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FOREWORD 

Advanced crash prediction methods, including the use of safety performance functions and the 
Empirical Bayes method, have become the standard for traffic safety decisionmakers. Safety 
practitioners employ these methods as a part of their safety decisionmaking process for many 
roadway and crash types. However, there has been very little research conducted to extend these 
methods specifically to the prediction of motorcycle crashes. This deficiency may be in part 
related to a lack of traffic count data that specifically identifies motorcycles. Motorcycle-focused 
average annual daily traffic (AADT) information is critical to these types of assessments in order 
to properly account for the exposure of drivers and motorcycle riders. However, motorcycle 
crashes continue to be a significant safety concern on U.S. highways; they account for over  
14 percent of all fatalities.  

The research team developed numerous statistical models with and without motorcycle AADT 
using crash and traffic records from three states (Florida, Pennsylvania, and Virginia). 
Ultimately, it was found that while accurate counts for motorcycle AADT are preferred, in many 
cases, it is appropriate to use the total AADT as a surrogate. This finding will be valuable for 
State and local safety analysts who want to better understand the scope of motorcycle safety risks 
and explore options to reduce the number of motorcycle crashes and fatalities on their roads. 
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EXECUTIVE SUMMARY 

The objective of this project was to investigate and describe the effect of the lack of motorcycle 
annual average daily traffic (AADT) data on the performance of motorcycle safety evaluations 
aimed at developing motorcycle crash-specific crash modification factors (CMFs) and safety 
performance functions (SPFs). Motorcycle volumes would intuitively be required for modeling 
motorcycle crashes and studying the safety effectiveness of countermeasures due to the strong 
relationship between crashes and exposure. However, few jurisdictions collect motorcycle traffic 
volume data systematically. A second purpose of the research was to investigate and demonstrate 
methods and provide the mathematical models required for jurisdictions that lack motorcycle 
volumes when undertaking the evaluation of motorcycle related safety countermeasures. 

The project scope included the following tasks: 

• Identify current practices for statistical modeling of motorcycle crashes and motorcycle 
countermeasure evaluations. 

• Identify the availability, applicability, quality, and other related features of motorcycle 
safety data resources. 

• Perform a quantitative analysis of the effect of the lack of motorcycle AADT on safety 
evaluations. 

• Determine data limitations, gaps, and future data needs to support future motorcycle 
safety evaluations. 

• Identify opportunities to promote the findings and support follow up research through a 
marketing, communications, and outreach plan. 

A literature review found many studies concerned with motorcycle safety, but very few  
focused on the prediction of crash frequency. The limited international research does suggest  
that motorcycle crash frequency models can be developed based only on total AADT for all 
vehicle types. 

Guided by lessons learned from the literature review, especially the promise in seeking 
alternatives to directly including motorcycle volumes in motorcycle crash frequency prediction 
models, a number of analytical approaches were developed and undertaken. The intention of the 
models were to serve two broad purposes, namely the following: 

• To explore how much predictive power for an SPF is lost when motorcycle volumes  
are unknown and how this lack of information may affect a study of motorcycle 
countermeasures estimating a CMF. 

• To explore alternative methods for deriving accurate predictions of motorcycle crashes or 
motorcycle volume data. 
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The project team investigated two groups, or avenues, of methods. The methods for avenue A 
focused on investigating (1) the difference in predictive performance for motorcycle SPFs 
calibrated with motorcycle AADT versus total AADT, (2) the relation of total crash SPFs and 
motorcycle crash SPFs so jurisdictions without motorcycle volumes could predict motorcycle 
crashes using total crash SPFs, and (3) methods to predict segment-level motorcycle AADT.  

The methods for avenue B focused on the differences in CMF estimates found when using 
motorcycle AADT versus total AADT when applying before-after or cross-sectional regression 
CMF estimation methods on simulated crash count data. 

For developing the avenue A models, data were collected from Florida and Pennsylvania. Both 
States had a large number of locations with an estimated motorcycle AADT, which could 
provide linkable roadway inventory, traffic, and crash data. Virginia also provided data for the 
purpose of validating the models developed. The avenue B analyses used the roadway inventory, 
total AADT, and motorcycle AADT collected for the avenue A methods in Florida and 
Pennsylvania. For motorcycle crashes, SPFs developed in the avenue A models simulated crash 
counts as the initial starting point. 

The findings of both the avenue A and avenue B modeling indicate that when motorcycle 
volumes are unknown, using total AADT on its own is sufficient for developing SPFs and 
CMFs. The potential bias due to missing motorcycle-specific AADT is sufficiently negligible, 
where it exists so as not to preclude SPF and CMF development. However, in the analysis 
undertaken, SPFs could not be developed for all motorcycle crash or site types. This is a 
significant issue in working with relatively rare crash types.  

