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PREFACE

The investigation described in this report was authorized as part of the
Civil Works Research and Development Program by the Office, Chief of Engineers
(OCE), US Army Corps of Engineers. This study was jointly conducted by the
following work units: "Regional Coastal Processes Numerical Modeling System"
Work Unit 32240, under the Shore Protection and Restoration Program, and "Wave
Estimation for Design" Work Unit 31592, under the Coastal Flooding Program at
the Coastal Engineering Research Center (CERC) of the US Army Engineer Water-
ways Experiment Station (WES). Messrs. John H. Lockhart, Jr., and John G. Housley
were the OCE Technical Monitors. Dr. €. Linwood Vincent is CERC Program Manager.

The study, which involved planning and executing a field experiment and
subsequent analysis of measured data, was conducted from 1 June 1985 through
1 February 1987 and was supervised by the authors of this report, Mr. Bruce A.
Ebersole, Research Hydraulic Engineer, and Dr. Steven A. Hughes, Research
Hydraulic Engineer, Coastal Processes Branch {CR-P), Research Division (CR),
CERC. However, the study would not have been possible without the participa-
tion of Dr. Shintaro Hotta, Tokyo Metropolitan University. The time and
expertise contributed by Dr. Hotta during the field experiment is gratefully
acknowledged. Many others, too numerous to individually name, assisted during
the field experiment. Their extraordinary efforts made the field experiment a
success. The authors would like to particularly thank Dr. Nicholas C. Kraus,
CR, CERC, for providing the impetus for initiating the study and for his
advice and assistance during all study phases. We also appreciate his provid-
ing technical review of this report. The efforts of Mr. William K. Halford,
who manually digitized most of the data, and others who performed this tedious
task, are especially acknowledged, as are the efforts of those who partici-
pated in the preparation of this report.

The study was performed under general supervision of Dr. James R.

Houston and Mr. Charles C. Calhoun, Jr., Chief and Assistant Chief, CERC,
respectively; and direct supervision of Mr. H. Lee Butler, Chief, CR,
Dr. Hughes, Chief, CR-P, and Dr. Edward F. Thompson, Chief, Coastal Ocean-
ography Branch, CERC. This report was edited by Ms. Shirley A. J. Hanshaw,
Information Products Division, Information Technology Laboratory, WES.

Commander and Director of WES during publication of this report was

COL Dwayne G. Lee, CE. Technical Director was Dr. Robert W. Whalin.
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DUCK85 PHOTOPOLE FIELD EXPERIMENT

PART I: INTRODUCTION

Background

1. In recent years coastal engineering has seen significant advances in
the estimation of shallow-water wave properties and wave height statistics, by
both theoretical considerations and empirical parameterizations. These
advances have been possible because the irregularity and, in some cases, the
nonlinearity of typical wave fields have been recognized; and attempts have
been made to incorporate these wave characteristics into techniques which pre-
diect shallow-water wave transformation. Here, where shallow-water waves are
considered, an irregular wave field is defined as one which is comprised of
waves of various heights and periods and, to a lesser degree, various direc-
tions. The capability to more accurately describe the irregular wave field in
shallow water has led to significant cost savings in the design, construction,
and maintenance of coastal projects. Although presently available estimation
techniques provide reasonable results for waves in water depths well seaward
of the surf zone, our understanding of irregular wave behavior is quite lim-
ited in the regions just seaward of the surf zone, at wave breaking, and in
the surf zone. In these regions waves undergo radical transformation; they
become very peaked and asymmetrical and then break. Rapid generation of in-
tense turbulence and changes in wave shape accompany the breaking process.
Significant changes in wave properties in the very nearshore region can occur
over a relatively short distance (a fraction of the wavelength) compared to
the usual horizontal length scale associated with deeper water wave transfor-
mations (scales greater than one wavelength).

2. The quantification of irregular wave transformation in, and just
outside, the surf zone remains a critiecal need in coastal engineering (Nath
and Dean 1984). Prediction of beach evolution, changes induced by the place-
ment of both hard and soft structures, and the effective design and construc-
tion of shore protection measures are just three of many examples of engineer-
ing problems that could be solved more accurately if more suitable methods can

be found for estimating characteristics of waves in the surf zone.



3. The severe environmental conditions frequently encountered in the
nearshore zone have hindered the collection of high quality field measurements
of wave and water level characteristics in this area using conventional
in situ instrumentation. There are also uncertainties concerning interpreta-
tion of data collected using certain conventional techniques which do not
directly measure the water surface. An alternate and somewhat innovative
approach to measuring surf zone water surface fluctuations is the use of syn-
chronized movie cameras and/or video systems to film surf zone water surface
fluctuations on stationary poles placed on a line perpendicular to the beach
and extending out through the surf zone. The authors refer to this technique
as '“the photopole method."

4, During September 1985, personnel from the US Army Engineer Waterways
Experiment Station's Coastal Engineering Research Center (CERC) conducted a
photopocle experiment as part of a larger nearshore processes field data col-
lection project called DUCK85. The experiment was performed at the CERC Field
Research Facility (FRF), located on the Quter Banks of North Carolina. Water
surface variations were filmed at stationary poles placed on a line extending
from the subaerial beach seaward through the surf zone. Filming was done
using a system of synchronized, 16mm movie cameras actuated at a relatively

rapid sampling rate,

Scope

5. The report herein presents the following results obtained from the
photopole experiment: (a) analysis techniques, (b) synoptic spectra,
(¢) water surface elevation distributions, (d) wave height and period distri-
butions, (e) statistical wave height and period parameters, and (f)} local
estimates of the mean water surface elevation. This information was computed
for each pole location filmed during nine experiment runs. In Part II, pre-
vious studies involving photogrammetric surf zone observations are briefly
described; an overview is given of the more comprehensive field data collec-
tion project, DUCK85; and hydrodynamic, meteorologic, and morphologic con-
ditions which existed during the photopole experiment are discussed., Part III
is a detailed description of the experimental arrangement, the camera system,
and the procedure for obtaining water surface fluctuations from the photo-

graphic images. Part IV describes the procedures which were used to analyze



the water surface elevation data. Part V contains a summary of the data
collected and representative results. Complete results are given in the
appendices.



PART 11: PHOTOGRAMMETRIC SURF ZONE OBSERVATIONS

Early Experiments

6. Many researchers have applied photogrammetric methods to measure
wave properties in the surf zone. Maresca and Seibel (1976) used single and
stereoscopic oblique-image analysis of film shot with 35mm cameras to monitor
waves, water levels, and longshore currents in the nearshore zone. Weishar
and Bryne (1978) used a 16mm movie camera to film 116 waves passing an upright
plane grid placed perpendicular to the beach. The camera was used to track
wave crests as they peaked and underwent breaking. Their study focused pri-
marily on individual characteristies of breaking waves. Suhayda and Pettigrew
{1977) photographed waves passing a series of poles placed in a line extending
from the swash zone to beyond the break point. The 16mm movie camera followed
individual waves into¢ the nearshore zone. They measured wave crest and trough
elevations from which wave heights and wave celerity could be determined.
Holman and Guza (1984) used three synchronized movie cameras, which were cper-
ated at a pulse rate of one frame every 2 sec, to film the spatial (along-
shore) and temporal variation in wave runup on a natural beach. The data were
used to investigate infragravity wave characteristics (Holman and Bowen 198l4).
Carlson (1984a,b) utilized a 16mm movie camera to simultaneously record time
series of the offshore incident waves and runup on the beach face. The camera
was located on the beach, slightly offset from a line of reference stakes
placed normal to the beach. Filming was conducted at a rate of approximately
10 frames per second; however, only every other frame was processed for
analysis.

7. Perhaps the most comprehensive study of surf zone wave heights and
water surface fluctuations using photographic techniques was done in Japan by
Hotta and Mizuguchi (1980). They used 11 synchronized 16mm movie cameras to
film synoptic water surface fluctuations on 61 poles placed on a transect
through the surf zone at approximately 2-m intervals. Each camera filmed six
poles. Filming runs lasted approximately 13 min, and a pulse rate of five
frames per second was used. All cameras were synchronized, i.e., all cameras
were actuated at the same time. Subsequent experiments served to refine the
filming technique and to provide additional data (Mizuguchi 1982). Longer

synoptic records, up to 5 hr in length, were obtained by using the 16mm



cameras in pairs (one camera films while the other is being reloaded). Up to
eight camera pairs were used to film these longer records (Hotta, Mizuguchi,
and Isobe 1981, 1982).

