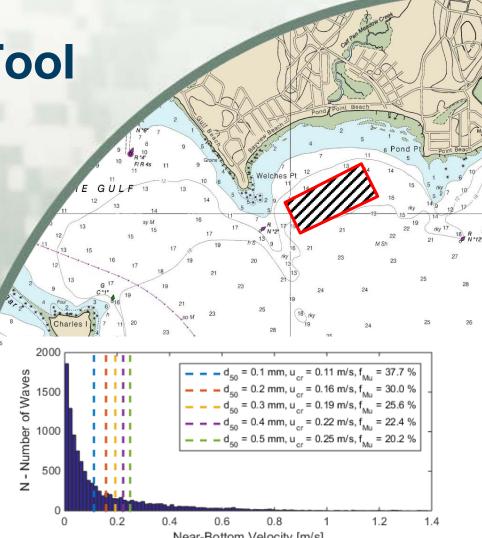
Coastal Working Group

ERDC Engineer Research and Development Center


Sediment Mobility Tool & Its Application

Brian C. McFall, PhD, PE Katherine E. Brutsché, PhD

10 September 2015

US Army Corps of Engineers.

- What is it?
- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

What is it?

- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

What is it?

- Tool Predicts:
 - Frequency of Sediment Mobility
 - Onshore/Offshore Migration
 - Axis of Wave Dominated Transport
- Single Depth or Range of Depths
- Matlab Script to Automate Process
- Applied to WIS, NACCS, or Other Wave Gauge Data

What is it?

- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

Why is it helpful?

- Ideal for:
 - Preliminary Siting of Nearshore Placement Areas
 - Small Projects That Don't Warrant a Full Numerical Model
- Answers:
 - ► Will the Sediment Move?
 - ► Where Is the Sediment Likely To Go?

- What is it?
- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

How does it work?

- Frequency of Mobility:
 - ► Linear Wave Theory (Bed Shear Stress)

$$\tau_{cr} = \theta_{cr} g \left(\rho_s - \rho\right) d_{50} \qquad \tau_m = \tau_c \left[1 + 1.2 \left(\frac{\tau_w}{\tau_c + \tau_w} \right)^{3/2} \right]$$
$$\tau_{max} = \left[(\tau_m + \tau_w \cos \phi)^2 + (\tau_w \sin \phi)^2 \right]^{1/2}$$

г

► Nonlinear Stream Function Wave Theory (Near-bed Velocity) $u_{cr} = \sqrt{8 g \gamma d_{50}}$ $d_{50} \leq 2.0 mm$

$$u_{\max crest} = \left(\frac{H}{T}\right) \left(\frac{h}{L_o}\right)^{-0.579} \exp\left[0.289 - 0.491 \left(\frac{H}{h}\right) - 2.97 \left(\frac{h}{L_o}\right)\right]$$
ERDC

Innovative solutions for a safer, better world

2 27

How Does It Work?

- Onshore/Offshore Migration:
 - Dean's Number

$$D = \frac{H_0}{\omega T} > 7.2, \text{ Offshore Migration}$$

< 7.2, Onshore Migration (Larson & Kraus, 1992)

- Axis of Wave Dominated Transport:
 - ► Wave Rose

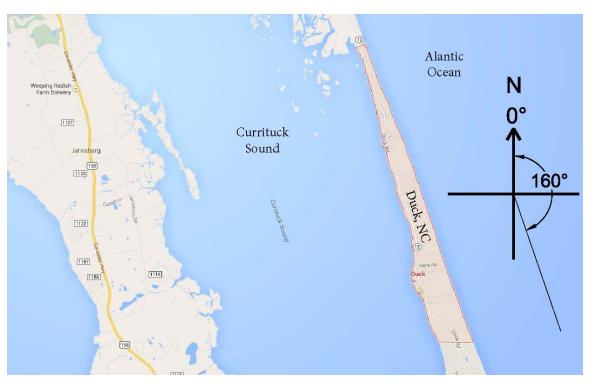
- What is it?
- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

Where Has It Been Applied?

- Been Applied To:
 - ► Duck, NC (WIS data)
 - ► Milford, CT (NACCS & U.Conn. Buoy)
- Will be Applied Next FY:
 - ► Vilano Beach, FL
 - Amelia Island, FL
 - Burns Waterway Harbor, IN
 - ► Illinois Beach State Park, IL

