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Foreword

The fire service exists today in an environment constantly inundated
with data, but data are often of little use in the everyday, real world in which
first responders live and work. This is no accident. By itself, data are of little
use to anyone. Information, on the other hand, is very useful indeed.
What’s the difference? At the recent Olympic games in Korea, a stadium
full of people held up individual, multi-colored squares of cardboard to
form a giant image or text which could only be recognized from a distance.
This is a good analogy for data and information. The individual squares of
cardboard are like data They are very numerous and they all look pretty
much alike taken by themselves. The big image formed from the organiza-
tion of thousands of those cards is like information. It is what can be built
from many pieces of data. Information then is an organization of data that
makes a point about something.

The fire service of today is changing. More and more, it is not fighting
tires as much as it is doing EMS, hazmat, inspections, investigations, pre-
vention, and other non-traditional but important tasks which are vital to the
community. Balancing limited resources and justifying daily operations and
finances in the face of tough economic times is a scenario that every depart-
ment can relate to. How well a department can do this depends mainly on
how well it uses information.

Turning data into information is neither simple nor easy. It requires
some knowledge of the tools and techniques used for this purpose.
Historically, the fire service has had few of these tools at its disposal and
none of them has been designed with the fire service in mind. This book
changes that. It was designed solely for the use of the fire service. The
examples and problems were developed from fire data collected from
departments all over the nation. This book was also designed to be modular
in form. Many departments’ information needs can be met by studying only
the first few chapters. Others with a more statistical bent may want to dig
deeper. The point is, it’s up to the reader to decide. This book is just anoth-
er tool, like a pumper or a ladder, to help do the job.

The United States Fire Administration
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Chapter 1
INTRODUCTION

1

This handbook has a primary objective to describe statistical techniques
for analyzing data typically collected in fire departments. Motivation for the
handbook comes from the belief that fire departments collect an immense
amount of data, but do very little with the data. Think for a minute about
the reports you complete on incidents. You probably document the type of
situation found, action taken, time of alarm, time of arrival, time completed,
number of engines responding, number of personnel responding, and many
other items. For fires, the list grows even longer to include area of fire ori-
gin, form of heat of ignition, type of material involved, and other related
facts. If civilian or fire fighter injuries occur, you complete other reports.

A compelling reason for these reports is a legal requirement for docu-
menting incidents. Victims, insurance companies, lawyers, and many others
want copies of reports. Indeed, fire departments maintain files for retrieval
of individual reports.

The reports can, however, provide a more beneficial service to fire
departments by providing insight into the nature of fires and injuries in your
jurisdiction. Basic information is probably already available. Someone usual-
ly tracks the number of fires handled last year, the number of fire-related
injuries, and the number of fire deaths. It is another story, however, if you
ask more probing questions:

How many fires took place on Sundays, Mondays, etc.?
How many fires took place each hour of the day or month of the year?
What was the average response t ime to fires? How much
did response times vary by fire station areas?
What was the average time spent at the fire scene and how
much did the average vary by type of fire?

In a nutshell, this handbook describes statistical techniques to turn data
into information for answering these questions and many others. The tech-
niques range from simple to complex. For example, the next two chapters
describe how to develop charts to provide more effective presentations about
fire problems. These charts may be beneficial to city or county officials on
the activities and needs of your fire department. Chapter 4 tells how to com-
pute simple statistics, such as means, medians, and modes. In Chapter 5, we
discuss tables and how to calculate different percentages from tables. Other
chapters present more sophisticated techniques, such as correlation, regres-
sion, loglinear analysis, and queueing theory. These are all techniques which
can tell you more about the nature of fires and injuries.

One way to become more comfortable with analysis is to work with real



2 data. For this handbook, data were obtained from fire departments in sevcr-
al metropolitan areas, including Seattle, Washington; Chicago, Illinois;
Detroit, Michigan; Jacksonville, Florida; Los Angeles County, California;
Monroe County, New York; Boston, Massachusetts; and Dallas, ‘Texas.
Data on medical emergencies were obtained from the fire department in
Prince William County, Virginia, which has completed detailed reports on
its responses since 1989. By working with real data, it should be easier for
you to understand different techniques.

Why Data Analysis?

There still may be a question in your mind as to why we should go to all
this trouble to analyze data. Many decisions do not require analysis, such as
decisions on personnel, grievance proceedings, promotions, and even decisions
on how to handle a fire. It is certainly true that fire departments can continue
to operate in the same way they always have without doing a lot of analysis.

On the other hand, we can give three good reasons for looking more
closely at your data: (I) to gain insights into fire problems, (2) to improve
resource allocation for combatting fires, and (3) to identify training needs.
Probably the most compelling is that analysis gives insight into your fire
problems which, in turn, can impact operations in your department. You may
find, for example, that the average time to fires in an area is 6 minutes, com-
pared to less than 2 minutes overall. This result may assist you in requests for
more equipment, more personnel, or justifing another fire station.

As an example of improved resource allocation, statistical analysis of
emergency medical calls can determine the impact of providing another
paramedic unit in the field. Increasing the number of EMS units from 4
units to 5 units may, for example, decrease average response times from 5
minutes to 3 minutes-a change that may save lives. Chapter 9 describes a
queueing model for conducting this type of analysis.

Another reason for analysis is to identify training  needs. Most training
on fire fighting is based on a curriculum which has been in place for many
years. It makes sense to see how training matches characteristics of fires in
your own jurisdiction. This is not to sap that other training is unimportant,
because an exception can always occur. However, knowing more about your
fires can improve your training.

In summary, this handbook will help you deal with the volume of data
collected on fire incidents. By studying the techniques presented in this
handbook, you should be able to improve your skills in collecting data, ana-
lyzing data, and presenting results.

The nest section of this chapter describes the reporting system that
serves as the basis for data collection on fires and casualties. ‘The impor-
tance of quality control is also discussed.



National Fire Incident
Reporting System

The National Fire Incident Reporting System (NFIRS) began over 15
years ago with the aim of collecting and analyzing data on fires from depart-
ments across the country. More than 13,000 fire departments now report
their fires and injuries to NFIRS.

Exhibit 1-1 shows the basic fire incident report from NFIRS. Your
department may use this incident report, or you may have a modified ver-
sion of it. In either case, the data collected is the same and covers all the ele-
ments of fire incidents. Lines A through I are completed on all incidents to
which a fire department responds. These lines include incident number,
date, day of week, alarm time, arrival time, time in service, type of situation
found, and type of action taken.

Exhibit 1-1 Basic Fire Incident Report-NFIRS

3



4 Lines J through M are completed on all incidents which arc, in fact,
fires. They include type of complex, mobile property type, area of fire ori-
gin, equipment involved in ignition, from of heat of ignition, dollar loss,
and others. Finally, Lines N through R are completed on all structure fires.
They include number of stories, construction type, extent of flame damage,
detector performance, sprinkler performance, type of material generating
the most smoke, avenue of smoke travel, and form of material generating
the most smoke. The last two lines (Lines S and T) are for mobile property
and equipment involved.

Most items are recorded as numeric codes with the NFPA 901 Codes1

serving as the coding source. For example, Exhibit 1-2 shows the codes for
extent of flame damage (Line 0) of the incident form.

Exhibit 1-2 Extent of Flame Damage

Categories for Extent of Flame Damage

Confined to Object of Origin
Confined to Part of Room or Area of Origin
Confined to Room of Origin
Confined to Fire-rated Compartment of Origin
Confined to Floor of Origin
Confined to Structure of Origin
Extended Beyond Structure of Origin
Undetermined/Not Reported

Code

1
2
3
4
5
6
7
0

The code numbers have no meaning by themselves, hut instead serve
as a way of getting data into a computer in a compact and logical form. In
Chaptcr 5, we will discuss these codes further and present how to develop
and interpret tables based on them.

Exhibit  1-3 is the civilian casualty report which is part of NFIRS. Each
form allows for recording three casualties. Variables collected for a casualty
include incident number, date, day of week, alarm time, casualty name, age,
time of injury, sex, severity, familiarity with structure, location at ignition,
and condition before injury.

The last form in NFIRS is for fire tighter casualties (Exhibit 1-4). Fire
departments complete this form whenever an injury to a fire fighter occurs.
This form includes the fire fighter’s age, injury Severity, part of body
injured, activity prior to injury, cause of injury, and medical care provided.
In addition, it contains a section on protective equipment for the fire fighter
(coat, trousers, boots/shoes, helmet, face protection, breathing apparatus,
and gloves).

1. For more infortmatlon on these codes. see NFPA 901, Uniform Coding for Fire Protection 1976 (National Fire

Protection Association. Batterymarch Park. Quincy. Massachusetts. 02269).



Exhibit 1-3 Civilian Casualty Report
5

The state fire marshall’s office in each NFIRS state has responsibility
for collecting data from its tire departments. They usually collect data in
two ways. One way is that fire departments without any data processing
capability send their written reports to the fire marshall’s office. The office
then takes responsibility for keying reports into a computer system. Local
departments with data processing capabilities may send their data on micro-
computer diskettes or magnetic tapes. In either case, the state fire marshall’s
offtce merges all reports into a database.

The state offices have another important responsibility. They create
tapes of all fire records (incidents and casualties) and send the tapes on a
quarterly basis to the Federal Emergency Management Agency in
Washington, D.C. From these tapes, a national database on fires is
created each year. The national database for 1990, for example, contains



6 over 941,000 fire incident records and over 18,000 civilian casualty
records.

Exhibit 1-4 Fire Service Casualty Report

From a national perspective, this database is vitally important. It allows
us to create a picture of different types of fires across the country. The
national database has “strength in numbers.” Your  department, for example,
may have only a few fires, if any, where curtains were ignited (Code 36 for
form of material ignited). Nationwide, however, there were 2,395 fires of
this type during 1990. ‘These fires can be analyzed to draw conclusions
about their causes, extent of damages, dollar Iosses, and other factors.

Data Entry and Data Quality

An assumption throughout the handbook is t-hat data on tire incidents
and casualties have been entered into a computer and are available for



analysis. While manual analysis is certainly possible, it is usually avoided 7

because the tedious calculations quickly overwhelm our ability to perform
analysis in any meaningful manner. The advantage of a computer is that it
processes data quickly and accurately.

An immediate problem is how to get data into a computer in the first
place. If you are in a large department, this may not be a problem because
you probably have a data processing section to enter data. The section may
be within the fire department or somewhere else in your government struc-
ture. In either case, this section enters NFIRS reports into a computer.
Smaller departments usually depend on microcomputers for data collection
and analysis. In fact, there are several microcomputer programs specifically
for entering incident and casualty data. These programs are not expensive,
ranging from $200 to $600.

One word of caution, however, is that any program you purchase
should contain a good error checking routine. Data quality is always a prob-
lem, and the old adage “Garbage In, Garbage Out” certainly applies to fire
department reports. The entry program should, for example, check each
item to make sure a valid code has been entered. Whenever the program
encounters an error, you should be given an opportunity to correct the
error before the data become part of a database. For example, alarm times
obviously cannot have hours greater than 23 and minutes greater than 59.
An entry program should check hours and minutes for valid numbers, and
allow you to make corrections immediately. Similarly, extent of flame dam-
age cannot be coded with an 8 or 9 because these numbers are undefined for
this variable (see Exhibit 1-2). Of course, alphabetic characters are also
invalid codes.

There is a difference, however, between an “invalid” code and a
“wrong” code. By an invalid code, we mean that the code is not on the
list of possible codes. A different situation occurs when you enter a “2”
instead of a “3” for Extent of Flame Damage. Then you have entered the
wrong code.

Wrong codes also occur when blanks or zeroes appear. NFIRS
allows blanks because the data are not immediately available and will
be determined later. Items particularly susceptible to blanks are the
following:

Mobile property type Complex
Number of alarms Level of origin
Number of fire service personnel Number of stories
Number of engines Detector performance
Number of aerials Sprinkler performance

A similar situation exists with coding zeroes. A zero usually indicates
that something either could not be determined or was not reported. Items



8 in which zeroes frequently occur are ignition factor, form of heat of igni-
tion, type of material ignited, and form of material ignited.

The problem with entering blanks and zeroes initially is that a fire
department may never have an opportunity to conduct a follow-up for the
correct codes. The blanks and zeroes become a permanent part of the com-
puter record.

While we are on the subject of quality, it is worth exploring the conse-
quences of errors. Obviously, invalid and wrong codes can result in wrong
conclusions. If only a few errors appear in the data, the impact on conclu-
sions may not be substantial. On the other hand, a review of national data
shows the number of fire personnel (Line 11) is blank in over 25 percent of
the fire records, and this amount of missing data has a substantial impact on
analysis of responses to fires.

As another illustration, consider what happens when errors appear in
alarm time and arrival time. One problem, which surfaced in virtually all
fire department data we analyzed, is an occasional reversal of two times.
Suppose the alarm time is 1023 and the arrival time is 1027, but the times
are reversed on the incident report so that the computer record shows 1027
as the alarm time and 1023 as the arrival time. If we reviewed this report
carefully, we would undoubtedly catch and correct this problem before
entry into the computer. However, most entry programs will accept these
two times without realizing the error. The adverse consequences can be
seen when the computer calculates response time, which is defined as the
elapsed time between alarm time and arrival time. The response time
should be 4 minutes (from 1023 to 1027), hut the reversal creates a situation
where the computer calculates an elapsed time of 1356 minutes!! It acts as if
the alarm time is 1027 of one day and the arrival time is 1023 of the
next day.

It takes only a few errors of this type to cause the calculation of average
response time to be completely erroneous. If one-half of one percent of
your records have reversed times, the overall average response time may be
increased from a correct value of 3 minutes to an erroneous average of 10
minutes.

The point is that fire departments need to establish data quality
procedures if they intend to take full advantage of their data. Data quality
procedures mean that blanks and zeroes should be checked to see if better
entries can be made. It also means that response times more than 15 min-
utes, for example. should be checked. On-scene times (between arrival time
and time in service) should be checked as well.

Quality control also means that reports arc checked for logical incon-
sistencies. A simple example is that Lines J through M should always
contain data if type of situation found is between 10 and 19 , indicating a fire



occurred. Similarly, Lines N through R should always contain data if type 9

of situation found is an 11, indicating a structure fire.

In summary, data entry programs should include code checking rou-
tines to identify errors in individual items in the report and errors reflected
through inconsistencies between items. Because entry programs cannot be
expected to find all errors, fire departments also need data quality proce-
dures to ensure that correct data are entered into their systems.

Statistical Packages for Computers

In this handbook, we present many different types of analysis. Chapter
3, for example, discusses several types of charts, including bar charts, col-
umn charts, histograms, line charts, and dot charts. Other chapters show
how to calculate statistics, such as means and variances, and how to do more
advanced calculations such as chi-square tests, correlations, and regression
coefficients.

In the future, you will want to depend on computers with analysis
programs to perform these calculations instead of doing them manually.
For a good understanding of analysis, you need to know what is involved,
but you should not continue in a manual mode. There are several good
statistical packages available for both microcomputers and mainframe
computers:

Exhibit 1-5

BMDP Statistical Software, Inc.
1440 Sepulveda Boulevard
Los Angeles, California 90025
213-479-7799

NCSS
329 North 1000 East
Kaysville, Utah 84037
801-546-0445

SAS Institute, Inc.
Software Sales Department
SAS Campus Drive
Gary, North Carolina 27513
919-677-8200

SPSS, Inc.
444 N. Michigan Avenue
Chicago, Illinois 60611
312-329-3500

Statistical Sciences, Inc.
1700 Westlake Avenue, N.
Suite 500
Seattle, Washington 98109
206-283-8802

STSC, Inc.
2115 East Jefferson St.
Rockville, Maryland 20852
301-984-5123

SYSTAT, Inc.
1800 Sherman Avenue
Evanston, Illinois 60201-3793
708-864-5670



10 If you intend to apply the techniques in this handbook, you should
acquire and learn how to use one of these packages.

Books on Data Analysis

You can also expand your knowledge of data analysis with several good
textbooks. The following are basic books intended for general audiences:

Misused Statistics: Straight Talk for Twisted Numbers by A. J. Jaffe and
Herbert F. Spirer (Marcel Dekker, Inc., New York. N.Y., 1987).

Say It With Figures by Hans Zeisel (Harper & Row Publishers, Inc., New
York, N.Y., 1985)

Say It With Charts by Gene Zelazny (Dow Jones-Irwin, Inc., Homewood,
Illinois, 1985)

There are numerous statistics books which provide more details on the
subjects of this handbook. These books assume more background in algebra
and statistics than we have assumed. A sampling follows:

Statistics: The Exploration and Analysis of Data by Jay Devore and Roxy
Peck (West Publishing Company, New York. N.Y., 1986)

Statistics by David Freedman, Robert Pisani, and Roger Purves
(W.W. Norton & Company, New York, N.Y., 1978)

Beginning Statistics with Data Analysis by Frederick Mosteller, Stephen E.
Fienberg, and Robert E.K. Rourke (Addison-Wesley Publishing Company,
Reading, Massachusetts, 1983)

Statistics: Concepts and Applications by William C. Schefler (The
Benjamin/Cummings Publishing Company, Inc., Menlo Park, California,
1988)

Statistics and Data Analysis: An Introduction by Andrew F. Siegel (John
Wiley & Sons, Inc., New York, N.Y., 1988)

One note of caution. All these books arc general rather than specific to
fire departments. However, concepts are clearly explained and can be
applied to analysis of fire data. They also give more details about analysis
techniques presented in this handbook.

How to Use This Handbook

Data analysis is not an easy process. It requires careful data collection,
attention to details, access to statistical programs, and skills on understsnd-
ing results. These are not impossible tasks, but requirc time and patience on



your part for success. Equally important, you need experience. In the long 11

run, you can only develop capabilities in analysis by applying techniques
from this handbook on actual data sets.

As a final note, one way of thinking about analysis is to consider a four-
stage process as illustrated in Exhibit 1-6.

Exhibit 1-6 Analysis Steps

Our ultimate objective is to make better and more informed decisions
in fire departments. Data have no utility in a vacuum, and fire reports stay
as data if we do nothing. Analysis turns duta into information. We move, for
example, from knowing individual alarm and arrival times to knowing aver-
age travel times. Our review of travel times increases our knowledge about
what is going on with fire incidents which results, in turn, in more informed
decisions within fire departments.

The remainder of this handbook is organized as follows. We devote
Chapters 2 and 3 to descriptions of different types of charts and graphs.
Chapter 2 describes histograms, which are probably the easiest and simplest
charts to understand. Chapter 3 expands to other types of charts, including
bar charts, column charts, pie charts, and dot charts. In Chapter 4, we intro-
duce several basic statistics, including means, medians, modes, and vari-
ances. Chapters 5 and 6 discuss analysis of tables, which is particularly
important since fire data often comes to us as summaries in the form
of tables.

Correlation and regression are the subjects of Chapters 7 and 8. In
both chapters, our aim is to present how to perform the calculations associ-
ated with these subjects and how to interpret results. Finally, Chapter 9
discusses a modeling technique called queuing theory, which is beneficial
for determining the number of emergency medical service units. The num-
her of units depend on the anticipated workload and on predetermined
objectives set by a fire department.



12 In developing these chapters, we recognized that readers will have
varying backgrounds and capabilities. The subject material becomes more
difficult as you progress through the handhook. ‘The first five chapters are
easy enough to be read by anyone. More technical subjects, such as regres-
sion, are more difficult and require knowledge of basic algebra to under-
stand completely. Even in these chapters, however, we have emphasized
understanding results rather than concentrating on theory.

More difficult sections in the handhook are identified by asterisks (*)
beside the section names. You can skip these sections and still obtain a
good understanding of the subject. They contain algebraic equations
for calculations associated with a topic. For persons with mathematical
backgrounds, these sections will enhance their understanding of the topic.

Finally, problems appear at the end of each chapter. These problems
have two purposes. One is to allow you an opportunity to see if you really
understand material from the chapter, and the second purpose is to extend
your knowledge beyond the basic content of the chapter. As with examples
in the chapter, problems include actual data from fire departments.



Chapter 2
HISTOGRAMS

13

Data as a Descriptive Tool

“A picture is worth a thousand words” is an old saying which applies to
numbers as well as words. The task of reaching conclusions from numbers is
formidable, particularly when we are looking for trends and patterns in the
data. It is for this reason that we turn our attention to histograms and other
charts in this chapter and Chapter 3. These tools will assist us in under-
standing fire data since the human mind appears to comprehend pictures
quicker than words and numbers.

The techniques found in these two chapters include:

Histograms Column  charts Pie charts  Pictograms

Bar charts Line charts Dot charts

This chapter describes histograms while Chapter 3 is devoted to the
other techniques. With these graphical aids, we can answer several basic
questions. When are fires most likely to occur? What are the primary causes
of residential fires? vehicle fires? How many civilian injuries occurred last
year by month? What are the ages of civilian casualties? What percent of
fire incidents have travel times less than 4 minutes? How many structure
fires resulted in dollar losses greater than $50,000 last year?

A histogram is a column graph where the height of the columns indi-
cate the relative numbers or frequencies or values of a variable. The follow-
ing examples show how to organize and display fire data into histograms.

Example 1. One of the most fundamental ways to describe the fire prob-
lem is to show how fires are distributed by month, day of week, and hour of
day. For example, Exhibit 2-1 shows a frequency list of fires by hour of day
for Boston, Massachusetts for 1988. A list or array of numbers such as this
exhibit is almost always the starting point for a descriptive analysis, hut the
numbers by themselves arc not very useful. It is difficult to get a “feel” for
what is happening by scanning a list of numbers.

To grasp what the numbers say in Exhibit 2-1, we can develop a fre-
quency histogram, as shown in Exhibit 2-2. Similarly, Exhibits 2-3 and 2-4
show histograms by day of week and month of the year. Study these exhibits
for a few minutes and draw your own conclusions about what they say.
Don’t dwell on individual numbers, but instead look for patterns. Ask your-
self three questions:

Where are the low points and high points in the histogram?



14 What groups of times (hours, days, or months) have similar
frequencies?
Is there anything in the histogram that runs counter to your
experience?

Answers to these questions provide the first insights into your fire data
and into conclusions from the data.

Exhibit 2-1 Fires by Hour of Day-Boston-1988

Time Period Number

Midnight - 1 a.m.
1 a.m. - 2 a.m.
2 a.m. - 3 a.m.
3 a.m. - 4 a.m.
4 a.m. - 5 a.m.
5 a.m. - 6 a.m.
6 a.m. - 7 a.m.
7 a.m. - 8 a.m.
8 a.m. - 9 a.m.
9 a.m. - 10 a.m.

10 a.m. - 11 a.m.
11 a.m. - Noon

478
420

It is difficult to
get a “feel” for
what is
happening by
scanning a list
of numbers.

360
273
192
127
122
139
156
168
206
242

Time Period Number

Noon - 1p.m.
1 p.m. - 2 p.m.
2 p.m. - 3 p.m.
3 p.m. - 4 p.m.
4 p.m. - 5 p.m.
5 p.m. - 6 p.m.
6 p.m. - 7 p.m.
7 p.m. - 8 p.m.
8 p.m. - 9p.m.
9 p.m. - 10 p.m.

10 p.m. - 11 p.m.
11 p.m. - Midnight

307
316
363
381
417
433
492
514
540
622
510
547

While these histograms suggest several conclusions, the key ones are:

1. The peak time period for fires in Boston is from 8 pm. to midnight
with the hour from 9 p.m. to 10 p.m. having more fires than any
other hour.

2. The lowest time period for fires is from 5a.m. to 9 a.m.
3. Weekends are the busiest times for fires while Thursdays are the

least busiest days.
4. June and July have more fires than any of the other months while

Januay and February have the fewest.

A histogram is a column graph where the height of
the bars indicate the relative numbers or frequencies

for values of a variable. The values may be numeric,
such as travel times, or non-numeric, such as days
of the week.

With these histograms we begin to see a picture of the fire problem in
Boston. Histograms allow for an easy descriptive and analytical procedure
without having to think too much about the numbers themselves. Graphical
displays should always strive to convey an immediate message describing a
particular aspect of the data.



Exhibit 2-2 Fires by Hour of Day–Boston–1988
15

Exhibit 2-3 Fires by Day of Week–Boston–1988

Exhibit 2-4 Fires by Month–Boston–1988



16 Example 2. Ages of Civilian Casulties. Suppose a fire chief is interested
in developing a fire prevention program aimed at reducing civilian injuries
and deaths. Descriptive data on civilian casualtics is available from the fire
reports and there arc a number of different descriptions that could be devel-
oped from the data. One of the most basic is descriptive data on the ages of
civilian casualties.

Exhibit 2-5 shows the ages of civilians injured or killed in fires in
Jersey City, New Jersey for 1988. Note that this distribution is considerably
different from the previous histograms primarily because it does not have the
same “smoothness.” However, the five-year age groups show some interest-
ing patterns. For example, the age group under five years of age accounts
for the most civilian casualties, followed in frequency by the 6-to-10 year
age group. Also of interest is how the frequency takes a rather sudden drop
for the 16-to-20 year age group. A spike in the data occurs with the
26-to-30 year age group. The exhibit also reveals a gap in the data for ages
81-to-90 and an outlier in the last group from 91-to-95 years of age.

Spikes are high or low points that stand out in a
histogram. Outliers are extreme values isolated from
the body of the data. Gaps are spaces in a histogram
reflecting low frequencies of data.

Exhibit 2-5 Ages of Civilian Casualties-Jersey City-1988

In histograms and other charts, it is sometimes useful to include com-
ments and conclusions with the chart. In Exhibit 2-5, we provided a note
that 14 casualty records did not include age information and were therefore
not included in the histogram. Other notes provide summary information
on the data such as the percent of casualties under 16 years of age and the
percent more than 50 years old. Anyone studying the histogram could reach
the same conclusion, but the summary saves time and effort.



Exhibit 2-6 Travel Times–Seattle–1988 The data for this example
included five other calls with

travel times of 26 minutes, 47
minutes, 64 minutes, 683
minutes, and 794 minutes
respectively. For purposes of

presentation, we have

assumed that these records
are in error. Either the alarm
time or the arrival time has

probably been incorrectly

recorded. This is obviously

the case for the last two

average times and the first

three times are suspect

because they greatly exceed

the other times in the distrib-
ution. In practice, these times
should be reviewed and

corrected if necessary.
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Travel Time

Less than 1 minute 106
1 to 2 minutes 85
2 to 3 minutes 481
3 to 4 minutes 1,019
4 to 5 minutes 814
5 to 6 minutes 415
6 to 7 minutes 185
7 to 8 minutes 93
8 to 9 minutes 31
9 to 10 minutes 24
10 to 11 minutes 9
11 to 12 minutes 6
12 to 13 minutes 1
13 to 14 minutes 3
14 to 15 minutes 3
15 to 16 minutes 0
16 to 17 minutes 0
17 to 18 minutes 1
18 to 19 minutes 0
19 to 20 minutes 3
Total Fire Calls 3,279

Frequency

Example 3. Travel Times to Fires. Travel times to tires are one of the
most important data sets to study in fire departments. Many fire depart-
ments have objectives for average travel times to fires and try to allocate
personnel to achieve these travel times. Exhibit 2-6 shows a frequency dis-
tribution for travel times to fires in Seattle, Washington in 1988.

Notice in this example that the times are clustered at the low end of the
distribution as we would expect since travel times to fires are generally low
for most fire departments.

Exhibit 2-7 provides a frequency histogram for this distribution. In this
exhibit, we have combined the last few points into a category of 10 minutes
or more. A histogram with the shape in this exhibit is sometimes called
skewed to the right or skewed toward high values.  What we mean by these
terms is that the distribution is not symmetric but instead has a single peak
on the left side of the distribution with a long tail toward the right. In fire
departments, data on on-scene time (from time of arrival to time back in
service) and data on dollar losses at fires also reflect skewness to the right.
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Exhibit 2-7 Travel Times–Seattle–1988

Developing a Histogram

Making a histogram is relatively straightforward:
1. Choose the number of groups for classifying the data. You should

usually, have between 5 and 10 groups, hut there are exceptions
such as histograms by hour of day. Sometimes the groups are
natural, as in our exhibits by day of week and month. With other
data, you will have to develop appropriate intervals for the data, as
we did with the ages of civilian casualties in Exhibit 2-5.

2 . Determine the number of events (fires, casualties, etc.) for each of
your groups.

3. For data such as ages and travel times, you usually need to define
intervals. For these intervals, you should choose convenient whole
numbers. That is, avoid fractions in the groups and always make
the intervals the same width. In Exhibit 2-5 we used intervals of
five years for grouping the data. Data such as day of week do not
require this step since their intervals are naturally defined.

4. Determine the number of observations in each group. Statistical
packages are particularly, useful for this step since they always
include routines for tabulating data.

5. Choose appropriate scales for each axsis to accommodate the data.
6. Display the frequencies with vertical bars.

Do not expect to get a histogram, or any other type of chart, exactly
right on the first try. You may have to try several times before you are satis-
tied with the look of the histogram.

The hisgrams presented in the previous section offer good example
of different characteristics for describing the data. Mosteller, et. al. (1983)
offer the following definitions of features you should try to find in
histograms:



1. Peaks and valleys. The peaks and valleys in a histogram indicate 19

the values that appear most frequently (peaks) or least frequently
(valleys). Exhibit 2-2 shows clear peaks and valleys for incidents by
hour of day.

2. Spikes and holes. These are high and low points that stand out
in the histogram. In Exhibit 2-5, for example, there is a spike for
the 26-to-30 year age group, and a hole for the 16-to-20 year
age group.

3. Outliers. Extreme values arc sometimes called outliers and are
points that are isolated from the body of the data. In Exhibit 2-5,
there is one outlier in the 91-to-95 year age group.

4. Gaps. Spaces may reflect important aspects of a histogram. In
Exhibit 2-5, there is a gap in the 81-to-90 year age group.

5. Symmetry. Sometimes a histogram will he balanced along a central
value. When this happens, the histogram is easier to interpret. The
central value is both the average for the distribution and the
median (half the data points will be below this value and half will
he above).

Cumulative Frequencies

Two other types of distributions which will be important in later chap-
ters are the cumulative frequency and the cumulative percentage
frequency. A cumulative frequency is the number of data points that are less
than or equal to a given value. A cumulative percentage frequency converts
the cumulative frequencies into percentages.

Example 4. With the data in Exhibit 2-6, we can calculate the
cumulative frequency and cumulative percentages for the travel time data
from Seattle, Washington.

Exhibit 2-8 Cumulative Travel Times–Seattle–1988 A cumulative

frequency is the
Cumulative Cumulative number of data

Travel Time Frequency Frequency Percent points that are less
than or equal to a

Less than 1 minute 106 106 3.2 given value. A

1 to 2 minutes cumulative85 191 5.8
percentage2 to 3 minutes 481 672 20.5
frequency3 to 4 minutes 1,019 1,691 51.6
converts the4 to 5 minutes 814 2,505 76.4
frequencies into5 to 6 minutes 415 2,920 89.1
percentages.

6 to 7 minutes 185 3,105 94.7
7 to 8 minutes 93 9,198 97.5
8 to 9 minutes 31 3,229 98.5
9 to 10 minutes 24 3,253 99.2
10 or more minutes 26 3,279 100.0
Total 3,279 100.0



2 0 The first entry under the “Cumulative Frequency” column is 106,
which is the same as in the “Frequency” column. The second entry shows
191, which is 106 + 85, the sum of the first two entries in the “Frequency”
column. By adding these two number, we can say that I91 incidents have
travel times less than 2 minutes. The next entry is 672 (106+85+481) and
means that 672 incidents have travel times less than 3 minutes. The cumula-
tive frequencies continue in this manner with the last entry in the column
always equal to the total number of incidents in our analysis.

The last column, labeled “Cumulative Percent” merely converts the
cumulative frequencies into percentages. This step is accomplished by
dividing each cumulative frequency), by 3,279, which is the total number of
incidents. The column shows that 3.2 percent of the incidents have travel
times less than 1 minute, 5.8 percent less than 2 minutes, 20.5 percent less
than 3 minutes, etc.

A cumulative frequency is the frequency of data
less than or equal to a group. A cumulative percent is
the cumulative frequency divided by the total number
of events.

In general, cumulative percentages describe data in “more than” and
“less than” terms. We can conclude, for example, that about half the calls
have travel times of less than 4 minutes and about 95 percent have travel
times less than 7 minutes. Travel times exceed 9 minutes in only about one
percent of the calls.

Summary

A list of numbers is frequently the starting point for analysis. If the
question of interest is for specific information, then the list of numbers
serves the purpose. For example, Exhibit 2-1 is useful if we are asked about
exactly how many fires occurred between 2 a.rn and 3 a.m., or if we want to
know the exact difference between the busiest hour and the least busiest
hour. On the other hand, Exhibit 2-1 is not very useful for determining, for
example, the six busiest hours of the day.