Qverview of DUCK85

8. "During September and October 1985, a major nearshore processes
experiment, DUCK85, was conducted at CERC's FRF in Duck, North Carolina.
Investigators from CERC joined with several others from universities and gov-
ernment agencies to collect, analyze, and interpret data on waves, currents,
winds, and sediment movement. The experiment was conducted in two parts to
take advantage of seasonal variations in wave heights. According to Mason
(1986), "experiments requiring low wave conditions were conducted between 3
and 21 September, while those focusing on storm processes took place between
15 and 25 October."

9. The major experimental objectives of DUCK85 were to

a. Develop fundamental knowledge related to nearshore processes
(wave transformation, coastal wind patterns, nearshore current
generation, sediment transport, and nearshore morphological

development.

b. Collect a data set for improving numerical models of nearshore
processes.

c. Test equipment and procedures applicable to Corps projects as

well as those useful in planning a second, larger, experiment
during the fall of 1986 (Mason 1986).

Summaries of several DUCK85 experiments were reported in Holman (1986), Kraus
(1986), Mason (1986), and Mason, Birkemeier, and Howd (1987). Preliminary
results relating specifically to the photopole experiments are given by
Ebersole (1987), Hughes and Borgman (1987), and Kraus and Dean (1987).

The Photopole Experiment

10. The photopole experiment, which took place in the low wave energy
phase of DUCK85 during the period 2-10 September 1985, had three objectives:
(a) to collect high quality water level and wave height data in, and just out-
side, the surf zone; (b) to collect wave data in support of the sediment trap
experiments (see Kraus and Dean 1987); and (c¢) to determine ways to improve

the photopole technique, including methods to facilitate fully automatic film



analysis. All three were successfully accomplished as described herein.

11. Equipment unloading from a truck, erection of a camera platform
(scaffold), and placement of the photopole line occupied the period of 2 and
3 September. The pole array was comprised of 14 poles spaced approximately
5.9 m apart. Camera tripods were permanently affixed to the scaffold, but the
camera system was installed and removed each day. The camera system consisted
of six 16bmm movie cameras and a battery-powered pulse generator. Data collec-
tion for the photopole experiment began on 4 September and continued through
9 September. Removal of the photopoles and packing of all equipment was com-
pleted on 10 September. A description of the data collected during runs 1-9
is given in Part V of this report.

12. Table 1 summarizes the experiments which were conducted. The fol-
lowing information is given for each experiment run: (a) the date, (b) start-
ing time, (c) number of frames of film shot during the run, and (d) the pole
locations for which data are available. All starting times are given relative

to eastern daylight time (EDT).

Table 1

Summary of Runs Conducted During the Photopole Experiment

Run No, Date Start Time, EDT No. Frames Poles

1 09/04 1400 3,304 3, 5-6, 8-13
2 09/04 1510 3,807 3-13

3 09/05 0955 3,888 3-9, 11-14
4 09/05 1055 3,814 3-12

5 09/05 1352 3,737 3-14

6 09/05 1525 3,810 3-14

7 09/06 0915 3,807 3-5, 7-12
8 09/06 1015 3,904 3-14

9 09/06 1300 3,902 3-14

10% 09/06 1400 3,804 3-14

11#% 09/07 1000 3,904 3-14

12% 09707 110 3,902 3-14

13% 09/09 0800 3,904 3-14

14 09/09 1400 3,807 3-14

* Runs that have not been analyzed as of th.s writing.



13. Beach morphology exerts great control on wave transformation in the
nearshore zone. The pole array was positioned far from the research pier to
avoid effects of that structure (irregular bathymetric features) on the inci-
dent wave field. Figure 1 shows bathymetric contours in the vicinity of the
FRF. The photopole line was located approxzimately 430 m north of the pier {at
the 950-m longshore coordinate shown in Figure 1). The hatched rectangular
area shown in Figure 1 is included in a region referred to as the "minigrid."
The minigrid was frequently surveyed during the DUCK85 experiment. Figure 2

shows contour and three-dimensional plots of -athymetric survey data collected
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within the minigrid on 3 and 9 September. As seen in Figure 2, bottom con-
tours in the general vicinity of the photopole experiment site were fairly
straight and parallel throughout the duration of the experiment. Bathymetry
in the immediate viecinity of the photopole line was characterized by two
different slopes which met near the midpoint of the pole transect (see Fig-

ure 3). The midpoint of the transect is ‘ocated near pole PO7. Seaward of

[1p]
—

<
-t

0.5

0.0
! {

-0.5

{

ELEVATION, MSL (M)
1.0

i

-2.0 -1.5
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DISTANCE OFFSHORE (M)

Figure 3. Seabed elevations measured along the photopole
transect on 5 September 1985

this point the slope was approximately 1:30; landward of this point a terrace
which was nearly flat extended to pole P03. Figure 3 shows seabed elevations
along the pole transect which were measured on 5 September. In Figures 1-3,
distance offshore is given in terms of the FRF coordinate system in which
coordinate axes are essentially parallel and perpendicular to the local shore-
line. All elevations are given relative to mean sea level (MSL), as refer-
enced to the 1929 National Geodetic Vertical Datum (NGVD). Beach morphology
in the entire study area, immediately adjacent to the pole transect and ex-
tending to the limits of the FRF survey grid, remained fairly constant during
the photopole experiment., Local wave characteristics observed along the
photopole transect were affected to a greater degree by the changing tide

elevation and changes in incident wave conditions than by changes in bottom

12



WIND SPEED (m/s)

Hmo (m)

bathymetry. There were no great changes in wave conditions during the experi-
ment which significantly altered the beach shape.

14, Hydrodynamic and meteorological conditions also greatly influ-
ence the local wave climate. Figure 4 presents plots of wind speed, wind
direction, and the energy-based significant wave height (Hmo) and peak spec-
tral period (Tp) of the incident wave field for the period of time over which
the photopole experiment was conducted. These values are also tabulated in
Table 2 (time in EDT and eastern standard time (EST). The two wave parameters
are computed from the energy density spectrum. Tidal elevations were obtained
from a National Oceanic and Atmospheric Administration gage located at the

seaward end of the research pier. The tide range during the experiment was

WIND SPEED

DUCK 85 — GAGE 630

WIND DIRECTION
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Figure 4. Wind and offshore inc:dent wave conditions measured
during the photopole experiment
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approximately 1 m. The wave data shown were measured at FRF Gage 630, a Wave-
rider buoy moored approximately 6 km from shore in approximately 18 m of
water. Wave conditions experienced during the experiment consisted primarily
of long-crested swell waves with energy-based significant wave heights which
ranged from 0.4 to 0.7 m and peak spectral periods which ranged from 9 to

12 sec. Breaking wave heights varied between 0.8 and 2 m. Longshore currents
were generally between 0.1 and 0.3 m/sec. Winds remained fairly steady, blow-
ing almost directly offshore (250 deg relative to true north (TN)) for the
majority of the experiment runs. The field team was continually subjected to
brutal attacks by vicious, carnivorous flies driven from Currituck Sound by
the wind. Additional environmental data can be found in the Preliminary Data
Summary for September 1985 (Field Research Facility 1985).

