v C
0.1158 0.8106 4.0 0.9999 0.9993
0.2293 0.8116 5.0 0.9999 0.9994
0.3387 0.8128 6.0 1.0000 0.9997
o. 4k 0.8153 7.0 1.0000 0.9997
0.5359 0.8184 8.0 1.0000 0.9998
0.6209 0.8225 9.0 1.0000 0.9998
0.6955 0.8288 10.0 1.0000 0.9998
0.7592 0.8344 20 1..0000 0.9998
0.8165 0.8ka7 30 1.0000 0.9999
0.8555 0.8522 Lo 1.0000 0.9999
0.9168 0.8751 50 1.0000 0.9999
0.9536 0.9016 60 1.0000 1.0000
0.9745 0.9267 70 1.0000 1.0000
0.9861 0.9484 8o 1.0000 1.0000
0.9926 0.9650 90 1.0000 1.0000
0.9996 0.9950 100 1.0000 1.0000




Teble 5

Longbime Mean Date of Tides in Tndien River snd Rehoboth Bays

Station

Inlet Bridge

Coast Guard
Btation

Oak Orchard

Maple

Dewey Besch

Love (reek

Dura-
tion Btaff
of EL
Year(s) Obser- Longhine Mean Volues Heferred Longbime Mean Values Referred to msl
of vation Range mbl b min Lo Range mhbl i miw
Cbservebion  months 4 74 £ £t mal £1 £t £t £
Indien River Inlet and Bay
1938-1919 1k 2.4 1.86 3.07 0.67 -1.90 2.50 0.0k +1.17 ~1.23
1948 3 2.55 1,85 3.12 0.57 -1.89 2.55 «(3,0b +1.23 «1.32
1950 3-1/2 2.60 1.93 3.23 0.63 -1.89 2.60 0.0k #1.34 -1.26
bvg of 1948
and 1950 6-1/2 (2.58)  (1.89) (3.18) {0.60) (-1.89)  (2.58) (0.00)  (+1.29)  (-1.29)
1946 1/2 1.17 +0.18 +0.77 -0.40 0,00 1.17 +0.18 +0.77 =040
19381939 1k 0.56 2.01 2.29 1.73% ~1.90 0.56 +0,11 +0.39 ~G.17
1948 2 0.93 2.2 2.59 1.66 -1.81 0.9% .31 +0.78 «0.15
1950 3 0.93% 2.23 2.70 1TT «1.81 0.93 +0.42 +0.89 -0, 0
Avg of 1948
and 1950 5 (0.93)  (2.18) (2.64)  (1.71) (-1.81)  (0.93) (+3.37) (+0.83)  (-0.10)
1950 3 0.99 2.22 2.71 1.72 -1.84 0.99 +0.38 +0.87 ~0.12
hvg of 1948
and 1950% 3 {0,997 (2.7} (2.66) (1.67) {-1.84)  (0.99) (+0.33) (+0.82) (-0.17)
Rehoboth Bay
1938~1939 ik 0.28 1.92 2.06 1.78 -1.90 0.28 +0.02 +0.16 -0,12
1946 1/2 0.28 +0,29 0,43 +0.15 0.00 0.28 +.29 #0143 +0.15
1948 1-1/2 0.47 2.13 2.37 1.90 -1.89 0.47 +0.2h +0.48 +0.01
1938-1939 1k 0.21 1.97 2.08 1.87 ~1.90 0.21 +0.07 +0,18 «0.,03

% Adjusted by comparison with Osk Orchard observations to approximete average for 1948 and 1950,