Histograms provide a much better method for getting the feel of a list
of numbers and answering several questions about relationships. The pat-
terns in a histogram are especially important. For example, high frequencies
and low frequencies are usually important to note. Trends indicated by)
spikes, outliers, and paps in a histogram are also important.



Chapter 2
PROBLEMS
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1. With the data in Exhibit 2-1, determine the number of fires by four-
hour periods (Midnight to 4 a.m., 4 a.m. to 8 a.m., etc.). Develop a
histogram for these four hour periods. What are the advantages and
disadvantages of this histogram compared to Exhibit 2-2?

2. What do Exhibits 2-2, 2-3, and 2-4 tell us about when we should
schedule firefighters if we want to match fire workload with personnel?

3. The following figures and percentages are for the Boston fires
occurring in 1990. Compare these distributions to Exhibits 2-2, 2-3,
and 2-4. Note first that there is a substantial reduction in the number
of fires from 8,325 fires in 1988 to 6,479 fires in 1990. The
comparisons you make should determine whether the distribution of
fires has changed from 1988 to 1990. That is, are the busy hours
during 1990 the same as the busy hours for 1988?

Boston, 1990: Hour of Day

Time Period Number

Midnight - 1 a.m. 386
1 a.m. - 2 a.m. 287
2 a.m. - 3 a.m. 210
3 a.m. - 4 a.m. 194
4 a.m. - 5 a.m. 146
5 a.m. - 6 a.m. 95
6 a.m. - 7 a.m. 78
7 a.m. - 8 a.m. 126
8 a.m. - 9 a.m. 141
9 a.m. -10 a.m. 138

10 a.m. -11 a.m. 156
11 a.m. - Noon 183

Time Period Number

Noon - 1 p.m. 213
1 p.m. - 2 p.m. 265
2 p.m. - 3 p.m. 293
3 p.m. - 4 p.m. 295
4 p.m. - 5 p.m. 354
5 p.m. - 6 p.m. 380
6 p.m. - 7 p.m. 384
7 p.m. - 8 p.m. 432
8 p.m. - 9 p.m. 498
9 p.m. - 10 p.m. 492

10 p.m. - 11 p.m. 394
11 p.m. - Midnight 339

Boston, 1990: Day of Week

Day

Sunday 965 14.9
Monday 885 13.7
Tuesday 960 14.8
Wednesday 912 14.1
Thursday 906 14.0
Friday 944 14.6
Saturday 907 14.0
Total 6,479 100.0

Number Percent



2 2 Boston, 1990: Month

Month Number Month Number

January 508 July 798
February 342 August 493
March 529 September 509
April 548 October 436
M a y 529 November 580
June 702 December 505

4. Answer the following questions based on the data on civilian casualties
from Jersey City for 1988:

Jersey City, New Jersey, 1988: Ages of Civilian Casualties

Age Group Number Age Group Number

l-5
6-10
11-15
16-20
21-25
26-30
31-35
36-40
41-45
46-50

14
12
7

7
10
5
4
4
2

51-55 3
56-60 4
61-65 2
66-70 3
71-75 3
76-80 1
81-85 0
86-90 0
91-95 1

a. Develop a cumulative frequency distribution and cumulative
percentage distribution of the data:

b. What percentage of civilians less than 16 years of age were injured
or killed in fires?

c. What percentage of civilians were more than 50 years old?



5. The following data are from the national NFIRS system which was
discussed in Chapter 1. The data show the distribution of ages, in five
year increments, for 2,280 civilian casualties in 1988. Civilian casualties
include persons other than firefighters injured or killed during fires.
Develop a histogram from these figures and compare the results to the
data from Jersey City, New Jersey in Exhibit 2-5.

Age Number Percent Age Number Percent

< 5 years 256 11.2
6 - 10 years 100 4.4
11 - 15 years 90 3.9
16 - 20 years 139 6.1
21 - 25 years 231 10.1
26 - 30 years 275 12.1
31 - 35 years 230 10.1
36 - 40 years 179 7.9
41 - 45 years 139 6.1
46 - 50 years 114 5.0

5 1 - 55 years 69 3.0
56 - 60 years 94 4.1
61 - 65 years 105 4.6
66 - 70 years 76 3.3
71 - 75 years 53 2.3
76 - 80 years 51 2.2
81 - 85 years 47 2.1
86 - 90 years 23 1.0
91 - 95 years 7 .3
96 - 100 years 2 .l

6. For the civilian casualties in the previous problem, the following data
show the number of casualties by hour of day. Develop a plot of these
casualties and give reasons why this distribution differs from the distri-
bution of fires by hour of day.

Time Period Number Time Period Number

Midnight - 1 a.m. 93
1 a.m. - 2 a.m. 125
2 a.m. - 3 a.m. 118
3 a.m. - 4 a.m. 159
4 a.m. - 5 a.m. 101
5 a.m. - 6 a.m. 85
6 a.m. - 7 a.m. 62
7 a.m. - 8 a.m. 69
8 a.m. - 9 a.m. 71
9 a.m. - 10 a.m. 107

10 a.m. - 11 a.m. 108
11 a.m. - Noon 86

Noon - 1 p.m. 66
1 p.m. - 2 p.m. 110
2 p.m. - 3 p.m. 94
3 p m . - -I p.m. 105
4 p.m. - 5 p.m. 92
5 p.m. - 6 p.m. 112
6 p.m. - 7 p.m. 103
7 p.m. - 8 p.m. 62
8 p.m. - 9 p.m. 88
9 p.m. - 10 p.m. 85

10 p.m. -11 p.m. 81
11 p.m. -Midnight 84

NOTE: The time of the fire was not known in 14 cases so that the total for
the above figures is 2,266 civilians.

7. How do peaks, holes, spikes and gaps affect cumulative distributions?

2 3

Civilian Casualties, 1988: Hour of Day





Chapter 3
CHARTS

Introduction
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In this chapter we will extend beyond histograms to other types of
charts. The point is that histograms are only one of many different ways of
portraying data. As an analyst, you must decide which type of chart best
reflects the results you want to present. A histogram may serve as the best
vehicle, but other types of charts should be considered such as bar charts,
line charts, pie charts, dot charts and pictograms. Each of these will be
explained in this chapter.

Two questions to bear in mind throughout this chapter are the
following:

What are the main conclusions from your analysis?
What is the best way to display the conclusions?

As with the previous chapter, several sets of data will be presented
in this chapter. You should study each example carefully and draw your
own conclusions about the results. You may, in fact, disagree with what
we emphasize or you may identify an aspect of the data we overlooked.
In either case, think about how you would present your viewpoints in
a graphical format to a given audience. The audience may be an internal
group of managers, an outside association or group of citizens, or even your
city or county council. Even the audience influences the type of chart
selected.

The first step is therefore to determine the key results you see from the
data. Once you have reached conclusions, you want to select the best type of
chart to convey those conclusions. Often you will want to try different
charts to determine the best presentation for your audience and your data.

Each of the following sections describes a different type of chart. At the
end of the chapter, we present guidelines on selecting a type of chart suit-
able for different conclusions.

Bar Charts

A bar chart is one of the simplest and most effective ways to display data.

In a bar chart, we simply draw a bar for each category of data allowing
for a visual comparison of the results. For example, the figures in Exhibit
3-1 on the following page give the ignition factors (from NFPA 901 codes)
for the 7,509 structure fires in Chicago, Illinois for 1990.



26 Our interest in a list of this type usually centers on how the items com-
pare to each other. What is the leading ignition factor in structure fires?
How does misusc comparc to mechanical deficiency problcms? How big a
problem are suspicious fires?

We can determine some results relatively easy from the list of nunbers.
For example, misuse of heat of ignition is clearly the leading ignition factor
followed by suspicious fires and mechanical failures. Operational deficien-
cies account for less than 10 percent of the total. Design, construction, and
installation deficiencies also account for less than 10 percent of the total.
Howcvcr, these results require us to makc comparisons mentally with
numbers or percentages.

A bar chart overcomes these problems by presenting the data in fre-
quenecy order, as displayed in Exhibit 3-2. Thc horizontal dimension gives

Exhibit 3-1 Ignition Factors for Structure Fires–Chicago, Illinois–1990

Ignition Factor

00. Not Reported
10. Incendiary
20. Suspicious
30. Misuse of Heat of Ignition
40. Misuse of Material Ignited
50. Mechanical Failure
60. Design, Construction,

Installation Deficiency
70. Operational Deficiency
80. Natural Conditions

Number

496
708

1,077
2,273

426
950
734

620
16

Percent

6.6
9.4

14.3
30.3

5.7
12.7

9.8

8.3
.2

2.8
100.0

90. Other Ignition Factors 209
Total 7,509

Exhibit 3-2 Ignition Factors for Structure Fires–Chicago, Illinois–1990



the percent, while the vertical dimension shows the category labels. The
bars are presented in numerical order starting with operational deficiencies
as the most frequent. Each bar also contains the number of fires for the
ignition factor as additional information to a reader.

2 7

You should also note that the bottom bar is labeled “Other” with 225
structure fires in the bar. This number is actually the combination of the
natural conditions (16 fires) and other ignition factors (209 fires). It is not
unusual to combine low frequency categories into an “other” category.
However, you should accompany the chart with a table, as we have done
here, or add a footnote to the chart indicating the combinations.

As a general rule, the horizontal dimension in a bar chart is numeric,
such as percentages or other numbers, while the vertical dimension shows
the labels for the items in a category. It is not always necessary to include
numbers in each bar, but they are sometimes useful to readers unfamiliar
with the data. If you omit numbers in the charts, you should provide the
total number of incidents either in the title or as a footnote.

We could have arranged the labels in code number order so that they
matched the list in Exhibit 3-1. The emphasis in such a chart would be on
the individual categories rather than on their ranking. However, in this case,
you might want to highlight the bar of the highest ranking item with stripes
or a different color than the rest of the graph. Exhibit 3-3 is an example of
this type of chart. The exhibit has horizontal bars indicating the number of
non-residential deaths by property type during 1990. As emphasized by the
solid bar, more deaths occurred in manufacturing facilities than any other
type of property.

A grouped bar chart shows two categories in the same chart. In Exhibit
3-4, for example, we display the ignition factors for structure versus vehicle
fires. Since there are two categories, we list the items in code number order.

Exhibit 3-3 Non-Residential Fire Deaths by Property Type-1990



2 8
Exhibit 3-4 Ignition Factors for Structure vs. Vehicle Fires–1990

This exhibit shows, for example, that suspicious fires (generally arson fires)
are a greater problem with vehicle fires than structure fires. The chart also
shows that ignition factors are not reported in more than 4,000 vehicle fires
compared to only 496 structure fires. The paired bar chart clearly shows the
differences in ignition factors for these two types of fires.

A paired bar chart makes item-by-item comparisons. By way
of background to an interesting paired bar chart, we provide the following
summary of the impact from a snowstorm in New York state in 1987:

“On Sunday morning, October 4, 1987, the Hudson Valley
region of New York State was hit by an unusual, early snow-
storm which brought up to two feet of heavy, wet snow. The
snow fell in a band from Washington and Saratoga Counties in
the north, through the Berkshires and Catskills to the northern
part of Westchester County in the south. The sudden impact
on fire and other emergency services throughout the region
will long be remembered. At least seven deaths were directly
attributed to the storm. More than 270 fire departments mobi-
lized over 11,000 firefighters and several hundred pumps,
generators, saws and related equipment in what would be, for
many, a round-the-clock, week-long outpouring of service to
their communities.”

(New York State Annual Report, 1987).

Exhibit 3-5 displays the number of calls for the 11 most affected coun-
ties. The left side of the exhibit shows the average number of calls for past
Octobers while the right side shows the October 1987 calls. With
this arrangement, we can immediately see the impact of the snowstorm for
each county.



Bar charts emphasize the rankings of items within a
group. Item labels provide descriptions for each item in the
group. Grouped bar charts show two or more categories in
the same chart. Paired bar charts allow for item-by-item
comparisons.

Column Charts

We displayed several column charts in Chapter 2. For example,
Exhibits 2-2, 2-3, and 2-4 showed Boston fires during 1988 by hour of day,
day of week, and month. These are all examples of time series presented as
column charts.

Column charts of this type are particularly useful in demonstrating

29
Exhibit 3-5 Calls for October, 1987 vs. Average Calls for Past Octobers

Exhibit 3-6 fires by Hour of Day–Boston–1988



30 change over time. Where is the series increasing, decreasing, or staying
about the same? If our analysis shows changes over time, then column
charts are particularly beneficial in presenting the changes.

As an example, we repeat the exhibit from Chapter 2 on fires by hour of
day in Exhibit 3-6. By moving our eye from left to right we visualize the
change in our mind. The horizontal scale scales the hours, but we do not
really need that reference to get a feeling for the changes. Calls are low in
early morning hours, then increase in the afternoon and evening hours.

Column charts show frequency distributions that allow
for easy identification of trends and other characteristics,
particularly with time series data. The horizontal scale
defines the natural groupings for the chart and the columns
gives the frequencies.

Another good application of column charts is to show comparisons
across several sets of data. Exhibit 3-7 lists fire department activities for four
sites divided into fires, rescue calls, and other calls. Comparisons across the
sites are not easy because the totals differ so much. Site A has 17,576 calls
while the other sites have less than 3,000 calls. A simple way to overcome
this problem is to develop percentages.

Exhibit 3-7 Comparison of Fire Department Activities–1988

Fires
Rescue Calls
Other
Total

Site C

Fires
Rescue Calls
Other
Total

Site A Site B Site C Site D

1,390
10,242
5,944

17,576

170
636
576

1,382

346
576
694

1,616

368
1,668

879
2,915

Site A Site B Site D

7.9%
58.3%
33.8%
100.0%

12.3% 21.4% 12.6%
46.0% 35.6% 57.2%
41.7% 43.0% 30.2%

100.0% 100.0% 100.0%
Note: "Other" calls include Hazardous Conditions, Service calls, Good Intent calls, and False calls

By converting the site figures to percentages, as shown at the bottom of
the exhibit, we have a better basis for comparisons. The percentages for
each site always add to 100 percent. While there many many conclusions that
could he drawn from these percentages, the key conclusions are:

Fire calls are always the smallest percentage of activity in each site.
Rescue calls are the predominant type of call in three sites.



Exhibit 3-8 Comparison of Fire Department Activities by Percent–1988
31

To display this result, we develop stacked column charts as shown in
Exhibit 3-8 using the percentages for each activity. The columns all have
the same height since they add to 100 percent. Different shadings highlight
the amount of activity. The results just discussed should he clear from
the exhibit.

Line Charts

Effective presentation of time series data may also be developed
from line charts. Exhibit 3-9 shows a line chart of fires for Detroit,
Michigan,  for 1988,  1989,  and 1990 by month.  The l ine chart
immediately highlights problems during the summer months of 1988 when
a substantial number of fires occurred. For 1989 and 1990, these summer
months are still among the highest for the years, hut do not begin
to approach the problems in 1988. Many statisticians believe that a line

Exhibit 3-9 Incidents by Month-Detroit, Michigan–1988–1990



32 chart is the clearest nay for showing increases, decreases, and fluctuations in
a time series.

Line charts give effective presentations of time series data,
such as the number of incidents per month for several
years. Fluctuations in the data are easily identified by line
charts.

Pie Charts

A pie chart is an effective way of showing how each component con-
tributes to the whole. In a pie chart, each wedge represents the amount for a
given category. The entire pie chart accounts for all the categories.

For example, Exhibit 3-10 shows the activities of the Seattle,
Washington Fire Department for 1990 divided into fire calls, false calls, ser-
vice calls, good intent calls, and other calls. The percentages are inserted in
each wedge. Although the percentage numbers are not necessary, they aid
in the comparisons of the wedges. The pie chart emphasizes the fact that
false calls account for a high percent of incidents in the city. Fire calls and
good intent calls account for about the same percent of total incidents.

In developing pie charts, you should follow the following rules:

Convert your data to percentages.
Keep the number of wedges to six or less. If you have more than
six, try keeping the most important five and group the rest into a
sixth category.
Position the most important wedge starting at the 12 o’clock
position.
Highlight the most important wedge by coloring it the most
intense shading.

Exhibit 3-10 Incidents–Seattle, Washington–1990



While pie charts are popular, they are probably the least effective way
of displaying your results. For example, it may be hard to compare wedges
within a pie to determine their ranks. Similarly, it takes time and effort to
compare several pie charts because they are separate figures.

33

Develop a pie chart when the objective is to show how
each item contributes to the whole. Pie charts are not
effective for comparing several groups of figures.

Dot Charts

Dot charts or scatter diagrams emphasize the relationship between two
variables. For example, Prince William County, Virginia experienced
increases in population and Emergency Medical Services (EMS) calls over
the last few years. In 1981, the department responded to 9,538 EMS calls as
compared to 12,744 EMS calls in 1991. During these years, the population
increased steadily from 152,300 to 223,900. We would expect EMS calls to
increase with population, and it is this relationship that we want to depict in
a chart.

Exhibit 3-11 is a dot chart for EMS calls versus population for Prince
William County for the eleven years from 1981 to 1991. Population is
along the horizontal axis while EMS calls are along the vertical axis. The
pattern is the important aspect of a dot chart, rather than the individual
dots. The horizontal scale of a dot chart should reflect the causation vari-
able while the vertical scale reflects the resulting variable (that is, population
causes or creates EMS calls).

A dot chart reflects the pattern of one variable with another.
The pattern is more important than the individual dots.

Exhibit 3-11 EMS calls & Population-Prince William County–1981–1991
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Exhibit 3-12 Total Fires & Population–1988

Another good application of scatter diagrams is to identify outliers in
our data. In Chapter 2, we defined outliers as points that are isolated from
the body of the data. Exhibit 3-12 shows diagram of population protected
and total fires for 20 selected jurisdictions across the country. There is a
general pattern showing the obvious fact that fires increase as population
increases. However, there are two cities that do not follow this general pat-
tern:  Houston, Texas and Detroit. Michigan.

Detroit has more fires than expected based on its population, while
Houston has fewer tires than expected based on its population. We make
these conclusion because the dots for these  two cities differ in location on
the exhibit from the general pattern. The dot for Detroit is higher than we
would expect from its polulation while Houston is lower than expected
based on the general pattern.

In Chapter 5, we consider these two examples in more detail by calcu-
lating the correlation and regression line for each example. The correlation
and regression line provide greater insight into the strength of association
between population. EMS calls, and fires. Because a strong correlation
exists, we can apply the regression line for future needs in fire departments.

Pictograms

Our final type of chart takes advantages of pictures to display data.
Exhibit 3-13, for example, shows deaths per 1,000 tires for residential struc-
ture fires in 1988. Each contributing state has one of three distinquishing
patterns reflecting low, average, and high  rates. The overall rate of 8.3
injuries per 1,000 residential fires appears at the bottom of the chart. Low
rates are in the .1 to 5.9 range (depicted) by light grey), avearge states are in
the 6 to 11.9  range (medium grey).   and high states  have more than 12.0
deaths (dark grey).



Exhibit 3-13 Residential Structure Fire Deaths*–NFIRS Data–1988
3 5

The key is that presentation in this manner is more effective than any
listing of the death rates. We can easily draw conclusions:

States with high rates include Arizona, South Dakota, Minnesota,
Illinois, Louisiana, Alabama, Delaware, and Massachusetts.
Low rates predominate in the west (California,  Oregon,
Washington, and Idaho).
A group of average states are in the midwest (Montana, Wyoming,
Utah, Colorado, Texas, Nebraska, and Kansas).

Other charts for state and local data are easily imagined. At the state
level, you may be collecting data from individual counties. A pictogram is 3
good way of depicting the county data by taking a state map showing county
boundaries and developing an exhibit similar to Exhibit 3-13. Similarly, if
you work for a local jurisdiction, such as a city or county, you may have data
for individual fire districts. A jurisdiction map) with fire district boundaries
may be an effective way of presenting the data.

As another example, Exhibit 3-14 on the following page shows areas of
fire origins for residential structure fires in 1987 for the state of New York
(excluding New York City). The percents appear in the tower right corner
of the exhibit. The picture gives an effective way of highlighting where fires
occurred within the residence.

A pictogram takes advantage of the background for the
data you want to present. Data by geographical areas,
such as counties, census tracts, or fire districts, can be
presented on maps showing the boundaries of the areas.
Similarly, data on structures, such as residences or
manufacturing plants, can be presented on a schematic
of the structure.
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Exhibit 3-14 Leading Areas of Fire Origin in Residential Property–1987

Summary

In this chapter we presented six types of charts: bar charts, column
charts, line charts, pie charts, dot charts, and pictograms. The primary pur-
pose of using any chart is to indicate your conclusions more quickly and
more clearly than is possible with tables and numbers. You may try several
types of charts before you hit on the most appropriate. Be sure not to make
your final chart too complicated. The message is what is important, so the
chart form should not interfere.

As a quick reference guide on chart selection, we suggest the following:

Use a bar chart when you have categorical data and your objective
is to show how the items in a category rank. Most fire data is in
categories, such as ignition factor, complex, type of ignition, form
of ignition. These are reflected by the NFPA 901  codes.
Use a column or line chart when you have data with a natural
order, such as hours, months, or age groups. The chart will reflect
the general pattern and indicate points of special interest, such as
spikes, holes, gaps, and outtiers.
A pie chart is beneficial when the objective is to show how the
components relate to the whole. However, we suggest caution with
pie charts. Keep the number of components to six or less and avoid
forming several pie charts for comparison purposes.
A dot chart depicts the relationship between two variables.
Generally these variables are continuous rather than categorical.
Population, travel times, and ages are examples of continuous
variables. The pattern between the two variables is the important
aspect for a dot chart.
A pictogram is a pictorial representation of the data. Breakdowns
by geographic areas are effectively shown by a pictogram.
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1. The following are monthly data for 1990 from Los Angeles County,
California showing the number of structure fires and vehicle fires for
1990. Develop charts for these figures and draw conclusions about the
differences in the two distributions.

Month Structure Fires Vehicle Fires

January
February
March
April
May
June
J u l y
August
September
October
November
December
Total

115 159
122 1 5 l
124 173

83 136
111 142
132 183
130 176
103 171
85 187

108 163
138 128
154 145

1,405 1,914

2. Through the NFIRS system, data are also collected nationwide on
civilian injuries and deaths. The following data show age groups for
male and female civilians injured in fires during 1989. Develop a
chart comparing these distributions and draw conclusions about the
differences.

Age Males Females

Less than 5 years 138 118
6 to 10 years old 64 35
11 to 15 years old 55 35
16 to 20 years old 83 55
21 to 25 years old 142 87
26 to 30 years old 152 123
31 to 35 years old 147 82
36 to 40 years old 125 54
41 to 45 years old 98 41
46 to 50 years old 71 43
51 to 55 years old 53 16
56 to 60 years old 55 39
61 to 65 years old 56 49
Over 65 years old 121 138
Total 1,360 915
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a. Would a pie chart be appropriate for comparing the age groups?
b. would you want to separate the data by sex?

3 . The following data give the ages of firefighters injured or killed during
1989 

Age of Firefighters Number Injured

Under 20 years old 32
21 to 2 5 years old 172
26 to 30 years old 366
31 to 35 years old 426
36 to 40 years old 402
41 to 45 years old 253
46 to 50 years old 130
51 to 55 years old 60
Over 55 years old 35
Total 1,876

a. Develop a chart for these data and make conclusions from the chart.

b. Now combine the figures into four age groups: up to 30 years of
age, 31 to 40 years old, 41 to 50 years old, and than than 50 years
old. Graph these groups with a pie chart.

4. Make charts and comparisons from the following data from four cities
on types of fires found during 1990. 

Type of Fire  Chicago Dallas Detroit Phoenix

Structure 7,509 2,623 8,144 1,681
Vehicle 9,107 2,663 3,788 1,858
Trees, Brush, 1,154 2,046 435 2,155

and Grass
Refuse 14,973 2,611 5,277 3,133
Total 32,743 9,943 17,644 8,827



5. The following figures and percentages are for fires in Los Angeles
County for 1990 and Seattle, Washington 1990. An advantage of
percentages is that they allow for quicker comparisons between
distr ibutions.  Compare the percentages between Seatt le and
Los Angeles by day of week and provide some reasons for the
similarities and differences.
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Los Angeles County, 1990: Day of Week

Day Number Percent

Sunday 855 14.7
Monday 929 16.0
Tuesday 817 14.1
Wednesday 816 14.1
Thursday 778 13.4
Friday 767 13.2
Saturday 838 14.5
Total 5,800 100.0

Seattle, Washington, 1990: Day of Week

Day N u m b e r Percent

Sunday 358 14.6
Monday 338 13.7
Tuesday 359 14.6
Wednesday 368 15.0
Thursday 324 13.2
Friday 350 14.2
Saturday 362 14.7
Total 2,459 100.0

6. In 1990, the Chicago Fire Department responded to 9,107 vehicle
fires. The following shows the amount of incident time in 5-minute
increments for the fires. Develop a histogram for these incident times.

Minutes # of Incidents Percent

5-10 234 2.5
10-15 1,238 13.6
15-20 2,589 28.4
20-25 2,736 30.0
25-30 1,173 12.9
30-35 654 7.2
35-40 176 1.9
40-45 105 1.2
> 45 202 2.2



40 7. During 1991, the Memphis Fire Department responded to 500
structure fires in which cooking was the cause of the fire. ‘The following
is a randomly selected sample of 30 fires from these 500 fires. The data
show the incident times (from time of dispatch to time in service) and
the dollar losses for these sampled fires.

Incident Dollar Incident Dollar
Time Loss Time Loss

6 50 23 500
9 700 25 1300
11 450 26 1500
11 500 27 135
12 1500 28 1800
13 250 29 700
14 500 32 700
15 600 32 1400
16 250 36 4500
17 100 40 4000
17 400 43 1800
18 300 44 15000
19 1000 45 300
19 1500 6 0 3000
21 300 78 1800

a.
b.
c.
d

Develop a scatter plot for the 30 incidents.
Identify one obvious outlier in the data.
Redo the scatter plot without the outlier.
in general, how arc incident times related to dollar losses?
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Types of Variables

For purposes of analysis, fire department variables can be divided into
two types: categorical variables and continuous variables. Categorical vari-
ables are defined as variables that are classified into groups or categories.
For example, fires can be classified into structure fires, vehicle fires, refuse
tires, explosions, etc. Categorical variables are sometimes called qualitative
variables since we are not measuring quantities, but instead are classifying
data into groups. Other examples of categorical variables are day of week,
hour of day, month, zip code, fixed property use, ignition factor, method of
alarm, area of fire origin, equipment involved in ignition, type of material
ignited, construction type, extent of flame damage, and method of extin-
guishment. Most categorical variables are defined by the NFPA 901 codes,
which form the foundation for reporting fire data into the NFIRS system,
as described in Chapter 1.

Continuous variables always take on numerical values that reflect some
type of measurement. Travel time to fires is an example of a continuous
variable. We measure the travel time from the time the first unit is dis-
patched to a fire to the time the first unit arrives at the scene. It should be
noted that the first unit to arrive may not be the same as the first unit dis-
patched. Other examples of continuous variables are on-scene time at fires,
incident time at fires (travel time plus on-scene time), and dollar losses of
fires. On-scene time is usually measured as the time from arrival of the first
unit to the fire until the time back in service of the last unit. The on-scene
time can range from practically no time, if the fire has extinguished itself, to
several hours for a major fire.

We should note that if we say the on-scene time is 125 minutes, for
example, it is highly unlikely that we are precisely correct. The time could
be 124.7 minutes, 125.2 minutes or some other value close to 125 minutes.
Most communication centers record individual times in hours and minutes,
and we are certainly willing to accept on-scene time to the nearest minute
for our analysis.

Categorical variables are variables that are divided into
group or categories. Days of the week, months and
types of fires are examples of categorical variables.
Continuous variables take an numerical values. Travel
times, on-scene times, and dollar losses of fires are
examples of continuous variables.



42 In this chapter we will explore will how to summarize categorical and con-
tinuous variables. We will discuss what we mean by an average for a set of
data and what we mean by variation of our data about an average.

It should be noted that we have been careful with the words variable
and data. A variable is a characteristic that varies or changes. Days of the
week vary from Sunday through Saturday; months vary from January
through December; and types of fires vary according to NFPA 901 codes
such as structure tires, vehicle fires, etc. Whenever we make observations on
a variable, we develop data to be analyzed. Each time we complete a fire
report, we create data by listing the day of week, hour of day, month, type
of situation found, and values for all the other variables in the fire report.
The data can then be summarized in a variety of ways, such as histograms
and charts. In this chapter, we extend our ideas about summarizing data by
introducing averages, standard deviations, box plots, and other techniques.
In addition, Chapters 5 and 6 are devoted to analysis of categorical variables
through two-way and three-way tables.

Averages: Mean, Median, and Mode

We saw in Chapter 2 and 3 that graphs provide good pictures of an
entire set of observations, but we need more descriptive statistics for analy-
sis purposes. In this section, we will develop averages for categorical and
continuous variables. An average is a single number summarizing a set of
data. It represents in a very general manner a “typical” data point. As seen
in this section, there is more than one way to calculate an average. In fact,
we discuss three different average: mean, median, and mode. Each has
advantages and disadvantages, as explained as we go along. Always keep in
mind that the aim is to develop a single number, called an average, that best
describes the data.

Probably the most commonly known average is the mean, or simple

Exhibit 4-1 Hypothetical Travel Times



average, which is calculated by summing all the data values and dividing by
the number of observations. For example, suppose that the travel times to
nine incidents are 3 minutes, 2 minutes, 4 minutes, 1 minute, 2 minutes, 3
minutes, 3 minutes, 4 minutes, and 3 minutes. Adding these travel times
gives 25 minutes in total and dividing by 9 gives a mean travel time of 2.78
minutes. A histogram of these 9 travel times would look like Exhibit 4-1.
Notice that the mean balances the histogram in a seesaw manner.

It should also be noted that a mean can only be calculated with contin-
uous variables, not with categorical variables. We can therefore calculate,
for example, mean travel time, mean on-scene time, and mean dollar loss
for fires.

Another type of average is the median, which is defined as the middle
value (or the 50 percent point) in a group of numbers. For example, we have
nine data values for our travel times. If we arrange these in order, they
would look as follows: 1, 2, 2, 3, 3, 3, 3, 4, 4. The median is the fifth or mid-
dle value, which is 3 minutes in this example. There are four data values to
the left of this number, and four values to the right. Another way of saying
this is that 50 percent of the data is to the left of the median and 50 percent
is to the right. For this reason, the median is also called the 50th percentile.

If we have an even number of data values, then there are two middle
values and the median is the mean of the two values. For example, suppose
that the on-site times for 10 fire incidents are 12, 15, 17, 25, 27, 29, 32, 35,
37, and 42 minutes. The two middle values are 27 and 29, so the median is
28 minutes (27 + 29 divided by 2). Note that the median again splits the val-
ues with five of the data values less than the median and five greater than
the median.

As with the mean, the median can only be calculated for continuous
variables. WE can determine the median on-scene time at fires and the
median dollar loss for fires. However, the “median type of fire” or the
“median ignition factor” has no meaning since these are categorical variables.

Two other percentiles frequently calculated from an ordered list of
numbers are the 25th and 75th percentiles. Twenty-five percent of the data
points are below the 25th percentile and 75 percent are below the 75th per-
centile. These are called the lower and upper quartiles. The interquartile
difference is the difference between these two quartiles (that is, the upper
quartile minus the lower quartile). A small interquartile range indicates that
the data arc clustered around the median, while a large range reflects a
wider spread of the data. In the list of 10 fire incidents above, the 25th per-
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A histogram of continuous data balances at the mean
a mean can be calculated for continuous variables, but
not for categorical variables.



4 4 centile is 16 and the 75th percentile is 33.5. The interquartile range is 17.5
which means that half of the data is within a 17.5 point range.

The median is the middle value of a group of numbers.
The median is also called the 50th percentile since
50% of the data points are lower than this number and
50 percent are higher. The 25th percentile is called the
lower quartile and the 75th percentile is called the
upper quartile. the interquartile difference is the
numerical difference between the upper and lower quartile.

A final type of average is called the mode, which is the most frequent
data value in your frequency list. It is easily recognized as the peak in a
histogram. In Exhibit 4-1, 3 minutes is the mode.

The mode is the peak of a histogram.

The mode is the only one of our three averages that can be applied to
both categorical and continuous data. With categorical variables, the mode
is the group with the highest number of values.