The findings also conclude that attempting to predict motorcycle volumes is not possible using 
typically available roadway and county-level data. Improvements could possibly be made in trip 
generation-type modeling at a disaggregate scale, although, given the success of the SPFs using 
total AADT, such an effort may not be worthwhile. 

The research identified a number of data limitations and motorcycle SPF and CMF research gaps 
through the assessment of available data sources, analytic methods, and evaluation results. Data 
limitations identified relate to traffic volumes (AADT) addressing technology requirements in 
particular; crash data focusing on quality issues; and roadway inventory data emphasizing 
roadway class/ownership and missing data issues. For research gaps with respect to motorcycle 
safety and CMFs, very little information is known on the effects of roadway geometric and 
traffic control features on motorcycle crash frequency and severity. The reasons for this gap are 
likely twofold: motorcycle crashes are not usually the focus of safety-related countermeasures, 
and the rarity of motorcycle crashes combined with scarcity of treatment locations would result 
in a small sample size for study. With respect to SPFs for application in network screening and 
other safety management tasks, few SPFs at the segment level or intersection level exist. The 
SPFs developed in this project may contribute to filling this void, but there remains work to be 
done in terms of evaluating site types for which no SPF was developed and ensuring that SPFs 
exist that calibrate well in all jurisdictions. 
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CHAPTER 1. INTRODUCTION 

The objective of the project was to investigate and describe the effect of the lack of motorcycle 
annual average daily traffic (AADT) data on the performance of motorcycle safety evaluations 
aimed at developing motorcycle crash-specific crash modification factors (CMFs) and safety 
performance functions (SPFs).  

The project scope included the following tasks: 

• Identify current practices for statistical modeling of motorcycle crashes and motorcycle 
countermeasure evaluations. 

• Identify the availability, applicability, quality, and other related features of motorcycle 
safety data resources. 

• Perform a quantitative analysis of the effect of the lack of motorcycle AADT on safety 
evaluations. 

• Determine data limitations, gaps, and future data needs to support future motorcycle 
safety evaluations. 

• Identify opportunities to promote the findings and support follow up research through a 
marketing, communications, and outreach plan. 

This final project report organizes the findings of these tasks as follows: 

• Chapter 2 discusses current practices for assessing motorcycle safety. 
• Chapter 3 discusses the analysis methods. 
• Chapter 4 discusses the data collection and a summary of the data. 
• Chapter 5 discusses the analysis and results. 
• Chapter 6 provides conclusions and recommendations. 
• Chapter 7 discusses data and analysis limitations and future research needs. 
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CHAPTER 2. CURRENT PRACTICES FOR ASSESSING MOTORCYCLE SAFETY 

A literature search identifying current practices in analyzing motorcycle crash data assessed the 
applied statistical methods and data used. The Transportation Research Information Service 
(TRIS) and International Transport Research Documentation databases were the primary 
resources for published research involving statistical analysis of motorcycle safety. TRIS 
includes the capability to search several databases, including the Highway Research Information 
Service database for domestic literature, the Highway Research in Progress database for ongoing 
research studies, and the International Road Research database for international literature. 
Additionally, the project team searched the national and international contacts for relevant 
research from local and State agencies that are not published or otherwise not widely available.  

As expected, the review of literature found that, by far, the most widely used analytic methods 
applied to motorcycle safety data belong to the family of discrete outcome models. Such models 
are applied for estimating the impact of crash and/or behavioral characteristics on the type of 
crash that occurs. For example, a discrete choice model may predict the probability of a given 
level of severity, given that a crash has occurred, with predictor variables describing the rider, 
motorcycle, and roadway (e.g., use/non-use of helmet, engine size, type of roadway, or speed 
limit). It is important to note that such models do not provide an estimate of the expected crash 
frequency and cannot be directly applied for developing SPFs or CMFs. (They can, however, be 
used to develop severity distribution functions that can be applied to an SPF for total crashes, if 
such an SPF exists, to estimate crash frequency by severity.) 

The review is divided into sections on crash frequency models, discrete choice “probabilistic 
models,” and models that do not clearly fit either category. A summary of key findings appears 
at the end of this chapter. 

CRASH FREQUENCY MODELS 

Where motorcycle crash frequency models exist, they have the most direct relevance to the 
development of motorcycle-specific SPFs and CMFs. These models can be used to estimate 
expected crashes or to estimate CMFs through cross-section studies or before-after studies. The 
literature provides few examples of developing models to predict motorcycle crash frequency. 
The literature review identified four such studies regarding developing crash frequency models 
in recent years. A review of these studies follows. 