14



Table 2

Summary of Wind and Incident Wave Conditions in September

Wind H T
Time Speed Direction mo p
Date EST EDT m/sec deg, TN m sec
1 100 200 7 75 0.94 5.0
700 800 7 u6 1.06 6.0
1300 1400 b 56 0.92 8.0
1900 2000 b 100 0.40 4.0
2 100 200 3 110 0.33 12.3
700 800 1 174 0.99 9.8
1300 1400 4 193 0.82 8.8
1900 2000 5 195 0.76 8.8
3 100 200 6 233 0.70 10.9
700 800 b 241 0.78 12.0
1300 1400 3 209 0.65 12.0
1900 2000 3 173 0.64 1.3
b 100 200 5 235 0.69 12.0
700 800 b 242 0.66 11.3
1300 1400 6 231 0.60 11.3
1900 2000 3 195 0.61 10.0
5 100 200 6 235 0.53 1.3
700 800 6 250 0.43 11.3
1300 1400 6 238 0.45 1.3
1900 2000 b 200 0.47 9.1
6 100 200 7 233 0.50 9.1
700 800 7 246 0.45 9.1
1300 1400 7 243 0.43 12.0
1900 2000 3 214 0.47 11.3
7 100 200 6 243 0.46 12.0
700 800 4 267 0.47 12.0
1300 1400 3 26 0.47 12.0
1900 2000 1 113 0.45 12.0
8 100 200 0 - 0.49 11.3
700 800 2 249 0.49 10.0
1300 1400 y 117 0.43 9.5
1900 2000 b 192 0.45 10.0
9 100 200 5 241 0.56 11.3
700 800 ! 237 0.51 10.6
1300 1400 5 230 0.51 10.6
1900 2000 5 189 0.61 9.5
10 100 200 7 227 0.49 10.0
700 800 5 234 0.39 10.6
1300 1400 4 208 0.38 10.0
1900 2000 5 193 0.47 11.3

15



PART III: DATA COLLECTION AND PROCESSING

The Photopole Method

15. Fourteen stationary photopoles were placed on a shore-perpendicular

transect across the surf zone. Water surface fluctuations at the poles were

filmed using six synchronized 16mm movie cameras. Collection of water surface

data using the photopole method has several advantages:

o 1w

o

{=

]

1y

Equipment installation is reasonably easy.
No valuable equipment is placed in the water.

It is possible to synoptically measure waves at many locations
in the surf zone.

It is relatively inexpensive to collect the raw data.

Absolute water surface variations in the surf zone are directly
and accurately measured.

A permanent visual record is created for later referral and
analysis.,

The photopole method has the following disadvantages:

a.

b.

o

1o

o]

Operation of the camera system requires a fairly high level of
photographic expertise.

Success of the experiments is not fully determined until the
film is developed and viewed.

The digitization of water surface elevations from the photo-
graphic images is labor intensive and time consuming if done
manually.

Filming must be done in daylight.

Ideally, filming should be done in such a way that the line of
sight is parallel to wave crests. Unless filming is done from
a pier, this optimal arrangement is difficult to achieve. If
filming is done from the beach, the camera system must be
placed at a high elevation and offset from the photopole line.

Description of the Photopoles

16. The majority of photopoles used in this experiment were constructed

of 2-in. (50-mm) outside diameter galvanized steel pipe with a wall thickness

of 0.25 in. (6 mm). Several smaller photopoles with an outside diameter of

1 in. (25 mm) and a wall thickness of 0.125 in. (3 rmm) were used close to the

beach and in the swash zone. To accommodate varying water depths, the larger

diameter poles were fabricated in lengths of 10, 15, and 18 ft (3.2, 4.6, and

16



5.5 m). The smaller photopoles had lengths of 5 or 10 ft (1.5 or 3.2 m).
Some of the larger diameter photopoles, in place in the surf zone, are shown

in Figure 5.

Figure 5. Photograph of the photopoles

17. Horizontal rods were welded onto the upper section of each photo-
pole (see Figure 5). Each rod was 9 in. (23 cm) long and was made of 0.75-in.
(19-mm) -thick cold rolled steel. The rods were spaced 1 m apart on the
larger diameter poles and 0.305 m apart on the smaller diameter poles. The
rods provide in situ calibration of water surface fluctuations measured along
the axis of each pole, assuming the pole is aligned in the vertical direction.
However, slight departure of the pole from the vertical does not introduce
significant error since the error is proportional to the cosine of the angle
between the pole axis and true vertical. Angular deviations from true ver-
tical resulting from the pole installation procedure were found to be quite
small. The rods also provided an accessible location on the pole for defining
an absolute vertical reference elevation. This vertical control is necessary
for relating relative water surface fluctuations, observed at the pole, to a
known elevation (datum). The poles were painted bright yellow to provide a
sharp contrast between the pole and the water. Shortcomings of this color
selection will be discussed below.

18. The photopoles were installed by air-jetting them into the bottom
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using a shore-based 100-£t3/sec (2.83—m3/sec) air compressor. Each pole was
carried out to its approximate position in the surf zone, visually aligned by
an observer on shore, and then jetted into the bottom. Poles were spaced at
approximately 5.9-m intervals. Pole installation in the viecinity of the
breaker zone was difficult because of breaking waves with heights often reach-
ing 2 m. Consequently, the seawardmost pole was installed in a depth of 1.9 m
with the aid of the Coastal Research Amphibious Buggy as a working platform.
Air-jetting of the photopoles worked well; the average bottom penetration of
the poles was about 1.7 m. All poles remained in place for the duration of
the experiment, and they could be rotated by hand so that the calibration rods
faced the camera system.

19. The top, landward-facing calibration rod of each photopole was
surveyed twice during the experiment using a total station transit situated on
the roof of the FRF headquarters building, located approximately 430 m south
of the photopole line. The transit provided a capability for establishing
horizontal positioning as well as vertical control relative to the FRF coor-
dinate system and the MSL datum. The coordinates of each photopole, relative
to the FRF baselines, are given in Table 3. Elevations of the top calibra-
tion rods and the adjacent seabed elevations are given in Table 4; they are

relative to the MSL datum. Differences between calibration rod elevation

Table 3

Horizontal Coordinates of the Photopoles

Offshore Coordinate Longshore Coordinate
Pole No. Distance, m Distance, m
1 106.78 g52.21
2 112.89 951.86
3 119.03 951.60
i 12417 951.55
5 129.69 951.27
6 135.20 951.00
7 141.14 950.77
8 146.71 950.43
9 152.26 950.09
10 157.73 950.21
1 163.22 949.59
12 169.05 949.59
13 174.82 949.15
14 183.11 949 .41

18



Table 4

Calibration Rod and Seabed Elevations

Calibration Rod Elevations, ft Seabed Elevations, ft
Pole 4 Sep 85 6 Sep 85 Avg. Avg. 4 Sep 85 5 Sep 85 6 Sep 85 7 Sep 85
No. 1100 EDT 1120 EDT ft m 1100 EDT 1630 EDT 1120 EDT 0930 EDT
1 6.42 6.37 6.40 1.95 1.12 1.16 1.16 --
2 .74 4,70 h.o72 1.44 0.49 0.50 0.45 0.49
3 5.06 5.10 5.08 1.55 -0.41 -0.46 -0.49 -0.46
y 4.63 4,57 4.60 1.40 -0.67 -0.56 -0.47 -0.29
5 6.83 6.78 6.81 2.08 -0.53 -0.48 -0.U45 -0.29
6 7.65 7.57 7.81 2.38 -0.61 -0.51 -0.52 -0.35
7 6.85 6.71 6.78 2.07 -0.70 -0.52 -0.55 -0.48
8 5.54 5.51 5.53 1.69 -0.70 -0.64 -0.66 -0.56
9 5.89 5.88 5.89 1.80 -0.83 -0.80 -0.80 -0.77
10 8.10 8.01 8.06 2.46 -0.95 -0.89 -0.98 -0.93
11 7.64 7.56 7.60 2.32 =117 -1.16 -1.18 -1.18
12 6.70 6.56 6.63 2.02 -1.33 -1.32 -1.40 -1.39
13 6.77 6.67 6.72 2.05 -1.44 -1.55 -1.63 -1.62
14 -- 7.69 -- 2.34 - -1.88 -1.91 -1.85

measurements are attributed to the difficultly of holding the surveying prism
on the calibration rod in breaking wave conditions and to possible settling of
the poles which may have occurred. The average elevation is taken as the
photopole reference elevation. Seabed elevations at each pole were surveyed

once a day during the period of September H4-7.