Effects  of Extreme Values

We now want to see how the mean changes with changes in the data.
The mean for our nine travel times was 2.78 minutes. In Exhibit 4-2, we
have pushed the two travel times of 4 minutes each to 6 minutes. The mean
also moves to the right to maintain the balance. Similarly, the bottom part
of Exhibit 4-2 shows a mean of almost 4.0 minutes after moving the two
travel times to 9 minutes.

The median and mode do not change in Exhibit 4-2. Half the values
are still below 3 minutes and half are above 3 minutes, and the peak remains
at 3 minutes.

This discussion illustrates that the mean is sensitive to extreme values
while the median and mode are not. The sensitivity is especially important
with analysis of fire department data. For example, most fires take less than
two hours to complete, but a few may take several hours. These extreme
fires inflate the mean on-scene time considerably, but have little effect on
the median and mode.

If you have this situation, you may want to analyze the fires in two
separate groups of on-scene times. In statistical terminology, we use the
term bimodal distribution to describe data that are really a combination of
two types of variables with very different means. Splitting data into
two groups is advisable in bimodal situations so that each group can



45

Exhibit 4-2 Effects of Extreme Data on Averages

be analyzed separately in a more meaningful manner.

Having introduced three different types of averages, the question usu-
ally arises as to which average is the best to use. Unfortunately, there is no
single answer to this question. A good approach for selection of mean,
median, or mode is to look at the distribution of the data, as indicated, for
example, by a histogram. If the histogram shows that the data are clustered
together with few extreme values, then either the mean or median is a good
selection as an average value. On the other hand, we have just seen that
extreme values inflate the mean. If extreme values are present in the his-
togram, then the median or mode may be the best average to represent the
data. The mode is particularly useful if a large percentage of the data takes
on the value of the mode.

Which is the vest average to use–mean, median, or
mode? The answer  is "It  depends on the distribution of
your data." The average to use is the number that is
most representative of the data.



4 6 Measuring the Spread of the Data

The purpose of developing an average is to reduce the data to a single
representative number. While an average is informative, it is not very satis-
factory by itself. Bearing this in mind, statisticians have developed several
other measures and graphical techniques to supplement the average. In this
section we will explore some of these other measures.

Cumulative Frequencies

Exhibit 4-3 shows cumulative frequencies for the incident times from
Seattle, Washington for 1990. Incidents include fires, good intent calls, ser-
vice calls. hazardous conditions calls, and all other types of calls which
required a response by the Seattle Fire Department. The department re-
sponded to over 13,000 incidents during the year. The incident time is from
time of dispatch to time hack in service. It include travel time and on-scene
time. For example, suppose the alarm time is 2015, the arrival time is 2019,
and the time in service is 2035. The travel time in this example is 4 minutes,
the time at the scene is 16 minutes. and the incident time is 20 minutes.

Exhibit 4-3 Cumulative Frequencies for Incident Times-Seattle-1990

You may remember that we introduced cumulative frequencies in
Chapter 2. Cumulative frequencies tell you what percent of your data arc
less than or equal to a given value. They are also useful for estimating the
median of a distribution. In Exhibit 4-3, we can determine the median in
the following manner. The left side of the exhibit shows percentages, and
the median is the 50 percent mark. Starting at 50 percent we move across
until we come to the curve and then move down to the incident time axis.
This incident time is the median, which is about 10.2 minutes.

In a similar manner, the 25th percentile is about 6.5 minutes and the
75th percentile is about 17 minutes. This means that 25 percent of the inci-
dent times are 6.5 minutes or less and 75 percent are 17  minutes or less.



The interquartile range is 10.5 minutes since the upper quartile is 17 min-
utes and the lower quartile is 6.5 minutes.
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Box Plot

A box plot is a graphical way of summarizing a continuous variable
which takes advantage of percentiles, as shown in Exhibit 4-4.

In this diagram, the left side of the box is the 25th percentile and the
right side is the 75th percentile. The vertical line inside the box is the medi-
an. Lines extended from each side of the box indicate the 10th and 90th per-
centiles (about 4.5 minutes and 30 minutes respectively).

Exhibit 4-4 Box Plot of Incident Times

A box plot is a graphical summary of a continuous variable. 
It displays key percentiles to indicate the median and
overall spread of the data.

The long “whisker” extending from the right of the box says that 15
percent (from the 75th percentile to the 90th percentile) of the incident
times are between 17 minutes and 30 minutes. Another 10 percent of the
incident times are more than 30 minutes. Thus, the box plot indicates con-
siderable variability in incident times.

One reason for the variability is the mix of incidents. During 1990,
the Seattle, Washington Fire Department responded to 2,459 fires, 5,972
False Calls, 1,371 Service Calls, and 2,340 Good   Intent Calls. These
incidents have different average times because their on-scene activities
differ. Exhibit 4-5 shows box plots for these four types of incidents. Good
intent calls and false calls tend to have shorter incident times as indicated
by lower medians and less spread in the data. Fire calls and service calls
have larger medians and greater variability in their incident times.
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Exhibit 4-5 Box Plots of Seattle, Washington Incidents-1990

‘The interquartile range is greater for fires and service calls than the other
types of calls.

Variance and Standard Deviation

Another measure of the amount of spread in data is called the sample
variance. To illustrate the calculation for sample variance, we go back to the
nine hypothetical travel times discussed earlier which had a mean travel
time of 2.78 minutes. In the following list, we have subtracted the mean
from each individual travel time and then squared the difference.2

Exhibit 4-6 Calculation of Variance

Travel Travel Time
Time Mean (2.78)

Squared

1
2
2
3
3
3
3
4
4

-1.78 3.17
-.78 .61
-38 .61
.22 .05
22 .05
.22 .05
.22 .05

1.22 1.49
1.22 1.49

Total
Variance

0.00 7.57
.95

2. The square is the number multlplied by itself. For example. the square of 3 is 9 and the square of .6 is .36.



The middle column displays the amount of deviation from the mean
for each point. The first deviation is -1.78 (1 minute minus 2.78 minutes),
indicating that this travel time is 1.78 units from the mean and is to the left
of the mean (since the sign is negative). Note that the sum of the middle
column is zero; that is, the sum of the deviations from a mean adds to zero.
In fact, an alternative definition for a mean is that it is the only number with
this property; that is, it is the only number where the sum of the deviations
is equal to zero.
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In the right column, we square each deviation (that is, we multiply
each deviation by itself). The sum of the squared deviations is 7.57 and the
sample variance is obtained by dividing this sum by 8, which is one less than
the total number of points. The variance is therefore 0.95. Since the vari-
ance is small compared to the mean, it indicates that the data points are
close to the mean.

Finally, a statistic related to the variance is the sample standard devia-
tion, which is the square root of the variance.’ In our example, the standard
deviation is .973, since this is the square root of .95. This means that the
spread around the average is not very large (in this case less than 1.0 com-
pared to a mean travel time of 2.8 minutes). The mean is therefore a good
descriptor of the data in this example.

For many continuous variables, the sample standard deviation has an
interesting property - about 6.5 percent of the data values will be within one
standard deviation of the mean. If the mean of a group of numbers is 50 and
the standard deviation is 8, then about 65 percent of the data values will be
between 42 and 58. Similarly, about 95 percent of the data values will be
within two standard deviations.’

The sample variance and sample standard deviation
are measures of the spread of data. A small sample
variance indicates that the data points are close to the 
mean. The sample standard deviation is the square root
of the variance.

As an example, Exhibit 4-7 shows a histogram of travel times to inci-
dents in Jersey City, New Jersey. The mean is 3.25 minutes and the stan-
dard deviation calculates to 1.5 minutes. The data in Exhibit 4-7 generally

3. The square root of a number means the number which multipIied by itself gives the original number. The

square root of 4 IS 2; the square root of 25 IS .5, etc.

4. Most precisely, in statistical terms, the data values need to follow a normal distribution for this property

to be true.
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Exhibit 4-7 Travel Times to Incidents-Jersey City, New Jersey

follows the pattern found with normal distributions. One standard deviation
about the mean is from 1.75 minutes (3.25-1.5) to 47.5 minutes (3.25+1.5)
About 68 percent of the travel times are within this one standard deviation
range; about 95 percent of the travel times are within 2 standard deviations
of the average.

Sample and Population Variances*

In the previous section, we used the terms sample variance and sample
standard deviation. The application of the word sample is important here
from a statistical viewpoint. We are assuming that the data we have are a 
sample of a larger set of data, such as the population of all incidents. When
we say we have nine travel times, for example, we mean that we have a 
sample of nine travel times which we have selected to study. The travel
times should be randomly selected so that they are representative of all
travel times.

In algebraic terms, the sample variance is expressed as:

The sample standard deviations(s) is the square root of the sample
variance

If we are not working with a sample of data, but instead have the entire
population, then the variance is calculated in a slightly different manner.

The population variance, usually designated as ó2 is expressed on the
following page.
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where N is the number of points in the population and a is the mean of the
population. The population standard deviation is the square root of the
population variance.

Note that the main difference between these two equations is that the
sample variance is obtained by dividing by n-1 (the number of points in the
sample), while the population variation is obtained by dividing by N (the
total number of points).

With the calculation of a sample variance, we are really developing an
estimate of the population variance. The reason for dividing by n-1 to
obtain the sample variance is that statistical theory tells us that this gives a
better estimate of the population variance than dividing by n. This differ-
ence may appear to he slight and insignificant, but it is important from a
theoretical viewpoint.

If you are using a statistical package on a computer, it is important for
you to know whether the output is the sample variance or the population

variance. Unfortunately, many statistical packages will merely say
“Variance” in the output without indicating whether it is the sample or pop-
ulation variance. One package may give the sample variance while the other
may give the population variance. “The documentation to the package usual-
ly states which variance is calculated.

Indexes for Time Series*

Development of an index is another approach for understanding a fre-
quency list of numbers. Indexes arc usually calculated for time series data,
such as the distribution of fires by hour of day or by day of week. To devel-
op an index, you divide each number in a series by the overall mean for the
series. For example, Exhibit 4-8 shows the number of fires in 1990 in
Chicago, Illinois. The table shows a total of 33,130 fires for the year which
gives a mean of 2,760.8 fires per month. The column on the right is the
index for each month. To develop the index for January, for example, we
divide the number of fires in January by the mean:

January Index = 2,406 = .87
2,760.8

The indexes for the remaining months arc calculated in the same
manner.

There are two interesting features of indexes. First, an index greater
than I .0 means that the month is above average while an index below 1.0



52 means the month is below average. This property is easy to see since we
divided by the mean to get the index In Exhibit 4-8, we easily see that there
are six months above average and six months below average. The second
interesting feature of an index is that the index minus one gives the percent-
age that the month is above or below the mean. For example, July has an
index of 1.25 and if we subtract 1.0 from this index, we can say that July is
25 percent above average. Similarly, January is I3 percent below average.

July 1.25 - 1 .00 = .25 25% above the mean
January .87-1.00=-.13 13% below the mean

In summary, indexes are just another way of getting a feel for data.
They are easy to calculate and easy to understand.

Exhibit 4-8 Index for Fires in Chicago–1990

Month Total Fires Index

January 2,406 .87
February 1,884 .68
March 2,522 .91
April 2,905 1.05
May 2,796 1.01
June 3,193 1.16
July 3,448 1.25
August 2,744 .99
September 3,118 1.13
October 2,689 .97
November 2,809 1.02
December 2,616 .95
Total 33,130
Average 2,760.83

Summary

In this chapter we have introduced several techniques for analyzing
data. You should, at this point, understand how to construct a histogram
and cumulative frequencies. You should also be able to estimate percentiles
from cumulative frequencies and develop box plots.

The most useful statistics from a group of numbers are the mean,
median, and mode. Be sure you understand how to calculate and interpret
these numbers before you go further in this handbook. You should also
understand how to calculate variance and standard deviations. These are
particularly important in Chapter 7 on correlation and regression.
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1. The following data show travel time, on-scene time, and dollar loss for
27 hotel and motel fires (Fixed Property Use between 440 and 449) in
Phoenix, Arizona during 1990.

Travel
Time

4
3
6
3
6
4
4
1
4
4
5
3
4
3

a.

b.

c.

d.

e.

On-Scene Dollar Travel On-Scene Dollar
Time Loss Time Time Loss

26 $1,500 4 10 1,000
27 100 5 11 300

327 1,000 4 74 20,000
94 300 3 35 2,000
98 150 5 88 30,000
74 15,000 4 112 3,000
23 189 4 113 500
85 5,000 4 10 2,000
22 100 4 69 250
83 5,000 5 33 7,000

9 50 5 7 1,000
33 1,000 1 20 3,000
92 500 3 62 10,000
48 23,000

Calculate the mean, median, and interquartile range for each
variable.

Calculate the variance for travel time and dollar loss.

How many dollar loss observations are within one standard
deviation from the mean? How many within two standard
deviations?

Why is the variance for travel time so much less than for
dollar loss?

Comment on the effects of large dollar losses on the mean and
median.

2. Construct a histogram with the dollar loss data from the previous
exhibit. From the histogram, construct a cumulative frequency distrib-
ution. Estimate the l0th, 25th, median, 75th, and 90th percentile from
the cumulative frequency distribution.



54  3. The following data show selected percentile for on-site time and
dollar loss for fires in 519 one- and two-family dwellings (Fixed
Prope r ty  Use  be tween  410  and  419)  and  154  apa r tmen t s ,
tenements, and flats (Fixed Property Use between 420 and 429) in
Phoenix, Arizona during 1990.

On-Site Time

Percentiles

Type 10th 25th 50th 75th 90th
Dwelling 2 4 0 45.0 85.0 123.0 163.0
Apartments 20.5 32.0 71.5 107.0 143.0

Dollar Loss

Percentiles

T y p e 10th 25th 50th 75th 9 0 t h
Dwelling 1,500 3,000 10,000 25,000 48,000
Apartments 1,500 2,500 5,000 12,400 40,000

a. Develop box plots for both variable on-site times, and dollar
losses.

b. Compare the interquartile ranges of dwellings versus apartments
for the two variables.

c. What are your conclusions from the box plots?

d. Based on the box plot, would you expect a greater variance for
dollar loss with dwellings or with apartments?

4. In Chapter 2, we discussed skewness and showed that travel times were
skewed to the right, i.e. , skewed toward high values. The Pearson
coefficient of skewness has been proposed by some authors as
a measure of the skewness of a distribution, Denoted by CS, the
coefficient of skewness is defined as

CS= 3(Mean - Median)

Standard Deviation

a. Calculate the CS for the on-scene times and dollar losses in
problem 1 above.

b. When will the CS be zero?



5. A trimmed mean is a compromise average between the mean and 55
median which is useful when outliers are present. A trimmed mean is
computed by first ordering the data values from smallest to largest,
deleting a selected number of values from each end of the ordered list,
and finally averaging the values not deleted.

a. Using the dollar loss data from problem 1,  calculate the
trimmed mean by deleting the two largest and two smallest
values.

6. The following travel time data arc from Monroe Country, New York.

Cumulative Travel Times: Monroe County-1990

Cumulative Cumulative
Travel Time Frequency

Less than 1 minute 157
1 to 2 minutes 287
2 to 3 minutes 324
3 to 4 minutes 322
4 to 5 minutes 271
5 to 6 minutes 227
6 to 7 minutes 176
7 to 8 minutes 120
8 to 9 minutes 99
9 to 10 minutes 45
10 to 11 minutes 25
11 to 12 minutes 16
12 to 13 minutes 11
13 to 16 minutes 10
Total 2,090

Frequency

157
444
768

1,090
1,361
1,588
1,764
1,884
1,983
2,028
2,053
2,069
2,080
2,090

Percent

7.5
21.2
36.7
52.2
65.1
76.0
84.4
90.1
94.9
97.0
98.2
99.0
99.5

100.0

a. Plot the cumulative distribution percentages. Then develop a box
plot with estimates from the cumulative distribution.

b. By looking at your chart, what percent of travel times are under
8 minutes?

c. Estimate the median using your chart.





Chapter 5
ANALYSIS OF TABLES
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Introduction

As we discussed in Chapter 1, the NFPA 901 Codes form the basis for
coding fire and injury reports. They cover all the main variables associated
with fires, including type of fire, fixed property use, ignition factor, type of
complex, area of fire origin, type of material ignited, extent of flame damage,
and many others.

For each variable, the 901 Codes provide specific categories, as exem-
plified by the categories for ignition factors shown in Exhibit 5-1:

Exhibit 5-1 Ignition Factor

Code Category

1
2
3

4
5
6
7
8
9

Incendiary
Suspicious
Misuse of Heat of Ignition
Misuse of Material Ignited
Mechanical Failure, Malfunction
Design, Construction, Installation Deficiency
Operational Deficiency
Natural Condition
Other Ignition Factors

Note that there is a numeric code for each category. However, from
an analysis viewpoint, the code numbers have no statistical meaning. It
is not reasonable to say that “Misuse of Heat of Ignition” is one
more than “Suspicious” or to observe that “Design, Construction,
Installation Deficiency” is twice “Misuse of Heat of Ignition.” It is wrong in
just the same way to perform statistical analysis with code numbers by calcu-
lating means and standard deviations. We cannot, for example, calculate the
“Average Ignition Factor. ” Thus, the code numbers tell us nothing statisti-
cally, but instead serve as a convenience when entering data into a computer.
That is, it is much easier to enter a single number instead of entering the
category name. There is also a considerable savings in the amount of com-
puter storage required for the data when we can use a single number rather
than storing a long name.

We make use of these codes by generating tables showing the
number of observations (e.g., fires) for each category. We might find,
for example, that the incendiary category accounts for 17 percent of the igni-



5 8 tion, factors of fires, suspicious accounts for 23 percent, and so on.

In this chapter we will provide basic techniques for analyzing tables
developed from categorical data. The first part of the chapter describes the
development and interpretation of percentagcs for categorical data. We
then develop a statistical test, called the chi-squared test, for determining
whether the percentage distribution from a table differs significantly from a
distribution of hypothetical or population percentages.

To summarize the terminology in this chapter, variable refers to a
characteristic of fires and fire injuries. Each variable has several categories
with a numeric code for each category. ‘Thc codes have no statistical mean-
ing, but assist in getting the data into a computer for analysis. Tables
derived from the categories serve as the basis for calculating percentages
and performing chi-squared tests of significance.

A categorical variable divides a variable into a group of
categories. Each category has a code assigned to it for
convenient entry and storage in a computer. Tables can
be developed showing the number of observations for
each category. From the tables, we can calculate per-
centages and perform chi-squared tests of significance.

Describing Categorical Data

To summarize a categorical variable, we usually report the number of
observations in each catepory- and its percentage of the total. For example,
consider Exhibit 5-2 for types of situations found in the fires of’ Seattle,
Washington during 1989. These percentages arc simple to calculate and
easy to understand: 36.3 percent of the fires are structure fires, 25.9 percent
are vehicle fires, and so on. As described in Chapter 2, the mode is the cate-
gory with the largest number of data values. In this example, the mode is
structure fires, totaling 1,l95 fires.

Exhibit 5-2 Type of Situations Found-Seattle Fires-1989

Code Type of Fire

11
12
13
14
15
XX

Structure Fires
Outside of Structure Fires
Vehicle Fires
Trees, Brush, Grass Fires
Refuse Fires
Other Fires
Total

Number

1,195
164
850
525
512
42

3,288

Percent

38.3
5.0

25.9
16.0
15.6

1.3
100.0



Note that the percentages will not always add up to exactly 100 per-
cent. This is because of rounding the individual calculations. The rounding
may cause the total to be slightly more or slightly less than 100.0 percent. In
this exhibit, the total is actually 100.1 percent, but we show 100.0 for conve-
nience and consistency.
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By way of comparison, Exhibit 5-3 shows the nationwide picture of
types of situations found for fires. From a national perspective, structure
fires accounted for 32.8 percent of the total, followed by vehicle fires at 23.9
percent, and trees, brush, and grass fires at 2 1.1 percent.

Exhibit 5-3 Type of Situations Found-Nationwide Fires-1989

Code Type of Fire Number Percent

11 Structure Fires 302,708 32.8
12 Outside of Structure Fires 26,436 2.9
13 Vehicle Fires 220,861 23.9
14 Trees, Brush, Grass Fires 195,121 21.1
15 Refuse Fires 162,835 17.6
x x Other Fires 15,922 1.7

Total 923,883 100.0

A reasonable question to ask is whether the distribution of fires in
Seattle differs from the national picture. We notice some differences by
comparing percentages. For example, 36.3 percent of the Seattle fires are
structure tires, compared to 32.8 percent nationwide. Similarly, 25.9 per-
cent of the Seattle fires are vehicle fires, compared to 23.9 percent nation-
wide. We therefore suspect that the distribution of fires in Seattle deviates
from the national picture, but a statistical test can be made to test this dif-
ference more precisely. In the next section we will provide such a test.

The Chi-squared Test
The chi-squared test is a statistical test to determine whether a sample

set of observations has a different distribution from a hypothetical or popu-
lation set of observations. The test is usually stated in more precise statisti-
cal language by defining an hypothesis to be tested. For our purposes, the
null hypothesis, HO, is that the percentage distribution from the sample dis-
tribution does not differ significantly from the national percentages. The
alternative hypothesis, H1, is that there is a significant difference between
the two distributions.

To illustrate these ideas, we will deviate from our usual practice of
showing examples with fire data. Instead, we will consider a simple experi-
ment where we throw a die over and over again. The resulting data values
are the number of dots showing after each throw. The number of dots



60 varies between 1 and 6; that is, we have six possible outcomes. If u-e throw a
“fair” die a large number of times, we wou1d expect that about one-sixth of
them would result in I dot showing, one-sixth in 2 dots showing, etc. The
chi-squared test allows us to determine with Some assurance whether we
have a fair die.

The chi-squared test determines whether a given
distribution differs significantly from an hypothesized or
population distribution. The null hypothisis is that no dif-
ference exists. while the alternative hypothesis is that 
there is a difference.

Suppose that we throw the die 90 times and obtain the results
in Exhibit 5-4.

Exhibit 5-4 Results of Die Throws

Dots Visible Number Percent

One 16 17.8
Two 17 18.9
Three 12 13.3
Four 14 15.6
Five 17 18.9
Six 14 15.6
Total 90 100.0

If the die is a fair die, we should expect to have one dot visible exactly
15 times (one-sixth of the total), two dots visible exactly 15 times, and so on.
Our actual results differ from these expected results as shown in Exhibit 5-5

Exhibit 5-5 Actual and Expected Results

Dots Visible Actual Number

One 16
Two 17
Three 12
Four 14
Five 17
Six 14
Total 90

Expected  Number

15
15
15
15
15
15
90

To summarize, we have tossed a die 90 times and obtained the results
shown in Exhibit 5-4. Out null hypothesis is that the die is fair, which



means that we expect the outcomes to be equally likely at one-sixth of the
throws resulting in each possible outcome. The actual results are not the
same as the expected either because of variations inherent in throwing a die
only 90 times or because the die is not a fair die. The chi-squared test will
determine whether the actual results differ significantly from the expected
results.
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To perform the chi-squared test, we do the following steps:

1. Calculate the expected number for each category by multiplying
the expected or population percentages by the total sample size.
This calculation has already been performed as shown in
Exhibit S-S with the “Expected Number” column.

2. For each category, subtract the expected number from the actual
number, and then square the result.

3. Divide the results from Step 2 by the expected number.
4. Sum the results from Step 3. This is the calculated chi-squared

statistic. The larger this number, the more likely there is a
significant difference between the observed and expected values.
However, the chi-squared statistic also depends on the number of
categories, which must be taken into account in the following steps.

5. Find the degrees of freedom, which is defined as the number of
categories minus 1. In our die example, there are 5 degrees of
freedom.

6. Obtain the critical chi-squared value from Appendix A by selecting
the entry associated with the degrees of freedom. Now compare the
computed chi-squared statistic from Step 4 to the critical value.

If the computed chi-squared statistic is greater than the value in the
table, then we reject the null hypothesis. Otherwise, we accept the
null hypothesis. To reject the null hypothesis means that the two
distributions differ significantly. To accept the null hypothesis is to
say that the two distributions are essentially the same with
differences due to sampling or random variations.

The expected value is the number we would expect if
the null hypothesis were true. The chi-squared value is
calculated by first subtracting the expected number from
the observed number, squaring the result, and then divid-
ing by the expected number. The results from these cal-
culations are then summed to obtain the calculated
chi-squared value.

Exhibit 5-6 on the following page summarizes these steps for the die
example. The “Diff.” column shows the difference between the expected
and actual numbers. The “Squared Diff.” is the square of the difference
obtained by multiplying the number by itself. The right-most column is the
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Exhibit 5-6 Actual and Expected Results Die Tossing  Experiment

Dots Actual Expected
Visible Number Number

One 16 15
Two 17 15
Three 12 15
Four 14 15
Five 17 15
Six 14 15
Total 90 90

Diff.
Squared Divided

Diff. by Exp.

1 1
2 4

-3 9
-1 1
2 4

-1 1

.067

.267

.600

.067

.267

.067
1.34

Chi-squared Value
Degrees of Freedom = 6 - 1
Critical Chi-squared Value

1.34
5

11.07

squared difference divided by the expected number; for example, the first
figure is .067 obtained from 1 divided by 15.

The chi-squared value is 1.335, which is the sum of the values in the
last column. In summary, the chi-squared value is given by:

From Appendix A, the critical chi-squared value for 5 degrees of free-
dom is 11.07. Since the calculated chi-squared value of 1.335 is less than
this value, we accept the null hypothesis. That is, the results from the ninety
throws do not provide evidence that the die is unfair.

Degrees of freedom have been defined as the number of categories
minus one. The reason for this definition is as follows. Each category may
be considered as contributing one piece of information or one degree of
freedom to the chi-squared statistic. The exception is the last category
which is not considered to he free because the total sample size is a fixed
number. Consequently, the last category can he determined from the total
sample size and the numbers in the other categories. Thus, the values in all
categories except one can take on any values. We can see this same situation
by looking at the calculated percentage. We know that the percentages
must total to 100 percent. If the percentages are known except for one cate-
gory, we can immediately calculate the percentage for the one remaining
category?. If we have four categories, the first three percentages are free to
vary, but the percentage for the last category is automatically determined. If



the first three percentages are 25 percent, 30 percent and 35 percent,
then the last category must be 10 percent so that the total sums to 100
percent.
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Degrees  of freedom for a single list of items are equal to
the number of items minus one. The term derives from
the fact that all the items can vary except for one item
(since the total is fixed).

We can now return to our question on whether the distribution
of fires in Seattle differs from the nationwide distribution of fires. We
noted differences in some categories; for example, Exhibit 5-2 shows
that structure fires account for 36.3 percent of the fires in Seattle
compared  to  32 .8  pe rcen t  na t ionwide .  S imi la r ly ,  veh ic le  f i r es
account for 25.9 percent of the fires in Seattle compared to 23.9 percent
nationwide.

However, these are individual comparisons. The chi-squared test
allows us to test all categories simultaneously. Our null hypothesis is that
“The percentage distribution of fires in Seattle does not differ significanty
from the nationwide picture” against the alternative hypothesis that “The
percentage distribution of fires in Seattle differs from the nationwide pic-
ture.” If the calculated chi-squared value is larger than the appropriate value
in Appendix A, we will reject the null hypothesis: otherwise, we cannot
reject the hypothesis.

Exhibit 5-7 shows the calculations using the information in Exhibits
5-2 and 5-3.

Exhibit 5-7 Actual and Expected Results-Seattle Fires-1989

Type of Actual Expected
Fire Number Number

Structure 1,195 1,078.4
Outside 164 95.4
Vehicle 850 785.8
Grass 525 693.8
Refuse 512 578.7
Other 42 55.9
Total 3,288 3,288.0

Chi-squared Value
Degrees of Freedom=6 - 1
Critical Chi-squared Value

Diff.
Squared

Diff.

116.6 13,595.6
68.6 4,706.O
64.2 4,121.6

-168.8 28,493.4
-66.7 4,448.9
-13.9 193.2

Divided
by Exp.

12.6
49.3

5.2
41.1

7.7
3.5

119.4

119.4
5

11.07



64 The “Actual Number” column comes directly from Exhibit 5-2. To
obtain the expected number, we apply the percentages from Exhibit 5-3 to
the 3,288 Seattle fires. For example, 32.8 percent of the nationwide fires
were structure fires, which means wc expect 32.8 of the 3,288 fires in
Seattle to be structure fires. This calculation gives 1 ,078.4 fires (32.8 per-
cent times 3,288 fires).

The “Diff.” column gives the difference between the actual and expect-
ed numbers and the next column is the squared difference (the difference
multiplied by itself). The last column is the squared difference divided by
the expected value. The calculated chi-squared value is the Sum of the col-
umn, which is I19.4.

In this example, we have six categories of fires, which means we have
five degrees of freedom. From Appendix A, the critical ch-squared value is
11.07. Since our calculated chi-squared value of 119.4 is greater than the
critical value, we reject the null hypothesis. Our conclusion is that the dis-
tribution of fires in Seattle differs from the nationwide picture.

Other information is available from Exhibit 5-7 with regard to these
differences. For example, the difference between the actual and expected
number of structure fires is 116.6. Squaring this difference and dividing by
the expected number gives 12.1, as shown in the last column. Even though
there is a fairly large difference in this category, its contribution to the chi-
squared value is not large. We expect large categories to have greater
numerical variation than small categories, and for this reason, the calcula-
tion of the chi-squared value uses counts rather than percentages. On the
other hand, the main contributors to the large chi-squared value are outside
fires (49.3) and grass fires (41. 1). With Grass Fires, the difference between
the actual and expected numbers is large (ignoring the minus sign) relative
to the base values and the relatively low volume of fires creates the large
contribution to the chi-squared value.

As another example of the ch-squared test, Exhibit 5-8 shows the
number and percent of calls by month handled by a group of departments in
Florida. This exhibit shows a flat distribution with roughly the same num-
ber of incidents each month. An exactly even distribution of calls would
assign 8.33 percent of the calls to each month (100.0 percent divided by 12).

We can use the chi-squared procedure to test whether the observed
distribution deviates significantly from an expected distribution having the
same percent of incidents each month. Exhibit 5-9 shows the calculations
for this test. The null hypothesis is that the actual distribution of incidents
per month is the same as an expected distribution reflecting the same per-
cent of incidents each month.

5 These numbers include all types of calls for which the fire department responded fire calls. rescue calls.

hazardous conditions service calls. good Intent calls. false calls. etc



Exhibit 5-8 Fire calls for Selected Cities in Florida-1989

Month Number Percent

January 1,193 8.9
February 1,082 8.1
March 1,197 9.0
April 1,109 8.3
May 1,096 8.2
June 1,139 8.5
July 1,060 7.9
August 1,065 8.0
September 1,070 8.0
October 1,123 8.4
November 1,105 8.3
December 1,126 8.4
Total 13,365 100.0

Exhibit 5-9 Actual and Expected Results-Fire Call in Florida-1989

Month
Actual
Number

Expected
Number Diff.

Squared
Diff.

Divided
by Exp.

January
February
March
April
May
June
July
August
September
October
November

1,193
1,082
1,197
1,109
1,096
1,139
1,060
1,065
1,070
1,123
1,105
1,126

13,365
December
Total

Chi-squared Value 20.4

1,113.7 79.3 6,288.5 5.65
1,113.7 -31.7 1,004.9 0.90
1,113.7 83.3 6,938.9 6.23
1,113.7 -4.7 22.1 0.02
1,113.7 -17.7 313.3 0.28
1,113.7 25.3 640.1 0.57
1,113.7 -53.7 2,883.7 2.59
1.113.7 -48.7 2,371.7 2.13
1,113.7 -43.7 1,909.7 1.71
1,113.7 9.3 86.5 0.08
1,113.7 -8.7 75.7 0.07
1,113.7 12.3 151.3 0.14

13,365.O 20.37

Degrees of Freedom = 12  - 1 11
Critical Chi-squared Value 24.7
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In this case, the calculated chi-squared value (20.4) is less than the
critical chi-squared value (24.7). We therefore accept the null hypothesis.



66 That is, we conclude that the distribution of incidents by month does not
differ significantly from an equal distribution.

This conclusion makes sense because of the weather conditions in
Florida. The temperahire does not vary as greatly between winter and sum-
mer as in other states. For this reason, there may not he as much seasonal
variation in fire department activity.

Technical Notes About the
Chi-squared Test*

The chi-squared statistic is based on the chi-squared distribution,
which is a well-known distribution to theoretical statisticians. If the null
hypothesis, Ho, is true and if the sample size is sufficiently large, then the
sampling distribution of the calculated chi-squared value is approximately
the chi-squared distribution. There is a different chi-squared distribution
for each degree of freedom. The primary attribute of the chi-squared statis-
tic is that it tends to be large when the observed percentages are different
from the hypothesized values. We reject the null hypothesis, which states
they are all equal, when the calculated ch-squared value is “larger than
reasonable.”