Table 6

Inlet Commission Survey

Date

Discharge, £t

3

June 15-June 28
June 29~-July 12
July 15~-duly 27
July 3i-Aug 27
Aug 27-Sept 12

Average

June 15-June 27
June 28-July 9
July 12-July 26
July 27-Aug 20
Aug 22-Sept 12

Average

Inflow

OQutflow

Indian River Inlet

16,800,000
16,50k ,000
16,909,000
19,598,000
22,273,000

18,417,000

25,357,000
27,578,000
22,181,000
17,164,000
31,693,000

2k,795,000

Lewes and Rehoboth Canal

8,182,000 13,731,000

9,158,000 15,455,000

9,588,000 16,753,000

10,063,000 15,718,000

11,654,000 18,918,000

9,729,000 16,115,000
Net Qutfliow

Indian River Bay 6,378,000 £t

Duration, hr

Inflow

L, 37
L.37
k.10
4,10
4.58

k.30

I, 72
L. Lo

4 .90
L.55

L.63

Outflow

7.12
717
7.53
6.90
7.20

7.18

6.95
7.32
7 .00
6.89
7.1h

7.10

per tidal cycle

Rehoboth Bay 6,386,000 £t per tidal cycle




Indisn River Inlet Channel Dimensionsg

Table 7

+2.0 brea, &

£t

Width at +2.0, ft

Mesn Depth &t +2.0, 1

Station 1939 194 1947 1048 193 1643 1947 194 1939 194 1947 1948
6+00 5700 6800 7,110 8,960 493 493 493 493 11.56 13.79 1k, be 18.17
10+00 5600 6980 7,750 75850 493 Lg3 Lo3 kg3 11.36 14,16 15.72 15.92
15400 5650 6420 - 7,670 Lgh 502 - 502 11.Lh 12.79 - 15.28
20400 - 9650 9,490 10,360 - 505 505 505 - 19.11 18.79  20.51
22400 8oko 7210 11,170 12,090 785 785 785 785  10.2k 9,18  1k.23  15.40
2L400 7335 7520 9,670 9,800 803 803 803 803 9.13 9.36  12.04 12,20
26+00 7165 7700 9,290 10,200 725 8oz 802 802 9.88 9.60 11.58  12.72
28400 L&70 7970 8,050 10,800 370 913 936 oks  13.16 8.73 8,60  11.43
30400 5960 7940 8,230 12,280 L20 1000 1000 1350 1k,19 7.9k 8.23 9.10
LO+00 6560 6LLO 9,620 10,650 720 890 ol5 1270 9,11 7.2k4 10.18 8.40
50400 6060  BOLO 9,950 10,970 580 765 930 ohs  10.45 10.47  10.70  1l.61
60400 7590 ghko 11,000 10,670 850 1330 1400 1550 8.92 7.10 7.86 £.88




Table 8
Indian River Inlet Velocities
Survey of 27 July 1948

Cross Section Discharge

Time, hr . Tide ! Velocity 5 3
e.s.t. Atlantic City Inlet Bridge ft/sec £t £t~ /sec
8.95% 2.60 2.1k 0.00 10,360 0
9.51 3.00 2.4 +1.29 10,470 413,510

10.07 3.32 2.66 +1.90 10,580 +20,100

10.64 3.53 2.83 +2.16 10,660 +23,030

11.20 3.69 2.95 +2.30 10,710 +24 ,630

11.76 3.70 3.00 +2.36 10,740 +25,350

12.32 3.56 2.98 +2 .17 10,730 423,280

12.88 3.32 2.91 +1.84 10,700 +19,690

13.45 3.01 2.82 +1.43 10,660 +15,2h0

14.01 2.69 2.68 +0.87 10,590 +9,215

1h .57 2.30 2.44 0.00 10,490 0

15.20 1.90 2.12 -1.17 10,350 ~12,110

15.83 1.50 1.80 ~1.90 10,210 -19,400

16.45 1.20 1.51 -2.23 10,080 ~22,480

17.08 1.01 1.28 -2.36 9,975 -23,5h0

17.71 1.0k 1.15 -2.30 9,920 -22,820

18.34 1.21 1.19 ~2.10 9,940 -20,870

18.97 1.47 1.31 -1.82 9,990 -18,180

19.59 1.82 1.50 ~1.45 10,070 -1k, 600

20.22 2.24 1.75 -0.80 10,180 ~8,145

20.85% 2.68 2.04 0.00 10,310 0

*  Low-water slack.
**  High-water slack.