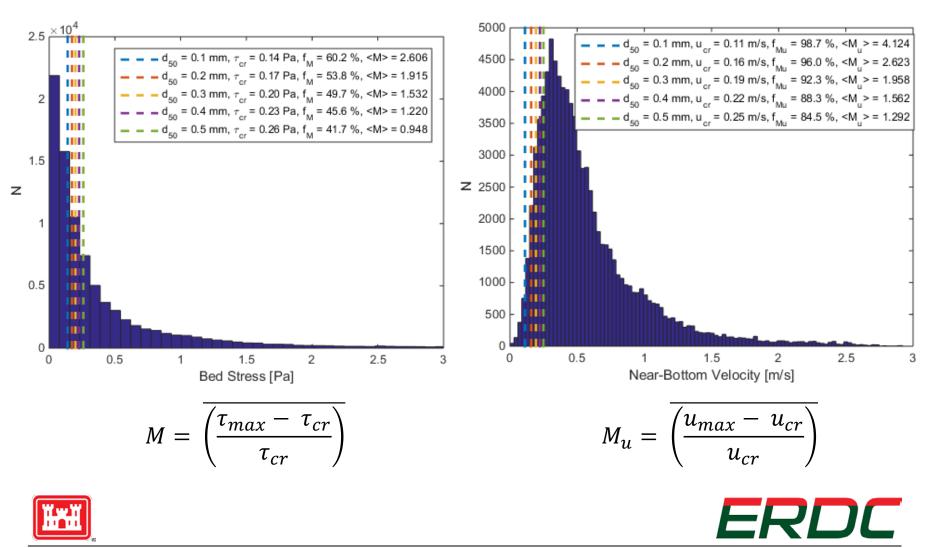
How Is It Applied?

User Defines:

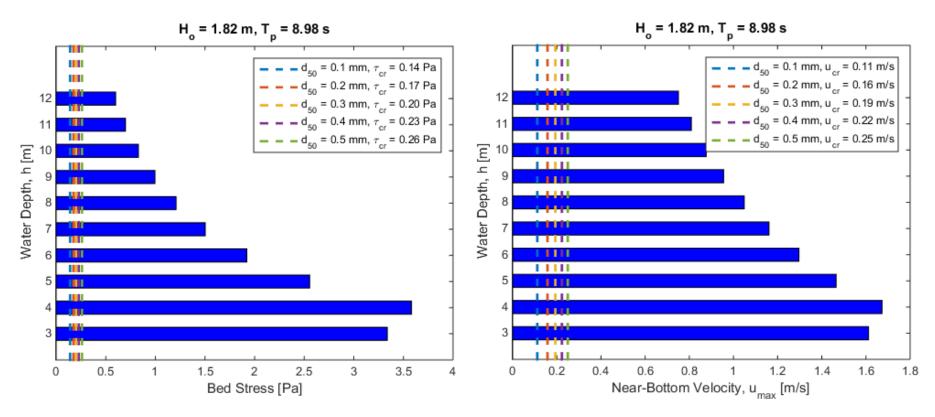

- ► Data Source
- Offshore Water Depth of Data Source
- Shoreline Orientation
- Median Grain Size
- Current Velocity 1 m above the Bed