The table in Appendix A is based on a 5 percent level  of
significance. To understand what we mean by this level of significance,
we need to consider the die throwing experiment again. If we were to
throw the die another 90 times, our results would probably be different.
In fact, in some instances, the results would lead to a large chi-squared
value, leading to a rejection of the null hypothesis of a fair die even
though the die was, in fact, fair. This is called a Type 1 error. At
first glance, this would appear to be a curious result, but is an accepted
fact of life in statistical situations where random fluctuations play an impor-
tant role.

When we state that a test is conducted at a 5 percent level of signifi-
cance, we are saying that we expect to make an incorrect decision 5 percent
of the time. That is, random fluctuations in the sampling procedures will
result in an incorrect decision 5 percent of the time.

The choice of a 5 percent level of significance is common among
statisticians in social science testing. It is not, however, always necessary)
to select the 5 percent level. We can use a Type 1 error of 1 percent
level, 10 percent level, or even 20 percent. The selection depends on
the amount of risk we are willing to take in drawing an incorrect conclusion.
At the I percent level, the critical ch-squared valuer, will be larger
since we are saying that we will risk a wrong decision only 1 percent
of the time. The critical values for the I percent level are presented
in Exhibit 5-10.



Exhibit 5-10 Critical Chi-squared Values-1 Percent Significance Level

Degrees of Freedom

1
2
3
4
5

6
7
8
9

10

11
12

Critical Chi-squared Values

6.6
9.2

11.3
13.3
15.1

16.8
18.5
20.1
21.7
23.2

24.7
26.2
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A review of these figures shows that a larger calculated chi-squared
value is needed in order to reject the null hypothesis. A 20 percent
level provides smaller critical chi-squared values, but selecting such a high
level is usually foolish since it means we risk a wrong decision 20 percent of
the time.

As a final note, the chi-squared test should not be used with small
samples. It is an excellent test when the sample size is large, but is not valid
when the sample size is small. As the sample size increases, statistical theory
says that the computed chi-squared statistic follows more and more closely
to a chi-squared distribution when the null hypothesis is true. The best rule
of thumb is to avoid using the chi-squared test when fewer than 5 cases
are expected in any category. In some situations, it may be advisable to
lump small categories together into an “Other” category prior to the
chi-squared test.

Two-way Tables

In this section, we will extend our ideas to two categorical variables.
By studying the two variables together rather than separately, we can mea-
sure the statistical association between the two variables. By association,
we mean that knowing the value of one variable gives us information
about the other variable. In some instances, there may he no association
whatsoever, and we will be able to recognize this situation. Another result
may be that the association exists, but is weak. Finally, the association
between two variables may be quite strong, and we will measure the
strength of this association.



68 Exhibit 5-11 will Serve as the starting point for to to introduce the con-
cepts in this chapter. NFIRS data for 1989 on civilian injuries (not including
deaths) was the source for developing the  figures in this table. Each record
in the database contains information on the location of the person at the
time of the injury and the nature of the injury.

There are four categories for location. The first indicates that the per-
son was intimately involved with the fire ignition. A common example is a
person who is) burned as a result of accidentially spilling grease on a kitchen
stove. This category also includes injuries from ignition of clothing on a
person and from ignition of bedding or furniture on which a person is sit-
ting or lying. The  next category covers situations whcre the injured person
is in the Same room or space of the fire. but was not directly involved in the
ignition. An example would be smoke inhalation by someone in the kitchen,
but not directly at the stove when the grease fire occurred. The last two cat-
egories cover when the injured person is either on the same floor as the fire
origin or on a different floor of the building.

Exhibit 5-11 Civilian Injuries-1989-Location and Nature of Injury

Fire Casualty intimately
Involved with Ignition

Fire Casualty in the Room
or Space of Fire Origin

Fire Casualty on Same
Floor as Fire Origin

Fire Casualty in Same
Building as Fire Origin

Column Totals

238 34 116

130 100 100

36 205 110

33 190 79

437 529 405

Location
Burns Smoke Burns &
Only Only Smoke

Nature of Injury

Other
Row

Totals

6 394

10 340

39 390

42 344

97 1,468

The nature of the injury is also divided into four categories (1) burns: 
only, (2) smoke/asphyxia only, (3) burns and smoke/asphyxia, and (4) other.
The first three categories are self-explainatory. “Other” category
includes injuries from shock, cuts. dislocations, fraction, and complaints
of pain.

Exhibit 5-11  shows that a total of 1,468 injured persons. The top left
number means there were 238 persons who were intimately involved in the
fire and suffered injuries of burns only. This number is, in fact, the mode of
the two-way classification (although the mode does not always have to
appear as the first number in the table).



With the exception of identifying the mode, the numbers in the table
do not relay much information. In the next section, we will calculate various
percentages from this table, which will provide more insight. ‘Then we will
calculate a chi-squared value to measure the strength of the relationship
between the two variables.
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Percentages for Two-way Tables

There arc three different ways to calculate percentages for a two-way
table of counts. Each way highlights a different feature of the table. More
importantly, each provides a different interpretation of the data and leads to
different conclusions about the relationship between the two variables. The
three ways of calculating percentages are:

Joint percentages
Row percentages
Column percentages

You select the type of percentage you want depending on what you are
trying to show from the data. Joint percentages allow you to compare the
entries in the table directly with each other. Ron percentages concentrate
on each row of the table with percentages along that row summing to 100.0.
In a similar manner, column percentages fix on each column of the table
with percentages down the column summing to 100.0.

Three types of percentages are possible with two-way
tables: joint percentages, row percentages, and column
percentages. Joint percentages are formed by dividing
each number in the table by the grand total. Row per-
centages are obtained by dividing each number in a row
by the row total, and column percentages are obtained
by dividing each number in a column by the column  total.

Joint Percentages

To develop joint percentages, we divide each entry in the table of
counts by the overall total. Exhibit 5-12 shows the calculation for the counts
from Exhibit .5- 11.  The top left entry is simply:

238
 = 16.2 percent

1468

This tells us that 16.2 percent of the total persons injured were intimately
involved in the fire’s ignition and suffer-cd burn injuries. The sum of all the
entries in the table is 100.0 percent.

With the calculation of joint percentages, we have increased our
knowledge because we can now make more logical comparisons. The table



70 tells us, for example, that 14.0 percent of the persons were on the same floor
as the fire origin and had smoke injuries. In a similar manner, only 2.2 per-
cent of the persons were in the same building as the fire origin and had burn
injuries.

Exhibit 5-12 Civilian Injuries-1989-Joint Percentages

Nature of lnjury

Location
Burns
Only

Smoke Burns & Row
Only Smoke Other Totals

Fire Casualty Intimately
Involved with Ignition

Fire Casualty in the Room
or Space of Fire Origin

Fire Casualty on Same
Floor as Fire Origin

Fire Casualty in Same
Building as Fire Origin

Column Totals

16.2 2.3 7.9 .4 26.8

8.9 6.8 6.8 .7 23.2

2.5 14.0 7.5 2.7 26.6

2.2 12.9 5.4 2.9 23.4

29.8 36.0 27.6 6.6 100.0

Exhibit 5-I2 also provides important information from the row and
column totals. For example, from the first row we find that 26.8 percent of
the persons injured were intimately involved in the ignition. ‘This percent
can be derived in two ways. One way is to add the four percentages across
the row (7.9 + 16.2 + 2.3 + 0.4 = 26.8). The  other way is to divide the row
total of 394 (from Exhibit 5-1I ) by 1,468 to give 26.8 percent. Exhibit 5-I2
shows a rather equal distribution across the four Iocation catcgorics:

26.8   percent intimately involved in  ignition
23.2 percent in the room or spacc of fire origin
26.6 percent on the same floor as the tit-c origin
23.4 percent in the same building as fire origin

In a similar manner, we have column percentages which provide infor-
mation. For example, 29.8 percent of the persons injured suffered from
burns only, 36.0 percent from smoke only, 27.6 percent with burns and
smoke, and 6.6 percent with other injuries.

While Exhibit 5-12 provides mot-c insight into these two variables, it
does not directly address other questions. For example, we cannot immedi-
ately compare burn injuries with smoke injuries for persons in the same
room or space of fire origin. Similarly, we cannot compare persons located
on the same floor with persons located in the same building for other
injuries. These comparisons require calculation of row and column per-
cents, as described in the following sections.



Row Percentages 71

To convert a table of counts into row percentages, we divide
each entry in the table of counts by its row total. The top left entry is calcu-
lated by:

238
 = 60.4 percent

394

This tells us that 60.4 percent of the total persons who were intimately
involved in the fire ignition suffered burn injuries.

A table of row percentages allows for comparisons among the cate-
gories represented by the rows. The total for each row is 100.0 percent, and
this figure appears on the right of the table as a reminder that we have
developed row percentages.

As indicated, 60.4 percent suffered burn injuries when they were inti-
mately involved with the fire’s ignition. A total of 29.4 percent had burn and
smoke injuries, 8.6 percent had smoke injuries and only I.5 percent had
other injuries. These percentages account for all the injuries of persons inti-
mately involved in the fire’s ignition.

Exhibit 5-13 Civilian Injuries-1989-Row Percentages

Location

Fire Casualty Intimately
Involved with Ignition

Fire Casualty in the Room
or Space of Fire Origin

Fire Casualty on Same
Floor as Fire Origin

Fire Casualty in Same
Building as Fire Origin

Overall

Nature of lnjury

Burns
Only

Smoke Burns &
Only Smoke Other Total

60.4 8.6 29.4 1.5 100.0

38.2 29.4 29.4 2.9 100.0

9.2 52.6 28.2 10.0 100.0

9.6 55.2 23.0 12.2 100.0

29.8 36.0 27.6 6.6 100.0

Selecting the third row, which is for persons injured on the same floor
as the fire’s origin, a different picture emerges. Burns and smoke injuries
account for 52.6 percent of the total, followed by 28.2 percent for burn
injuries, and about 10.0 percent for the other two injury categories. Once
again, these percentage total to 100.0 percent to account for all persons
injured while on the same floor as the tire’s origin.

It should he noted that we have repeated the overall percentages along



72 the last row from the table of joint percentages. We can then make compar-
isons of the categories against the overall figures. For burn injuries, the
overall percentage was 29.8 percent, and Exhibit 5- I3 shows that the first
two location categories are above this figure while the last two location cat-
egories are below it.

Column Percentages

To convert a table of counts into column percentages, we divide each
entry) by the total for its column. The top left entry would he calculated as:

238
 = 54.5 percent

437

This tells us that 54.5 percent of the persons who received burns were inti-
mately involved in the fire’s ignition.

Exhibit 5-14 Civilian Injuries-1989-Column Percentages

Location

Fire Casualty Intimately
Involved with Ignition

Fire Casualty in the Room
or Space of Fire Origin

Fire Casualty on Same
Floor as Fire Origin

Fire Casualty in Same
Building as Fire Origin

Overall

Burns
Only

54.5

Nature of Injury

Smoke Burns &
Only Smoke Other Total

6.4 28.6 6.2 26.8

29.7 18.9 24.7 10.3 23.2

8.2 38.8 27.2 40.2 26.6

7.6 35.9 19.5 43.3 23.4

100.0 100.0 100.0 100.0 100.0

With a table of column percentages, we analyze a particular type of
injury across the four locations. With burn injuries, we see that 54.5 percent
occurred when the person was intimately involved with the fire’s ignition. A
total of 29.7 percent occurred when the person was in the room or space of
the fire’ origin, and less than 10 percent occurred in the other two location
categories.

With the “Other” injury category, the picture changes. A total of 43.3
percent occurred when the person was in the same building as the fire’s ori-
gin, followed closely by 40.2 percent for location on the same floor as the
fire’s origin. The first two location categories account for 10.3 percent and
6.2 percent, respectively.



Selecting a Percentage Table 7 3

The choice of a percentage table depends on what you are trying to
conclude from the data. Joint probability tables are beneficial when you
want to emphasize the interrelationship between the two variables in the
table. Exhibit 5-12 shows that the combination of burns and intimate
involvement in the fire’s ignition account for 16.2 percent of the total. We
can compare this figure to other combinations in the table.

The row percentage table provides a way of emphasizing the type of
injury for each location. When the person was in the Same room or space of
the fire’s origin, Exhibit 5-13 shows 38.2 percent of the injuries were burns,
29.4 percent were smoke, 2 9.4 percent were burns and smoke, and 2.9 per-
cent were other injuries. These are useful results by themselves, and can be
compared to distributions in other rows.

The column percentage table emphasizes the location for each type of
injury. For burns only, Exhibit 5-14 shows that 54.5 percent were intimately
involved in the fire’s ignition, 29.7 percent were in the same room or space
of the fire’s origin, 8.2 percent on the same floor, and 7.6 percent in the
same building.

Testing for Independence in
Two-way Tables

In this section we will develop a &i-squared test for testing whether
the two variables in a two-way table are independent of each other. As with
our prior discussion, we will provide a step-by-step procedure for calculat-
ing a chi-squared value in a two-way table. We would like to note at this
point, however, that virtually all statstical packages automatically calculate
the chi-squared value for you. As you may have concluded with the exam-
ples from Seattle and Florida, manual calculation is arduous and time con-
suming. In practice, it is not advisable to figure out chi-squared values with
pencil and paper. However, we go through an example in detail in this
section so that you understand what a statistical package is doing when it
calculates a chi-squared value. You should appreciate the time saved and the
inherent accuracy of these packages in your applications.

Before getting to chi-squared calculations, however, we need to know
what we mean by independence. We say that two variables are independent
if knowledge about one variable does not help us in predicting the outcome
of the other variable. In the table of location versus type of injury, we
should certainly suspect that the two variables are not independent. If we
know, for example, that the person was intimately involved in the tire’s igni-
tion, then we can predict that the person probably had burn injuries. As we
shall see later, the chi-squared test will confirm the dependence between
our two variables.
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Independence of two variables means that knowledge
of one variable does not help in predicting the other vari-
able. An equivalent definition is that two variables are
independent if either their row or column percentages
are equal.

As an example of two independent variables, consider the following
table showing the relationship between sex and severity of injury in fires.
The table shows a total of 1,841 persons who were either injured or killed as
a result of a fire. Of this total, there were 1.092 males and 749 females. Of
the 1,841 persons, there were 1,561 persons injured and 280 persons killed.
This table includes the row percentages, which have rounded for purposes
of illustration.

Exhibit 5-15 Sex and Severity of Injuries with Row Percentages-1989

Sex

Male
Row%
Female
Row%
Total
Row%

Injury Severity
Injured Killed Total

927
85%

634
85%

1,561
85%

165% l,092
15% 100%

115 749
15% 100%

280 1,841
15% 100%

This table shows identical row percentages for males and females. That
is, 85 percent of the males and 85 percent of the females received injuries.
Consequently, knowledge of the sex of a person does not improve our abili-
ty to predict injury severity. With either sex, the row percentages have the
Same distribution of 85 percent for injured and I5 percent for killed.

This table illustrates an equivalent definition for independence: two
variables are independent if either their row percentages or column per-
centages are the same. When the percentages agree, we have no predictive
power.

We cannot always expect that the row or column percentages in a table
will be so close that independence is as obvious as Exhibit 5-15. The
chi-squared test with two-way tables provides a means to test whether two
variables are independent. With a chi-squared test, we can determine in a
statistical manner whether the variables are independent.

In order to perform the chi-squared test, we first need to develop
expected values for the table. The expected values are the counts that



would occur if the two variables were independent. After forming a table of
expected values, we will be in a position to do the chi-squared test.
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Table of Expected Values

We form an expected value table in the following manner. For each
number in the original table of counts, we identify the associated row total
and column total. The entry in the expected value table is formed by multi-
plying the row sum by the column sum and dividing by the grand total. We
can state this calculation as follows:

Expected Value =
Row Sum x Column Sum

Grand Total

As an example, look back at Exhibit 5-11, which is the table of counts for
the location and nature of injury. From our prior analysis with row and col-
umn percentages, we strongly suspect an association between location and
nature of injury. The chi-squared test allows us to confirm our suspicion
statistically.

The top left entry shows 238 persons who were intimately involved in
the fire’s ignition and had burn injuries. The row sum associated with this
value is 394, and the column sum is 437. The expected value is therefore
calculated as:

Expected Value =
394 x 437

= 117.29
1468

We continue to perform this type of calculate for every entry in the
original table of counts. Exhibit 5-16 shows the resulting expected value
table.

Exhibit 5-16 Civilian Injuries-1989-Table of expected Values

Location
Burns
Only

Fire Casualty Intimately 117.30
Involved with Ignition

Fire Casualty in the Room 101.21
or Space of Fire Origin

Fire Casualty on Same 116.10
Floor as Fire Origin

Fire Casualty in Same 102.40
Building as Fire Origin

Overall 437.00

Nature of Injury

Smoke Burns &
Only Smoke Other Total

142.00 108.70 26.00 394.0

122.52 93.80 22.47 340.0

140.54 107.60 25.77 390.0

123.96 94.90 22.73 344.0

529.00 405.00 97.00 1,468.0



76 The table of expected values is what we would expect if location and
nature of injury were completely independent. It should also be noted that
the row totals and column totals arc exactly, the same as the original table of
counts. That is, development of the expected value table preserves these
totals.

With the table of expected values in place, we can proceed with
describing the calculations for the chi-squared test.

Chi-squared Test for Two-way Tables

The chi-squared value is calculated along the same lines as we did for
testing just a single categorical variable.

1. Develop the table of expected values, as shown in Exhibit 5-16.
Each entry in the table is obtained by multiplying the row total
times the column total and then dividing by the grand total.

2. For each table entry, subtract the cxpected value from the corre-
sponding entry in the original table of counts, and then square the
result. This difference measures the discrepancy between the actual
counts and what we would expect under independence.

3. Divide the results from Step 2 by the expected value. This is an
adjustment that allows for the fact that larger expected numbers are
usually associated with larger deviations.

4. Sum the results from Step 3. This is the chi-sqnarcd statistic. The
larger the chi-squared statistic, the more likely there is a indepen-
dence between the two variables. However, the &-squared statistic
also depends on the number of categories, which must he taken
into account in the following steps.

5. Find the degrees of freedom, which is calculated for two-way
tables by multiplying (number of rows minus one) times (number
of columns minus one). For our example, we have four rows and
four columns. The number of degrees of freedom is therefore
(‘+-I) x (4-1) = 9.

6. Compare the computed A-squared statistic from Step 4 to the
value in the chi-squared table in Appendix A using the appropriate
degrees of freedom. This table value is called the critical
chi-squared value.

If the computed chi-squared statistic is greater than the value in the
table, then we reject the null hypothesis. Otherwise, we cannot
reject the null hypothesis.

It is important to keep in mind that the null hypothesis with a two-way
table is that the two variables are independent. If we accept the null hypoth-
esis, we are saying that knowing the value of one of the variables does not
help in predicting the value of the other variable. In our example, the null
hypothesis is that location is independent of the nature of the injury.



Exhibit 5-17 shows the chi-squared entries for our two-way table.
These entries are the results after Step 3 above. The top left entry was cal-
culated as follows: Exhibit 5-11 gave an actual count of 238 for this entry
and Exhibit 5-16 gave an expected value of 117.30. Subtracting the expected
value from the actual count gives 120.7 (238 minus 117.3) and squaring
gives 14,568.49. Dividing this number by the expected value, 117.3 provides
the entry for the chi-squared table of 124.20.
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Exhibit 5-17 Civilian Injuries-1989-Table of Chi-squared Entries

Nature of Injury

Location
Burns
Only

Smoke
Only

Burns &
Smoke Other

Fire Casualty intimately 124.20 82.14 0.49 15.39
Involved with Ignition

Fire Casualty in the Room 8.20 4.13 0.41 6.94
or Space of Fire Origin

Fire Casualty on Same 55.26 29.61 0.05 6.75
Floor as Fire Origin

Fire Casualty in Same 47.04 35.13 2.66 16.41
Building as Fire Origin

Total Chi-squared Value = 434.81

To determine the total chi-squared value, we add the numbers from
Exhibit 5-17, which gives 434.81.

We are now ready to test our hypothesis about independence of these
two variables - location and nature of injury. From Appendix A, we see that
the critical chi-squared value for 9 degrees of freedom is 16.92. Our calcu-
lated chi-squared value of 434.81 greatly exceeds the critical value.

We therefore reject the null hypothesis and conclude that there is a
statistical association between location and nature of injury.

Chi-squared Calculation for 2 x 2 Tables*

One exception to the above steps occurs with 2 x 2 tables. For 2 x 2
tables, we must subtract 0.5 from positive differences between observed and
expected counts and add 0.5 from negative differences. This exception is
necessary in order for 2 x 2 tables to match the chi-squared distribution
under the null hypothesis. In most tables, this adjustment makes little dif-
ference in the calculated chi-squared value. However, in some tables it is
important and can change the outcome of the test. For this reason, the
adjustment should always be made in 2 x 2 tables.



78 As an illustration of this exception, consider the following table show-
ing sex by part of body injured for the 1989 data.

Exhibit 5-18 Sex and Part of Body Injured with Row Percentaged-1989

Part of Body Injured

Sex Internal External Total

Male 366 726 1,092
Row % 33.5 66.5 100.0
Female 338 411 749
Row % 45.1 54.9 100.0
Total 1,561 280 1,841
Row % 38.2 61.8 100.0

In this table, we have collapsed the injuries into internal (including res-
piratory and heart) and external (head, body, arm, leg, etc.) injuries. The
row percentages indicate differences by sex. For males, 33.5 percent had
internal injuries and 66.5 percent had external injuries while for females, the
percentages are 45. 1 percent and 54.9 percent, respectively.

The chi-squared value from this table is 24.87. which has been adjusted
according to the above rule on adding and subtracting 0.5. With a 2 x 2
table, there is always only one degree of freedom. From Appendix A, the
critical value with 1 degree of freedom is 3.84. Since our calculated chi-
squared value of 24.87 is greater than this critical value, we reject the null
hypothesis.

We conclude that there is an association between sex and part of
body injured.



Chapter 5
PROBLEMS

1. Suppose that we roll a die 60 times with the following results:

Dots Visible Number Percent

One 13 21.7
Two I2 20.0
Three 7 11.7
Four 12 20.0
Five 9 15.0
Six 7 11.7
Total 60 100.0

Use a chi-squared test to determine whether this die is a “fair” die at
the 5 percent level.

2 . In New Orleans, Louisiana, the number of fires per month for 1990
was as follows:

January 467
February 291
March 392
April 322
May 319
June 349
July 384
August 374
September 359
October 368
November 298
December 345
Total

a.

b.

4,268

With a chi-squared test at the 5 percent Ievel, determine whether
there is an even distribution of fires in New Orleans.

Which months contribute significantly to deviations from an even
distribution?

3. The data on the following pages are for 1990 fires for NFIRS
Metropolitan areas and for the remainder of the United States. The
NFIRS Metropolitan areas are a group of 25 of the largest cities con-
tributing to NFIRS. The question is whether the distribution of types
of fires in the metropolitan areas differs from the rest of the country.
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80 Code

11
12
13
14
15

a.

b

c.

Type of Fire Metro Areas

Structure Fires 54,189
Outside of Structure Fires 4,378
Vehicle Fires 51,774
Trees, Brush and Grass Fires 28,440
Refuse Fires 59,767
Other Fires 2,833
Total 201,381

Source: NFIRS Tally Report 22, 1990.

Rest of United States

241,481
23,986

174,398
172,217
111,291

15,353
738,726

Calculate percentages for each group and develop a tentative
answer based only on the percentages.

Use the chi-squared test to determine whether the two distribu-
tions are significantly different at the 5 percent level.

Which types of tires account for the main differences between the
two groups?

4. The following data for days of the week are for 1990 fires for Denver,
Colorado and for the entire United States. The percentages are for the
United States. Using a chi-square test, determine whether the distribu-
tion by day of week for Denver differs from the entire country.

Day Denver Fires Fires in United States Percent

Sunday 674 134,077 14.37
Monday 688 14.68
Tuesday

136,984
565 130,283 13.96

Wednesday 550 134,886 14.45
Thursday 576 128,729 13.79
Friday 588 129,522 13.88
Saturday 603 138,854 14.88
Total 4,244 933,335 100.0



5. The following data for days of the week are for 1990 fires for Denver, 81

Colorado and for the other metropolitan cities. Using a chi-square
test, determine whether the distribution by day of week for Denver
differs from the other metropolitan cities.

Day Denver Fires Fires in Metro Cities Percent

Sunday 674 29,382 15.18
Monday 688 28,961 14.96
Tuesday 565 27,200 14.05
Wednesday 550 27,305 14.10
Thursday 576 26,025 13.44
Friday 588 26,226 13.55
Saturday 603 28,505 14.72
Total 4,244 193,604 100.0





Chapter 6
ADVANCED TABLE ANALYSIS
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Introduction

In Chapter 5, we focused on statistical tools for analyzing the relation-
ship between two variables. We now want to extend our ideas to situations
where we need to understand the relationships among several categorical
variables. For example, consider the problem of trying to determine factors
that affect the spread of a fire beyond the initial room of origin. We might
ask several key questions: If a building has fire detectors, is a fire less likely
to spread to other rooms? To what extent does the type of material ignited
affect the spread of a fire? If equipment is involved, is there greater likeli-
hood or less likelihood of the fire spreading to other parts of the building?

Each of these variables-fire spread, presence of a fire detector, type of
material, involvement of equipment-is a categorical variable. That is, each
variable is divided into several categories as defined by the NFPA 901 codes.
The box on fire incident reports labeled “Extent of Flame Damage” indicates
fire spread according to seven categories defined by the NFPA 901 codes.”
Similarly, fire detector performance, type of material, and equipment involve-
ment are also recorded on the fire incident report with NFPA 901 codes.

Loglinear analysis is a statistical approach for analyzing the relation-
ships among several categorical variables. The complexities addressed by
loglinear analysis are easily illustrated. We could, for example, develop
several two-way tables from the four variables just described:

Fire spread by fire detector use
Fire spread by type of material ignited
Fire spread by involvement of equipment
Fire detector use by type of material ignited
Fire detector use by involvement of equipment
Type of material ignited by involvement of equipment

Each two-way table defines a relationship that may be important in
understanding fire spread. We could proceed even further by defining three-
way tables, such as fire spread by fire detector use by type of material ignit-
ed. This three-way relationship may also be important in explaining the
spread of a fire. The point is that we have many potential relationships with
these four variables. Loglinear analysis assists in identifying the important
relationships.

6. The categories are (1) fire confined to object of origin (2) fire confined to part of room, (3) fire confined to

room, (4) fire confined to fire-rated compartment of origin, (5) fire confined to floor of origin. (6) fire confined

to structure of origln, and (7) fire extended beyond structure of origin.



84 In this chapter we will present an overview of loglinear analysis. We
start by applying loglinear analysis to two-dimensional tables. This discus-
sion serves as an introduction to the ideas behind this approach. Our prima-
ry example in this chapter is a table with four variable: extent of flame dam-
age, fire detector performance, type of material ignited, and whether equip-
ment was involved in the fire.

It should he mentioned that this chapter differs from previous chapters
because it assumes some knowledge of statistics. You should be able to
understand this chapter if you have had an introductory) course in statistics.
In particular, an understanding of the standardized normal distribution is
required. The calculations for loglinear analysis are also more difficult than
the relatively simple calculations in previous chapters. However, all the Sta-
tistical packages mentioned in Chapter 1 include loglinear analysis proce-
dures which will automatically perform the calculations. Your job will be to
interpret the results and select the most appropriate model.

Loglinear analysis is a statistical technique for
determining relationships among variables in multi-
dimensional tables. From assumptions about interactions
among table variables, loglinear analysis develops a
model of the table and then tests expected results from
the model against the actual table. You can develop
several models with different assumptions and then
select the model that most appropriately describes the
relationships in the table.

Loglinear Analysis of 2 x 2 Tables*

Model of Independence

Exhibit 6-1 is a hypothetical table for two variables that arc mutually,
independent. You can verify that the row percentages arc the same for both
categories of variable A, which proves its independence with variable B. We
have introduced notation in Exhibit 6-1 for identifying the individual cells
and the sums along each row and column. For example, x11 denotes the first
category of variable A and the first category of variable B. Similarly),
x12 indicates the first category of variable A and the second category of
variable B.

The expected value for a cell in the table can be expressed in the
following manner:

(1)

where mij is the expected value for the cell at row i and column j. Equation
(1) says that the expected value, mij  is found by multiplying the total for row



i(xi+) by the total for column j(x+j) and then dividing by the grand total
(x++). This calculation is exactly the same as presented in Chapter 5 for
determining expected values.
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Exhibit 6-1 Hypothetical Tables for Two Independent Variables

Variable A

Category A1

Category A2

Total

Variable B
Category B1 Category B2 Total

36 24 60
X

11
X

12
X

1+
48 32 80

X
21

X
22

X
2+

84 56 140
X

+1
X

+2
X

++

If we take the natural logarithm of both sides of (l), we obtain the
following:

(2)

To generalize our discussion, we will think in terms of a two-dimen-
sional table with I rows and J columns. Equations (1) and (2) still hold as
expressions of expected values and their logarithms.

The formal model of independence is expressed by rewriting (2) in the
following manner.

The term u is the overall mean of the logarithms of the numbers in the
table. Similarly, uA(i) + u gives the mean of the logarithms of the expected
counts for the J cells at level i of variable A and uB(j) + u is the mean of the
logarithms of the expected counts for the I cells at level j of variable B.

Equations (3) through (6) represent the loglinear model of indepen-
dence for two-dimensional tables. The name loglinear model derives from



86 the fact that we have taken the logarithms of the expected values to form a
linear combination. The model is valid for 2 x 2 tables as well as larger
tables with I rows and J columns.

We can apply these equations to Exhibit 6-I to get a sense of how the
loglinear model of independence operates. The results are shown in Exhibit
6-2.  To obtain the value for  U, apply Equation 4 to the cell entries:

u = ¼ (log(36) + log(24) + log(48)+ log(32)) = 3,525 (7)

Similarly, we obtain uA(1) and uB(1) by applying Equations (5) and (6):

log(36) + log(24)
uA(1) = 3.525 = -.144 (8)

2

log(36) + log(48)
uB(1)  = - 3.525 = .203

2

Exhibit 6-2 Values of Terms for Model of Independence

Term

u
uA(1)

uA(2)
uB(1)

uB(2)

Term Value

3.525
-.144
.I44
.203

-.203

An important feature of the model is that the sum of uA(1), and uA(2) is
equal to zero. Similarly, the sum of uB(1) and uB(2) is also equal to zero. The
reason they sum to zero is that they are deviations from an overall average.
We have had other discussions in this handbook where the sum of devia-
tions from a mean is equal to zero. In general, we can state that:

The values in Exhibit 6-2 can be employed with Equation (3) to obtain
Exhibit 6-1. The logarithm of m21, the number of injured females, is shown
on the following page.



log m21 = 3.525 + .144 + .203 = 3.872

The antilogarithm gives m2l = 48, which agrees with Exhibit 6-1.

Model of Dependence

As we saw in Chapter 5, we frequently encounter tables in which the
two variables are not independent. As an example, we analyzed location and
nature of injury in Chapter 5 quite extensively. Exhibit 6-3 reproduces the
table so that WC can illustrate the extension of our model to two dependent
variables.

Exhibit 6-3 Civilian Injuries-1989

Location

Fire Casualty Intimately
Involved with ignition

Fire Casualty in the Room
or Space of Fire Origin

Fire Casualty on Same
Floor as Fire Origin

Fire Casualty in Same
Building as Fire Origin

Column Totals

Burns
Only

238

130

36

33

437

Nature of Injury

Smoke Burns & Row
Only Smoke Other Totals

34 116 6 394

100 100 10 340

205 110 39 390

190 79 42 344

529 405 97 1,468
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The extension is accomplished by introducing interaction terms. We
think of location and nature of injury as “interacting” and develop an
extended model to take the interactions into account:

where uAB(ij) represents the interactions between variables A and B. To cal-
culate uAB(ij), we simply use equation (11) and solve for uAB(ij).  Equations (4)
thru (6) and Equation (9) still apply, and in addition, we: have:

Exhibit 6-4 shows the results for location and nature of injury. We
have an overall mean, u, of 4.128 for the model. Since location has four cat-



88 egories, we have four uA(i) terms. Similarly, we have four uB(j) terms for the
four categories of injury. There are 16 terms for uAB(ij) to cover the 16 com-
binations of location and nature of injury. The terms uA(i) and uB(j) are called
the main effects of the model and the terms uAB(ij) are called the two-way
interaction effects.