Description of the Camera System

20. Filming of the water surface variations at the photopoles was con-
ducted by Dr. Shintaro Hotta of Tokyo Metropolitan University, Japan. He
provided a system of six synchronized movie cameras that had been developed
and operated in Japan (Hotta and Mizuguchi 1980; Hotta, Mizuguchi, and Isobe
1982). The cameras (16mm Bolex H16 cine cameras) are controlled by a single,
battery-powered, programmable control unit. This unit ensures that the cam-
eras are fired, or pulsed, at exactly the same time. The pulse rate is var-
iable and is selected by the camera system operator. Filming was done with a
pulse rate of five frames per second (one frame every 0.2 sec) by specially
modified drive motors. Since the entire camera system is battery powered, it

is free of external power constraints.
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21. The camera system (Figure 6) was situated on a scaffold (Figure 7)

erected on the beach berm approximately 125 m south of the photopcle line and

Figure 7. Photograph showing the scaffold
and camera system on the beach berm
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just landward of the high-water line. The approximate location of the camera
system relative to the photopole line and to the sediment trap experiment line
is shown in Figure 8. The height of the cameras was estimated to be 6 m above

the MSL datum.
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Figure 8. Map showing relative positions of the camera system
and photopole transect

22. FEach camera was aimed to focus on two adjacent photopoles. This
configuration allowed twelve photopoles to be filmed. Poles PO1 and P02 were
always on the dry beach or in the runup zone and were never filmed. Each
camera was fitted with an appropriate zoom lens to enlarge the pair of poles
so that they filled the viewing frame, thereby maximizing the image of the
water surface/photopole interface. The cameras used 100-ft (30-m) rolls of
film, each roll containing approximately 4,000 frames. The film used was 160
ASA color video news film, and all runs were shot using an exposure time of
1/30 sec. Neutral density filters were used, as necessary, to obtain proper
aperture settings in bright conditions. Filming runs typically lasted about

12 min, 40 sec (3,800 frames at 5 frames per second). The duration of a
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filming run was completely determined by the film length and sampling rate.
The sampling rate adopted for the experiment reflects that needed to accu-
rately identify the maximum crest elevation in very asymmetrical waves and was

selected based upon the experience of Dr. Hotta.

Film Analysis

23. A fully automated film analysis procedure was originally intended
to be used to analyze the 16mm film images. A 16mm film digitizer was pro-
grammed for this task, but the computer program was unable to discern the
water surface/pole intersection in the presence of white water because the
light intensity level of the bright yellow pole and the white water were ap-
proximately the same. Since the great majority of the film contained breaking
waves, extensive use of the automatic method was not possible. However, the
automatic procedure was successfully applied to extract data from a limited
number of films, those of a few poles seaward of the breaker zone where the
yellow color contrasted well against the blue water. It is anticipated that
the use of black photopoles will allow many more films to be digitized auto-
matically. Further discussion of the automated digitization procedure is de-
ferred until it has been fully developed and tested.

24. After photographic development, all films were screened to verify
image quality and to confirm the film labeling (identification of the poles on
each roll of film done in the field and etching of this information onto the
film in the laboratory). Manual analysis of the film was done in a semi-
automatic mode using a Numonics 1225-1 digitizer and electronic graphics cal-
culator interfaced to a PDP 11/24 minicomputer. At the start of a roll of
film, the operator entered pertinent identification information into the com-
puter which was then written as a file header. This information included the
surveyed elevation of the top calibration rod. The film was loaded onto a
Lafayette Analytic Projector, and the image was reflected off a mirror onto a
horizontal table. The mirror was placed at a U45-deg angle to the horizontal
projector beam so that the image was turned through a 90-deg angle. In this
manner, the image projected onto the horizontal table maintained the same
proportion as if projected onto a vertical wall. Next, the Numonics digitizer
scale factor was set by determining the distance in digitizer units between

the two horizontal calibration rods on the film image. Since the distance is
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100 cm for the larger diameter poles (30.5 cm for the smaller diameter poles),
a factor can be determined and entered into the digitizer so that the digi-
tizer output is given in prototype dimensions for that specific pole filmed
during that particular experiment run.

25. With the initialization procedure completed, digitization of the
water surface proceeded. For each frame, the operator moved the crosshairs of
the digitizer to the top calibration rod and pressed a foot switch. Computer
software accepted the coordinates of that position. The operator then moved
the crosshairs to the water surface position on the pole and again pressed the
foot switch. The computer software determined the vertical distance in centi-
metres between the top calibration rod and the water surface and then sub-
tracted this distance from the known elevation of the top calibration rod.
Water surface elevations were stored as elevations in centimetres relative to
the MSL datum. A second foot switch advanced the film to the next frame. (An
experienced operator is capable of processing a maximum of about 1,000 frames
per hour using this technique.)

26. At the completion of the water surface elevation time series for a
photopole, a plot of the time series was produced and visually inspected for
anomalous points. (Editing procedures are discussed in Part IV.) After
editing, the time series files were compressed into a more convenient form for
storage and further analysis.

27. The film analysis procedure revealed potential improvements to the
photopole method as implemented during this experiment. Movement of the cam-
era because of wind and operator movement on the scaffold made it necessary to
digitize both the water surface and the top calibration rod on each frame of
the film because the photopole did not maintain the same relative position
from frame to frame, A steady filming platform would allow manual analysis to
be performed by digitizing only the water surface since the top calibration
rod would remain stationary in the frame. This would increase digitizing
speeds and reduce operator fatigue.

28. The small diameter pipe used for the innermost photopoles was much
more difficult to see than the large diameter poles. Consequently, use of the
large diameter poles is recommended for future photopole applications.

29. The absence of wind ripples on the water surface made it difficult
to distinguish the brightly painted pole from its reflection on the water

surface when a wave trough was passing the pole. This occurrence slowed the
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digitizing process and introduced a slight amount of scatter into the time
series trace in the wave troughs. The solution to this problem, as well as
the problem of automatically analyzing the film in the presence of white
water, is to paint the photopoles flat black.

30. On a few occasions very steep waves would pass by the photopoles,
and the crests would obscure the water surface/pole interface for several
frames after passage of the crest. This problem arose because the line of
sight of the camera was not aligned parallel to wave crests. The operator of
the digitizer was required to estimate the position of the water surface dur-
ing these frames.

31. On other occasions, plunging breakers would throw up a plume of
white water, momentarily obscuring the pole. This problem also arose because
the line of sight of the camera was not aligned parallel to wave crests. As
before, the operator had to make an estimate of the position of the water
surface. The two situations decribed above occurred only rarely and during

the higher wave conditions.
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PART IV: DATA ANALYSIS

Overview

32. Digitization of the photographic images results in time series of
water surface elevations at each photopole location. These are the raw data.
Certain editing procedures are implemented to eliminate errors in the raw data
prior to their analysis. Two types of analyses are performed on the edited
data: (a) time series analysis of the water surface elevation fluctuations,
and (b) identification of individual waves contained within the time series
and subsequent analysis of their characteristics. Some aspects of the time
series analysis use the edited water surface elevation data as input; others
use filtered versions of the data. In addition to analyzing the entire water
surface elevation signal, individual waves within the record are identified
using "zero-crossing" methods. A slightly different method for identifying
individual waves is implemented here. It involves the use of band-pass fil-
tering to remove both very low and very high frequency (relative to the peak
spectral frequency) oscillations in the digitized signal. This method results
in a systematic procedure for identifying only the "primary individual waves"
(conceptually defined by Mizuguchi (1982)). All analyses described here rep-
resent standard types of analyses which are applied to water surface elevation
time series. It is important to note that these results represent a small

subset of the information which can be extracted from the data.

Data Editing

33. Water surface elevation is manually digitized from the photographic
images. Several types of errors can occur during this process. Data errors
resulting from digitizer operator mistakes, not those involving subjective
judgment, are manifested as "spikes" (anomalies existing for one or two data
points) in the elevation time series. These are manually corrected by aver-
aging water surface elevations on either side of the spike. Manual digitiza-
tion also introduces subjectivity into the definition of the water surface
intersection with the photopole, particularly if one of the following situa-
tions occurs: (a) the pole is surrounded by "white water," (b) the pole's re-

flection on a "glassy" water surface in the wave trough makes the intersection
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difficult to discern, or (c) the splash from a plunging wave obscures the
pole. Subjectivity results in the introduction of artificial variability to
the data in the form of point-to-point oscillations. These oscillations are
removed with a simple filter; however, this filtering procedure is only ap-
plied to points which lie within plus or minus one standard deviation of the
mean. Consequently, water surface elevations comprising the wave crests are
not affected.