Table O
Established Dimensionless Tides at Inlet Bridge
and at Inlet Ocean (H = 1.5 ft)

=
a5

Time, hr

e.s.%. er H2r Ex H"2 hx =ﬁ§ hZ? x-}f-—
8.95% 2.14 2.60 -0.02 0.18 -0.01 0.12
9.51 2. 41 3.00 0.25 0.58 +0.17 0.39
10.07 2.66 3.32 0.50 0.90 0.33 0.60
10.6k4 2.83 3.53 0.67 1.11 0.45 0.79
11.20 2.95 3.69 0.79 1.27 0.53 0.85
11.76 3.00 3.70 0.8k 1.28 0.56 0.85
12.32 2.98 3.56 0.82 1.1k 0.55 0.76
12.88 2.91 3.32 0.75 0.90 0.50 0.60
13.45 2.82 3.01 0.66 0.60 0.4k 0.40
14,01 2.68 2.69 0.52 0.27 0.35 0.18
1k 57 2.4k 2.30 0.28 -0.12 0.19 ~0.08
15.20 2.12 1.90 -0.04 -0.52 ~0.02 ~0.35
15.83 1.80 1.50 -0.36 -0.92 -0.2h ~0.61
16.45 1.51 1.20 -0.65 -1.27 ~-0.43 -0.85
17.08 1.28 1.01 -0.88 -1.41 -0.59 -0.9h4
17.71 1.15 1.0k -1.01 ~1.38 ~0.67 -0.92
18.34 1.19 1.21 -0.97 -1.21 ~0.65 -0.80
18.97 1.31 147 -0.85 -0.95 -0.57 -0.70
19.59 1.50 1.82 -0.66 -0.60 ~0. 4l ~0.40
20.22 1.75 2.24 -0.41 -0.18 -0.27 -0.12
20.85% 2.0k 2.68 -0.12 +0.26 -0.08 +0.17
Mean 2.16 2.h2 - ~— - ——

¥ Low-wabter slack.
**  High-water slack.



Table 10
Inlet Ocean Tide Observed North of North Jetty

27 July 1948

cm By 5 £t Hy , T h,

9.0 2.15 ~0.01 -0.01

9.5 2.55 +0.39 +0.26
10.0 2.90 0.7k 0.49
10.5 3.15 0.99 0.66
11.0 3.25 1.09 0.73
11.5 3.25 1.09 0.73
12.0 3.23 1.07 0.71
12.5 3.00 0.8L 0.56
13.0 2.80 0.64 0.43
13.5 2.55 0.39 0.26
4.0 2.35 0.19 0.13
1.5 2.15 ~0.01 ~0.,01
15.0 1.95 -0.21 ~0.14
15.5 1.60 -0.56 ~0.37
16.0 1.25 -0.91 -0.61
16.5 1.00 ~1.16 -0.77
17.0 0.70 ~1.46 ~0.97
17.5 0.75 -1.41 ~0.94
18.0 1.02 ' -1.1h ~0.76
18.5 1.25 ~-0.91 -0.61
19.0 1.7 -0.69 ~0.46
19.5 1.75 ~0.41 -0.27

20.0 2.00 -0.16 ~0.10




Table 11

Longtime Averages; High~ and Low-Water Times and Ranges

Time of Time of Range of
High Water Low Water Tide
Location hr, e.s.%t. hr, e.s.%, £t

June, July, August, and September, 1948 Survey

Atlantic City 7.24 1.12 .08
Lewes 8.46 2.11 b1k
Indian River Inlet Bridge 7.76 1.h7 2.55
Oak Orchard 10.24 k.65 ~ 0.93
Dewey Beach 12.18 6.43 0.h47

Janvary, February, March, and April, 1950 Survey

Atlantic City 7.2k 1.12 L.o8
Indian River Inlet Bridge 7.89 1.60 2.60
Oak Orchaxd 10.53 k.63 0.93
Manple 10.93 5.50 .99
Table 12
Cross~Sectional Dimensions of "The Ditches”
1935 Survey
Water Level* o Surface Width Mean Depth
£t Area, ft i £t

Little Ditch

2.8 3150 koo 7.5

2.0 (msl) 2816 hig 6.8

0.0 2000 380 5.3
Big Ditch

2.8 3620 900 k.o

2.0 (msl) 2506 8ok 2.8

0.0 111k 858 1.3

Level referred to 1929 datum.





