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Introduction
 Motivation:

► Prediction of morphodynamic processes at coastal 
inlets is challenging but crucial for coastal sediment 
management, navigation, channel maintenance, and 
breach erosion protection

 Issue:
► Difficult to conduct meaningful long-term validation of 

morphodynamic models using real data
 Approach:

► Simulate idealized inlets representing 9 US inlets and 
compare inlet evolution, characteristics, and features 
with the actual inlets empirical formulas (soft 
validation)
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Introduction: 
Coastal Modeling System

 Hydrodynamics:
► 2DH shallow-water equations
► Fully implicit, finite-volume method
► Non-uniform or Telescoping Cartesian 

grids
 Sediment Transport

► Inline
► Total-load non-equilibrium sediment 

transport
► Erosion/deposition calculated using an 

adaptation approach
► Several options for transport capacity 

formula
 Waves

► Spectral wave-action balance equation
► Implicit finite-difference method
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 Cross-sectional area
► O’brien (1931, 1969), Kraus (1998), Jarrrett (1976), van 

der Kreeke (1992), Powell et al. (2006), etc.

 Ebb tidal shoal volume
► Walton and Adams (1976)

► Hicks and Hume (1996)
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Escoffier’s (1940) 
Inlet Stability Diagram
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Newburyport

Grays Harbor

Mouth of the 
Columbia River

East Pass

Oregon

Shinnecock

Galveston Bay

John’s Pass

Humboldt Bay
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Methods: Idealized Inlets
 Initial Morphology

► Equilibrium offshore profile based on measured 
bathymetry or median grain size

► Flat rectangular bay with dimensions based on 
actual inlet. Bay width and length adjusted to 
match actual bay area

► Flat rectangular inlet with width and area matching 
actual inlet

 Water levels
► Tidal constituents

 Waves
► Representative year based on mean sediment 

transport rate estimated from the CERC formula 
and nearby buoy data

Ocean
Bay

Inlet
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Methods: Model Setup
 Flow

► Manning’s n = 0.025 s/m1/3

► Coriolis

 Sediment transport
► Single representative grain size
► Morphologic acceleration factor = 10

 Time stepping
► Flow and sediment: 15 min

• Second-order scheme

► Waves: 1 hr

 Grids
► Same for flow, sediment, and waves
► Resolution

• At least 10 cells across inlet
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John’s Pass, FL

 Waves
► Hmo = 0.73 m
► Tp = 4 s

 Tidal range
► 0.43 m

 Bay Dimensions
► Area = 4.5e7 m2

► Length = 27 km
► Width = 19 km

 Inlet
► Area = 845 m2

► Width = 300 m
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Johns Pass, FL

Click Here to Play Animation
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Flood dominant

 Actual ebb shoal volume
► 2.1 to 2.3 M m3 
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Results: Johns Pass, FL

Actual peak 
current 
velocity

~1.2 m/s

Tidal Prism: 
2.1 x107 m3
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Results: Johns Pass, FL

 Inlet does not reach 
equilibrium

 Ebb shoal does reach 
equilibrium but is 
underestimated
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Results: Grays Harbor
Initial 
bathymetry

Actual bathymetry

Waves
Hmo = 2 m
Tp = 10 s

Tidal range
2.25 m

Inlet
Ac = 31200 m2

Bay
Ab = 513 M m2

W = 19 km
L = 27 km
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Results: Grays Harbor, WA

Click Here to Play Animation
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Grays Harbor, WA

Equilibrium cross-
sectional area of 
idealized inlet larger 
than initial condition

Inlet still evolving 
after 100 years
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Results: Grays Harbor, WA
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 Actual ebb shoal volume
► 240 to 250 M m3
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Galveston, TX

Initial bathymetry

Inlet
Ac = 16800 m2

W = 3 km
L = 7.5 km

Bay
Ab = 1600 M m2

W = 50 km
L = 32 km

Waves
Hmo = 1.2 m
Tp = 5 s

Tidal range
0.43 m
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Results: Galveston, TX
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Results: Galveston, TX
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Discussion and Conclusions

 Rate of bed change within the first 10-20 years 
is rapid and then slows 

 None of the simulated inlets reached a full 
dynamic equilibrium after 100 years suggesting 
that either:
1. The adaptation time of the simulated inlets is longer 

than 100 years 
2. The inlets may never reach equilibrium due to 

missing or incorrect processes necessary for a 
stable equilibrium

 Significantly different results were obtained for 
different sediment transport capacity formula
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Discussion and Conclusions

 Model computational times were reasonable
► 100 years in about 7-10 days on a PC

 Model stability was very reasonable 
 Cross-sectional areas were generally over-

predicted
 Ebb and flood shoal morphologies and evolution 

were reasonable
 Comparison to the Escoffier curves were 

reasonable



BUILDING STRONG®

Coastal and 
Hydraulics 
Laboratory

Coastal and 
Hydraulics 
Laboratory

Coastal and 
Hydraulics 
Laboratory

Future Work

 Multiple grain sizes
► Reduce channel erosion
► Help reach dynamic equilibrium 

faster
 Dynamic roughness

► Function of the bed gradation and 
bedforms

 Bank erosion feature
 Influence of jetties, asymmetric 

bays, and dredging
 Inlet infilling and closure?
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Thank you

Questions?