34. Figure 9 shows the effect of the point-to-point filtering on data
collected in the inner surf zone. At this location, frequent occurrences of
white water rendered definition of the water surface/pole intersection diffi-

cult. Point-to-point oscillations are effectively removed.
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Figure 9. Effect of the point-to-point filter on data digitized
from images of waves in the inner surf zone

35. Figure 10 illustrates the variability caused by difficulties in
definitively locating the water surface intersection with the photopole when
the water surface is "glassy" in appearance and the pole image is reflected
onto the water surface. The artificial variability is demonstrated via a
comparison between data digitized manually and data digitized automatically.
In the automated procedure, a consistent criterion is implemented for defining
the position of the water surface; therefore, less variability in the digi-
tized signal is expected. Variability should not be confused with accuracy.

A comparison between the accuracy of the manual and automatic digitizing

procedures has not been made. The example shows data signals measured at the

26



1.5

~ 1 MANUAL DIGIT. 859051352.P14
= 2 AUTOMATIC DIGIT.
Z o
S 2
[
a
=
[59]
=
LY.
Q
& 1
a
L
5 o
o
L3 2
0]
2 ,
Lo in vy

¥ T T T ! T 7 T i
2300.0 23500  2400.0  2450.0 2500.0 ' 2550.0 2600.0 2650.0 2700.0 2750.0  2800.0
DATA POINT NUMBER

Figure 10. Comparison between manually and automatically digitized
data obtained at poles outside the breaker zone

seawardmost end of the photopole transect. The reflection problem is usually
encountered seaward of the breaker zone.

36. The third source of error, also introduced as a result of subjec-
tive judgment, is associated with the camera position. This error is caused
by the inability of the cameras to "see" behind the crests of some of the
larger waves, and it usually occurs at the breaking point where wave asymmetry
is greatest. Subjective judgment in these instances results in errors in
defining water surface elevations during frames which immediately follow the
crest. Errors of this nature cannot be corrected with complete certainty.
However, since the highest point on the wave crest is always visible, correct
heights can always be obtained.

37. Suspected errors that might potentially affect calculations of wave
height are manually checked and corrected. The edited water surface elevation

signals comprise the data base used in both the time series and individual

wave analyses.

Spectral Analysis of Edited Data

38. Spectral analysis of each edited time series is performed to inves-
tigate the energy levels associated with oscillations of various frequencies

present in the data signal. Prior to analysis, any linear trend existing in
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the data is removed. Removal of the linear trend effectively eliminates the
water surface variation caused by the astronomical tide during the course of
the filming run. Since the semidiurnal component of the tide changes from a
maximum to a minimum over a 6-hr period (360 min), tidal fluctuations experi-
enced during a 12.5-min filming run can be assumed to have a linear variation.

39. The spectral analysis routine given by Brenner (1967) is used to
compute the energy density spectra. This algorithm performs the Cooley-Tukey
transform and was selected because it requires only that the number of data
points in the input signal be evenly divisible by 2. The number of data
points need not be a power of 2, as is required in common spectral analysis
procedures. Consequently, the number.of data points which can be utilized is
maximized. Prior to application of the Cooley-Tukey transform, the time
series is cosine-tapered at each end to reduce side band leakage in computing
the spectral estimates (Otnes and Enochson 1972). Raw spectral estimates are
then scaled to account for the variance reduction caused by the cosine taper
and band-averaged in such a way that the spectral bandwidth associated with
each spectral estimate is approximately 0.01 Hz. Band-averaging results in
spectral estimates which are statistically more stable than those comprising
the raw spectrum. The 0.01-Hz bandwidth is a typical bandwidth selected for
displaying sea state spectra.

40. An example of results obtained from a spectral analysis of data

collected at the seaward end of the pole transect is shown in Figure 11.
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Pole P13 was located outside the breaker zone during this experimental run.
The example illustrates two aspects of the wave conditions which generally
existed during the DUCK85 experiment. First, the wave spectrum is "narrow-
banded" about the peak frequency (the frequency associated with the spectral
band containing the maximum energy density) which is characteristic of swell-
like wave trains where a majority of the waves have periods which fall within
a very narrow range. Incident waves were characterized by long periods rela-
tive to periods most frequently encountered along the eastern coast of the
United States. They were usually between 10 and 12 sec. The waves also had
very long crests. A second feature visible in the spectrum is the existence
of energy at much longer periods (with frequencies between 0.02 and 0.03 Hz).
As evidenced by Figure 11, these long period oscillations existed not only
inside the surf zone (see Appendix B) but also seaward of the breaker zone.
41, Spectral analysis of the complete water surface elevation time
series does provide useful information. However, two points should be remem-
bered. First, spectral analysis inherently treats the wave forms as a super-
position of linear waves with different frequencies. Results, shown in Part V
of this report, show that the measured waves in the very nearshore zone do not
have linear forms. The energy density near 0.16 Hz (see Figure 11) should not
be misinterpreted to represent incident waves with periods of approximately
6 sec. The interpretation of this feature is discussed in Part V. Secondly,
caution should be exercised in describing the incident wave field using param-
eters computed from the complete spectrum. For example, if interest lies in
the shorter period incident waves and significant energy exists at much longer
periods, energy-based significant wave heights computed using the complete
spectrum may provide misleading information in the nearshore zone. Methods
for isolating the variations resulting from the long-period fluctuations and

procedures for removing them from the data record are discussed below.

Elimination of Low Frequency Oscillations

42, The primary thrust of the DUCK85 photopole experiment was to mea-
sure the shorter period wave field, i.e., the surface waves which are clearly
visible. The low frequency fluctuations which were mentioned above are
treated as a time varying mean water surface upon which the shorter waves

propagate. A low-pass filter is used to isolate them, and then they are
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removed from the time series. The shape of the low-pass filter is dependent
upon the cutoff frequency and the number of points sacrificed in constructing
the filter; the number of points which are sacrificed determines the "sharp-
ness" of the filter. The shape of the filter which was adopted is shown in

Figure 12.
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The filter represents a compromise between sharpness and the minimization of
the loss of data points. Two hundred points were lost from both ends of each
time series by application of this filter. A cutoff period of 21 sec was
chosen. This filter effectively eliminates oscillations with periods greater
than 30 sec and preserves oscillations with periods less than 16 sec.

43, The effectiveness of the filter is demonstrated in Figure 13. The
original, unedited data (without point-to-point oscillations removed), the
low-passed signal, and the high-passed signal which remains after low fre-
quency oscillations are removed, are shown for pole P14, The data presented
were obtained during the run initiated on 5 September at 1352 EDT. The hori-
zontal axis in the figure represents the time scale; 50 data points are equiv-

alent to 10 sec. The high-passed signals are assumed to represent the inci-

dent short wave field.

Analysis of the High-Passed Time Series

LYy, The high-passed data signals contain 400 fewer points than the
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Figure 13. An example showing the effect of the low-pass filter
and removal of longer period oscillations

original time series because of the low-pass filter. The high-passed data are
used to identify the maximum and minimum water surface elevations. They are
used also to compute the mean, variance, standard deviation, skewness, and
kurtosis for the entire record. The frequency of occurrence of water surface
elevations, relative to the mean and nondimensionalized by the standard devi-
ation, are calculated and displayed in histogram form. A spectral analysis of
the high-passed data record, using cosine-tapering and band-averaging identi-
cal to that discussed previously, is performed. The band-averaged spectral
estimates are used to compute the energy-based significant wave height and to

determine the peak spectral period of the incident wave field.

Identification of Individual Waves

45, A zero-crossing method could be directly applied to the edited,
high-passed data signal to identify individual waves. However, the resulting
time series frequently contains short period oscillations, typically with
small amplitudes (see Figures 9 and 10). These are referred to as secondary
waves. If these small waves occur near the mean water surface elevation of
the data record, they cause an increase in the number of waves which are iden-
tified by the zero-crossing method. The number of these smaller waves in-
creases in the surf zone. Only the larger, well-defined waves are of interest

since their influence on nearshore processes is expected to be much greater
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than that of the smaller secondary waves. Primary individual waves are con-
ceptually defined such that the number of waves is constant across the surf
zone. Hotta and Mizuguchi (1980) and Mizuguchi (1982) integrate the smaller,
or secondary, waves in the preceding primary wave by adding the period of the
secondary wave to the period of the primary wave. They define secondary waves
as waves with crest or trough elevations within an "error band" (on the order
of 3 to 5 cm) on either side of the data mean. If the error bandwidth is
decreased, more secondary waves are interpreted as being primary waves. If
the bandwidth is continually increased, fewer secondary waves will be
identified as primary waves. The choice of the error bandwidth is selected in
such a way that statistical parameters defining characteristic wave heights
and periods do not significantly change with additional increases in the error
bandwidth; the parameters become stable because the total number of primary
waves identified becomes stable.

