Calculated and Mapped Depths of Closure Along the U.S. Coastlines Using WIS Hindcast

Data

Katherine E. Brutsché, PhD

Cheryl E. Pollock, PE

James Rosati, III

Brian C. McFall, PhD, PE

USACE ERDC-CHL

October 15, 2015

US Army Corps of Engineers ®

ERDC

Engineer Research and

Development Center

Introduction

- A tool is being developed to allow user to view mapped Depths of Closure across the U.S. coastlines
- Illustrates the seaward extent of sediment transport
- Tool will aid coastal planners and engineers in designing coastal projects

Depth of Closure

 Depth of Closure (DOC) is an important concept used in coastal engineering

Depth of Closure

Hallermeier (1978, 1981)

- The seaward limit of the shoal zone, where wave shoaling is the dominant process and bed agitation remains relatively moderate
- Birkemeier (1985) later revised

Depth of Closure

- Applied often in coastal sciences
- Web Application was initially intended for use in nearshore placement projects

Existing Methods

Hallermeier (1978,1981)

Inner limit

$$d_{l} = 2.28H_{e} - 68.5(\frac{H_{e}^{2}}{gT_{e}^{2}})$$

$$H_{e} = \overline{H}_{s} + 5.6\sigma_{s}$$

$$d_l = 2\overline{H}_S + 11\sigma_S$$

Outer Limit

$$d_i = (\overline{H}_S - 0.3\sigma_S) \, \overline{T}_S (\frac{g}{5000D})^{0.5}$$

Birkemeier (1985)

$$d_l = 1.75H_e - 57.9(\frac{H_e^2}{gT_e^2})$$

$$d_l = 1.57H_e$$

Methods

- WIS hindcast wave data were downloaded to calculate DOC
- Snell's Law was used to shoal waves into certain depth based Coastline Depth coast line

 Coastline Depth coast line
 Depth line
 15.2 m [50 ft]

	Atlantic	12.2 m [40 ft]
Calculated wa	Gulf	9.1 m [30 ft]
► H _e , H _s , H _{mear}	Great Lakes	9.1 m [30 ft]

- Calculated Hallermeier (1978, 1981) Inner,
 Outer (using 0.15 mm, 0.2 mm, 0.3 mm)
- Calculated Birkemeier (1985), simplified

Methods

- DOCs calculated for each year on record as well as entire record
- Created profiles extending from WIS station to shoreline and found intersections with contours
- Placed DOCs along the profiles

Overall Trends

Regional trends based on 20 year dataset

Calculated Zones

- Yearly calculated DOCs
- Project specific zones of depth of closure
- Allows the user to view minimum, maximum, and mode of DOCs
- Determine yearly trends

Wave Statistics

- Entire data set for WIS Station 73002
- Most frequent waves are in the 4 m range

Wave Statistics

- Entire data set for all stations in the Gulf of Mexico
- Most frequent waves are in 2-4 m range

Wave Statistics

- Determine trends
 using total He data
 across entire Gulf of
 Mexico
- Most frequent waves are in 2-4.5 m range

Static Database

http://cirp.usace.army.mil/products/depth-of-closure.php

Static Map

Future Phases

- Interactive map
 - ▶ User will choose grain size, more specific location
- DOC contouring
- Wave statistics histograms
- Add Sediment Mobility Tool for nearshore berm siting (McFall)
 - ➤ Scoping level tool that describes frequency of sediment mobility and general transport direction based on waves, grain size, and depth of placement

Summary

http://cirp.usace.army.mil/products/depth-ofclosure.php

https://geoplatform.usace.army.mil/home/webmap/viewer.html