Flask et al. applied a fully Bayesian multi-level fixed effects model to estimate expected multi-
vehicle motorcycle crash frequencies on road segments in Ohio.(1) Three datasets were used in 
this study. The Ohio Department of Transportation provided the first dataset, which was 
composed of 32,289 interstate, U.S. route, and State route segments. This dataset included the 
following variables: pavement type, lane width, shoulder width, number of lanes, median 
presence, horizontal and vertical curve-related statistics, the overall vehicle average daily traffic 
(ADT), and segment length. In addition to the roadway segments, township information was 
available, including the number of lane-miles, area of the township, and the urban status of the 
township. All of these variables were considered as fixed effects parameters with the exception 
of the ADT and segment length, which were assumed to have a linear relationship with crashes.  
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U.S. Census data provided demographic information for the different regions of Ohio, such as 
the percentage of residents over the age of 65, percentage of residents under the poverty level, 
and the mean travel time to work. In addition to demographic information, the county 
population, number of motorcycle endorsements (motorcycle licenses), and number of registered 
motorcycles were used as measures of motorcycle and motor vehicle traffic and were compiled 
at a regional level. Spatial correlation through conditional autoregressive random effects were 
included in the model and were shown to reduce the model error by adding the prior knowledge 
of neighboring regions and segments, leading to better parameter estimates. The distance 
between neighbors was measured using the distance between two segments in any direction. 
Random effect terms may be used to reduce model error that is caused by unavailable or 
unrecorded data, such as motorcycle-specific vehicle-miles traveled (VMT) or motorcycle 
AADT. Variables found to affect motorcycle crashes in addition to total AADT included the 
number of lane miles in a township, urban versus rural area type, the number of motorcycle 
endorsements, county population, and mean travel time to work reported by county. 

Including the spatial random effects in the Flask et al. model reduced model error due to the 
unavailability of motorcycle AADT data in the dataset, but the resulting model would not 
provide the same benefits if applied to another jurisdiction.(1) The consideration of spatial 
correlation will account for unobserved correlation in motorcycle volumes at nearby locations, 
but that is specific to the dataset the model is developed with.  

French and Gumus studied the relationship between motorcycle fatalities and economic activity 
using Fatality Analysis Reporting System (FARS) data.(2) The U.S. Bureau of Economic 
Analysis and the U.S. Bureau of Labor Statistics provided data on real income per capita and 
unemployment rate, respectively. Other potential explanatory variables included motorcycle 
registrations, rural VMT, urban VMT, alcohol taxes, average temperature and precipitation, 
gasoline prices, and data on safety programs affecting motorcycle riders (e.g., introduction of a 
helmet law). Total fatal crashes and crashes disaggregated by crash type, day, time, and level of 
rider’s blood alcohol concentration (BAC) were studied with fatalities per 100,000 population as 
the dependent variable. The project team used a generalized linear model with log-link function 
and included both year and State fixed effects. Each State-year observation was weighted by the 
square root of the State population. Among the findings, estimates suggested a 10-percent 
increase in real income per capita is associated with a 10.4-percent increase in motorcycle 
fatality rates. 

Haque et al. sought to identify factors affecting motorcycle crashes at three- and four-legged 
signalized intersections in Singapore by developing Bayesian crash prediction models.(3) 
Explanatory variables included intersection geometry and total traffic volume. It is important to 
note that due to the high use of motorcycles in Singapore, it is likely that motorcycle volume is 
highly correlated to total traffic volume. Other variables besides traffic volumes affecting 
expected crash frequency included number of lanes, presence of wide median, uncontrolled left-
turn lane, presence of exclusive right-turn lane, and presence of red-light cameras (RLCs). 

Manan et al. developed a generalized linear model with negative binomial error structure to 
predict fatal motorcycle crashes on Malaysian primary roads.(4) Explanatory variables included 
motorcycle AADT and access points per hour (kilometer). Separate models using total AADT 
and motorcycle AADT were calibrated. The model using total AADT had slightly better overall 
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goodness-of-fit measures, including an overdispersion parameter of 0.821 compared to 0.872 for 
the model using motorcycle AADT. However, the model using motorcycle AADT demonstrated 
some improvement in a cumulative residuals (CURE) plot versus access points per kilometer, 
indicating that the model was less biased with respect to access point density. The authors rightly 
point out that the model with motorcycle AADT would be more sensitive to modal shifts. 
According to the authors, a model with both motorcycle and non-motorcycle volumes was not 
attempted because the two measures were so closely correlated with a Pearson’s correlation 
coefficient of 0.913. 

