

Long-term Morphologic Modeling at Coastal Inlets

Alex Sánchez

Richard Styles, Mitchell Brown, Tanya Beck, and Honghai Li

Coastal and Hydraulics Laboratory US Army Corps of Engineers

US Army Corps of Engineers_®

Introduction

Motivation:

▶ Prediction of morphodynamic processes at coastal inlets is challenging but crucial for coastal sediment management, navigation, channel maintenance, and breach erosion protection

Issue:

▶ Difficult to conduct meaningful long-term validation of morphodynamic models using real data

Approach:

➤ Simulate idealized inlets representing 9 US inlets and compare inlet evolution, characteristics, and features with the actual inlets empirical formulas (soft validation)

Introduction: Coastal Modeling System

- Hydrodynamics:
 - ▶ 2DH shallow-water equations
 - ► Fully implicit, finite-volume method
 - Non-uniform or Telescoping Cartesian grids
- Sediment Transport
 - ▶ Inline
 - Total-load non-equilibrium sediment transport
 - Erosion/deposition calculated using an adaptation approach
 - Several options for transport capacity formula
- Waves
 - Spectral wave-action balance equation
 - Implicit finite-difference method

Empirical Relations

- Cross-sectional area
 - ▶ O'brien (1931, 1969), Kraus (1998), Jarrrett (1976), van der Kreeke (1992), Powell et al. (2006), etc.

$$A = \mathbb{C}P^n$$

- Ebb tidal shoal volume
 - ► Walton and Adams (1976)

$$V_{ebb} = aP^b$$

► Hicks and Hume (1996)

$$V_{ebb} = 1.37 \times 10^{-3} P^{1.32} (\sin \theta)^{1.33}$$

$$A \rightarrow \text{Cross-sectional area}[m^2]$$

$$P \rightarrow \text{Tidal prism } [m^3]$$

$$C \rightarrow 8.83 \times 10^{-6} - 1.88 \times 10^{-3} [m^{-1}]$$

$$n \to 0.81 - 1.10$$
 [-]

$$a \rightarrow 5.3 \times 10^{-3} - 8.4 \times 10^{-3}$$

$$b \rightarrow 1.23$$

Inlet Stability Analysis

Inlet cross-sectional area A

Methods: Base Inlets

Methods: Idealized Inlets

Initial Morphology

- Equilibrium offshore profile based on measured bathymetry or median grain size
- ► Flat rectangular bay with dimensions based on actual inlet. Bay width and length adjusted to match actual bay area
- ► Flat rectangular inlet with width and area matching actual inlet
- Water levels
 - ► Tidal constituents
- Waves
 - Representative year based on mean sediment transport rate estimated from the CERC formula and nearby buoy data

Methods: Model Setup

- Flow
 - ► Manning's $n = 0.025 \text{ s/m}^{1/3}$
 - ▶ Coriolis
- Sediment transport
 - ► Single representative grain size
 - ► Morphologic acceleration factor = 10
- Time stepping
 - ► Flow and sediment: 15 min
 - Second-order scheme
 - ▶ Waves: 1 hr
- Grids
 - ► Same for flow, sediment, and waves
 - ▶ Resolution
 - At least 10 cells across inlet

John's Pass, FL

Waves

$$\rightarrow$$
 H_{mo} = 0.73 m

$$ightharpoonup$$
 T_p = 4 s

- Tidal range
 - ▶ 0.43 m
- Bay Dimensions
 - $Area = 4.5e7 \text{ m}^2$
 - ► Length = 27 km
 - ► Width = 19 km
- Inlet
 - ► Area = 845 m²
 - ▶ Width = 300 m

Johns Pass, FL

BUILDIN 0.0

Results: Johns Pass, FL

Flood dominant

- Actual ebb shoal volume
 - ▶ 2.1 to 2.3 M m³

Results: Johns Pass, FL

Actual peak current velocity
~1.2 m/s

Tidal Prism: 2.1 x10⁷ m³

Results: Johns Pass, FL

- Inlet does not reach equilibrium
- Ebb shoal does reach equilibrium but is underestimated

Results: Grays Harbor

 $A_c = 31200 \text{ m}^2$

Initial bathymetry

Bay $A_b = 513 \text{ M m}^2$ W = 19 kmL = 27 km

Actual bathymetry

Results: Grays Harbor, WA

Grays Harbor, WA

Equilibrium crosssectional area of idealized inlet larger than initial condition

Inlet still evolving after 100 years

Results: Grays Harbor, WA

- Actual ebb shoal volume
 - ► 240 to 250 M m³

Galveston, TX

Initial bathymetry

Depth, m

66.7

44.4

22.2

0.0

Waves

 $H_{mo} = 1.2 \text{ m}$

 $T_p = 5 \text{ s}$

Tidal range

0.43 m

Inlet

 $A_c = 16800 \text{ m}^2$

W = 3 km

L = 7.5 km

Bay

 $A_b = 1600 \text{ M m}^2$

W = 50 km

L = 32 km

Results: Galveston, TX

Results: Galveston, TX

Van Rijn

BUILDING STRONG®

Discussion and Conclusions

- Rate of bed change within the first 10-20 years is rapid and then slows
- None of the simulated inlets reached a full dynamic equilibrium after 100 years suggesting that either:
 - 1. The adaptation time of the simulated inlets is longer than 100 years
 - The inlets may never reach equilibrium due to missing or incorrect processes necessary for a stable equilibrium
- Significantly different results were obtained for different sediment transport capacity formula

Discussion and Conclusions

- Model computational times were reasonable
 - ▶ 100 years in about 7-10 days on a PC
- Model stability was very reasonable
- Cross-sectional areas were generally overpredicted
- Ebb and flood shoal morphologies and evolution were reasonable
- Comparison to the Escoffier curves were reasonable

Future Work

- Multiple grain sizes
 - ► Reduce channel erosion
 - Help reach dynamic equilibrium faster
- Dynamic roughness
 - ► Function of the bed gradation and bedforms
- Bank erosion feature
- Influence of jetties, asymmetric bays, and dredging
- Inlet infilling and closure?

Thank you Questions?