46. A different method for identifying individual waves is implemented
in the present study; a filtering technique is used to identify them. The
edited, but unfiltered, data are subjected to a band-pass filter with period
cutoffs at 3 and 21 sec. The amplitude response of this filter, as a function

of wave period, is shown in Figure 14,
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47. Again, 200 data points are sacrificed from each end of the time
series in order to construct the filter. At the 21-sec cutoff period, the
band-pass filter has response properties similiar to the low-pass filter shown
in Figure 12. At the 3-sec cutoff period, the response function is much
"sharper." Filter sharpness is highly desirable and is achieved at this fre-
quency because of the large number of points used to construct the filter
relative to the 3-sec period. This filter removes both lower frequency and
very high frequency oscillations; consequently, most of the secondary waves
are removed.

48, The effect of the filter is demonstrated in Figure 15 for
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Figure 15. Examples showing the effect of the band-pass
filter inside and outside the surf zone
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photopoles P05 and P14. Pole P05 was located well inside the surf zone, and
pole P14 was seaward of the breaker zone. The filter completely eliminates
fluctuations with periods less than 3 sec. There is a smoothing effect of the
filter on the forward faces of the wave crests measured at P05. The effect is
less severe for the pole located outside the surf zone. Smoothing of the for-
ward face of the wave is undesirable if a zero-upcrossing method is used to
identify individual waves; however, it appears that the smoothing effect on
all waves is quite similar and systematic. Therefore, consecutive wave peri-
ods are probably changed by approximately the same amount.

49, Use of the zero-downcrossing method appears to be a better choice
for two reasons: (a) it is more physically appealing to include the drawdown
of water in the wave trough with the subsequent wave crest rather than with
the preceding crest, and (b) effects of the band-pass filter on waves in the
surf zone are less severe at the rear face of the wave crest (where downcross-
ings occur) than on the forward face where the elevation increases rapidly and
upcrossings would be identified. Results obtained using both methods are pre-
sented in this report.

50. Finally, an error band criterion similar to that described pre-
viously is applied to the band-passed data. Oscillations with crest or trough
elevations less than 3 cm are integrated into the preceding primary wave,
i.e., the period of the small wave is added to the period of the primary
wave. This error band is equal to an estimate of the overall accuracy of the
procedure for obtaining water surface elevations from the photographic image.

51. It is emphasized that only the sequence of waves and individual
wave periods are defined using the band-pass filtered data. As evidenced in
Figure 15, band-pass filtering reduces maximum values of the crest and trough
elevations and would result in the computation of smaller wave heights.
Therefore, the original, high-passed data are used to compute wave heights
for each of the waves identified by application of the downcrossing method to

the band-passed data.

Analysis of Individual Wave Heights and Periods

52. The following parameters are computed from the population of
individual wave heights: the mean, the root-mean-squared value, the highest

one-third and highest one-tenth values, and the maximum. Histograms showing
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the frequency of occurrence of individual wave heights, nondimensionalized by
the mean wave height, are computed. An average wave period is calculated.
Frequency of occurrence estimates of individual wave periods are computed.

The wave periods also are nondimensionalized by their mean value. Results are
displayed in histogram form. This information is computed for wave heights

and periods determined by using both the zero-up- and downcrossing methods.
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PART V: EXPERIMENTAL RESULTS

Synoptic View of Wave Transformation

53. Figure 16 illustrates the transformation of a group of eight waves
as they passed each photopole. It is included to show general characteristics
of the waves which were observed and the transformation process which is being
investigated. The indivdual plots show the temporal variation of water sur-
face elevations measured during the experiment run initiated at 1352 EDT on
5 September. The plot showing the waves passing pole P14 reveals character-
istics of the wave conditions which were observed during the entire photopole
experiment. There are four waves with heights of approximately 0.5 m followed
by two with heights approaching 1 m and then two more waves with heights
nearly equal to 0.5 m. The incident wave field was comprised of wave groups
throughout the course of the experiment. This feature is most clearly visible
in the figures given in Appendix A. The plots in Appendix A show the entire
time series of water surface elevation measured at the seawardmost photopole
available during each experiment run. The appearance of well-defined groups
diminished over the duration of the photopole experiments. The periods of
each of the waves shown in Figure 16 are nearly equal to one another. This
feature is indicative of swell waves.

54. There is greater asymmetry of the higher waves compared to that of
smaller waves and an increasing asymmetry of all the waves as they propagate
past poles P13, P12, and P11. Asymmetry, as used here, refers to the increase
in peakedness of the wave crest and the broadening of the wave trough. There
is also some asymmetry in the wave form about the wave crest. Elevation
changes on the forward faces occur rapidly; whereas elevations defining the
rear face change more gradually with time. The plots show water surface fluc-
tuations as a function of time at one point in space; but since the waves are
nearly nondispersive in these water depths and all parts of the wave travel
with nearly the same speed, wave forms observed in the time domain are indic-
ative of those which occur in the spatial domain. Increasing asymmetry
clearly illustrates the effects of the nonlinear processes operating in the
very nearshore zone.

55. Near pole P10 the two larger waves break; the remaining waves in

the group break in the vicinity of poles PO7 and P08. After breaking, the
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wave forms resemble those of periodic bores; they are saw-toothed in appear-
ance with very steep forward faces and gradual slopes on the rear face of the
crest. Also there is the creation of secondary peaks within some wave crests
and the formation of small oscillations, or secondary waves, within the wave
forms. At poles POM and P05, the similarity in wave form for all waves in the
group is apparent. The heights of these waves are also approximately equal to
one another. This property is characteristic of the inner surf zone, as

evidenced in some of the other results which are presented.

Wave and Water Level Parameters

56. A summary of all experimental runs was given in Table 1, and those
runs for which data were analyzed were noted. A summary of the wave and water
level parameters computed from these data is given in Table 5. The headings
in the table are defined as follows:

Run ID - a concatenation of information which identifies results
obtained at a particular photopole during a particular
experiment run

Example - 859041400.A03

85 denotes the year 1985
9 denotes the month, September 1985
04  denotes the day, U4 September 1985
1400  denotes the time, 1400 EDT
403 denotes results from analysis of data from photo-
pole PO3 (the "A" stands for analysis)

DEPTH - seabed elevation below the MSL datum {(in metres)
ELEV - mean water surface elevation, measured during the
mean experimental run, above (+) or below (-) the MSL datum
(in metres)
TOTAL - total mean water depth equal to the sum of the seabed
DEPTH elevation, below the MSL datum, and the mean water surface
elevation (in metres)
ELEV - maximum water surface elevation relative to the mean (in
max metres)
ELEV - minimum water surface elevation relative to the mean {(in
min metres)
ELEV - skewness of the water surface elevations relative to the
skewness mean
ELEV - kurtosis of the water surface elevations relative to the
kurtosis mean
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Table 5 (Concluded)
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Hmax
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energy-based significant wave height computed as four
times the square root of the area under the energy density
spectrum, as determined from the high-passed water surface
elevation time series (in metres)

peak spectral period, computed from the central frequency
associated with the spectral band containing the greatest
energy density (in sec)

number of primary, individual waves identified using the
zero-upcrossing method

number of primary, individual waves identified using the
zero-downerossing method

average wave height using upcrossing results (in metres)
average wave height using downcrossing results (in metres)
average wave period using upcrossing results (in sec)
average wave period using downcrossing results (in sec)

root-mean-squared wave height using upcrossing results
(in metres)

root-mean-squared wave height using downcrossing results
(in metres)

average of the highest one-third wave heights using upcross-
ing results (in metres)

average of the highest one-third wave heights using down-
crossing results (in metres)

average of the highest one-tenth wave heights using upcross-
ing results (in metres)

average of the highest one-tenth wave heights using down-
crossing results (in metres)

maximum wave height using uperossing results (in metres)

maximum wave height using downecrossing results (in metres)

For each experiment run, the landwardmost pole is at the top of the group, and

the seawardmost pole is at the bottom.