Site 1: Duck, NC

- *h* = 8 m
- WIS Station 63218
- 0.1≤ *d*₅₀≤0.5 mm



BUILDING STRONG_®

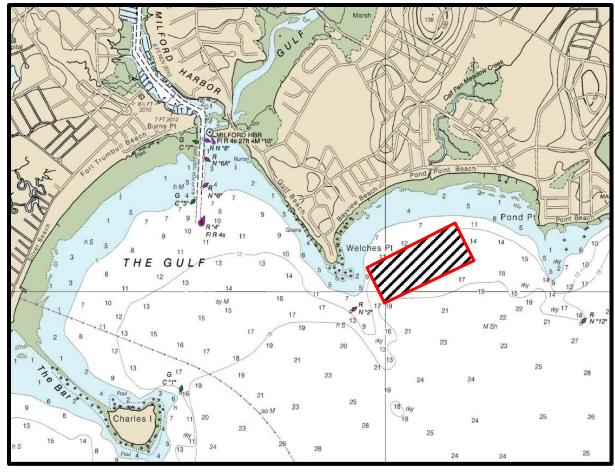

Site 1: Duck, NC

BUILDING STRONG_®

Innovative solutions for a safer, better world

Site 1: Duck, NC

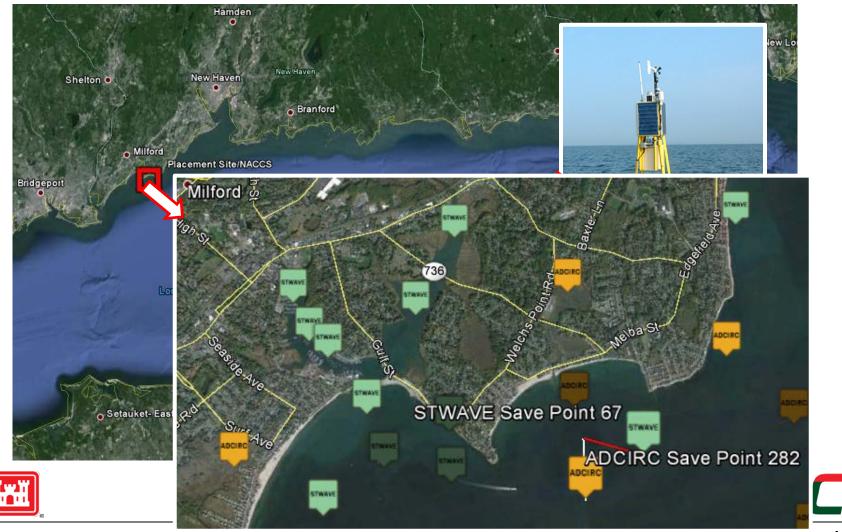
Significant Wave Height and Period



BUILDING STRONG_®

Site 2: Milford, CT

- Milford, CT
- 20,000 cy
- *d₅₀*=0.21 mm
- 0.1 ≤ *d* ≤0.5mm



ERDC

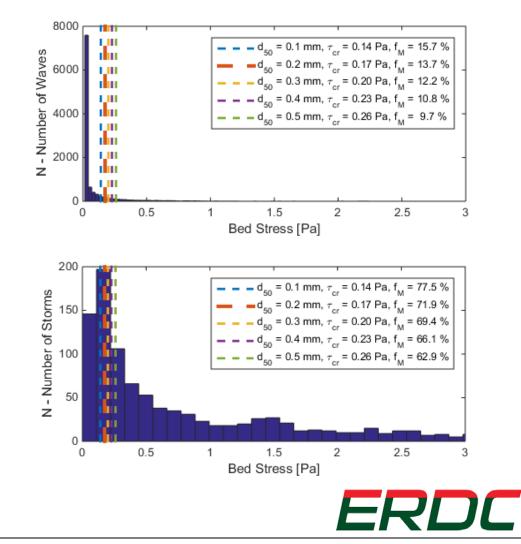
Innovative solutions for a safer, better world

BUILDING STRONG_®

Wave & Current Info

BUILDING STRONG_®

Innovative solutions for a safer, better world


Sed. Mobility

$$d_{50} = 0.21mm$$

Typical Waves: $f_M = 13.6\%$

Storm Waves:

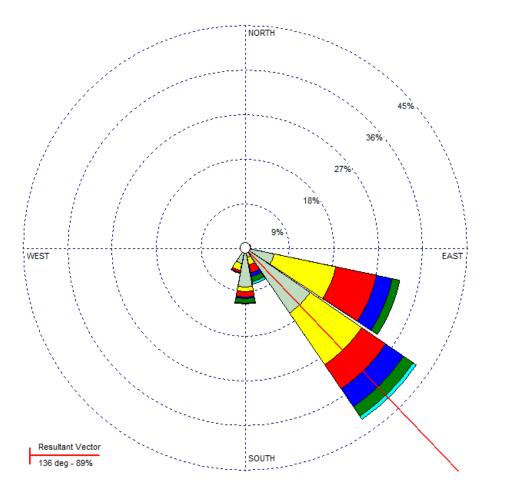
 $f_M = 71.4\%$

BUILDING STRONG®

Innovative solutions for a safer, better world

Sed. Migration Direction

Dean's Number


$$D = \frac{H_0}{\omega T}$$
 > 7.2, Offshore Migration

< 7.2, Onshore Migration (Larson & Kraus, 1992)

	Typical Waves	Storm Events
d (mm)	Predicted Sediment	Predicted Sediment
	Migration	Migration
0.1	83% Offshore	97% Offshore
0.2	60% Onshore	52% Offshore
0.21	63% Onshore	52% Onshore
0.3	84% Onshore	74% Onshore
0.4	96% Onshore	91% Onshore
0.5	99% Onshore	99% Onshore
		ER

Storm Wave Direction

- Storm waves
- Resultant: 136°
- Accretion
 Towards
 Northwest

Hmo (m)

0.7-1.1 0.4-0.7 0.1-0.4

Innovative solutions for a safer, better world

BUILDING STRONG®

- What is it?
- Why is it helpful?
- How does it work?
- How is it applied?
- How can I use it?
- Summary

How Can I Use It?

- Currently:
 - Matlab Script
 - ► Run the Tool & Letter Report
 - Contract with ERDC (\$10k)
 - DOTS Request (http://el.erdc.usace.army.mil/dots/)
- Future:
 - Working with OPJ to create a webtool

Summary

- What is it?
 - ► Tool Predicts:
 - Frequency of mobility
 - On/Offshore migration direction
 - Axis of wave dominated transport
- Why is it helpful?
 - ► Answers:
 - Will the Sediment Move?
 - Where Is the Sediment Likely To Go?

Summary

- How does it work?
 - Linear and Nonlinear Wave Theories
 - ► Critical Dean Number (Larson & Kraus, 1992)
- How can I use it?
 - ► Run Tool & Letter Report
 - Contract with ERDC
 - DOTS Request (http://el.erdc.usace.army.mil/dots/)
 - ► Future: Webtool

Conclusion

Powerful preliminary tool to make educated decisions with little data.

BUILDING STRONG_®

Innovative solutions for a safer, better world

Thank you!

Brian McFall Brian.C.McFall@usace.army.mil (601) 634-2056

BUILDING STRONG_®

Innovative solutions for a safer, better world