Littoral Hydrodynamics and Sediment Transport around a Semi-Permeable Breakwater

Honghai Li and Lihwa Lin

Engineering and Research Development Center U. S. Army Corps of Engineers

Chia-Chi Lu

Christopher Reed

Noble Consultants

Reed & Reed Consulting

Arthur Shak

Los Angeles District
U. S. Army Corps of Engineers

Coasts and Ports 2015 Auckland, New Zealand September 18, 2015

US Army Corps of Engineers
BUILDING STRONG®

Outline

- Introduction
- Data
- Method
- Results
- Summary

Dana Point Harbor and Present Issues

- Sediment seepage increase through the permeable West Breakwater
- Sediment built up inside the breakwater ~ 3,800 to 4,600 m³/year
- Dredge required in last two decades (1989, 1999, 2009)
- Needs for circulation and water quality improvement at Harbor

Bathymetry Survey

- Conducted during October 20–24, 2009
- Side-scan sonar: data below the water surface
- LiDAR: data above the water surface

 East and west breakwater extending out approximately 46 m offshore on

the ocean side

 Main navigation and primary access channels on the harbor side within the marina basins

ADCP Measurements

Two ADCPs deployed by Noble Consultants

Inside and outside the harbor

Current, water level and directional waves measured

Inside: Depth 7.8 m

11/20/2009-01/15/2010

Outside: Depth 8.4 m

11/20/2009-11/26/2009

CMS-Flow Wind Forcing

Wind at NOAA's La Jolla Gage, 9410230, and an offshore buoy, 46047

Surface boundary forcing for CMS-Flow

Sea breeze signal

Wind direction:

0° North, 90° East, etc. from which wind blowing

CMS Wave Forcing

Wave Parameters (CDIP096)

Mean Significant Wave Height: 0.78 m

Mean Wave Period: 13.5 sec

Mean Wave Direction: 255.2°

CMS-Flow Water Level Forcing

Data: Water surface elevation (WSE) at NOAA's Los Angeles Gage, 9410660

Method: Apply WSE along the open boundary

Tide (Los Angeles)

Mixed, predominately semi-diurnal tide Mean tide range (MHW – MLW): 1.2 m Calibration period: 18 Nov – 17 Dec 2009

Coastal Modeling System (CMS)

- Developed since 1997 by the Coastal Inlets Research Program (CIRP), U.S. Army Corps of Engineers
- An integrated suite of numerical models for simulating water surface elevation, current, waves, sediment transport, and morphology change for coastal applications
- Consists of a hydrodynamic model, CMS-Flow, and a spectral wave model, CMS-Wave
- Coupled and operated within the Surface-water Modeling System (SMS), a GUI.

Implementation of Breakwater Permeability

CMS-Flow:

Hydraulic Conductivity Void Factor (Porosity) Crest Elevation

CMS-Wave:

Porous Breakwater Wave Transmission (Porous Section below MWL)

CMS-Wave Permeable Breakwater

Wave Transmission Calculation (D'Angremond et al. 1996):

$$K_t = 0.64 \left(\frac{B}{H_i}\right)^{-0.31} \left[1 - \exp(-\frac{\xi}{2})\right] - 0.4 \frac{h_c}{H_i}$$
, for $B < 10 H_i$

 ξ : the Iribarren Parameter – the fore-slope of the breakwater divided by the square-root of the incident wave steepness

CMS-Flow Permeable Breakwater

Equation for laminar and turbulent resistance in porous media (Forchheimer, 1901):

$$I = au + bu^2$$

I: Hydraulic Gradient

u: Flow Speed

a, b: Resistance Coefficients

Sidiropoulou et al. (2007)

 $a = 0.003333 D^{-1.500403} n^{0.060350}$ $b = 0.194325 D^{-1.265175} n^{-1.141417}$

D: Rock Diameter

n: Void Factor

CMS Grid and Settings

Calculation and Validation

Calculation and Validation

Experiment	Wave height (m)	Foreslope	Crest width (m)	Crest freeboard (m)
R1F1C2	0.30	1V:2H	1.825	0.07
R1F2C2	0.30	1V:2H	1.825	0.27

Calculation and Validation

Wave height comparison

Experiment	Scenario -	Wave Height (m)					
		WG 3	WG 4	WG 5	WG 6	WG 7	
R1F1C2	Lab	0.45	0.46	0.51	0.10	0.10	
	CMS	0.51	0.51	0.51	0.09	0.09	
R1F2C2	Lab	0.47	0.46	0.51	0.01	0.01	
	CMS	0.46	0.46	0.46	0.01	0.01	

Calculated Current and Waves

Depth-averaged current:

maximum current speed 50–70 cm/s on the ocean side 3–4 cm/s on the harbor side

Waves:

significant height of 0.6–0.7 m. reduce to 0.05–0.07 m on the harbor side

Calculated Sediment Transport

Calculated Sediment Transport

Sediment Transport Through the Structure:

2,600 m³/year

Based on dredged volumes, average sediment accumulation rate on the harbor side:

3,800-4,600 m³/year

Summary

- Incorporate calculations of flow and sediment seepage, and wave transmission through a porous structure into CMS to investigate wave, hydrodynamic conditions, and sediment transport.
- The system is tide- and wind-dominated on the harbor side and wave-dominated on the ocean side.
- The calibrated and validated model shows that 4-8% of currents flow and about 10% of wave heights transmits through the structure.
- The annual sediment transport rate obtained from the CMS simulations is reasonably comparable to the sand accumulation rate obtained from the dredging records.

Thank You!

Questions?