57.

The mean water surface elevation measurements, relative to the MSL

datum, include both the effects of tide and wave setup. The tidally induced

mean elevation is assumed to be constant across the surf zone; therefore, the

variation in the mean can be assumed to represent changes resulting from the

incident wave field. All experiments, with the exception of 859061300, show a
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general trend of increasing mean water surface elevation from the breaker zone
toward the inner surf zone, The magnitude of the wave setup (defined here as
the difference between the maximum and minimum mean elevations along the pole
transect) ranges from 3 to 8 cm during those eight experiments; setup is es-
sentially nonexistent during 859061300.

58. A method for estimating wave setup for monochromatic incident waves
is given in the Shore Protection Manual(SPM) (1984). Since waves measured
during the photopole experiment closely resembled monochromatic conditions,
measured wave setup can be compared to estimates obtained using the SPM
method. A plane beach with an average beach slope between 1:30 and 1:50 will
be assumed to represent the beach morphology in the surf zone. The SPM method
is not very sensitive to the choice of beach slope for slopes in this range.

A wave period of 11 sec is assumed to be representative of all waves measured
during the experimental runs and is used in the computations. The SPM method
recommends the use of the significant wave height (the statistical wave height
parameter H1/3) at breaking. Measured values of this breaking wave height
varied between 0.8 and 1.3 m. Using these wave and beach slope parameters,
calculations result in wave setup estimates which vary from 10 to 17 cm.

These are a factor of 2 greater than the measurements. Hotta and Mizuguchi
(1980) report measurements of wave setup that are also much smaller than those
which would be calculated using the observed breaking wave properties and the
SPM method.

59. The measured setup is much smaller than the changes assoclated with
the longer period oscillations described earlier, i.e., those with periods be-
tween 30 and 50 sec. The magnitude of these fluctuations increases from ap-
proximately 10 cm at the seawardmost poles to 20 cm at the landwardmost poles.

60. Table 5 shows the number of waves identified at each pole by the
upcerossing and downcrossing methods. The results demonstrate the effective-
ness of the zero-crossing method, as implemented here, in identifying the pri-
mary waves. The number of waves is nearly constant across the surf zone, and
the average wave periods are quite close to the peak spectral period. This
result is expected considering the swell-type wave conditions which existed.
Exceptions to this result appear at the innermost poles, where the combination

f the band-pass filter and crest/trough cutoff value sometimes underestimated
the number of primary waves. However, at these locations, most of the primary

waves have heights which are approximately equal in magnitude, i.e., a narrow
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wave height distribution. The authors feel that an underestimation of the
number of primary waves will have less impact on statistical wave height
parameters than would an overestimate. Some of the primary waves would be
missed in an underestimation, but these would not significantly affect the
already narrow wave height distribution. However, overestimation of the
number of waves would probably result in the inclusion of some much smaller
secondary waves in the distribution. Consequently, any statistical wave
parameters computed from the distribution which contains numerous small waves
would be underestimated.

61. The upcrossing and downcrossing methods result in statistical wave
parameter estimates which are nearly equal. This occurrence is to be expected
since an effort was made in the individual wave identification procedure to
eliminate any effects of secondary waves. Results presented by Hotta, Mizu-
guchi, and Isobe (1982) also indicate that the up- and downcrossing methods
produce similar estimates. Figure 17 shows plots of the variation of the
statistical wave height parameters along the photopole transect from each
experiment run. The parameters Havg, Hrms, H1/3, H1/10, and Hmax are those

obtained using the downcrossing method. The statistical parameters are
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reasonably stable during shoaling with the exception of H1/10 and Hmax. These
two parameters exhibit more pronounced fluctuations because of their depen-
dence upon a single wave or a very small number of the highest waves. The
breaking position of these larger waves greatly influences local values of
Hmax and H1/10, whereas the more stable parameters are less affected by the
behavior of individual waves. For this reason, empirical methods for predict-
ing irregular wave transformation in the surf zone should be formulated in
terms of the more stable parameters.

62. Values of the energy-based significant wave heights, Hmo’ were com-
puted from the high-passed data signals; the effects of long period oscilla-
tions were removed. The longer period oscillations are also absent from the
data used to identify individual waves and, subsequently, to compute the sta-

tistical wave height parameters.

Spectral Analysis Results

63. Wave spectra computed from data collected at each photopole during
each experiment run are given in Appendix B. These spectra were computed from
the edited data signals with the linear trend removed but with the longer pe-
riod oscillations still present. An example of the synoptic spectra are given
in Figure 18 for the experiment run initiated on 4 September at 1510 EDT. In
the figure, spectral results are given for every other pole location. (A com-
plete set is given ia Appendix B.) The plots illustrate spectral features
observed during all the runs, and they show changes that occur in the spectrum
during the shoaling and breaking processes.

64. Results for pole P13 show three very typical features which are
representative of the incident wave conditions measured during the experiment.
First, the spectrum is narrow banded; this is characteristic of swell wave
trains. Second, significant energy exists at a frequency equal to twice the
peak frequency. This occurrence does not indicate the presence of incident
waves with much shorter periods; rather, it reflects the nonlinearity of the
waves. The energy density at these frequencies is associated with the higher
harmonics of the peak frequency. There is even some energy density apparent
at frequencies near the third harmonic. The third feature is the existence of
appreciable energy at very low frequencies,

65. The larger waves during this run broke at poles P13, P12, and P11,

Figure 18 shows the decreasing contribution of the higher harmonics after
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pole P11 which results from the changes in wave form occurring after breaking.
However, despite these changes, there 1s some energy density at the second
harmonic apparent at each photopole. This energy probably results from
smaller, but still nonlinear, unbroken waves. The energy contained in fre-
quencies near the peak frequency steadily decreases across the surf zone due
to dissipative processes.

66. Examination of the spectra shown in Figure 18 also indicates
changes in the lower frequency component of the spectrum. Energy density
associated with these oscillations remains fairly constant from poles P13 to
PO7 then continues to increase in very shallow water. At pole P03, where it
reaches its maximum, its energy density is greater than that associated with
frequencies near the peak frequency of the incident wave field. Given the
very low frequency of this component, the potential energy associated with
these oscillations is much greater than the energy contained in the shorter

period incident waves.

Water Surface Elevation Distributions

67. Water surface elevation distributions computed from data collected
at each photopole during each experiment run (examples of which are presented
in Figure 19) are given in Appendix C. These distributions were computed from
the edited, high-passed data; hence the influence of longer waves (those with
periods over 21 sec) is not present in the plotted distributions. The water
surface elevation distribution plots were constructed by first normalizing
each water surface elevation by the standard deviation of all elevations in
the time series (the mean being previously removed during the low-pass filter-
ing procedure) and then grouping the normalized elevations into bands. The
number of normalized elevations in each band was expressed as a percentage of
the total elevations in the record, and the percentages for each band were
plotted as a histogram, as shown in Figure 19. The solid curve on the plots
represents the Gaussian (or normal) distribution having the same area under
the curve as the area contained in the histogram.

68. The water surface elevation distributions given in Figure 19 illus-
trate the changes that occur as waves shoal and break in the surf zone. This
particular set of plots, shown for every other pole, corresponds to the exper-

iment run initiated at 1510 EDT on U4 September. Histograms at the locations
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of poles P13 and P11 exhibit a very noticeable deviation from the Gaussian
distribution, which is primarily because of the nonsinusoidal wave shapes.
Actual shapes are characterized by short, steep crests and long, shallow
troughs. (See Figure 16, for example.) The deviation of the observed histo-
gram from the Gaussian distribution is reflected by the value of the skewness
parameter, which is a measure of asymmetry about the mean elevation. The
skewness for a Gaussian distribution is equal to zero. Examination of Table 5
indicates that a maximum skewness of 1.82U occurs at pole P11 for this run. A
decrease in the value of skewness, which reflects a trend in the histogram
toward a more Gaussian shape, is evident at poles P09 and PO7. The change in
shape of the distribution is caused primarily by the breaking of the steep,
narrow-crested waves.

