

SMS

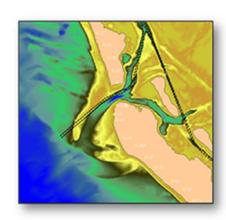
CIRP MISSION

- Reduce O&M costs at coastal navigation projects
- Develop tools to support O&M practice
- Transfer technology and products

Jeff McKee, HQ Navigation Business Line Manager Jeff Lillycrop, Technical Director Eddie Wiggins, Associate Technical Director

Point of Contact:

Julie Rosati Program Manager, CIRP Julie.D.Rosati@usace.army.mil 251-694-3719, 601-634-3005

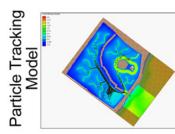

Visit the CIRP Website: http://cirp.usace.army.mil

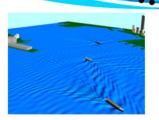
CIRP Wiki:

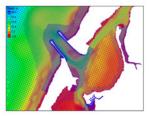
http://cirp.usace.army.mil/wiki/Main

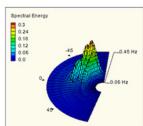
CIRP

Numerical Model Tools and Capabilities

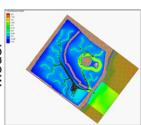





U.S. Army Engineer Research and Development Center Coastal and Hydraulics Laboratory



BUILDING STRONG®



Coastal Inlets Research Program BUILDING STRONG®

numerical model tools and capabilities

Model Bouss-	What does it do? • High-fidelity, advanced, most	What are typical time scales and platforms?	Where has it been validated? • 15+ sites including	What are advantages?	What are limitations?	Where do I find info?	Who is the main POC?
1D/2D Wave model for navigation, port/harbor, flood & risk assessment; decision- support	Advanced, most accurate model for short and long waves 1-10 km regions Wave-structure-ship interactions, ship wake Surf & swash zone waves (rip currents, runup/overtopping, infra-gravity & tsunamis)	with rectangular grids in projects Can be used with one grid or grids for each project alternative Runs on PC, Linux, and HPCs (supercomputers) Hours to a week	coastal inlets, harbors, ports, flood control structures, and reefs	based; no empiricism Only DoD model for nonlinear shallow-water waves Ideal for ports/ harbors/marinas, & design/rehab of infrastructure	Need experitise to run Time-consuming Not necessary for all coastal problems No winds No unstructured-grid capability	• CIRP, NavSys, FDR, SWIMS websites • Knowledge Hub (KH)	Demirbilek
CMS-Flow 2D, depth- integrated	Tidal flow, wave-induced currents, sediment transport, and morphology change Integrated with CMS-Wave	Runs on multi-core desktop machines Typical simulation lengths of several months to years	20+ sites including coastal inlets, estuaries and beaches	Integrated system Robust and fast Flexible Cartesian meshes SMS interface User-friendly	Depth-integrated No boundary fitting capability No swash zone or cross-shore sed transport (yet)		Dr. Honghai Li, Dr. Chris Massey
CMS-Wave 2D, depth- integrated	Full-plane spectral wave generation-transformation Integrated with CMS-Flow Designed for inlet applications	Runs on PC in SMS, DOS Typical simulation lengths of several months to years	20+ sites: US East and West coasts, Gulf of Mexico 5+ laboratory and theoretical studies	Efficient SMS interface Theoretical-based wave diffraction, reflection Includes structure-wave interactions	Empirical wave breaking formula Structured grid	• CIRP website • KH	Dr. Lihwa Lin, Dr. Zeki Demirbilek
GenCade 1D regional beach and inlet shoal evolution model	Can represent coastal structures, beach fills, dredging and placement Includes Inlet Reservoir Model* to account for inlet shoal and channel evolution *Also available in PC version	Runs on PC in SMS Years to multiple decades Wave conditions representing 1-10 years	Basic V&V completed 5+ sites: Onslow Bay, NC; Sargent Beach, TX; St. Johns County, FL; Point Lookout, NY	User-friendly; easy to learn Conceptual model = fast grid creation and set up Integrates cumulative projects Fast	Empirically-based sand transport Explicit solution scheme (solution stability) Constrained by standard 1-line model assumptions	• CIRP website	Ashley Frey
PTM Particle Tracking Model, for 2D/3D hydro models	Joint DOER-CIRP product Coupled to CMS by CIRP Predicts particle transport pathways and fate SMS based interface	Accepts input from CMS and other hydro and wave models Runs on desktop PCs and HPCs (super-computers) Seconds to hours	Basic V&V completed Detailed V&V studies in progress	Fast and efficient Flexible; not tied to any hydro or wave model SMS interface connects to flow and wave models	Not designed for sediment transport calcs Some empirical formulas Too many particles can slow runtimes	CIRP, DOER websites	Drs. Tahirih Lackey (DOER), Honghai Li (CIRP), Zeki Demirbilek (CIRP & DOER)