These terms operate in exactly the same way as with the independent
model. That is, we can obtain an entry in Exhibit 6-3 by applying Equation
11. Exhibit 6-3 shows 205 persons with injuries of smoke only and location
on the same floor as the fire’s origin (x32). To obtain this value from our
model, we calculate as follows:

log m32 = u + uA(3) + uB(2)+ uAB(32)

= 4.128 + -190 + .548 + .458
= 5.324

The antilogarithm gives the value of 205 persons.

(13)

Exhibit 6-4 Values of Terms for Dependent Model

Location and Nature of Injury

Term Term Value Term

u 4.128

uA(1)
-.242 uB(1)

uA(2) -.033 uB(2)

uA(3)
.190 uB(3)

UA(4) .085 uB(4)

uAB(11) 1.359 uAB(31)

uAB(12) - .907 uAB(32)

uAB(13) .388 uAB(33)

uAB(14) - .840 uAB(34)

uAB(21) 545 uAB(41)

UAB(22) - .038 uAB(42)

uAB(23) .031 uAB(43)

UAB(24) - .539 uAB(44)

Term Value

.227

.548

.479
-1.254

-.961
.458

-.096
.600

-.943
.487

-.323
.779

With the model given by Equation (11) for a two-dimensional table,
we will always obtain the exact value in the original table. For this reason,
the loglinear model with all interaction terms is called a saturated model.
Later in this chapter, we will develop unsaturated models by
eliminating terms from the saturated model. The aim with unsaturated



models is to obtain good estimates for a table with fewer terms than a satu-
rated model.
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While unsaturated models rarely produce the exact values in a table,
they sometimes provide estimates close to the table values. The unsaturated
model then has a key advantage of having identified the important interac-
tions among the variables.

For a two-dimensional table, the saturated loglinear
model is expressed as log mij=u + uA(i)+uB(j)+uAB(ij),
where u is the overall mean of the logarithms of table
entries, uA(i) are the terms for the main effects of variable
A, uB(j) are the terms for the main effects of variable B,
and uAB(ij) are the interactions terms. If the two variables
are independent, then the terms uAB(ij) equal zero and do
not appear in the model.

As a final example in this section, Exhibit 6-5 shows a 2 x 2 table on
civilian injuries relating sex of the injured person to external and internal
injuries from fires. External injuries are usually burns to a part of the body
while internal injuries are usually from smoke inhalation. Because the row
percentages differ considerably, the two variables are clearly not indepen-
dent. A saturated model is therefore appropriate for this table.

Exhibit 6-5 Civilian Injuries-Sex by Type of Injury-1989

External Internal Total

Male 362 331 693 =5.716
Row Percent 52.2 57.8 100.0

= .131
= -.131

Female 211 336 547 = - .094
Row Percent 38.6 61.4 100.0 = .094

= .138
Total 573 667 1,240 = - .138

46.2 53.8 100.0 = - .138
= .138

The right portion of the table shows the terms for the saturated
model. Each entry in the table can be derived using Equation (11) with
these terms.

One other feature of 2 x 2 tables is important for the remainder of this
chapter. Referring back to Exhibit 6-1, suppose that we randomly select an



90 individual from category B1. The quantity x11/x21 represents the odds of an
individual appearing in category A1 rather than A2. Similarly, x12/x22 gives
the odds of an individual appeari in  A1 rather than A2 given that the indi-
vidual was from category B2. In Exhibit 6-5, we have 573 persons with
external injuries and the odds are 1.72 of a male rather than a female (362
divided by 211) having external injuries. We usually express the odds as
1.72: 1 of males to females. If internal injuries are involved, the odds are
.98:1 (331 divided by 336) of males to females. Odds greater than 1.0 indi-
cate that the first category is larger than the second category, while odds
less than 1 .0 indicate the opposite.

The odds ratio is the ratio of these two odds. and can be written as:

Odds Ratio = (14)

If the two variables are independent, then the odds ratio will always be
equal to 1.0. Conversely, an odds ratio of exactly 1.0 indicates complete
independence of two variables. On the other hand, the odds ratio from
Exhibit   6-5  is    1.74,      which       indicates     that sex and type of injury are not inde-
pendent.

Another way to derive the odds ratio is from probabilities. For exam-
ple, Exhibit 6-6 shows probabilities calculated by dividing each entry in
Exhibit 6-5 by the total of 1,240 persons. The odds ratio is obtained
by p11p22/p21p12. For Exhibit 6-6, the calculation gives 1.74 (.292 x .271 /
170 x .267), which agrees with our previous calculation. The reason for
showing this approach is that we may be given the probabilities, rather than
the actual data, as our starting table. The calculations show that the results
are the same regardless of the starting point.

Exhibit 6-6 Civilian Injuries-Sex by Type of Injury-Probabilities-1989

External Internal Total

Male .292 .267 .559
p11 pI2

Female .170 .271 .441
p21 p22

Total .462 .538 1.000

We will return to the idea of odds ratio later in this chapter when we
present results from an example with four variables.



Three-way Tables and
Standardized Values*

Suppose we have three variables labeled A, B, and C with I, J, and K
categories, respectively. A three-way table with these categories would have
/ x J x K cells. Each ceil would indicate the number of items with attributes
Ai, Bj, and Ck. We consider the items to be a random sample taken from a
population from which the talk is derived.

We let wijk = loge xijk, where Xijk is the number of observations in ceil
(i,j,k). The saturated model for a three-way table is given by:

As with the previous discussion, u is the overall mean, and uA(i), uB(i),
and uc(k) are the main effects. Similarly, uAB(ij), uAC(ik), and UBC(jk) represent
the two-way interactions, and uABC(ijk) are the three-way interactions. For a
2 x 2 x 2 table, we would have an overall mean, 4 terms for each of the two-
way interactions, and 8 terms for the three-way interactions.

The Sums of various terms in the model are zero:

While Equations (I5) and (16) appear complex, the calculations are
relatively straightforward. For example, u is the average of the natural loga-
rithms of the table entries:

(17)

To obtain the other values in the saturated model, we need the follow-
ing definitions:

(18)

(19)
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Then we obtain:

By extending the model, we develop terms for uAB(ij) and uABC(ijk)

as follows:

As an example of this saturated model, the value for uAB(11) for a
2 x 2 x 2 table is given by:

It should be noted that each number in the last equation is multiplied
by either by or 1/8 or 1/8.

Upton (1978) shows that any parameter in a saturated model can be
expressed in the following form:

where the aijk are suitably developed constants. In the example just given,
the aijk are either 1/8 or -1/8 depending on the particular cell.

Upton also discusses the fact that the variance of any is related to
the original frequencies in the table, and can be approximated by:



The key point is that we can approximate the variance of a parameter
with the following relationship:
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Variance= (29)

In many applications, our aim will be to identify the most important
terms in a model. The estimated variances will not always be the same since
they depend on the number of categories. To compare the terms, we there-
fore need to standardize, which can be done as follows:

Standardized Term= (30)

where u* represents any of the terms in the model and V(u*) is the variance
of the term according to Equation (27). Goodman (1971) shows that these
standardized values follow an approximately normal distribution with an
expected mean of 0 and a variance of 1.

The value of the above result is that it allows us to determine the
importance of terms in a model. In the next section, we will show the stan-
dardized terms for a saturated model in a four-dimensional table and use the
standardized terms to identify key interactions among the four variables.

Loglinear Analysis Applied to a
Four-Dimensional Table:
Fire Data in Chicago, Illinois

Saturated Model

With the background from the previous sections, we are in a position
to analyze higher-dimensional tables. Our aim is to determine how several
categorical variables relate to each other. That is, we want to examine the
interactions among variables as a way of explaining the entire table.

As an example for this section, we use data from 3,548 residential fires
that occurred in Chicago, Illinois in 1990.7 We have selected four variables
to study with the following definitions:

Variable Description
A Fire was confined to the room of origin, or was not
B Detector performed, or did not (or was not present)
C Fire started from fabric material, or did not
D Equipment was involved in the fire, or was not

7. Residential fires classified as arsons are not included in this analysis.



94 The first variable (A) indicates whether the fire was confined to the
room of origin or whether it extended to another room, another floor in the
structure, or perhaps even another structure. Variable A is typically catted
the extent of flame damage. The second variable (B) indicates whether a fire
detector went off during the fire. The third variable (c) indicates whether
the form of material ignited was a fabric (such as cotton, wool, fur, etc.) or
another type of material (such as flammable liquids, plastics, wood, or paper).
The last variable (D) indicates whether equipment was involved in the fire.8

All four variables are dichotomous variables; that is, they are divided
into two categories as either present or not present. We intentional]!. devel-
oped dichotomous variables to simptify. the presentation of the loglinear
analysis. Extent of flame damage actually has seven categories indicating
whether the fire was confined to (1) object of origin. (1) parts of room or
area of origin, (3) room of origin, (4) tire-rated compartment of origin, (5)
floor or origin, (6) structure of origin, or (7) beyond structure of origin. For
our analysis, the first four categories defined A1 (room of origin) and the last
three catcgories define A2 (beyond room of origin). It should be mentioned
that you can apply loglinear analysis  to a table with all seven categories;
however, each cell in the table should contain at least five fires in order to
assure valid results from the analysis.

Exhibit 6-7 on the following page gives the breakdown of these 3,548
residential fires according to our four-way classification. The first category
of each variable is coded aS a one and the second category aS a two. With
detector performance, for example, a code of one indicates that a fire detec-
tor went off, while a code of two indicates a fire detector did not operate.
The exhibit defines a 2 x 2 x 2 x 2 table with a total of 16 cells. Cell (l,l,l,l)
indicates 37 fires where the fire remained in the room of origin, the detec-
tor went off, fabric was the type of material ignited, and equipment was also
involved in the fire. Cell (2,2,2,1) contain 125 fires where the fire extended
beyond the room of origin, a detector was not present, fabric material was
not involved in the tire, and equipment was involved in the fire.

exhibit 6-8 shows the term values and standardized terms for the satu-
rated model. For each u term, a subscript appears in the “Term” column
indicating the variables. The term value and standardized value are shown
in the nest two columns. They always correspond to the first category of a
variable. The first item in the table is for the first category of variable A
confined to room of origin). It shows a term value of uA = 555 and a stan-
dardized value of 16.0. As shown in the previous section, term values sum to
zero, and similarly, standardized values also sum to zero. We therefore
know that the second category of variable A (fire extended beyond the room
of origin) has a term value of -.555 and a standardized value of -16.0. The
other figures in the exhibit operate in the same manner since all our vari-
ables are dichotomous.

8 A code of 98 in the Equipment Involved in lgnition indicates that no equipment was involved !n the fire. All four

variables have been rededined from the NFPA 901 codes to form dichotomous variables



Exhibit 6-7 Residential Fires in Chicago, Illinois – 1990

Cell

1 1 1 1
1 1 1 2
1 1 2 1
1 1 2 2
1 2 1 1
1 2 1 2
1 2 2 1
1  2  2  2
2 1 1 1
2 1 1 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2
2 2 2 1
2 2 2 2

Definition
Frequency Extent of Flame Damage Fire Detector M a t e r i a l

37
165
218
181

95
504
487
798

6
5 5
35
70
46

262
125
464

Room of Origin
Room of Origin
Room of Origin
Room of Origin
Room of Origin
Room of Origin
Room of Origin
Room of Origin

Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin
Beyond Room of Origin

Worked
Worked
Worked
Worked

Did Not Work
Did Not Work
Did Not Work
Did Not Work

Worked
Worked
Worked
Worked

Did Not Work
Did Not Work
Did Not Work
Did Not Work

Fabric
Fabric

Other Material
Other Material

Fabric
Fabric

Other Material
Other Material

Fabric
Fabric

Other Material
Other Material

Fabric
Fabric

Other Material
Other Material

Equipment

Equipment Involved
No Equipment Involved
Equipment Involved
No Equipment Involved
Equipment Involved
No Equipment Involved
Equipment Involved
No Equipment Involved
Equipment Involved
No Equipment Involved
Equipment involved
No Equipment Involved
Equipment involved
No Equipment Involved
Equipment Involved
No Equipment Involved

Chapter 6
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Exhibit 6-8 Standarized Values for Terms in Standard Model

Chicago Residential Fires-1990

Term
Term Standardized
Value Value

A 555 16.0
B -.688 -19.9
C -.465 -13.4
D -.583 -16.8

AB .146 4.2
AC -.026 -0.6
AD .151 4.4
BC -.009 -0.3

Term

BD .067 1.9
CD -.295 -8.5

ABC
ABD
ACD
BCD

ABCD

Term Standardized
Value Value

.038 1.1

.041 1.2
-.060 -1.7
-096 -2.6

.033 1.0

If we study the standardized values, we can identify the most important
variables according to the saturated model. Since the standardized terms
follow a normal distribution with mean zero and variance one, a good
rule of thumb is to look at standardized values with magnitudes greater
than 2.0 (ignoring the sign). Any standardized value with magnitude greater
than 2.0 indicates a term particularly important to the model. The
table shows that all four main effects (A, B, C, and D) are important. In
addition, the following interaction effects, in order of absolute magnitude,
arc important:

C D
AD
A B
BCD

Type of material and equipment involved
Extent of flame damage and equipment involved
Extent of flame damage and detector performance
Detector performance, type of material, and equipment
involved

These results will be useful in the next section where we develop a log-
linear model that contains only the interactions of importance.

Continuation of Chicago Example:
Hierarchical Models*

By definition, saturated models include every possible interaction in a
table. We can derive beneficial conclusions from a saturated model because
it is an exact representation of the table. The question we explore in this
section is whether we can eliminate terms from the saturated model and still
obtain good estimates of the table values. With a reduced model, we will
identify more clearly the important interactions in the table. Conversely,



terms not included in a reduced model do not contribute to our understand-
ing of the table.
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Hierarchical models provide a structured approach to define models
with fewer terms than saturated models. The rule with an hierarchical
model is that any term included in the model automatically means that
higher-level terms are also included. For example, if uAB is included, then uA

and and uB are automatically included. Of course, the overall mean, u, appears in
all models. If uABC is in the model, then we include all two-way interactions
and main effects: uAB, uAC, uBC, uA, uB, and uC. Hierarchical models are
unsaturated models because they have fewer terms than saturated models.

With this approach, we are establishing a hierarchy of terms. We are
saying that if an interaction term, such as uAB is important, then the main
effects, uA and uB, are also important. Exhibit 6-9 shows the 9 possible hier-
archical models for a table with three variables. The first model is the satu-
rated model which we have already presented. The model A/BC consists of
the main effects for all three variables and the two-way interaction term for
variables B and C. The model AB/AC consists of the main effects for all
three variables and the two interaction effects AB and AC, but excludes BC
and ABC.

Exhibit 6-9 Possible Hierarchical Models for Tables with Three Variables

Model

ABC

AB/AC/BC
AB/AC
AB/BC
AC/BC
A/BC
B/AC
C/AB
A/B/C

Model Terms
Degrees of Freedom for

2 x 2 x 2 Model

0

1

2
2
2
3
3
3
4

Note that this table does not include models for which one of the three
variables is completely omitted. For example, The model A/B is also consid-
ered an hierarchical model with terms u, uA, and uB, but not terms involving
variable C. Models which do not include one of the variables essentially
mean that the omitted variable does not contribute to our understanding of
the table, and we can collapse the table over this variable to produce, for
example, a two-way table involving only variables A and B.

Also note that the degrees of freedom are the number of terms from



98 the saturated model not included in an hierarchical model. For example,
model A/BC omits uac, ubc, and  uabc from the saturated rnodel and therefore
has three degrees of freedom.

The computations for the term values for hierarchical models arc usu-
ally not straightforward. Instead, the term values are calculated in an itera-
tive manner. For this reason, a statistical package is a requirement for most
hierarchical models.

Saturated models contain every possible interaction in a
table. Hierarchical Models contain fewer terms but are
developed in a structured manner. The rule with hierar-
chical models is that any term in the model automatically
means that its higher-order terms are also included. If
ABD is in a hierarchical model, then A, B, D, AB, AD, and
BD must be in the model. The aim of hierarchical models
is to develop a loglinear model that provides good esti-
mates for the table with fewer terms than a saturated
model.

Any of these models will provide estimates for the cells in our table. To
determine how well a model fits the table, we develop a test statistic as
follows:

(31)

where O is the observed or actual count in a given table cell and E is the
expected count under a particular hierarchical model. The Y' statistic
approximately follows a chi-squared distribution.

For tables with three variable (I x J x K), the Y statistic can be
written as:

(32)

where xijk is the observed count in cell (i,j,k) and eijk is the expected count
according to the model.

Because the Y2 statistic follows a chi-quared distribution, we can use
Appendix A to test whether a model is appropriate at the 5 percent level. If
the calculated Y2 statistic is less than the entry in Appendix A, then we
accept the model as a good fit to the data; conversely, if it is greater, we
conclude that our model does not provide a good fit.

We will apple hierarchical models to our example with four dichoto-
mous variables. We will consider the extent of flame damage (fire confined



to the room/not confined to the room) as a response variable and the other
three variables as explanatory variables. That is, we want to model how
detector performance (Variable B), type of material (Variable C),
and involvement of equipment (Variable D) relate to the extent
of flame damage (Variable A). Our aim is to select a model which fits the
table in a reasonable manner and has fewer terms than the saturated model.
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Since variables B, C, and D are explanatory variables, any hierarchical
model must include the term BCD, which means any model will also
include its higher-order terms (DC, BD, CD, B, C, and D). With these
terms as common to all models, we can then concentrate on interactions
with our response variable.

Exhibit 6- 10 shows the results from several models. Each contains the
BCD term along with selected terms involving the response variable.
The degrees of freedom for each model is found by counting the number
of terms omitted from the saturated model. For example, the first
model, AB/ACD/BCD contains all the terms from the saturated model
except ABD, ABC, and ABCD. The model therefore has three degrees
of freedom.

Only Models 1 and 7 provide a good fit to the data according to our
test. Model 1 is defined as AB/ACD/BCD and Model 7 as AB/AD/BCD.
We need to determine which of these two models we want to select as the
final model. As a general rule, when choices are available, the model to
select iS the one with the fewest number of terms. Both models contain uBCD

and its higher-order effects. In addition, Model I includes uAC, UAC, UAD,

and and uAB while Model 7 includes only uAB and uAD. Model 7 is the better
choice since it fits the table reasonably well and has two fewer terms.

Exhibit 6-10 Hierarchical Models for Extent of Flame Damage

Chicago Residential Fires-1990

Model Terms Y2 Degrees of Freedom

1
2
3
4
5
6
7
8

AB/ACD/BCD 2.09*
AD/ABC/BCD 11.39
AC/ABD/BCD 10.96
ACD/BCD 25.97
AB/AC/AD/BCD 11.56
AB/AC/BCD 71.62
AB/AD/BCD 11.57 *
AC/AD/BCD 36.91

3
3
3
4
4
5
5
5

Note: An asterisk indicates that the model is significant at the 5 percent level That IS. the model produces good

estimates of the actual table values.



1 0 0 We could have anticipated that Model 7 would be a good model
because of the results in the previous section with the saturated model. In
the saturated model, the primary interaction effects were AB, AD, CD, and
BCD. With the hierarchical model, BCD is automatically included along
with CD as a higher-order effect. The two remaining effects, AR and AD.
complete Model 7.

Exhibit 6-11 shows the term values and standardized values for Model
7. All except one of the terms have standardized values with magnitudes
greater than 2.0. In particular, all the terms involving variable A in the
model are important.

Exhibit 6-11 Extent of Flame Damage Chicago Residential Fires, 1990

Model AB/AD/BCD

Term Term Value Standardized Value

Mean 4.807 N/A
A .577 21.7
B -.678 -22.4
C -.484 -17.9

D -.591 -19.8

AB .120 4.9
AD .169 7.7
BC .008 . 3
BD .084 3.1
CD -.326 -12.1
BCD -.084 -3.1

From these term values, we can obtain expected values as shown in
Exhibit 6-12 along with the raw data. Most of the expected values are close
to the actual data in the table. Ten expected values are within five percent of
their actual values and 14 are within ten percent of their actual values. The
model therefore provides reasonably accurate estimates for the cells in the
table.

In summary, the hierarchical model (AB/AD/BCD) described in
Exhibit 6-11 provides an excellent model for the residential fires in
Chicago. The model indicates the following key results:

Containment of a fire to the room of origin is more likely if fire
detectors are present and operated.
Containment of a fire to the room of origin is more likely if
equipment is involved in the fire.
Containment is not related to whether fabric is the type of
material ignited.



Exhibit 6-12 Comparison of Expected Values and Actual Table Values
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Chicago Residential Fires-1990

A B C  D Actual Table Value

1 1 1 1
1 1 1 2
1 1 2 1
1 1  2  2
1 2 1 1
1 2 1 2
1 2 2 1
1 2 2  2
2 1 1 1
2 1 1 2
2 1 2 1
2 1 2 2
2 2 1 1
2 2 1 2
2 2 2 1
2 2  2  2

37
165
218
181

95
504
487
798

6
55
35
70
46

262
125
464

Model Value

36.5
163.3
215.0
186.3
109.6
490.5
475.9
808.0

6.5
56.8
38.0
64.7
31.4

275.5
136.1
454.0

Key pointers in using loglinear analysis are as follows:
(1) The most important variables for a table are usually
variables in a saturated model with standardized values
greater than 2.0.
(2) The Y2 statistic follows the chi-squared distribution.
It can therefore be tested to determine whether a model
provides a good fit to the table.
(3) The best model for a table is usually the model
that provides a good fit according to the Y2 statistic.
If more than one model provides a good fit, you should
usually select the model with the fewest number of
terms.

We can verify these results by developing two-way tables as shown
in Exhibit 6-13. These tables were derived from the figures in Exhibit 6-7.
The first table shows that when a detector operated, the odds of fire
confinement to the room of origin were 3.62:1 (601 divided by 166). On
the other hand, when a fire detector did not operate, the odds drop
to 2.10:1 (1,884 divided by 897). Similarly, if equipment is involved in the
fire, the odds are 3.95:1 (837 divided by 212) that the fire will be confined
to the room of origin, as compared to 1.94: 1 (1,648 divided by 851)
if equipment is not involved. Finally, the third table shows similar column



1 0 2 percentages so that we can conclude independence of extent of flame
damage and whether fabric is the type of material ignited.

Exhibit 6-13 Two-Way Interaction Tables

Chicago Residential Fires-1990

Detector Operated

Confined to Room
Column Percent

Extended Beyond Room
Column Percent

Total

Confined to Room
Column Percent

Extended Beyond Room
Column Percent

Total

Confined to Room
Column Percent

Extended Beyond Room
Column Percent

Total

601 1,884
78.4 67.7

166 897
21.6 32.3

767 2,781
100.0 100.0

Equipment
Involved

No Equipment
Involved

837 1,648
79.8 65.9

212 851
20.2 34.1

1,049 2,499
100.0 100.0

Fabric
Material

Other
Material

801 1684
68.5 70.8

369 694
31.5 29.2

1,170 2,378
100.0 100.0

Detector Did
Not Operate Total

2,485

1,063

3,548

Total

2,485

1,063

3,548

Total

2,485

1,063

3,548

The key point is that loglinear analysis identified the important and
unimportant interactions. We did not have to attempt the identifications by
analyzing several two-dimensional and three-dimensional tables. The sys-
tematic approach provided by loglinear analysis resulted in an excellent
model of the table with important insight into the conditions under which
fires are contained to the room of origin.



Summary 1 0 3

Loglinear analysis is an systematic approach for analyzing multi-
dimensional tables. The aim of loglinear analysis is to identify the important
interactions among the variables in the table. Practical application of loglin-
ear analysis means that the user identifies several different combinations of
interactions and then develops a loglinear model for each combination.
Each model produces estimates for the cells in the table table these estimates
can he compared against the actual table values. The most appropriate
model can then he selected as the final representation of the table.



1 0 4 Chapter 6
PROBLEMS

1 .

2 .

3 .

4 .

Calculate the odds ratio for the table in Exhibit 6-1 to verify
independence of the two variables.

Calculate the odds ratios for the three tables in Exhibit 6-13.

Use the term values in Exhibit 6-11 to verify the model values in
Exhibit 6-12 for cells (1,1,1,1), (1,1,2,2), and (2,1,2,1).

In the main example for this chapter, it was shown that fabric as the
material ignited was not considered an important variable from the
loglinear analysis. As an alternative, we substitute the area of origin to
give the following four variables

Variable Description

A Fire was confined to the room of origin, or was not
B Detector performed, or did not (or was not present)
C Fire started in functional area (assembly area, sleeping

room, kitchen, dining area, etc.), or did not
D Equipment was involved in the fire, or was not

The data for Chicago residential fires for 1990 with these definitions is:

A B C D Frequency

1 1 1 1 220
1 1 1 2 26-1
1 1 2 1 34
1 1 2 2 68
1 2 1 2 433
1 2 1 2 764
1 2 2 1 147
1 2 2 2 445

A  B  C  D

2 1 1 1
2
2

1 1 2
1 2 1

2 1 2 2
2 2 1 1
2 2
2 2

1 2
12

2 2 2 2

Frequency

25
78
16
47

119
363
56

329



(continued from question 4) 105

The saturated model gives the following results:

Term
Term Standardized
Value Value Term

Term Standardized
Value Value

A .486
B -.707
C .413
D -.475

AB
AC
AD
BC

.074

.190

.157

.l05

16.2 BD .094 3.1
-23.6 CD .l0l 3.4

13.8
-15.8 ABC .094 3.1

ABD .007 .2
2.5 ACD .029 1.0
6.3 BCD -.047 -1.6
5.2
3.5 ABCD .042 1.4

a. Analyze the standardized values to determine the most important
interactions among the variables.

b. Treat variable A as the response variable and develop several
hierarchical models of interest.

5. For the data from Problem 4, the following are model results for
selected hierarchical models.

Model Terms Y 2
Freedom

1 ABC/AD/BC/BD/CD 3.5 4
2 AB/AC/AD/BC/BD/CD 10.9 5
3 ABC/BC/BD/CD 54.8 5
4 AB/AC/BC/BD/CD 62.4 6
5 AB/AD/BC/BD/CD 52.2 6
6 AC/AD/BC/BD/CD 28.5 6

a. Select the two best models from these alternatives.

b. Which of the two models is the better model?

c. From the data in Problem 4, develop two-way tables for variable
A against the other three variables.

d. Calculate the odds and odds ratios for each of the three tables.





Chapter 7
CORRELATION AND REGRESSION

107

Introduction

In this chapter we present correlation and regression analysis for con-
tinuous data. Correlation is a statistical measure which indicates the degree
to which one variable changes with another variable. We know, for example,
that calls from citizens for Emergency Medical Services (EMS) increase with
population growth. That is, as population increases, we normally expect
more medical services calls from citizens. Statistically, we say there is a posi-
tive correlation between population and EMS calls. The correlation mea-
sures the strength of association between the two variables.

With regression we go a step further and create a straight line, with an
associated regression equation, through a group of points. The result is as an
analytical description of the relationship between two variables. The regres-
sion equation defines the straight line algebraically. As we will see in this
chapter, population predicts fire department workload fairly accurately with
a regression equation. In general, we can say that a regression line summa-
rizes a group of points in a manner similar to the way an average summarizes
a group of numbers.

This chapter starts with the scatter diagrams illustrated in Chapter 3
and proceeds with the calculation of correlation. Next, we give an example
of a regression equation and discuss several applications. We then discuss
how to calculate a regression line. The chapter concludes with a second
example on the relationship between increases in population and increases in
EMS activity for a fire department.

Scatter Diagram
Exhibit 7-1 shows the data for a scatter diagram presented in Chapter 3

on population protected and number of fires during 1989 for 18 selected
jurisdictions.” Exhibit 7-2 is a scatter diagram of the data. The horizontal
axis gives population (in thousands) and the vertical axis gives the number of
fires. We can see from the exhibit that fire levels are higher with greater
population. The general trend is clear although the pattern is not perfect.
We use the term “not perfect” to mean that the points do not fall on a
straight line.

With relationships depicted in this manner, the usual terminology is to
label one variable as the independent variable, and the other as the

9. In Chapter 3, we identified Houston, Texas and Detroit, Michigan as outliers in the data That is, they have a

different relationshIp than the other cities between population and EMS calls For the purposes of this chapter,

we have therefore dropped them from the analysis.
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Exhibit 7-1 Population and Fires for 1989–Selected Cities

City

Arlington, Texas 254,500 1,644
Wichita, Kansas 261,000 1,978
St. Paul, Minnesota 264,800 2,041
Corpus Christi, Texas 274,500 1,769
Newark, New Jersey 275,200 4,442
Norfolk, Virginia 280,000 2,140
Toledo, Ohio 354,600 3,597
Minneapolis, Minnesota 356,700 2,897
Omaha, Nebraska 360,000 2,336
Cincinnati, Ohio 364,000 2,645
Fort Worth. Texas 450,100 5,075
Denver, Colorado 500,000 4,244
Cleveland, Ohio 505,600 6,324
Boston, Massachusetts 574,300 6,479
El Paso, Texas 603,900 4,333
Columbus, Ohio 660,000 4,561
Dallas, Texas 982,800 10,210
San Antonio, Texas 956,200 8,957

Population Protected Fires

dependent variable. In Exhibit 7-2, population serves as the independent
variable and fires as the dependent variable. The independent variable is
viewed as influencing the dependent variable. Obviously, population influ-
ences the number of fires; greater population means more structures and
more vehicles, which, in turn, may lead to more fires. The question is how
strong is the relationship between population and fires.

Exhibit 7-2 Scatter Diagram of Population & Fires-Selected Cities-1989



Correlation measures the strength of association
between two variables. One variable is usually called the
independent variable and the other is called the
dependent variable. A strong association between the
two variables means that knowing the value of the inde-
penden Variable helps to predict the value of the depen-
dent variable. conversely, a weak association means
that the independent variable does not help much in
determining the values of the dependent variable.
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Correlation Coefficient

The correlation coefficient, more commonly just called correlation,
measures the strength of association between two variables. In the next sec-
tion, we will provide the calculation for the correlation coefficient, but here
we want to understand it and discuss its key properties.

The first property to know is that a correlation is always between -1
and +1. A correlation of exactly -1 or +l is called a perfect correlation, and
means that all the points fall on a straight line. If a correlation is zero, then
there is no association between the two variables. That is, one variable does
not assist in knowing or predicting the value of the second variable. As a
correlation moves from zero towards either +1 or -1, the strength of associ-
ation between the two variables also increases.

Exhibit 7-3 shows several scatter diagrams with correlations ranging
from 0 to +l. Note that when the correlation is zero, the dots are randomly
scattered with no pattern. As the correlations increase, the association
becomes stronger–the dots begin to cluster together and we can start to
visualize a straight line through the points.

The correlations in Exhibit 7-3 are positive because the patterns of the
dots always move from the lower left to the upper right. Just the opposite is
true with negative correlations, as shown in Exhibit 7-4, where the patterns
move from the upper left to the lower right. The negative relationship
means that as the independent variable increases, the dependent variable
decreases. The direction of the dots is the distinguishing feature between
negative and positive correlations. A correlation of -.9 is just a strong as a
correlation of +.9, but the pattern of the dots is in the opposite direction.

A correlation has no units of measurement associated with it. That is, a
correlation is not expressed in terms of the independent or dependent vari-
able. It is dimensionless. The interpretation of a correlation coefficient gen-
erally depends on its closeness to -1, 0, or +1. Correlations close to 0 mean
there is no association between the two variables while correlations close to
-1 or +l indicate strong associations.
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Exhibit 7-3 Positive Correlations



Exhibit 7-4 Negative Correlations
111



112 Another important point to know is that correlations are not arithmeti-
cally related to each other. For example, a correlation of .6 is not twice as
strong as a correlation of .3. We can obviously say that a correlation of .6
reflects a stronger association than a correlation of .3, but we must stop
short of exact specification of the difference.

Finally, there is no relationship between correlations and percentages.
Correlations range between - 1 and +l, but have nothing to do with percent-
ages. Again, the correlations are not arithmetically related to each other.

Correlations are always between -1 and +1. Stronger
associations are indicated as the correlations approach-
1 and +1 while correlations close to  0 indicate no
association. With positive correlations, the dots move
from the lower left to the upper right while with negative
correlations, the opposite is true.

Calculating the Correlation

This section will show you how to calculate a correlation. We will use
the data from the selected cities, as shown in Exhibit 7-1. As it turns out,
there is a correlation of .92 between population and fires. This is a high cor-
relation indicating a strong association between the two variables.