69. As the waves reach the inner surf zone (poles P05 and P03), almost
all primary waves have undergone initial breaking, and many are propagating as
periodic bores. The measured water surface elevations for these waves have
distributions which are nearly Gaussian in shape. Apparently, the continual
large~-scale dissipation of energy through turbulence maintains the symmetry of
sea surface elevations about the mean elevation as typified by the character-
istic saw-tooth wave forms. Although not shown in Figure 19, results from
data measured at pole POY of this run show a significant increase in sea sur-
face skewness, as seen in Table 5 and in the full set of plots contained in
Appendix C. The increase in skewness is thought to be linked to the reforma-
tion of broken waves and the steepening of the smallest waves which have yet
to break. At pole P03, even the reformed waves have broken, and the water
surface elevation distribution is once again nearly Gaussian in shape.

70. Table 5 also lists values of the kurtosis, which is a measure of
the fourth moment of the water surface elevation about the mean. The kurtosis
for a Gaussian distribution is 3.0. Computed values for all the experiment
runs are typically greater than this value throughout the nearshore zone.

Only in the inner surf zone do kurtosis values approach 3.0.

71. In general, the water surface elevation distributions for the other

experimental runs presented in Appendix C exhibit similar trends to those dis-

cussed above.

Wave Height and Period Distributions

72. Wave height and wave period distributions computed from the data
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obtained at all photopoles for all experiment runs are given in Appendix D.
The wave height histograms for a particular experiment run were constructed by
first normalizing the individual wave heights by the average wave height
Havg computed for that run (see Table 5 for values of Havg ). The normal-
ized wave heights were then grouped into bands, with each band, or interval,
representing a small range of normalized wave heights. The number of normal-
ized wave heights in each band was expressed as a percentage of the total
number of waves identified during the run. Wave period histograms were com-
puted in a similar manner; individual wave periods were also normalized using
the average period. Distributions computed from results obtained using both
the up- and downcrossing methods are presented in Appendix D.

73. Figure 20 shows wave height and period distributions at selected
locations along the photopole transect (poles P14, P10, PO7, and PO4). The
histograms were computed from data obtained during the experiment run initi-
ated on 5 September at 1352 EDT. Results at pole P14 typify data measured
outside the surf zone; results at pole P10 represent conditions near breaking
of the higher waves; results at pole PO7 represent a location where most of
the waves have broken; and results at pole PO4 represent inner surf zone wave
conditions. Both zero-crossing methods yield similar results at all locations
across the surf zone. Hotta and Mizuguchi (1980) reported greater differences
between histograms computed from results obtained using the different zero-
crossing methods. In that particular study, however, the authors did not
eliminate the effects of secondary waves as they did in subsequent studies,
i.e., they strictly applied the zero-crossing methods.

74. The wave height distributions at pole P14 are rather widely dis-
tributed about the mean height and skewed toward the higher wave heights.
These features are similar to those which are characteristic of the Rayleigh
distribution for wave heights. Wave period distributions at this location are
very narrowly banded about the mean period. This narrow bandedness is indica-
tive of the swell-like wave conditions which existed.

75. At pole P10 the wave height distributions are more widely distrib-
uted about the mean. The largest waves broke in the vicinity of this point.
Broken waves are apparent as very low normalized wave heights and shoaled
waves, near breaking, are apparent as very large normalized wave heights.
Consequently the normalized wave heights vary over a much wider range at this

point. Figure 20 shows the presence of low wave periods in the wave period
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distribution. These periods result from the existence of multiple crests in
some wave forms; the multiple crests are sometimes identified as individual
waves. If a wave with two crests is identified as two waves, the heights of
these two waves are, most likely, each smaller than the height of the com-
posite wave. This occurrence also would result in the computation of smaller
wave heights. An increase in the number of waves identified near the breaker
zone was computed for all the experiment runs.

76. Figure 20 shows the occurrence of a very long wave in results from
the upcrossing method. This phenomenon probably indicates that the zero-
crossing method was unable to detect one of the primary waves because of a
very shallow trough relative to the zero-level of the high-passed data signal.
Consequently, two waves were treated as one.

77. At pole P07, most of the waves had broken. Figure 20 shows the de-
crease in the number of higher wave heights, an indication that breaking has
greatly reduced the heights of the majority of the waves. The wave height
histograms are becoming more narrowly distributed about the mean. The wave
period histograms at this location are quite similar to those computed at pole
P10. They remain rather closely distributed about the mean.

78. Distributions of wave height become very narrowly banded at pole
PO4, This trend also was apparent in the individual wave forms shown in Fig-
ure 16, where the periodic bores exhibited nearly identical heights. The
average wave height at this locat’on is approximately 0.45 m, and the total
water depth is approximately 0.9 m. The average height-to-depth ratio at this
point in the inner surf zone is, therefore, 0.5. This value is much less than
the value of 0.78 which is typically used to estimate surf zone wave heights.
Values for the average wave height-to-depth ratio of approximately 0.5 were
found during all experiment runs. Values for individual wave height-to-depth
ratios of approximately 0.5 were also typically found in the inner surf zone.
The wave period distributions at this location are nearly identical to those
measured at pole P14; i.e., they remain narrowly banded about the mean wave

period.
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PART VI: CONCLUSIONS

79. The DUCK85 photopole experiment had three objectives: (a) to col-
lect high quality water level and wave height data in, and just seaward of,
the surf zone (to be used to improve methods for estimating wave conditions in
the very nearshore zone), (b) to collect wave data in support of the sediment
trap experiments, and (c) to determine ways to improve the photopole tech-
nique, including methods to facilitate fully automatic film analysis. The
experiment was successful; all three goals were accomplished as described
herein.

80. The first two objectives are quite similar. High quality data col-
lection is needed for both nearshore wave estimation and for relating sedi-
ment transport rates to wave and current properties. An accurate method for
directly measuring water surface elevation fluctuations was applied during the
DUCK85 field project, and a high quality data set was obtained. Data were
collected at a spatial and temporal resolution which adequately addressed the
needs of both types of experiments.

81. Scientific procedures were used to analyze the water surface eleva-
tion data and to extract individual wave information from these data. Filter-
ing techniques were successfully used to isolate longer period fluctuations.
These water surface changes were removed from the measured data and, as a
result, variations in elevation because of the shorter period and incident
wave field were easily identified. The method used to identify only the
primary, individual waves, those which were of interest to the investigators,
was highly successful. Again, filtering techniques were used to eliminate
effects of smaller, secondary waves.

82. Standard types of time series and individual wave analyses were
applied to the data. The results presented in this report illustrate many
features of the nearshore wave transformation process. However, the data
contain much more information than was presented. Results given here reflect
the immediate interests of the authors and the principal investigators of the
sediment transport experiments,

83. The DUCK85 photopole experiment was a highly successful study in
itself, but was also useful in testing the adequacy of the photopole method
for application during a larger, follow-up field data collection project

called SUPERDUCK., A great deal was learned concerning potential improvements
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to the equipment arrangement used during the DUCK85 photopole experiment and
to the film analysis procedures which were used to extract the water surface
elevation data.

84. Analysis of film taken during the experiment revealed three ways
in which the photopole method, as it was applied in this study, could be im-
proved. The time required to manually digitize the film can be halved if
movement of the cameras is eliminated, thereby eliminating the need to digi-
tize the calibration rod in each photographic image because the rod position
would not change. Secondly, the photopoles should be painted a color which
contrasts with both the white water in the surf zone and the ambient water
outside the breaker zone. The contrast between the bright yellow poles, used
during DUCK85, and the white water was insufficient. Black would be a logical
choice for the pole color. This second improvement should allow more film
images to be digitized automatically. An automated procedure would greatly
reduce the amount of person-hours required to digitize the film. The third
improvement is the elimination of the smaller diameter poles from the pole
transect. These poles were much more difficult to detect in the film images
than were the larger diameter poles. The remainder of the camera system
and operating procedures worked exceptionally well; no modifications are

anticipated.
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APPENDIX A: SELECTED WATER SURFACE ELEVATION TIME SERIES
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APPENDIX B: WAVE SPECTRA
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APPENDIX C: WATER SURFACE ELEVATION DISTRIBUTIONS
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APPENDIX D: WAVE HEIGHT AND PERIOD DISTRIBUTIONS
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