To calculate the correlation, we perform the following steps:

1. Convert the values of both variables to standard units, as
defined below.

2 . Take the product of the standard units for each pair.
3. Sum the resulting values and divide by the number of points

minus 1.

To convert a value into standard units, subtract the average”’ and divide
by the standard deviation. Returning to the numbers in Exhibit 7-1, we can
calculate the following information:

Exhibit 7-5 Averages and Standard Deviations for Selected Cities

Average Standard Deviation

Population (in thousand) 459.90 224.78
F i res 4,204.00 2,469.43

10. In this chapter, the average is the arithmetic mean (rather than the median or mode) and the standard

deviation is the sample standard deviation (rather than the population standard deviation).



–x j - x
Standard units =

s

Where
–
x = arithmetic mean

s = sample standard deviation
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Exhibit 7-6 gives the steps for the correlation calculation. The column
labeled “Population Standard Units” lists the standard units for the popula-
tion of each city. For the first population of 254.5, we obtain the standard
unit by subtracting the average of 459.9 and dividing by the standard devia-
tion of 218.45. The calculation proceeds as follows:

Standard Unit
254.4 - 459.9 -205.4

= = = -0.91
(for 254.5) 224.78 224.78

For the standard unit for the first figure for fires, the calculation pro-
ceeds in the same manner using the average and standard deviation for fires.

Standard Unit =
1,644 - 4,204 -2,560

= = -1.04

(for 1,644) 2,469.43 2,469.43

Exhibit 7-6 Correlation Calculation

Population
City (thousands)

Arlington 254.5
Wichita 261 .0
St. Paul 264.8
Corpus Christi 274.5
Newark 275.2
Norfolk 280.0
Toledo 354.6
Minneapolis 356.7
Omaha 360.0
Cincinnati 364.0
Ft. Worth 450.1
Denver 500.0
Cleveland 505.6
Boston 574.3
El Paso 603.9
Columbus 660.0
Dallas 982.8
San Antonio 956.2
Total

Fires

1,644
1,978
2,041
1,769
4,442
2,140
3,597
2,897
2,336
2,645
5,075
4,244
6,324
6,479
4,333
4,561

10,210
8,957

Correlation (Total divided by 17) = .916

Population Fires Standard
Standard Units Units Product

-0.91 -1.04 0.95
-0.88 -0.90 0.80
-0.87 -0.88 0.76
-0.82 -0.99 0.81
-0.62 0.10 -0.08
-0.80 -0.84 0.67
-0.47 -0.25 0.12
-0.46 -0.53 0.24
-0.44 -0.76 0.34
-0.43 -0.63 0.27
-0.04 0.35 -0.02
0.18 0.02 0.00
0.20 0.86 0.17
0.51 0.92 0.47
0.64 0.05 0.03
0.89 0.14 0.13
2.33 2.43 5.66
2.21 1.92 4.25

15.57



114 The last column gives the product of the two calculations, which is
0.95 (-0.91 times -1.04). These calculations are performed for each of the
18 data points. The sum of this column is 15.57, and the correlation is
defined as this total divided by 17, which results in the correlation of .916.

Other Ways to Calculate Correlation*

Several equivalent formulas exist for calculating correlations. We
selected the above procedure to illustrate the connections between correla-
tions, averages, and standard deviations. The correlation is an average of the
products of standard units, except that we divided our sum by the number of
points minus one.

In algebraic terms, the correlation can be seen on the following page.

Correlation =

where sx is the sample standard deviation of x sy is the sample standard
deviation of y. This is the equation that was used to Calculate the correlation
in Exhibit 7-6.

An equivalent formulation for the correlation is given by the following:

In this equation, we have taken the prior equation and replaced the standard
deviations with their actual formulas.

Another way of expressing the correlation is by the following:

Var(x) is the sample variance of x (the square of the sample standard devia-
tion for x), and Var(y) is the sample varance of y.

The quantity Cov(x,y), which is called the covariance of x and y,
measures the extent to which the two variables rise and fall together.
By itself, the covariance is hard to interpret because it is not expressed in
units of either x or y and it does not have an upper or lower bound like
a correlation. However, dividing the convariance by the two variances
standardizes the final result to a correlation, which is always between -1
and + l.



Exhibit 7-7 Correlation Matrix

Variable Population

Population

Structure Fires

Vehicle Fires

Other Fires

Civilian Injuries

Civilian Fatalities

Fire Service Injuries

Fire Service Fatalities

Dollar Loss

1.00

.82

.73

.94

.25

.42

.53

-.23

.37

Fire Fire
Structure Vehicle Other Civilian Civilian Service Service Dollar

Fires Fires Fires Injuries Fatalities Injuries Fatalities Loss

.82

1.00

.90

.79

.32

.70

.68

-.32

.53

.73

.90

1.00

.80

.18

.86

.77

-.24

.94

.79

.79

1.00

.26

.53

.53

-.22

.25 .42 .53

.32 .70 .68

.18 .86 .77

.26 .53 .53

1.00 .14 .31

.14 1.00 .66

.31 .66 1.00

-.26 -.24 -.27

. 2 3 .37

-.32 .53

-.24 .30

-.22 .29

-.26 .76

-.24 .17

-.27 .33

1.00 -.18

.30 .29 .76 .17 .33 -.18 1.00

Chapter 7



1 1 6 Correlation Matrix*

Exhibit 7-7 on the previous page shows a correlation matrix for several
variables for the 18 cities discussed in the previous section. Each entry in
the matrix is a correlation. For example, the first line shows a correlation of
.82 between population and structure fires.

Note  tha t  the  d iagona l  o f  the  cor re la t ion  mat r ix  i s  a lways
1.00, since this is the correlation of a variable with itself. Also, the
correlation is symmetric about the diagonal.  The correlation of
.73 (between population and vehicle fires) from the first line also appears
in the first column. The lower half of the matrix could, in fact, be
omitted without losing any information about the correlations. However,
the complete table is usually displayed co you can find specific correlations
easier.

There are several high correlations in the matrix. For example, the
correlation between population and structure fires is .82, and between pop-
ulation and other fires is .94. On the other hand, there are several low cor-
relations, indicating relatively little relationship between the variables. The
correlation between population and civilian injuries is only .25. This means
that population does not necessarily provide a good indicator of the number
of civilian injuries from fires.

Regression Line

Returning to Exhibit 7-2, We now want to know more about a straight
line that best fits the dots. As we will show in the next section, the
regression line for relating population to fires for these cities is given by:

Fires = 10.06 x Population -424.03

The value 10.06 is called the regression coefficient, or slope, of the regres-
sion line, and the value -424.03 is the constant or intercept. The next
section explains how to calculate these values.

Exhibit 7-8 shows the regression line within the scatter diagram for
population and fires. Note that the dots cluster nicely around the regression
line. The regression line is a representation of these dots, just as the average
is a representation of a single list of numbers.

The regression line estimates the average value for the
dependent variable for a given value of the independent
variable. the regression line is the numerical representa-
tion of a scatter diagram.



Exhibit 7-8 Scatter Diagram of Population & Fires with Regression Line
1 1 7

To see how to use this regression, consider the population of 500,000
for Denver, Colorado. The number of fires estimated by the regression line
i s  then : 1 1

Denver Fires = (10.06 x 500.0) -424.03

= 5,030 - 424.03

= 4,607.5

Denver actually experienced 4,244 calls. The regression estimate was off by
363.5 fires, or about 8.5 percent.

From the equation, you can see that the number of fires changes by
10.06 every time the population variable changes by 1 (that is, the popula-
tion changes by 1,000). In general, the regression coefficient reflects the
change in the dependent variable with a one unit change in the independent
variable.

Another feature of a regression line is that the line always goes
through the point created by the averages for the two variables. In our
example, the average population (in thousands) is 459.90 (see Exhibit 7-5).
For this population average of 459.90, we have the following from the
regression line:

Denver Fires = (10.06 x Population) -424.03

= (10.06 x 459.90) - 424.03

= 4,204.0

The result is 4,204.0 fires, which is the average number of fires for the
18 cities.

11. If you duplicate this calculation, you will not get an answer of exactly 4,607.5 fires because of rounding

errors. More precisely, the slope is 10.0613 and the intercept is -424.0344.



1 1 8 The regression line can also be used to estimate the number of fires for
cities with other populations. Suppose, for example, that your jurisdiction
has population protected of 700,000 persons. How many fires can be
expected with this population? The answer is easily, calculated:

Fires = (10.06 x 700) -424.03

= 6,618

Of course, this calculation assumes that your jurisdiction fits the gener-
al pattern of these cities and is not an outlier. It is also unlikely, that there
will be exactly 6,618 fires for a population of 700,000 persons. This is
strictly a point estimate obtained by applying the regression line. In the
next chapter, we will describe how to calculate an interval estimate around
this point estimate.

Calculating the Regression Line

The regression line has the general form:

Where y is the dependent variable, x is the independent variable, m is the
slope (or regression coefficient), and b is the intercept (or constant). In our
example, the dependent variable is the number of fires and the independent
variable is population. We will now calculate the slope and intercept for our
example. Just as there are several equivalent equations for correlation, there
are also several ways to calculate the slope and intercept, all of which result
in the same answers. Our approach takes advantage of the information we
have about the averages, standard deviations, and correlation for our two
variables.

In Exhibit 7-9, we have placed a dot at the pair formed by the two
averages (459.9 population and 4,204 fires). As stated in the previous sec-
tion, we want the regression line to pass through this point. We get a sec-
ond dot by moving one standard deviation for the population to the right
and upward by one standard deviation for fires times the correlation. The
regression line is then formed graphically by drawing a straight line through
these two points.

Algebraically, the slope of the straight line is:

Slope = r x S.D. of Fires = (.916 x 2,469.43) =10.06
S.D. of Population 224.78



Exhibit 7-9 Graphical Formulation of Regression Line
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Calculating the intercept takes advantage of the fact that the regression
line goes through the point created by the two averages. That is, we deter-
mine the intercept, b, by:

Fires Average = m x Population Average + b

4,204.O = 10.06 x 459.90 + b

-424.03 = b

The final result is the regression line:”

Fires = 10.06 x Population -424.03

In a regression line, when the independent variable
Changes by one standard deviation , the dependent
variable changes by r standard deviations.

Standard Error of the Regression*

The standard error of the regression is an estimate of the accuracy of
the regression line you have developed. In this section we will present two
equivalent ways to calculate the standard error. One way revolves around
the calculation of the residuals of the regression line, while the other way is
a quicker algebraic formula.

The residuals for a regression are the differences between the data
points and the estimates from the regression equation. As we showed earli-
er, the population protected for Denver was 500,000 so that the estimated
number of fires is 4,607.5 (10.06 x 500 - 424.03). Since Denver actually had

12 The more precise numbers were used in the calculations to get these results



120 4,244 fires, the difference is -363.5 (4,244 - 4,606.5). Note that the differ-
ence is negative since the estimated number is greater than the actual num-
ber. Positive residuals come from points located above the regression line,
and negative residuals are from points below the regression line.

Exhibit 7-10 summarizes the residual data for all the points in the
regression. The first three columns are from Exhibit 7-1 she-wing popula-
tion and fires. The fourth column is the estimated number of fires from the
regression equation and the next column shows the residuals. It should be
noted that the sum of the residuals is zero, a characteristic of residual calcu-
lations for regressions. The last column in the exhibit is the square of each
residual (the residual multiplied by itself). The total for this last column is
16,681,736.4, which is sometimes referred to as the sum of squared errors,
or SSE.

Exhibit 7-10 Residuals for Regression Line

Population Estimated Residual
City ( t h o u s a n d s )  F i r e s Fires Residual Squared

Arlington 254.5 1,644 2137 .0 -493.0 243,081.3
Wichita 261.0 1,978 2,202.4 -224.4 50,374.7
St. Paul 264.8 2,041 2,240.7 -199.7 39,873.3

Corpus Christi 274.5 1,769 2,338.3 -569.3 324,097.2
Newark 2 7 5 . 2  4 , 4 4 2 2 , 3 4 5 . 3  2 , 0 9 6 . 7 4,395,985.1
Norfolk 280.0 2,140 2,393.6 -253.6 64,334.6

Toledo 354.6 3,597 3,144.4 452.6 204,890.0
Minneapolis 356.7 2,897 3,165.5 -268.5 72,084.1
O m a h a 360.0 2,336 3 , 1 9 8 . 7  - 8 6 2 . 7 744,239.4

Cincinnati 364.0 2,645 3,238.9 -593.9 352,771.4
Ft. Worth 4 5 0 . 1  5 , 0 7 5 4 , 1 0 5 . 4  9 6 9 . 6 940,160.4
Denver 500.0 4,244 4,607.5 -363.5 132,155.2

Cleveland 505.6 6,324 4,663.9 1660.1 2,755,981.4
Boston 574.3 6,479 5,355.2 1,123.8 1,262,876.3

El Paso 603.9 4,333 5,653.1 -1,320.1 1,742,640.2

Columbus 660.0 4,561 6,217.6 -1656.6 2,744,431.9

Dallas 982.8 10,210 9,466.0 744.0 553,518.6

San Antonio 956.2 8,957 9,198.3 -241.3 58,241.3
T o t a l 0.0 16,681,736.4

We calculate the standard error by the following equation:



In this equation, n is the number of points. In our example, we have 18 1 2 1
points, so that n-2 = 16. The mean square error is therefore calculated as:

The standard error tells us how far, on average, the estimates from
the regression line deviate from the actual numbers. A small standard
error reflects a good fit of the regression line to the data while a large
standard error means the regression line is not very representative of
the data points. A useful rule of thumb is to see if the standard error is
small relative to the dependent variable. In our example, the number of
fires ranges between 1,644 and 9,466 with an average of 4,204.O calls.
Our standard error of 1,021.08 is relatively small compared to these
data values.

The standard error has another interesting feature. From statistical
theory, approximately 68 percent of the actual values should be within one
standard error and 95 percent within two standard errors. In our example,
13 of the 18 cities have fire figures within one standard error and 17 are
within two standard errors. Thus, these results are in line with statistical
theory.

The calculation of the standard error in the above manner obviously
is a time consuming job when you have a large number of points. A more
direct way takes advantage of knowing the correlation coefficient and
standard deviation of the dependent variable, as reflected in the following
equation:

Since the standard deviation for the fires is 2,469.43 and the correlation is
.916, the standard error can therefore be calculated as:

= 1.031 x 2,469.43 x .401

= 1,021.08

The advantage of this equation is that we avoid the arduous
res idua l  ca lcu la t ions  by  knowing  the  cor re la t ion  and  s tandard
deviations.
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Coefficient of Determination:
Explained Variation*

The coefficient of determination is another way to determine how well
a regression line fits the data points. The coefficient of determination is
motivated by the following argument. One crude and simple approach for
predicting a variable is merely to use the average as the prediction. With
this approach, the same prediction (namely, the average) is always made
regardless of the value of independent variable. We can then form squared
residuals from the average just as we did in the previous section. The result
is called the total sum of squares, or SST:

–where y is the actual number of fires for a city and y is the average number
of fires.

In our example, the SST is 103,667,214 . We should note that the sam-
ple variance is the SST divided by 17. Thus, we can view SST as a measure
of variability in the fire figures.

The coefficient of determination is detined as:

R2 = SST - SSE

SST

where SST is the total sum of squares and SSE is the sum of squares
for errors.

You may recall that SSE is derived from the residuals obtained as the
difference between the actual values and the predicted values. In our exam-
ple, we calculated the SSE (see Exhibit 7-10) as 2,311,594.1. The coefficient
of determination for our example is therefore:

R2 = 103,667,214 - 16,681.736
= .839

103,667,214

We can interpret R2 in the following way. With the regression
equation, the amount of error in the predictions (as measured by the
sum of squared errors) is 83.9 percent smaller than when the average
is used as the predictor.  The value R2  therefore indicates how
much better the l inear regression equation is  over simply using
the average.

Another way to view R2  is  to say that population explains
83.9 percent of the variability in the fire figures. Or conversely, 83.9
percent of the variability in the fire figures is explained by population.



An important feature of the coefficient of determination is that it is 123
equal to the square of the correlation coefficient. In our example, the corre-
lation is .916 and the square of this number is .839. The designation of the
coefficient of determination by R2 is intentional to indicate its relationship
to the correlation coefficient. r.

In summary, if we know the correlation coefficient, then a quick calcu-
lation shows how much variation will be explained by a regression line. In
Exhibit 7-7, we showed correlations for several other variables. The exhibit
indicated a correlation of .25 between population and civilian injuries. If we
performed a regression of population against civilian injuries, we would
explain only 6.25 percent of the variation (since the square of the correla-
tion is .0625 or 6.25 percent). The point is that we could perform such a
regression, but the results would not be very satisfying.

An Example with Population and
EMS Calls

In this section we present another regression example showing the
relationship between population and EMS calls in Prince William County,
Virginia. The Prince William County Fire Department has 15 fire stations,
of which 4 stations include paramedics for handling EMS calls. Exhibit 7-11
shows the population growth in the county from 1981 to 1991 along with
the number of EMS calls handled by paramedics. (You may recall that we
showed a scatter diagram of these data in Chapter 3.) One immediate con-
clusion is that the county is growing as reflected by the population increase
of 71,600 over the eleven-year period. The number of EMS calls also
increased substantially over the same time period from 9,538 calls in 1981
to 12,744 calls in 199l.

Exhibit 7-11 Population & EMS Calls Prince William County, Virginia

Year Population EMS Calls

1981 152,300 9,538
1982 156,700 9,578
1983 159,200 9,657
1984 164,100 9,744
1985 169,700 10,072
1986 176,000 11,703
1987 184,700 11,982
1988 205,000 11,843
1989 221,300 13,074
1990 219,000 13,175
1991 223,900 12,744



124 Exhibit 7-12 gives the basic statistics and regression line for population
and EMS calls in the county.

Exhibit 7-12 Basic Statistics and Regression Results

Variable Average Standard Deviation

Population (thousands) 184.72 27.70
EMS Calls 11,191.82 1,491.31

Correlation (r): .946
Coefficient of Determination (R2): .895
Regression line: EMS Calls = 50.96 x Population + 1,778.6
Standard Error: 506.8

Exhibit 7-13 shows a scatter diagram of our data along with the
regression line. In this example, the fit of the regression line is excellent. An
application of this regression line is to anticipate the number of EMS
calls for future years. Suppose the county expects the population to reach
300,000 residents in the next few years. How many EMS call can be
expected with this population? A point estimate can be made with the
regression line:

EMS Calls = (50.96 x 300) + 1,778.6
= 17,067

The implication of this increase is that the fire department probably
needs to start considering expansion of its EMS program to handle the
increased workload.

Exhibit 7-13 Scatter Diagram of Population & EMS Calls
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Correlation and regression analysis are two powerful tools for analyz-
ing the relationship between two continuous variables. A correlation close
to zero tells you there is no relationship, which means that knowing the
value of one of the variables does not tell you much about the value of the
other variable. Correlations close to -1 or +1 indicate a strong relationship
between two variables. We found, for example, a high correlation between
population of jurisdictions and the number of fires. Regression analysis pro-
vides a way to quantify the relationship of two variables. The regression line
is a representation of the scatter diagram of the two variables. We can apply
the regression line to estimate the value of one variable given the other vari-
able. With the regression of population on fires, for example, we can make
estimates on the number of fires that a jurisdiction can expect given its par-
ticular population.
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PROBLEMS

1. Do the following for each of the figures below

a . Estimate the correlation for each figure.

b. The second figure has a clear outlier. What is the correlation
without this outlier.

2 . The following data, which are from Memphis, Tennessee for 1991, are
for structure fires in which the cause of the fire was children playing.
All the fires in this list had incident times less than 30 minutes
(incident time is from time of dispatch to the scene until time of
completion). Develop a scatter diagram and estimate the correlation
between incident time and dollar loss for these fires.

Incident Dollar
Time Loss

Incident
Time

Dollar
Loss

15 700 12 400
18 3,000 16 800
22 250 26 1,000
26 35 22 1,500
14 100 17 5,000
12 500 18 550
28 150 27 250
16 300 11 50



3 . The department responded to an additional 73 structure fires caused
by children playing in which the incident times were greater than 30
minutes. For these fires the correlation between incident times and
dollar losses was .84, and the regression equation relating losses to
incident time was as follows:

127

Fire Loss = 206.2 x Incident Time - 6,266.4

a. Calculate the estimated fire loss for an incident time of 45 minutes
and an incident time of 3 hours (180 minutes).

b According to this regression, how much will fire loss increase when
incident time increases 10 minutes?

c. In general, fire losses and incident times appear to have a fairly
high correlation for incidents requiring more than 30 minutes, but
not for incidents less than 30 minutes. Give reasons as to why this
result might be true.

4 . The number of fires in most jurisdictions has decreased over the last 20
years. However, the following data shows that the total dollar loss due
to fires has steadily increased in the United States.

Year

1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978

Total Fire Losses
(in millions)

$1,707
1,830
1,952
2,328
2,316
2,304
2,639
3,190
3,190
3,558
3,764
4,008

Year

1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989

Total Fire Losses
(in millions)

$4,851
5,579
5,625
5,894
6,320
7,602
7,753
8,488
8,634
9,626

10,210

Source: Insurance Information Institute, New York, New York. Insurance
Facts, annual publications.

a. Develop a scatter diagram showing the year and total dollar loss.



128 (continued from question 4)

b. The last two digits of the year (67, 68, 69, etc.) can be treated as a
variable and we can then develop a regression equation between
year and total dollar loss. The correlation between year and dollar
loss is very high at .9753, and the means and standard deviations of
these variables are as follows:

Variable Mean Standard Deviation

Year
Total Fire Losses

78 6.782
4,929.043 2,696.394

Determine the regression line of total fire losses as the dependent
variable and year as the dependent variable.

c. With your regression equation, estimate the total fire losses for
1988, 1989, and 1990.

d. Draw the regression line on your scatter diagram. The standard
error for this regression equation is 609.06. Draw a line above and
below the regression line representing the standard error.



Chapter 8
MULTIPLE REGRESSION
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Introduction

Chapter 7 discussed regression with only one independent variable
(population). We were able to develop a reliable regression line because a
high correlation existed between population and fires in cities. In other
situations, however, we may know that several factors are related to a depen-
dent variable. Our approach with these situations is to perform a multiple
regression, which means that several independent variables are included in
the regression.

Fortunately, many concepts from Chapter 7 carry over to multiple
regression with little or no modification. One difference, however, is that
calculations for multiple regression are more tedious than for single variable
regression. A computer is therefore an indispensable tool for multiple
regression. The computer’s ability to perform many calculations quickly is a
primary reason that multiple regression is a predominant analytical tool
today. In this chapter, we will not emphasize the calculations, but will
instead focus on understanding multiple regression equations. We can only
scratch the surface on this subject. Interested readers should refer to the sta-
tistics books cited in Chapter 1 for additional information.

dent variables rather than a single independent variable.
Multiple regression is regression with several indepen-

Multiple regression is beneficial when the dependent
variable is related to several factors. The resulting
multiple regression provides a means of estimating the

dependent variable based on values of the several inde-
pendent variables. Many of the concepts from Chapter 7,
such as coefficient of determination and standard error,
can be applied to multiple regression.

Boston Fires

The example for this section is based on 1990 census tract information
for Boston, Massachusetts combined with data on residential fires for 1989
and 1990 by census tract. A total of 147 Boston census tracts had at least one
fire during these two years. A preliminary analysis with correlations showed
that residential fires in the Boston census tracts were related to four key
independent variables:

POPULATION: Population in a census tract.
BOARDED: Number of boarded-up housing units in a census tract.



1 3 0 FAMTYPE: Number of single-parent households in a census tract
with one or more persons under 18 years of age.
DENSITY: Number of households in a housing unit with one or
more persons per room.

As we shall see later, census tracts with large values for these indepen-
dent variables tended to have more fires, and vice versa. On the basis of
these tendencies, the four variables are good candidates for a multiple
regression equation with fires as the dependent variable. The resulting mul-
tiple regression equation provides insight into reasons why fires are high in
one area and low in another area.

Data for the four independent variables were collected as part of the
1990 census conducted by the Bureau of Census. Population is, of course,
the number of persons residing in a census tract. The other three variables
can be considered as measurements of the socio-economic conditions of
census tracts. Census tracts with poor socio-economic conditions usually
have more boarded-up buildings, more households headed by single par-
ents, and more persons per room. The parallel between socio-economic
conditions and fires is probably no surprise to fire fighters and fire depart-
ment administrators. The advantage of multiple regression is that we can
quantify the relationships between fires and socio-economic conditions
rather than depending on personal experiences.

For this analysis the census tract data were combined with residential
fire data fire each census tract. Merging the data was possible because the
Boston Fire Department records the census tract on each fire incident
report. Table 8-1 shows the averages and standard deviations for the vari-
ables in this analysis.

Exhibit 8-1 Averages and Standard Deviations for Regression Analysis

Variable Average Standard Deviation

Residential Fires 13.1 9.0

POPULATION 1382.2 790.4
BOARDED 10.2 21.6
FAMTYPE 177.6 148.4
DENSITY 95.4 79.2

Note Boston. Mass. Data

The average number of fires for the 147 census tracts was 13.1 with a
standard deviation of 9.0. These statistics were derived directly from the
Boston Fire Department data. The other averages and standard deviations
were calculated from 1990 census data for the 147 census tracts.

Exhibit 8-2 shows the correlation matrix for these five variables. The



DENSITY variable has the highest correlation with residential fires (.74), 131

followed by FAMTYPE (.61), BOARDED (.37), and POPULATION (-35).
The correlations among the independent variables are also important to
review. As we will discuss in the next section, we do not want a multiple
regression with independent variables that are highly correlated with each
other. Exhibit 8-2 shows that the largest correlation for the independent
variables is .58 between DENSITY and FAMTYPE. Most of the other cor-
relations are low. In fact, the correlation between POPULATION and
BOARDED is -.06, which means that these two variables have virtually a
random relationship.

Exhibit 8-2 Correlation Matrix-Boston Census Tracts-1990

Variable FIRES POPULATION BOARDED FAMTYPE  DENSITY

FIRES 1.00 .35 .37
POPULATION .35 -.06
BOARDED .37 -.06 1.00
FAMTYPE .61 .12 .43
DENSITY .74 .35 .23

As previously indicated, computers are a necessity for multiple regres-
sion because of the complicated nature of the calculations. We will not
attempt to show calculations as we did in Chapter 7, because our objective is
on interpreting and applying a multiple regression equation. For the resi-
dential fires in Boston, the resulting regression equation was as follows:

Fires = 2.0 + .0017 x POPULATION + .068 x BOARDED (1)
+ .013 x FAMTYPE + .060 x DENSITY

We can estimate the number of fires in a census tract by knowing the
values of the independent variables. For example, census tract 510 has 1,607
residents , 2 boarded-up units, 154 single-parent households, and 33 house-
holds with one or more persons per room. The estimated number of fires
for this census tract is as follows:

Fires=2.0+.0017x1607+.068x2+.013x154+.060x33 (2)
= 8.92

Census tract 510 experienced 10 fires so that the estimated number of
fires is very close to actual experience.

Another interesting feature of the regression is that the coefficients for
the independent variables in (1) are always positive. This means that the
number of fires increases as these variables increase. According to the multi-
ple regression results, increases in population, boarded-up units, household
density, and single-parent households will result in increases in fires.



132 As with regressions in Chapter 7, we should he interested in how well
the regression equation fits the actual data. One measure of fit is the
coefficient of determination, which has exactly the same definition as in
Chapter 7:

R2 =
SST - SSE

SST (3)

where SST is the total sum of squares and SSE is the sum of squares for
errors. Formally, SST and SSE are defined as follows:

(4)

(5)

where y1 are the actual values of the dependent variable, and y is the average
–

of the dependent variable and are the estimated values from (1). The coef-
ficient of determination, R2, is always between 0 and 1. A R2 value close
to 1 indicates a good fit while a value close to 0 indicates a poor fit.

R2 increases whenever we introduce a new independent variable into
the regression. However, we need to avoid the temptation to add indepen-
dent variables just to increase this value. In practice, you will find that a few
independent variables will increase R2 considerably with additional variables
adding very little to the R2  Most computer programs have a procedure for
selecting the most important independent variables and omitting variables
that have minimal contribution to the regression equation. This procedure
is called stepwise regression because it introduces independent variables
one by one according to their importance until the inclusion of more vari-
ables does not significantly improve the equation. Most computer programs
for multiple regression include a procedure for stepwise regression.

For the regression with Boston residential fires, SST is 11,868.7 and
SSE is 4,333.8 so that R2 is as follows:

R2=
11,868.7 - 4,333.8

11,868.7
(6)

= .63

This value indicates a fairly good fit, although it is not as large as we
would like for this type of analysis.

Another measure of interest is the standard error, which we defined in
Chapter 7 as indicating how far, on average, the estimates from the regres-
sion deviate from the actual numbers. For multiple regression, the equation
for the standard error is as follows:

Standard Error = (7)



where n is the number of points and k is the number of independent vari- 133
ables. For our regression, we calculate the standard error as follows:

Standard Error =

= 5.52
(8)

This standard error means that the estimates of fires will deviate, on
average, by 5.52 from the actual number of fires for the census tracts.

In summary, the interesting feature of this regression is that four vari-
ables have been identified which can estimate the number of residential fires
in a fairly accurate manner. The resulting regression equation could be
employed by the Boston Fire Department for planning purposes. For exam-
ple, other information in the city may be available on expected changes in
the four independent variables. The department could therefore estimate its
workload for these census tracts in future years.

The coefficient of determination, R2, determines how
well a regression line fits the data points. R2 is always
between 0 and 1. Low values indicate a poor fit to the
data while values close to 1 indicate a good fit to the 
data. The standard error indicates how far, on average,
the estimates from the regression deviate from the
actual values.

Collinearity Between Variables

A problem with multiple regression occurs when two independent
variables are highly correlated. When this situation occurs, we need to
select one of the variables to include in the regression. As an example, we
present the data in Exhibit 8-3 from Prince William County, Virginia. The
exhibit shows the total number of fires (residential and non-residential) in
the county for 1981 through 1989. Two independent variables related to
fires are shown in the last two columns. The column labeled “Residences”
gives total number of residences (in thousands) and the last column labeled
“Non-Residential Space” gives total square feet (in hundred thousands) of
non-residential (retail, office, and industrial) space in the county. The data
on residences and non-residential square footage are collected on an annual
basis by the county.

Exhibit 8-4 shows the correlation matrix for these three variables. All
correlations are high. The correlation between fires and residences is .90
and the correlation between fires and non-residential square footage is .91.
The exhibit also shows a very high correlation of .98 between residences
and non-residential square footage, which means that the pattern of annual
increases is virtually the same for these two variables.
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Exhibit 8-3 Fires in Prince William County, Virginia-1981-1989

Year Total Fires

1981
1982
1983
1984
1985
1986
1987
1988
1989

3,313
3,003
2,938
3,157
3,631
3,877
3,761
4,256
4,156

Residences Non-residential Space

47.91
49.64
50.93
53.05
54.81
57.34
60.57
65.96
68.65

106.98
107.69
108.51
112.91
125.10
144.13
162.57
182.77
206.03

Exhibit 8-4 Correlation Matrix, Prince William County, Virginia

Variable Fires Residences Non-residential Space

Fires 1.00 .90 .91
Res idences 1.00 .98
Non-residential Space .91 .98 1.00

The temptation is to include both variables in a regression equation
with fires as the dependent variable. However, we will now show that a
regression with only one of the variables gives virtually the same fit to the
data as a regression with both variables. Exhibit 8-5 shows the regression
equations and coefficients of determination (R2) for a regression with resi-
dences (TOTRES) as the only independent variable, non-residential space
(TOTFT) as the only variable, and both variables in a regression.

Exhibit 8-5 Regression Equations for Fires in Prince William County

Variables
in  Regression

TOTRES
TOTFT
Both

Regression  Equation R2

Fires = 60.8 x TOTRES + 129.5 .816
Fires = 12.1 x TOTFT + lJ76.9 .829
Fires = 13.9 x TOTRES + 9.4 x TOTFT + 1,469.9 .830

The three regression equations differ considerably because they
include different independent variables. However, the coefficients of deter-
mination allow us to make comparisons. We have a R2 value of .816 for the
regression with only TOTRES and .829 for the regression with only
TOTFT. With both variables in the regression, the coefficient of determi-
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only TOTFT gives almost exactly the same fit as including both variables.
The inclusion of TOTRES with TOTFT contributes virtually nothing to
the fit of the regression equation to the data.

The high correlation between TOTRES and TOTFT is the reason
that we have such a small increase in the R2 value when both variables are
included. In summary, the best approach in this example is to select the
regression equation with TOTFT to estimate fires rather than using the
regression equation with both variables.

The term multicollinearity is used in most textbooks on statistics to
refer to the situation in which high correlations exist between independent
variables. In addition to problems with selection of variables, multicollinear-
ity can result in instability of the estimated coefficients. The instability
means that estimated coefficients may vary considerably from one sample to
the next.

Multicollinearity is the term used to indicate that two or
more independent variables are highly correlated with
each other. When multicollinearity occurs, we usually
want to select one of the correlated variables to include in
the multiple regression. The other correlated variables
will not improve the multiple regression and may, in fact,
result in unstable coefficients in the equation

Regression with Dummy Variables

The examples in this chapter have been based on continuous variables.
The regression for residential fires in Boston included population,
boarded-up housing units, single-parent families, and high-density
housing units. In previous chapters, however, we have noted that
categorical variables are important to fire departments because the
901 codes serve as the basis for completing reports on fires. In this section,
we will present an approach that includes categorical variables in
a regression.

The example we present is based on data collected during 1990 on
Emergency Medical Services (EMS) calls in Prince William County,
Virginia. We have selected travel time to EMS calls as our dependent vari-
able. Our aim is to determine the effect of three categorical variables on
travel time:

Area of origin of EMS calls
Whether delays occurred enroute to calls
Type of call (Advanced Life support (ALS) or Basic Life Support
(BLS) call).



136 For this analysis, three areas of the county were selected, which we will
designate as Area A, Area B, and Area C: Each EMS report indicates the
area of the call. In addition, the responding paramedic indicates whether
delays were encountered while enroute to the scene. Delays may occur
for several reasons, including traffic, weather, and incomplete address
information.

Exhibit 8-6 shows average travel times for each variable. The overall
average travel time for these 1,620 EMS calls was 6.71 minutes. As seen in
the exhibit, the average travel times in the areas differ considerably with a
low average time of 5.52 minutes in Area A followed by 7.99 minutes in
Area C and 9.33 minutes in Area B. Area B and Area C had longer average
travel times primarily because these areas arc larger than Area A. The
exhibit also shows only a small difference between travel times to ALS and
BLS calls. Travel times to BLS calls averaged 6.52 minutes compared to
7.11 minutes for ALS calls. Finally, the average trawl time to delayed calls
was about one minute longer than calls not encountering delays (6.62 min-
utes compared to 7.69 minutes).

Exhibit 8-6 Average Travel Times-Prince William County-1990

Average Travel
Variable Time (Minutes Number

Area A 5.52 955
Area B 9.33 218
Area C 7.99 4 4 7

ALS Calls 7.11 525
BLS Calls 6.52 1,095

No Delays 6.62 1,473
Delays 7.69 147

Overall 6.71 1,620

While Exhibit 8-6 provides useful information about travel times, it
does not give any information on combinations of the variables. We do not
know, for example, what travel time to expect in Area A for delayed ALS
calls. We can employ regression analysis to provide estimates of travel times
for the various combinations.

Since regression analysis requires numerical values, we need to assign
numbers to these categorical variables. A convenient approach is to define
new variables for each EMS record with appropriate numerical values
depending on the type of call, area, and whether delays were encountered.
For example, We define a variable called CALLTYPE to indicate the type of



call. If an EMS record is for a BLS call, we assign a value of 0 to CALL- 137

TYPE. If it is an ALS call, we assign a value of 1 to CALLTYPE. In a simi-
lar manner, we define a variable called DEIAYS for each EMS incident. If
delays were not encountered, we assign a value of 0 to DELAYS, and if
delays were encountered, we assign a value of 1 to DELAYS.

Because we have three areas, we need a slightly different coding
approach for them. We define two new variables called AREA1 and
AREA2. If an EMS record is for a call in Area 1, we assign a value of 1 to
AREA1 and a value of 0 to AREA2. Similarly, if the EMS call is from Area
2 we assign a value of 0 to AREA1 and a value of 1 to AREA2. Finally, if a
call is from Area 3, we assign a value of 0 to both AREA1 and AREA2. Note
that we would never assign a value of 1 to both AREA1 and AREA2.

In summary, we are defining four new variables in the following manner:

Variable Definition

CALLTYPE 0 for ALS calls
1 for BLS calls

DELAYS 0 for calls not delayed
1 for delayed calls

AREA1 0 if call is not from Area 1
1 if call is from Area 1

AREA2 0 if call is not from Area 2
1 if call is from Area 2

The terms dummy variable or indicator variable are sometimes used to
designate variables defined in this manner as either 0 or 1. A dummy
variable indicates the presence or absence of a characteristic. The variable
DELAYS indicates that a call was either delayed or not delayed;
similarly, the variable CALLTYPE indicates that a call is either a BLS call
or not a BLS call (that is, it is an ALS call). By assigning the values of 0
or 1, dummy variables transform categorical variables into meaningful
numerical variables amenable to statistical analysis. In particular, we
can perform a regression analysis with dummy variables, and the
interpretation of the regression will be related to the definitions of these
dummy variables.

For the regression, the dependent variable is travel time, and the inde-
pendent variables are the four dummy variables. ‘The resulting regression
equation for the data from Prince William County is as follows:

Travel Time = 5.27 + 1.38 x DELAYS + .36 x CALLTYPE (9) 
+ 3.83 x AREA1 + 2.48 x AREA2



138 The regression equation indicates that we start with a base travel time
of 5.27 minutes and then increase the travel time based on delays, type of
call, and area of origin. For example, suppose that we want to estimate the
travel time for a delayed ALS call from Area 2. The values of the dummy
variables for this example would be as follows:

DELAYS 1
CALLTYPE 0
AREA1 0
AREA2 1

We assign a value of 1 to DELAYS because we are assuming a delayed
call. A value of 0 is assigned to CALLTYPE because we are assuming an
ALS call. The variable AREA2 is assigned a 1 because we are assuming
a call from AREA 2, which means that a value of 0 is assigned to the
variable AREA 1

Inserting these values into the regression equation gives the
following result:

Travel Time = 5.27 + 1.38 x 1 + .36x 0 + 3.83 x 0 + 2.48 x 1
= 9.13 minutes

Exhibit 8-7 shows a systematic way of estimating travel times which
takes advantage of the fact that we are working with dummy variables. With
the exhibit, we start with a travel time of 5.27 minutes and then make addi-
tions depending on the values assigned to the dummy variables.

Exhibit 8-7 Travel Times Estimates From Regression

1. Start with a travel time of 5.27 minutes.

2 If the call is delayed, add 1.38 minutes.
If the call is not delayed, add nothing.

3. If the call is a BLS call, add .36 minutes.
If the call is an ALS call, add nothing.

4. If the call is from Area 1, add 3.83 minutes.
If the call is from Area 2, add 2.48 minutes.
If the call is from Area 3, add nothing.

An interesting result  can be derived from determining the
range of travel times. The smallest travel time will occur for non-delayed
BLS calls from Area 3. Calls with these characteristics are estimated to
have an average travel time of 5.27 (since we are adding nothing to the
base average). On the other hand, delayed BLS calls from Area 1 will
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10.83 minutes.

This example shows that dummy variables enable us to include cate-
gorical variables in a regression. We always have one fewer dummy variable
than the number of levels in a categorical variable. We needed only one
dummy variable to indicate delayed/non-delayed calls since there are only
two categories. We needed two dummy variables for areas since we had
three areas. You should he aware that a regression with all dummy variables
is equivalent to another area of statistical analysis called analysis of
variance. Details on analysis of variance are beyond the scope of this
handbook. The key point is that analysis of variance and dummy variable
regression are equivalent statistical procedures.

Finally, it should be mentioned that we can combine continuous and
dummy variables in a regression analysis. That is, it is not necessary to have
either ail continuous variables or all dummy variables in a multiple
regression. The combination of variables in sometimes called analysis
of covariance.

Dummy variables or indicator variables are variables
that have values of either 0 or 1. A dummy variable
indicates the presence or absence of a characteristic.
Dummy variables provide a means of converting
categorical variables to numerical variables amenable to
statistical analysis. The number of dummy variables for
a categorical variable is always one less than the number
of levels of the category variable.

Summary

Multiple regression means that several independent variables are
included in the regression analysis. The advantage of multiple regression is
that it allows us to determine the impact of these independent variables on
the dependent variable. The independent variables may he continuous or
categorical. For categorical variables, we must develop dummy variables,
which indicate the presence or absence of a characteristic, for the regres-
sion. As with single variable regression in Chapter 7, we can calculate a
coefficient of determination and a standard error to determine how well our
regression fits the actual data. The equations for these are very similar to
their counterparts for single variable regression.



1 4 0 Chapter 8
PROBLEMS

1. The regression equation for the Boston census tracts was follows:

Fires = 2.0 + .0017 x POPUI.ATION + .068 x BOARDED (1)
+ .013 x FAMTYPE + .060 x DENSITY

Estimate the number of fires for each of the following census tracts
and compare your result to the actual number of fires shown in the
last column.

Census
Tract Population

Boarded
Units

Single
Parent

families
Housing Actual
Density Fires

709 1386 1 9 184 100 15
812 980 148 396 180 30
902 664 5 9 261 104 30
907 1311 3 139 66 10

2. The multiple regression from Prince William County), for travel times
to EMS calls is as follows:

Travel Time = 5.27 + 1.38 x DELAYS + .36 x CALLTYPE
+ 3.83 x AREA1 + 2.48 x AREA2

(9)

Estimate the travel times for the following types of calls:

a. A non-delayed BLS call from Area 1

b. A delayed ALS call from Area 2.

c. A non-delayed ALS call from Area 3.

d. A delayed BLS call from Area 3.



Chapter 9
QUEUEING ANALYSIS
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Applications of Queueing Theory

Waiting lines have become an everyday part of our lives. Think for a
moment about your activities during the past few days and how often you
have waited in line for some type of service-at a post office, grocery store,
theater, hank, airport, or cafeteria. The common feature of these diverse sit-
uations is that people arrive for a service that is unavailable because the
providers are busy. Waiting lines present a dilemma for managers responsi-
ble for the delivery of service. For example, if a bank manager does not have
enough tellers, the waiting line of customers may become quite long and
they may eventually switch to another bank. On the other hand, if a manag-
er has many tellers on duty, tellers will frequently be idle and bank costs
will escalate.

Within many fire departments, we find a similar dilemma in determin-
ing how many EMS units we need to adequately handle requests from citi-
zens for emergency medical services. A “waiting line” develops when all
EMS units are busy and more citizens call with medical problems. The
waiting line is actually in the communications center where the calls must
be held until EMS units become available. If there are not enough units in
the field, citizens will occasionally have to wait because everyone is busy.
On the other hand, if the department fields a large number of EMS units,
then costs will increase and units may not be very busy.

Queueing theory provides methods to analyze whether waiting lines
will occur and what the consequences of waiting lines will be. It can be
applied to diverse situations including the determination of the number of
tellers for a bank, the number of ticket agents at an airport, and the number
of ambulances for fire departments. In this chapter, we will apply a queue-
ing model to determine the number of ambulances needed.

The following quote from an issue of the jems magazine reiterates the
points we have been making and serves as an introduction to the topics cov-
ered in this chapter.”

No one likes to wait in a line, and none of the systems
with which we work would permit a lengthy wait to occur
for a patient while the dispatcher searches for an ambu-
lance to send on the critical call. On the other hand, no
system can place an ambulance on every corner and
call in a backup crew when each call is dispatched.
Some where between having too many or too few ambu-

13. Barton. George K. “The Wait for an Ambulance.” jems. December, 1986



142 lances a viable solution: queueing theory. This simple
mathematical model or set of formulas will enable you to
determine the number of ambulances needed, by hour of
day and day of week, to meet calls for service in an effi-
cient manner, and will provide objective information to
modify previously committed resources.

As indicated in this quotation, queueing theory provides an analytical
procedure for determining how many ambulances are needed by hour
of day and day of week. In order to make these calculations, however,
you must know how many EMS calls you expect and the average amount
of time ambulance crews will take on calls. We can make these determina-
tions using the techniques previous described in Chapter 4 of this
handbook.

Queueing theory is the study of waiting lines and the
consequences of these lines. It has been applied in a
variety of situations where waiting lines occur. It is an
excellent approach for fire departments in determining
how many EMS units they need to field to handle calls
from citizens for emergency medical services.

In summary, queueing theory can provide assistance in managing and
operating the emergency medical services for a fire department. Potential
applications include:

Estimation of how busy EMS units will be based on an expected
workload of EMS calls.
Estimation of the probability that a citizen’s call for medical
services will have to wait because all EMS units are busy.
Estimation of the average number of citizens waiting for medical
service.
Estimation of the average waiting time for these citizens.
Estimation of the number of EMS units needed to satisfy objectives
established by a fire department.

Examples of Results from
Queueing Theory
Unit Utilization

As a starting point, suppose you have determined that during a particu-
lar time period (e.g., on Saturday evenings from 8 p.m. to midnight), citizen
calls for EMS service arrive into the communications center at an average
rate of two calls per hour. Assume that 40 minutes is the mean time for a
call. The time required for a call starts with the dispatch of an EMS unit to
the scene and ends when the unit is available for another call.
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respond to citizen calls. As a starting point for our analysis, we can calculate
how busy these two units will be. They provide 120 minutes of unit time
each hour (2 units times 60 minutes). The calls require 80 minutes each
hour (2 calls times 40 minutes each). Thus, each unit will be busy about
66.7 percent of the time (80 minutes of work divided by 120 minutes of unit
time). This percentage is called “unit utilization” since it measures the per-
cent of time each unit will be busy during a given time period.

If three units are fielded, unit utilization drops to 44.4 percent, as seen
by the following calculation:

Unit Utilization =
2 x 40

 =  44.4%
3 x 60

In this equation, the numerator gives the amount of work we expect
and the denominator gives the amount of available unit time. You can use
this equation to verify that with four units, the unit utilization drops to 33.3
percent, and with five units, it is 26.7 percent. Exhibit 9-1 is a graph of unit
utilization for this example. Of course, unit utilization can never equal zero,
but it continually decreases as we add more units in the field.

Exhibit 9-1 Unit Utilization

We can state a general formula for unit utilization as follows. Assume
that we expect citizen calls for EMS service each hour and that calls aver-
age t minutes from time of dispatch to time of completion. If we field n
units, the unit utilization is expressed by:

In practice, we can expect considerable variation from what has just
been described. Some evenings will be busier than others and some calls will



1 4 4 require less time than average, while other calls will take considerably
longer. The point is that we will not have exactly the same unit utilization
every day; it will fluctuate depending on the actual workload experienced.
When we calculate unit utilization, we are looking at what happens “on
average.” While we expect fluctuations, we are primarily concerned with
overall average performance of our system.

Other Queueing Calculations

Unit utilization is an example of a system performance measure. It
measures how the EMS system will perform under expected workload con-
ditions. We are not evaluating individual units and we arc not trying to
determine the unit utilization of individual units. Instead, we are consider-
ing the system as a whole and making estimates on what we expect to occur.

By applying queueing theory, we can estimate several other system
performance measures. Three of the most common are:

The probability that a person calling for service will have to wait.
The average number of citizens waiting for service.
The average waiting time for these citizens.

The first measure estimates the probability that all EMS units will be
busy and another citizen will call for EMS service. When this situation
occurs, the communications center must hold the call until an EMS unit
becomes available. The second performance measure estimates how many
citizens will be waiting, on average, for the dispatch of an ambulance.
Finally, the third performance measure gives the average time these waiting
citizens will have to wait until a unit is dispatched.

These performance measures behave in the same manner as unit utiliza-
tion. For example, the probability of a delay decreases as the number of EMS
units increases. Similarly, the number of citizens waiting for service decreas-
es and the amount of waiting time decreases as the number of units increases.

The reason we have these performance measures is because of the
inevitable variation in workload. If two units were fielded, no waiting lines
would occur if we were assured that we would always have exactly two calls
per hour requiring 40 minutes each. In reality, however, workload varies,
and waiting lines develop because of these variations. Since queueing mod-
els assume considerable variability, they provide excellent estimates on the
length of waiting lines and other performance measures.

The formulas for the probability. of delay and the length of a waiting
line arc complicated. Interested readers arc invited to study the next section
where we provide explanations for both calculations. Appendices B and C
have been included in this handbook to ease the calculation burden. They
provide a quick way to obtain the probability of delay and length of a wait-



ing line without having to perform many calculations. The tradeoff is that 145

the results may not be quite as precise as the actual formulas because of the
rounding of numbers we have to do prior to access into the tables. For most
applications, the errors will be small. However, we strongly suggest that you
try to use the actual formulas presented later in this chapter if you want to
be precise in your analysis.

The key to the tables in Appendices B and C is the following calcula-
tion with the average number of calls and average time per call.

where c is the number of calls per hour and t is the average time per call.
Note that division by 60 converts the average time to hours for convenience
with the tables. The Table Key is actually the amount of work we expect
each hour.

In our example, c is 2 calls per hour and t is 40 minutes. The Table
Key is then 1.33 (2 x 40 divided by 60). We round to 1.3 since the keys in
the appendices are to one decimal place. Now turn to Appendix B to find
the probability that a call will be delayed. The number of units is shown
across the top of the table and the Table Key is shown down the left col-
umn. Move down the left column to the line where 1.3 appears as the key.
You can now read across this row to obtain the probability of a delay. With
two units, the probability is 51.2 percent; with three units, the probability is
17.0 percent, etc.

To determine the average number of citizens waiting for an EMS unit,
we use the table in Appendix C in the same manner. The number of units is
displayed across the top and the Table Key is down the left column. We go
to the line where 1.3 appears as the key and obtain the average number of
waiting calls by moving across the row. With two units, we estimate .95 citi-
zens waiting; with three units, only .13 citizens waiting; and with four units,
only .02 citizens waiting.

Finally, we want to determine the amount of time that waiting citizens
will have to wait before a dispatch occurs. Queueing theory informs us that
to determine the average waiting time, we simply divide the entry from
Appendix C by the average number of calls per hour:

Note that we have multiplied by 60 so that our final answer will be in
minutes rather than hours. For example, with two units, we have deter-



146 mined that .95 citizens will be waiting. Since we have 2 calls per hour, the
average waiting time will be 28.5 minutes (.95 times 60 divided by 2).

The top of Exhibit 9-2 summarizes the results of our calculations. The
averages of 2 calls per hour and 40 minutes per call are based on data from
Prince William County, Virginia, for l990. By way of comparison, the bot-
tom portion of the exhibit shows how performance measures change when
the average number of calls increases to 2.5 calls per hour. They show dra-
matic increases. With three units, for example, unit utilization changes from
44.4 percent to 55.6 percent, and the probability of a delay goes from 17.0
to 30.0. On the basis of this exhibit, the county might decide to increase the
number of units because of the changes in performance measures caused by
the increased workload.

Exhibit 9-2 Summary of Performance Measures

Assuming 2.0 Calls Per Hour and 40 Minutes Per Call

Number of Units

Performance Measure 2 3 4 5

Unit Utilization 66.7 % 44.4 % 33.3 % 26.7 %
Probability of a Delay 51.2 17.0 4.8 1.1
Average Number of Waiting Calls 0.95 0.13 0.02 0.005
Average Waiting Time for 28.5 3.9 0.6 0.2

These Calls (Minutes)

Assuming 2.5 Calls Per Hour and 40 Minutes Per Call

Number of Units

Performance Measure 2 3 4 5

Unit Utilization 83.3 % 55.6 % 41.7 % 33.3 %
Probability of a Delay 75.8 30.0 10.3 3.0
Average Number of Waiting Calls 3.79 0.37 0.07 0.015
Average Waiting Time for 90.9 9.0 1.8 0.4

These Calls (Minutes)

Note. For the bottom portion of this exhibit, exact calculations with the queueing theory formulas were used

Determining the Number of EMS Units

The prior analysis presented queueing theory as a descriptive tool.
That is, we assumed a fixed  number of EMS unit in the field and estimated



the performance measures. We can also employ queueing theory in a 1 4 7

prescriptive manner to determine how many units will be required to
achieve predetermined performance measures. That is, we establish objec-
tives for performance and determine how many units will be needed to
achieve the objectives. This approach is similar to a management-by-objec-
tives approach in which objectives determine performance standards.

Suppose, for example, that your objectives are to field enough EMS
units to insure that:

Units are busy on EMS calls no more than 40 percent of their shift.
The probability of a delay is 5 percent or less.

What we want to determine is the number of units needed to obtain
these performance standards.

For purposes of illustration, assume that we expect 3.2 calls per hour
averaging 37 minutes each. The first objective is on unit utilization. We can
use our equation for unit utilization and express it in terms of units needed:

Since our objective is 40 percent for unit utilization, we obtain the
number of units needed as follows:

Unit Needed = 

We round this result to 5 units since we cannot have a fractional unit. This
calculation means that five units will achieve our objective of no more than
40 percent of their time devoted to EMS calls. The result assumes, of
course, that the jurisdiction will continue to average 3.2 EMS calls per hour
and 37 minutes per call.

To estimate the number of units needed for the second objective,
we reference the table in Appendix A. The objective is  that  the
probability of a delay will be 5 percent or less. To access the table, we
need the Table Key, which calculates to 1.97 (3.2 times 37 divided by 60).
We round this result to 2.0 in order to access the table. We now look at
the row for 2.0 in Appendix A, which is shown as Exhibit 9-3 on the follow-
ing page.

This table indicates that six units will be needed to achieve our objec-
tive that the probability of delay will not exceed 5 percent. With three units
or four units, the probability of delay is higher than we are willing to toler-
ate at 44.4 percent and 17.4 percent, respectively. With five units, the prob-
ability of delay will be only 6.0 percent, which is close to our objective but



148 does not achieve it. We therefore select six units to he assured of satisfying
our objective.

Exhibit 9-3 Probability of Delay

Table Key = 2.0 (3.2 calls averaging 37 minutes each)

Number of Units Probability of Delay

3 44.4
4 17.4
5 6.0
6 1.8
7 .01

We have now determined how many units are needed for each objec-
tive, but we still have one remaining step. We need five units to achieve the
first objective, and we need six units to achieve the second objective. To
achieve both objectives, we select the maximum of these two numbers. In
other words, we select six units as the final answer. The reason is that six
units will satisfy both objectives. It satisfies the second objective because of
our manner of selection from the table, and it satisfies the first objective
because adding more units decreases unit utilization.

As a final note, it should be mentioned that there are many other
queueing models from which to choose. We have selected this particular
model because it is one of the most frequently applied and has proven bene-
ficial in many queueing problems similar to what fire departments
encounter.

Queueing models can he expanded to cover other situations. For
example, we can include call priorities to take into account that some EMS
calls are more serious than others. If citizen calls are waiting in the commu-
nications center, the more serious calls, such as heart attacks, have higher
priority than minor calls, such as bruises. Queueing models exist that
include priority systems. They can be applied in the same manner as our
basic model. In addition, other queueing models exist that take geography
into consideration. These models are more complicated because they
require the user to describe the geography of your jurisdiction. However,
they may be beneficial to you because they may reflect more accurately the
problems of locating EMS units.

Queueing Calculations*

In the literature on queueing theory, the system just described is called
a multiple-server queueing model in which call arrivals follow a Poisson dis-
tribution and service times follow an exponential distribution. In this



section, we will describe the Poisson and exponential distributions and we 1 4 9

will give formulas for the queueing calculations needed to derive
Appendices A and B.

The Poisson distribution is a probability distribution which has been
applied in many diverse situations. To see its application to EMS calls, we
will first develop a frequency distribution on the number of calls arriving
into a communications center. The frequency distribution will then be
approximated by the Poisson distribution.

During some hours, no calls will come into the communications cen-
ter. In other hours, we will have only one EMS call, and other hours will
have more than one EMS call. Over a large number of hours, we can build a
frequency table showing the number of hours with zero calls, the number
with only one call, the number with two calls, etc.

As an example, Exhibit 9-4 gives information on the number of calls
per hour in Prince William County, Virginia, for the hours from 3 p.m. to 7
p.m., January l-May 31, 1990 (a total of 152 days). Since we are looking at
four hours during each of these days, we have 608 data points (4 times 152).
The exhibit shows that there were 54 hours during which no citizens called
for EMS service. For 105 hours, exactly one EMS call came into the
communications center; for 123 hours, exactly two EMS calls came into the
communications center, and so on. The third column of the exhibit
converts the frequencies into percentages. This column shows, for example,
that during 14.0 percent of the hours, 4 EMS calls arrived into the commu-
nications center.

EMS Calls

0 54
1 105
2 123
3 109
4 65
5 51
6 37

> 6 44
Total 608

Number of Hours Percent Poisson

8.9
17.3
20.2
17.9
14.0
8.4
6.1
7.2

100.0

5.2
15.3
22.7
22.4
16.6
9.8
4.9
3.2

100.0

Note: Calls are from Januay - May, 1990-3 p.m. to 7 p.m.

From Exhibit 9-4, we can calculate that the average number of EMS
calls per hour is 2.97. We can then develop a Poisson distribution of the
expected percentage of calls per hour. The right column of Exhibit 9-4



150 shows expected frequencies according to a Poisson distribution (we will give
the calculations for this column in the following paragraphs). This column
can be compared to the actual percentage from our sample. While the
expected percentages are not exactly the same, the differences are not large.
For example, the Poisson distribution shows 15.3 percent of the hours with
exactly one EMS call per hour, as compared to actual experience of 17.3
percent.

The general equation for a Poisson distribution is as follows:

where c is the average number of calls per hour, and k is an integer value
starting with zero.

Exhibit 9-5 Poisson Distribution

In our example, we have an average of 2.97 calls per hour. To deter-
mine the probability of four calls per hour, we compute as seen on the
following page.
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Exhibit 9-5 shows several theoretical Poisson distributions. The shape
of the distribution depends on the average. When the average is less than
1.0, the Poisson distribution continually decreases; if the average is greater
than 1.0 the distribution increases to the integer portion of the average and
then decreases.

The results on queueing theory presented in this chapter are correct
provided the arrival of EMS calls into the Communications Center approxi-
mately follow a Poisson distribution. Hoaglin, Mosteller, and Tukey (1985)
provide a relatively simple graphical technique for determining whether the
Poisson distribution is a good selection. In their approach, k represents the
number of possible EMS calls in an hour (0, 1, 2, etc.), and nk represents the
observed number of hours with k calls. If calls follow a Poisson distribution,
you should obtain a straight line by plotting k against the quantity
log (k! nkl N), where N is the total number of hours (608 in our example).
Exhibit 9-6 shows the plot obtained through this procedure. You will
note that the dots approximate a straight line, which indicates a
relatively good fit between our actual data and what would be expected with
a Poisson distribution.

Exhibit 9-6 Plot for Poisson Fit

As previously indicated, the queueing model also assumes that the ser-
vice times follow an exponential distribution. The exponential distribution
is given by:



152 where x represents a particular service time and u is the service rate.
Suppose, for example, that the average service time for EMS calls is 28.5
minutes, or .475 hours. The service rate is the inverse of the service time;
that is, it is 1 divided by the service time. The service rate is therefore 2.11

Exhibit 9-7 shows the exponential distribution assuming a service rate
of 2.11. The key feature of the exhibit is that the curve continually decreas-
es. The decrease means that there is a low probability of long service times.

Exhibit 9-7 Exponential Distribution

With this background, we can now provide the equations for the fig-
ures appearing in Appendices A and B. We will not derive these equations,
since the derivation assumes a considerable amount of background knowl-
edge about queueing theory. However, the equations are of value if you
want to perform more exact calculations than provided in the Appendices.
While the equations appear complicated, they are fairly easy to develop on
most microcomputer spreadsheet program.

In the following equations, we define r = c/nu. We assume that r < 1, so
that the arrival rate does not exceed the maximum service rate. We first cal-
culate Po, which is the probability that all units are busy:

Then the probability of a delay is expressed as:



Finally, the equations for the queue length, Lq, and for waiting time in the 153
queue, Wq, are given by:

Summary

Queueing theory is the analysis of waiting lines and the consequences
of these waiting lines. It can be a powerful management tool to address
issues of unit utilization, waiting time, call priorities, and other important
considerations in your EMS delivery system. In this chapter, we have
applied queueing theory to the problem of determining the number of EMS
units needed in a fire department. For this determination, we must first
know how many EMS calls we expect and what the average time per EMS
call will be. We obtain these averages from prior experience using the tech-
niques described in Chapter 4 of this handbook. It is also necessary to estab-
lish objectives for the EMS delivery system. We can say, for example, that
we want to have enough EMS units so that they devote no more than 50
percent of their time to EMS calls. Other objectives could be established on
the probability of a call delay, the average number of waiting calls, and the
average that calls will have to wait. We can then apply a queueing model to
determine how many units will be needed to achieve these objectives.
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PROBLEMS

1. Suppose that your department averages 3.5 EMS calls per hour with an
average of 45 minutes for each call.

a. Calculate unit utilization assuming you have 3, 4, 5 and 6 units
fielded.

b. How much does unit utilization change from 4 units to 5 units?
from 5 units to 6 units?

2. For the average of 3.5 calls per hour and 45 minutes per call, use
Appendices A and B to answer the following questions assuming 3, 4,
5, and 6 units.

a. What is the probability, of delay?

b. What will be the average number of citizens waiting for service?

c. What is the average waiting time of citizens whose call has been
delayed?

3 . Suppose that EMS calls have been increasing 6 percent per year and
that next year you also expect that calls will average 50 minutes per
call, rather than 45 minutes per call.

a. How many calls per hour will you have based on a 6 percent
increase assuming a current average of 3.5 calls per hour.

b. Determine unit utilization, probability of delay, and average
number of people waiting assuming 4 units in the field.

c. Compare these results to your answers in question 2 for 4 units.

4. How would you determine the actual value of your performance
measures in your department today

5. What process would you use to set objectives in your jurisdiction on
performance measures?

6. Suppose you expect 4 EMS calls per hour next month with an average
of 38 minutes per call. Suppose further that your jurisdiction has set
the following objectives:

Unit utilization not more than 60 percent
Probability of a delay not more than 3 percent



Average number of citizens waiting not to exceed .25 155

a. Determine how many units will he needed to satisfy each of these
objectives.

b. How many units will be needed to satisfy all three objectives?

7. Suppose the jurisdiction decides to add an objective that the waiting
time should not exceed I5 minutes.

a. How many units will he needed to satisfy this objective?

h. Does this change the total number of units needed to meet all four
objectives?

8. In Prince William County, Virginia, the distribution of EMS calls
coming into the communications center between 7 a.m.-11 a.m.,
January-May 1990, was as follows:

EMS Calls Number of Hours Percent

0 158 26.0
1 192 3 1.6
2 144 23.7
3 68 11.2
4 34 5.6
5 10 1.6
6 2 0.3

Total 608 100.0

From this distribution, we can calculate an average of 1.46 calls
per hour.

a. with the average of 1.46 calls, determine the expected percent of
EMS calls under a Poisson distribution.

b. Develop a plot for Poisson tit similar to Exhibit 9-6 to determine
whether the Poisson distribution gives a good approximation to the
experienced distribution.

c. What is your conclusion?

9 . For an exponential distribution, the cumulative distribution is given by
the following relationship:

F (x) = 1 - e-xu

where u is the service rate in our application.



1 5 6 (continued from question 9)

Suppose that the average service time is 28.5 minutes, which means
that the service rate is 2.11.

a. Develop a graph of the cumulative distribution assuming this
service rate of 2.11.

b. From the graph, estimate the 25th percentile, median, and 75th
percentile.
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CRITICAL VALUES FOR THE

CHI-SQUARED DISTRIBUTION
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Degrees of Freedom Critical Value Degrees of Freedom Critical Value

v .050 v .050

1 3.841
2 5.991
3 7.815
4 9.488
5 11.07
6 12.59
7 14.07
8 15.51
9 16.92
10 18.31
11 19.68
12 21.03
13 22.36
14 23.68
15 25.00
16 26.30
17 27.59
18 28.87
19 30.14
20 31.41
21 33.67
22 33.92
23 35.17
24 36.42
25 37.65
26 38.88
27 40.11
28 41.34
29 42.56
30 43.77
31 44.98
32 46.19
33 47.40
34 48.60
35 49.80
36 51.00
37 52.19
38 53.38
39 54.57
40 55.76
41 56.94
42 58.12
43 59.30
44 60.48
45 61.66
46 62.83
47 64.00
48 65.17
49 66.34
50 67.50
75 96.22
76 97.35
77 98.48
78 99.62

79 100.7
80 101.9
81 103.0
82 104.1
83 105.3
84 106.4
85 107.5
86 108.6
87 109.8
88 110.9
89 112.0
90 113.1
91 114.3
92 115.4
93 116.5
94 117.6
95 118.8
96 119.9
97 121.0
98 122.1
99 123.2
100 124.3





Appendix B
PROBABILITY OF DELAY

1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3
1.1
3.2
3.3
3.4
3.5
3.6
1.7
3.8
3.9
4
4.1
1.2
1.3
4.4
4.5
4.6
4.7
4.8
4.9
5
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
6
5.1
5.2
6.3
6.4
6.5

33.3
19.0
45.0
i l . ?
57.6
64.3
71.7
78.1
85.3
92.6

3

9.1
11.5
14.1
17.0
20.2
23.7
27.4
31.3
35.5
39.9
44.4
49.2
54.2
59.4
64.7
70.2
75.9
81.7
87.7
93.8

2.0
2.8
3.7
4.8
6.0
7.5
9.1

10.9
12.9
15.0
17.4
19.9
22.7
25.6
28.7
32.0
35.4
39.1
42.9
46.8
50.9
55.2
59.6
64.2
68.9
73.8
78.8
83.9
89.1
94.5

5 6 7

0.4
0.6
0.8
1.1
1.5
2.0
2.6
3.3
4.0
4.9
6.0
7.1
8.4
9.8

11.4
13.0
14.9
16.8
19.0
21.2
23.6
26.2
28.9
31.7
34.7
378
41.0
44.4
48.0
51.6
55.4
59.3
63.4
67.5
71.8
76.2
80.8
85.4
90.2
95.0

0.1
0.1
0.2
0.2
0.3
0.5
0.6
0.9
1.1
1.4
1.8
2.2
2.7
3.3
4.0
4.7
5.6
6.5
7.5
8.7
9.9

11.3
12.7
14.3
16.0
17.7
19.7
21.7
23.8
26. I
28.5
31.0
33.6
36.3
39.2
42.2
45.3
48.5
51.8
55.2
58.8
62.4
66.2
70.0
74.0
78.1
82.3
86.6
90.9
95.4

0.0
0.0
0.0
0.0
0.1
0.1
0.1
0.2
0.3
0.4
0.5
0.6
0.8
1.0
1.3
1.5
1.9
2.3
2.7
3.2
3.8
4.4
5.1
5.9
6.7
7.6
8.6
9.7

10.9
12.2
13.5
15.0
16.5
18.1
19.9
21.7
23.7
25.7
27.8
30.1
32.4
34.9
37.4
40.0
42.8
45.6
48.6
51.6
54.8
58.0
61.4
64.8
68.4
72.0
75.7
79.5
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C/S Number of Units

4
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QUEUE LENGTH (Lq)
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C/S Number of Units

2 3 4 5 6 7

1 0.33 0.05 0.01 0.00 0.00 0.00
1.1 0.48 0.07 0.01 0.00 0.00 0.00
1.2 0.68 0.09 0.02 0.00 0.00 0.00
1.3 0.95 0.13 0.02 0.00 0.00 0.00
1.4 1.35 0.18 0.03 0.01 0.00 0.00
1.5 1 .03 0.24 0.04 0.01 0.00 0.00
1.6 2.84 0.31 0.06 0.01 0.00 0.00
1.7 4.43 0.41 0.08 0.02 0.00 0.00
1.8 7.67 0.53 0.11 0.02 0.00 0.00
1.9 17.59 0.69 0.14 0.03 0.01 0.00
2 0.89 0.17 0.04 0.01 0.00
2.1 1.15 0.22 0.05 0.01 0.00
2.2 1.49 0.28 0.07 0.02 0.00
2.3 1.95 0.35 0.08 0.02 0.00
2.4 2.59 0.43 0.10 0.03 0.01
2.5 3.51 0.53 0.13 0.03 0.01
2.6 4.93 0.66 0.16 0.04 0.01
2.7 7.35 0.81 0.20 0.05 0 . 0 1
2.8 12.27 1.00 0.24 0.07 0 .02
2.9 27.19 1.23 0.29 0.08 0.02
3 1.53 0.35 0.10 0.03
3.1 1.90 0.43 0.12 0.03
3.2 2.39 0.51 0.15 0.04
3.3 3.03 0.62 0.17 0.05
3.4 3.91 0.74 0.21 0.06
3.5 5.17 0.88 0.25 0.08
3.6 7.09 1.06 0.29 0.09
3.7 10.35 1.26 0.35 0.11
3 . 8 16.94 1.52 0.41 0.13
3.9 36.86 1.83 0.48 0.1 5
4 2.22 0.57 0.18
4. 1 2.70 0.67 0.2 1
4.2 3.33 0.78 0.25
4.3 4. 15 0.92 0.29
4.4 5.27 1.08 0.34
4.5 6.86 1.26 0.39
4.6 9.29 1.49 0.45
4.7 13.38 1.75 0.53
4.8 21.64 2.07 0.61
4.9 46.57 2.46 0.70
5 2.94 0.81
5.1 3.54 0.94
5.2 4.30 1.08
5.3 5.30 1.25
5.4 6.66 1.44
5.5 8.59 1.67
5.6 11.52 1.94
5.7 16.45 2.26
5.8 26.37 2.65
5.9 56.30 3.11
6 3.68
6.1 4.39
6.2 5.30
6.3 6.48
6.4 8.08
6.5 10.34
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Chapter 2

1 . Fires by Hour of Day - Boston 1988

Midnight - 4 a.m. 1531
4 a.m. - 8 a.m. 580
8 a.m. - Noon 772
Noon - 4 p.m. 1367
4 p.m. - 8 p.m. 1856
8 p.m. - Midnight 2219

Fires by Hour of Day - Boston 1988

This histogram can be used to easily distinguish the morning hours
from the afternoon and evening hours. The histogram in Exhibit 2-2
would take a little more concentration. This histogram would be useful
when deciding shift assignments. The histogram in Exhibit 2-2 quickly
shows which hour of day is the busiest and which hour is the least
busiest. Remember, you always lose information when you aggregate
data.

2 . Exhibit 2-2 indicates that we should schedule more firefighters in the
afternoon and evening hours and fewer firefighters in the early
morning hours.

Exhibit 2-3 indicates that we need more firefighters on the weekend
and not as many during the middle of the week.

14. Please note, the answers to the statistical problems were calculated by a scientific calculator. Your answers
might not exactly match the answers that we have provided.



164 Exhibit 2-4 indicates that we should schedule more firefighters in the
summer months (June and July). We do not need as many in January
and February.

3. The distribution of fires by hour of day is almost identical to the 1988
data. There are more fires in the afternoon and evening hours, and
very few fires in the early morning hours.

8-9pm was the busiest hour in 1990 and 9-10pm was the busiest
hour in 1988.

Fires by Hour of Day – Boston 1990

Like Exhibit 2-3, more firefighters would be needed on the week-
end. Tuesdays have been a little busier in 1990 than in 1988. Sunday
was the busiest in 1990, but Saturday was the busiest in 1988.

Fires by Day of Week-Boston 1990

The 1990 data also indicates that there are more fires in the summer
months (June and July). July was the busiest in I990 and June was the
busiest in 1988.



Fires by Month-Boston 1990

4. a. Jersey City, New Jersey, 1988: Ages of Civilian Casualties

Age Group Frequency Cumulative Frequency Cumulative Percent

l-5 14
6-10 12
11-15 7
16-20 1
21-25 7
26-30 10
31-35 5
36-40 4
41-45 4
46-50 2
51-55 3
56-60 4
61-65 2
66-70 3
71-75 3
76-80 1
81-85 0
86-90 0
91-95 1
Total 83

14 16.9
26 31.3
33 39.7
34 41.0
41 49.4
51 61.4
56 67.5
60 72.3
64 77.1
66 79.5
69 83.1
73 87.9
75 90.4
78 94.0
81 97.6
82 98.8
82 98.8
82 98.8
83 100.0

b. 39.7% of the civilian casualties were under 16 years of age.

c. 20.5% of the civilian casualties were over 50 years old.
(100.0 - 79.5=20.5)

5. The spikes in this histogram occur at <5 and 26-30. Exhibit 2-5
also has spikes at these age groups.
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Civilian Casualities-1998

There is no hole or outlier in this group like there was in the Jersey
City data.

6. There is no real pattern in this chart. The only thing you can tell is
that there are more people killed or injured in the early morning
hours.

Casualties by Hour of Day – 1988

7 . Peaks cause a cumulative distribution to increase.

Holes cause a cumulative distribution to increase slightly.

Spikes cause a cumulative distribution to increase sharply.

Gaps do not make the cumulative distributions increase. A cumulative
distribution is always flat when a gap occurs.



Chapter 3

1.

Overall there are more vehicle fires than structure fires. June and
September were the months with the highest number of vehicle fires.
December had the most structure fires. April and September had the
lowest number of structure fires.

2 . There are more male casualties than female casualties in all age groups
except Over 65.

a. No, because there are too many age groups. You should only use
a pie chart to show how components relate to the whole and there
should be no more than six components.

b. By separating the data by sex, you can compare female and male
casualties for each age group.

167

Structure Fires by Months – Los Angels 1990

Vehicle Fires by Months – Los Angels 1990
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Male and Female Civilian Casualities-1989

3. a . There are more firefighter casualties in the age groups of 26-40.
This is probably because the majority of the personnel is in these
age groups.

There are very few casualties under the age of 20 and over the age
of 55.

Firefighter Casualties – 1989

b. Age Group Number Percent

Under 30 570 30.4%
31 to 40 828 44.1
41 to 50 383 20.4
Over 51 95 5.1



Firefighter Casulalties-1989
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4 . Trees, brush, and grass fires make up a small percentage of fires in
Chicago and Detroit.

Structure fires are predominant in Detroit where refuse fires are
predominant in Chicago.

Comparison of Types of Fires – 1990

5 . The two cities have similar distributions by Day of Week.

Comparison of Number of Fires by Day of Week – 1990
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6. Number of Vehicle Fires by Incident Time

7. a .

h. The outlier is 4-I minutes with $15000 for dollar loss.

d. You can not relate incident time with dollar loss. You would
expect the dollar loss to increase with incident time (especially when
the incident time is over 30 minutes). As you can see in the scatter
plot this is not always true. The incident time of 78 minutes had a
lower dollar loss than 36, 40, and 60 minutes.
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1. a .
Travel Time On-Scene Time Dollar Loss

Mean 3.89 62.41 4923.67
Median 4 48 1000
Interquartile Range 2 66 4700

To calculate the mean, sum all the data values and divide by the
total number of data values.
To determine the median, reorder each group of data and take the
middle value (also known as the 50th percentile.

Travel Time
New Order

On-Scene Time Dollar Loss
New Order New Order Cumulative Percent

1 7 50 3.7
1 9 100 7.4
3 10 100 11.1
3 10 150 14.8
3 11 189 18.5
3 20 250 22.2

25% 3 22 300 25.9
3 23 300 29.6
4 26 500 33.3
4 27 500 37.0
4 33 1000 40.7
4 33 1000 44.4
4 35 1000 48.1

50% 4 48 1000 51.9
4 62 1500 55.6
4 69 2000 59.2
4 74 2000 63.0
4 74 3000 66.7
4 83 3000 70.4
4 85 5000 74.1

75% 5 88 5000 77.8

5 92 7000 81.5
5 94 10000 85.2
5 98 15000 88.9
5 112 20000 92.6
6 113 23000 96.3
6 327 30000 100.0



172 To determine the interquartile range, find the 25th and 75th
percentiles and take the difference. To find the 25th and 75th
percentiles, calculate the cumulative percent and pick the value
whose cumulative percent is closest to (but not below) the
percentile.

Note: Since we reordered the data and listed all 27 values, the
cumulative percent is the same for each of the variables.

b.
Travel Time Dollar Loss

Variance 1.41 62750996.1

c. Standard Deviation is the square root of the variance.

Dollar  Loss

Mean 4923.67
Standard Deviation 7021.553

One standard deviation about the mean is from -2997.883 to
12845.243 (mean - one standard deviation) to (mean + one standard
deviation). There are 23 (85%) within one standard deviation.

Two standard deviations about the mean is from -10919.43 to
20766.776. There are 25 (93%) within two standard deviations.

d) For Dollar Loss, the large variance means that the spread of data
around the mean is very large. For Travel Time, the small variance
means that the spread around the mean is small.

e) Large dollar losses increase the mean, but usually have little effect
on the median.

2.



Dollar Loss Frequency Cumulative Distribution Cumulative Percent 173

10%
50 1 1 3.7

100 2 3 11.1

150 1 4 14.8
189 1 5 18.5
250 1 6 22.2

25% 300 2 8 29.6
500 2 10 37.0

50% 1000 4 14 51.9
1500 1 15 55.6
2000 2 17 63.0
3000 2 19 70.3

75% 5000 2 21 77.8
7000 1 22 81.5

10000 1 23 85.2
15000 1 24 88.9

90% 20000 1 25 92.6
23000 1 26 96.3
30000 1 27 100.0

3. a . On-Scene Time

Dollar Loss



174 b. Interquartile Ranges

On-Scene Time Dollar Loss

Dwelling 78
Apartments  75

22000
9900

c . Fires in one- and two- family dwellings tend to have longer on-site
times and larger dollar losses. For on-site times, the spread of the
data is about the same for dwellings and apartments. The
interquartile range is 78 for dwellings (123-45) and 75 for apart-
ments (107-32). The dollar losses for dwellings have a greater
spread than for apartments. The interquartile range is $22,000 for
dwellings compared to $9,900 for apartments.

d. We would expect a greater variance with dwellings because of the
larger spread of data.

4.  a. On-Scene Time Dollar Loss

CS = 3(62.41 - 48) = .682 CS = 3(4923.67 - 1000) = 1.486
63.36 7921.553

b . CS will be zero when the mean and median are the same.

5. a. Drop 50, the 1st 100, 23000, and 30000.
Trimmed Mean = 3469.087

6.  a. Cumulative Frequencies for Travel Time

10% = 1 to 2 minutes
25% = 2 to 3 minutes
50% = 3 to 4 minutes
75% = 5 to 6 minutes
90% = 7 to 8 minutes
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b. 9 0 %

c. 3.75 minutes



176 Chapter 5

1. If the die is a fair die, we wou1d expect to have each side visible exactly
10 times (60 ÷ 6).

Step 1. The expected number for each side of the die is 10.

Step 2 and 3.

Dots Actual Expected
Visible Number Number

Squared
Diff.

Divided
by Expected

One 13 10 9 .9
Two 11 10 4 .4
Three 7 10 9 .9
Four 12 10 4 .4
Five 9 10 1 .l
Six 7 10 9 .9

Step 4. Chi-squared statistic = sum of the results of the last column
= 3.6

Step 5. Degrees of Freedom = n- 1 = 5

Step 6. Critical Chi-squared value = 11.07 (look in Appendix A and
select the entry associated with 5 degrees of freedom)

2. The chi-squared statistic is less than the critical chi-squared value
(3.6<11.07) so we determine that the die is a "fair" die at the 5 percent
level.)

Actual
Number

Expected
Number

Squared
Diff.

Divided
by Expected

J an
Feb
Mar
Apr
May
J u n
J u l
Aug
S e p
O c t
Nov
Dec

467 355.67 12394.37 34.85
291 355.67 4182.21 11.76
392 355.67 13 19.87 3.71
322 355.67 1133.67 3.19
319 355.67 1344.69 3.78
349 355.67 44.89 .13
384 355.67 802.59 2.26
374 355.67 335.99 .94
359 355.67 11.09 .03
368 355.67 152.03 .43
298 355.67 3325.83 9.35
348 355.67 58.83 .16



Chi-squared Statistic = 70.59
Degrees of Freedom = 11
Critical Chi-squared Value = 19.68

a. Chi-squared statistic is greater than the critical chi-squared value.
This means that the number of fires by month differs significantly
from an equal distribution.

b. January, February, and November

3. a .

Type of Fire Rest of U.S. Percent Metros Percent

Structure 241,481 32.7 54,189 26.9
Outside of Structure 23,986 3.2 4,378 2.2
Vehicle 174,398 23.6 51,774 25.7
Trees, brush, grass 172,217 23.3 28,440 14.1
Refuse 111,291 15.1 59,767 29.7
Other 15,353 2.1 2,833 1.4
Total 738,726 100.00 201,381 100.00

b. Our null hypothesis is that we suspect that the distribution of fires in
the Metro Areas does not differ significantly from the rest of the U.S.

Type of Fire Actual Metros Expected
Squared

Diff.
Divided

by Expected

Structure 54,189 65,851.59 136,016,005.51 2,065.49
Outside of Structure 4,378 6,444.19 4,269,141.12 662.48
Vehicle 51,744 47,525.92 17,792,198.89 374.37
Trees, brush, grass 28,440 46,921.77 341,575,822.33 7,279.69
Refuse 59,767 30,408.53 861,919,760.74 28,344.67
Other 2,833 4,229.OO 1,948,816.00 460.82

Calculated chi-squared statistic 39,187.52

Note: To calculate the expected, apply the percentages from the
rest of the U.S. For example, 32.7% of the fires for the rest of the U.S.
are structure fires. This means we expect that 32.7% of the Metro fires
to be structure fires (65,851.59).

Calculated chi-squared statistic = 39,187.52
Degrees of Freedom = 5
Critical chi-squared value = 11.07
Our calculated chi-squared statistic is greater than the critical value.

Our conclusion is that the distribution of fires in the Metro Areas
differs significantly from the rest of the U.S.
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178 c. Refuse fires amount for most of the differences in the two distribu-
tions. Structure fires and trees, brush, and grass fires also
contribute significantly to the chi-squared Statistic.

4.

Actual Expected
Squared Divided

Diff. by Expected

Sunday 674 609.86 4,113.94 6.75
Monday 688 623.02 4,222.40 6.78
Tuesday 565 592.46 754.05 1.27
Wednesday 550 613.26 4,001.83 6.53
Thursday 576 585.25 85.56 .15
Friday 588 589.07 1.14 .002
Saturday 603 631.51 812.82 1.29
Total 4,244 22.77

Note: To calculate the expected. apply the percentages from the
fires in the U.S. For example, 14.37% of the fires in the U.S. occurred
on Sunday. This means we expect 14.37% of the fires to occur on
Sunday in Denver. (14.37% times 4244 = 609.86).

Chi-squared statistic = 22.77
Degrees of Freedom = 6
Critical chi-squared value =  12.59

Since our calculated chi-squared statistic is greater than the critical
value, our conclusion is that the distribution of fires by day of week for
Denver differs from the rest of the country.

5.

Actual Expected
Squared Divided

Diff. by Expected

Sunday 674 644.24 885.66 1.37
Monday 688 634.90 2,819.61 4.44
Tuesday 565 596.28 978.44 1.64
Wednesday 550 598.40 2,342.-56 3.91
Thursday 576 570.39 31.47 .055
Friday 588 575.06 167.44 .29
Saturday 603 624.72 471.76 .755
Total 4.2441 12.46

Note: To calculate the expected, apply the percentages from the
fires in the other metro cities. For example, 15.18% of the fires in the
other metro cities occurred on Sunday-. This means we expect 15.18%
of the fires to occur on Sunday,. in Denver. (15.18% times 4244
= 644.24).



Chi-squared statistic = 12.46
Degrees of Freedom = 6
Critical chi-squared value = 12.59

179

Since our calculated chi-squared statistic is less than the critical
value, we can say that the distribution of fires by day of week in Denver
does not differ significantly from the other Metro cities.



180 Chapter 6

1 .

Since the Odds Ratio is equal to 1, the two variables have complete
independence.

2. lSt Table

2nd Table

3rd Table

601 x 897 539,097 = 1.72
1,884 x 166 = 312,744

837 x 851 = 712,287
1,648 x 212 349,376

= 2.04

801 x 694 = 555,894 = .89
1,684 x 369 621,369

3 . In order to verify the model values! you need to sum the mean and
term values and take the natural antilogarithm. The term values listed
in Exhibit 6-11 are when all 4 variables are present (i, j, k, and 1 are
all 1). If a variable is not present (indicated by 2) then the term value is
the negative value of the one given in Exhibit 6-11. The easiest way to
see this is to develop tables for each of the terms.

T e r m A

T e r m B

Term AB
j=l
j=2

Term AD
I=1
I=2

l=2

Term BC
k=l
k=2

Term BCD

l=1

i=1 i=2 Term C
s 7 7 -.577

J=1 j=2 T e r m  D

-.678 .678

i=1 i=2 Term BD
.120 -.120 l=1

-.120 .120 l=2

i=1 i=2 Term CD
.169 -.169 l=1

-.169 .169 l=2

j=1 j=2
.008 -.008

-.008 .008

j=1
k=1 k=2

-.084 .084
.084 -.084

l=1
l=2

k=1
-.484

l=1
-.591

j=1 j=2
.084 -.084

-.084 .084

k=1 k=2
-.326 .326
.326 -.326

k=2
.484

l=2
.591

j=2
k=l k=2
.084 -.084

-.084 .084



4 .  a.

b.

Model (l,l,l,l) = 4.807 + .577 + (-.678) + (-.484) + (-591)
+. 120 + .169 + .008 + .084 + (-.326) + (-.084)
= 3.602

181

anti log (3.062) = 36.67 Actual = 37

Model (1,1,2,2) = 4.807 + .577 + (-.678) + .484 + 591
+ .120 + (-.169) + (-.008) + (-.084) + (-.326) + (-.084)
= 5.23

anti log (5.23) = 186.79 Actual = 181

Model (2,1,2,1) = 4.807 + (-577) + (-.678) + .484 + (-S91)
+ (-.120) + (-.169) + (-.008) + .084 + .326 + ,084
= 3.642

anti log (3.642) = 38.17 Actual = 3.5

Look at all standardized values with magnitudes greater than 2.0
(ignoring the sign). All four main effects (A,B,C, and D) are impor-
tant. Also the following interaction effects are important (in order
of magnitude).

AC (6.3)
AD (5.2)
BC (3.5)
CD (3.4)
BD (3.1)
A B C  ( 3 . 1 )
AB (2.5)

Since variable A is the response variable, we want to model how the
other three variables relate to A. Since variables B, C, and D are
the explanatory variables, any hierarchical models must include the
term BCD and any of its higher-order terms (B, C, D, BC, BD,
and CD)

Possible hierarchical models would be:

Model Degrees of Freedom

AB/ACD/BCD 3
AD/ABC/BCD 3
AC/ABD/BCD 3
ACD/BCD 4
AB/AC/AD/BCD 4
AB/AC/BCD 5
AB/AD/BCD 5
AC/AD/BCD 5



182 5. a. Models 1 and 2. Remember the Y2 statistic follows a chi-squared
distribution. Use Appendix A to test whether a model is less than
the entry in Appendix A at the 5 percent level. If the Y2 statistic is
less than the entry in Appendix A, then we accept the model as a
good fit to the data.

b. Model 2. When there are two or more models that provide a good
fit to the data. select the one with the fewest number of terms.

c.

TABLE 1 Detector Detector Did
Performed Not Perform

Confined to Room 586 1789
Extended Beyond Room 166 867
TotaI 752 2656

TABLE 2 Fire Started in Fire Started in Area
Functional Area Non-Functional

Confined to Room 1681 694
Extended Beyond Room 585 448
Total 2266 1142

TABLE 3 Equipment
Involved

No Equipment
Involved

Confined to Room 834 1541
Extended Beyond Room 216 817
Total 1050 2358

d. Table 1

Total

2375
1033

Total

2375
1033

Total

2375
1033

The odds that a fire was confined to the room when the detector
performed is 3.53:l.

The odds that a fire extended beyond the room when the detector
did not perform is 2.06:1.

Table 2

The odds that a fire was confined to the room when the fire was
started in a functional area is 2.87:1.



The odds that a fire extended beyond the room when the fire was 183
started in a non-functional area is 1.55:1.

Table 3

‘The odds that a fire was confined to the room when equipment was
involved is 3.86:1.

The odds that a fire extended beyond the room when no equip-
ment was involved is 1.89:1.



184 Chapter 7

1.  a.

2 .

b. r = l

Correlation = -.065

Notes: 1) Calculate the average for each variable (sum of the values
divided by the total number of values).

2) Calculate the sample standard deviation.



3) Calculate the standard units for each value. 185

Value - Average
Standard Deviation

4) Calculate the product of the standard units for each pair.
5) Sum the resulting values and divide by the number of points

minus 1.

Incident Time Dollar Loss
Incident time Dollar Loss Standard Units Standard Units Product

15
18
22
26
14
12
28
16
12
16
26
22
17
18
27
11

3. a .

b.

700 -.658 -.221 .145
3000 -.132 1.524 -.201

250 .570 -.563 -.321
35 1.272 -.726 -.923

100 -.834 -.677 .565
500 .1.185 -.373 .442
150 1.623 -.639 -1.037
300 -.483 -.525 .254
400 .1.185 -.449 .532
800 -483 -.145 .070

1000 1.272 .006 .008
1500 .570 .386 .220
5000 -.307 3.042 -.934

550 -.132 -.335 .044
250 1.448 -.563 -.815
5 0 -1.360 -.714 .971

Average Incident Time = 18.75
Standard Deviation for Incident Time = 5.698
Average Dollar Loss = 991.563
Standard Deviation for Dollar Loss = 1317.791

Estimated Fire Loss = (206.2 x 45) -6266.4
(45 minutes) = 3012.60

Estimated Fire Loss = (206.2 x 180) -6266.4
(180 minutes) =30849.60

The slope = 206.2 means that the fire loss increases by 206.2 every
time the incident time increases by 1 minute. When the incident
time increases by 10 minutes, the fire loss will increase by 2062.00
(206.2 x 10).



186 c. Incident time is from time of dispatch to time back in service.
Sometimes a fire has been going on for a while before the fire
department is called, thus resulting in high fire loss even though
the incident time is under 30 minutes.

4. a.

rxS.D. of Fire Loss .9753 x 2696.394
m =

S.D. of Years 6.782
= 387.76

Determine the intercept:

Fire Loss Average = m x Year Average + b
4929.043 = (387.76 x 78) + b

-25316.237 = b

Regression Line is: Fire Loss = 387.76 x Year -25316.237

Note: If you have Fire Loss along the x-axis and year along the y-axis,
your regression line will be: Year = .(0025 x Fire Loss + 65.68

c .  Year Estimated Fire Loss

1988 8806.64
1989 9194.40
1990 9582.16

Fire Loss = 387.76 x 88 -25316.237

d. We want the regression line to pass through one point that repre-
sents the two averages. Put another point by moving one standard
deviation for the year to the right and upward by one standard
deviation for Fire Loss times the correlation.



Chapter 8 1 8 7

1. Fires = 2.0 + (.0017 x POP) + (.068 x BOARDED) +
(.013 x FAMTYPE) + (.060 x DENSITY)

Example
Census Tract 709

Fires = 2.0 + (.0017 x 1386) + (.068 x 19) + (.013 x 184) + (.060 x 100)
= 2.0 + 2.3562 + 1.292 + 2.392 + 6
= 14.0402

Census Tract Actual Fires Estimated Fires

709 15 14.04
812 30 29.68
902 30 16.77
907 10 10.20

2. Travel Time = 5.27 + (1.38 x DELAYS) + (.36 x CALLTYPE) +
(3.83 x AREAl) + (2.48 x AREA2)

Remember: CALLTYPE 0 for ALS Calls
1 for BLS Calls

DELAYS 0 not delayed
1 delayed

AREA1 0 not Area 1
1 Area 1

AREA2 0 not Area 2
lArea2

a . Travel Time = 5.27 + (1.38 x 0) + (.36 x 1) + (3.83 x 1) + (2.48 x 0)

= 9.46

b . Travel Time = 5.27+ (1.38 x 1) + (.36 x 0) + (3.83 x 0) + (2.48 x 1)
= 9.13

c. Travel Time = 5.27+ (1.38 x 0) + (.36 x 0) + (3.83 x 0) + (2.48 x 0)
= 5.27

d. Travel Time = 5.27 + (1.38 x 1) + (.36 x 1) + (3.83 x 0) + (2.48 x 0)
= 7.01



188 Chapter 9

1 . a .

Unit Utilization (3) = 87.5%

Unit Utilization (4) = 65.6%
Unit Utilization (5) = 52.5%
Unit Utilization (6) = 43.7%

b . A change from 4 units to 5 units will result in a difference of 13.1%
A change from 5 units to 6 units will result in a difference of 8.8%

2. a. To obtain the Probability of Delay you have to:

1) Calculate the Table Key where c is the number of calls per
hour and t is the average time per call.

2) Use Appendix B to find the probability that a call will be
delayed. The number of units are across the top and the Table
Key is shown down the left column.

Table Key 2.6 rounded

Probability of Delay for:

3 Units = 75.9%
4 Units = 35.4%
5 Units = 14.9%
6 Units = 5.6%

b. To determine the average number of citizens waiting, use Appendix
C. The number of units is displayed across the top and the Table
Key is shown down the left column.

Average Number of Citizens Waiting:

3 Units = 4.93
4 Units = .66
5 Units = .16
6 Units = .04

c. Waiting Time =
Appendix C Entry x 60

c where c is the number of
calls per hour.



3 Units 84.51 minutes (4.93 times 60 divided by 3.5)
4 Units 11.31 minutes
5 Units 2.74 minutes
6 Units  .69 minutes

189

3. a . 6% of 3.5 calls per hour = .2 1
3.5 + .21 = 3.71
3.71 calls per hour

b.

Unit Utilization =.773 77.3%

Table Key 3.09 = 3.1 rounded

Probability of Delay for 4 units is 55.2%
Average Number People Waiting is 1.9

C. In question #2, the probability of delay for 4 units was 35.4% and
the average number of people waiting was .66. The 6% increase in
calls per hour and the 5 minute increase on each call greatly
increased the probability of delay and tripled the number of people
who would be waiting.

4. There has to be an analysis of records available to your department.
This could be a computer aided dispatch system (CAD) which would
have good time information to determine how busy units are. You
should also perform an analysis of schedules in order to determine how
many units are fielded.

If you are going to calculate unit utilization, you need to find out
how many units are fielded and not scheduled. You might want to look
at daily rosters or time cards to determine how many units were
actually fielded.

Also read over the section in chapter one about data quality.

5. There is no one way of setting objectives. There needs to be a decision
made by the command staff of the fire department. It is also a good
idea to involve someone from the city or county when setting the
objectives. One popular approach is to perform an analysis of current
operations to determine current performance levels. Then determine if
the command staff is satisfied with current performance or wants to
make improvements. Queuing analysis is a good first step in determin-
ing staffing needs for improvements.



190  6. a. Unit utilization not more than 60 percent 5 units
Probability of delay not more than 3 percent 7 units
Average number of citizens waiting not to exceed 25 5 units

Unit Utilization

If you had 4 units, the unit utilization would be 63.3%
If you had 5 units, the unit utilization would be 50.67%

Table Key

Probability of Delay for: Average Number of Citizens Waiting:

4 units = 32% 4 units = .53
5 units = 13% 5 units = .13
6 units = 4.7% 0 units = .03
7 units = 1.5% 7 units = .01

b. 7 units

4x 38
Unit Utilization (7 units) = m = .362 36.2%

7. a. 4 units

Waiting Time =
Appendix C Entry x 60

c

Waiting Time (4 units) 7.05 minutes

Waiting Time (5 units 1 .05 minutes



8.  a. 1 9 1

EMS Calls Number of Hours

0 158
1 192
2 144
3 68
4 34
5 10
6 2

Total 608

Note:

b .

Note:

Percent

26.0 23.2
31.6 33.9
23.6 24.8
11.2 12.0

5.6 4.4
1.6 1.3
.3 .3

Expected Percentage
of EMS Calls

Poisson Distribution:

Where c is the average number of calls per hour and k is an integer
value starting with 0.

If the calls follow a Poisson distribution, we should be able to
obtain a straight line by plotting k against the quantity:

l o g

where N is the total number of hours.

by definition 0! = 1.

0 calls log

0 calls -1.35
1 call -1.15
2 calls -.75
3 calls -.40
4 calls .29
5 calls .68
6 calls .86
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c . The conclusion is that the Poisson distribution gives a good
approximation to the experienced distribution because it produces a
relatively straight line.

9. a .

b . 25th percentile = .804
median = .962
75th percentile = .993
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Key Equations

Sample Mean Regression Line

Sample Variance = s2= Standard Error =

where k = number of independent variables

Sample Standard Deviation Sum of Squared Errors

Chi-squared Value =
(observed - expected )2

expected
Total Sum of Squares=

Expected Value =
Row Sum x Column Sum

Coefficient of Determination = R2 = SST- SSE
Grand Total SST

Odds Ratio = Unit Utilization =

Standard Units =

Correlation

Slope = m =

Intercept = b =

Queuing Table Key =

Waiting Time =
Queue Length x 60

c

Poisson Distribution =

Exponential Distribution = f (x) = ue-ux
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