DISCRETE CHOICE MODELS 

By a large margin, most of the literature on modeling motorcycle crashes uses discrete choice 
models. This family of models predicts the probability of an outcome given that a crash has 
occurred based on the values of explanatory variables. Researchers focused on motorcycle safety 
typically apply discrete choice models to estimate the impact of both road user and roadway 
variables on the likelihood of a specified outcome severity given that a crash occurs. For 
example, researchers may examine the impact of helmet use or roadway curvature on the 
severity of crashes. 

Within the family of discrete choice models, there are many different modeling approaches, but 
these are essentially based on two different types of models: unordered or ordered discrete 
outcome models. 

For unordered models, logistic regression models (sometimes referred to as “logit models”)  
are used to refer specifically to the problem in which the dependent variable is binary (only  
two possible outcomes), while problems with more than two categories are referred to as 
“multinomial logistic regression.”  

For ordered models, multiple categories are possible and are considered to be ordered in some 
logical way, such as severity data on the killed, A injury, B injury, C injury, and property 
damage only (PDO) (KABCO) scale. By considering crash severity as ordered, it is not assumed 
that the difference between an O and C crash is the same as between a B and K crash, for 
example. These models may be ordered logit or ordered probit, where the difference is the 
assumed distribution of the model error term and link function. 

The following subsections illustrate examples of three discrete choice models applied to the 
study of motorcycle safety. The review is by no means comprehensive, given that the focus of 
the project (and the review) is on crash frequency modeling and the sheer volume of literature on 
crash severity modeling necessitated some selectivity. 

Logistic Regression Models 

Logistic regression models identify factors that affect the likelihood of an outcome—such as a 
crash resulting in a fatality—and can be used to predict the outcome of an event. Logistic models 
apply when only two outcomes are possible. Figure 1 displays a logistic model.  
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𝑃𝑃(𝑌𝑌 = 1) =

𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥)
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑥𝑥) 

 
Figure 1. Equation. Logistic model. 

Where: 

P(Y = 1) = The probability that the outcome was observed. 
χ  = The characteristics of the person, crash, etc. 
β  = The parameters of the model to be estimated. 

In estimating the model parameters, figure 2 shows the LN of the odds (i.e., the logit). 

 
Figure 2. Equation. Logistic model parameter estimation. 

The odds ratio is defined as the probability of the outcome occurring divided by the probability 
of the alternate. For example, if the probability of a fatality in the event of a crash were 1/10, then 
the odds ratio would be (1/10)/(9/10) = 0.11. Taking the exponent of the estimated parameters 
reveals the amount by which the odds ratio increases or decreases as the independent variable 
changes by one unit. 

Kim et al. developed a logistic regression model to explain the likelihood of alcohol impairment 
among crash involved motorcycle riders in police reported motorcycle crashes.(5) The basic 
logistic model is shown in figure 3. 

 
Figure 3. Equation. Kim et al. logistic regression model.(5) 

Where: 

Pr(I) = The probability of impairment. 
a = The parameters of the model to be estimated. 
A = Age of rider. 
W = Weekend occurrence. 
N = Nighttime occurrence. 
O = Non-resident status. 

The developed models also attempted additional variables. Results indicated that impairment was 
more likely to be a factor for middle-aged riders, unlicensed riders, and riders who did not wear a 
helmet and that impairment-related crashes are more likely to occur at night, on weekends, and 
in rural areas. 
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Connor applied logistic regression to motorcycle fatality data where coroner and police reports 
were available and license endorsement status was known.(6) The goal was to find what 
characteristics increased the likelihood that a fatal motorcycle crash involved an unendorsed 
rider. These characteristics included single-vehicle crashes, younger drivers, and driver's license 
suspensions in the past 7 years. 

Akaateba et al. applied logistic regression to roadside observations of helmet use at 12 randomly 
selected sites.(7) The authors estimated odds ratios, adjusted odds ratios, and 95-percent 
confidence intervals for variables associated with helmet use. Female riders as well as riding 
during the weekdays and morning periods and at locations within central business districts 
showed higher helmet wearing rates. 

Gabauer developed logistic models to predict rider injury for motorcyclists impacting 
longitudinal barriers.(8) Rider characteristics such as helmet usage and alcohol involvement were 
found to have a larger influence on injury severity in comparison to associated roadway 
characteristics.  

Theofilatos and Yannis investigated the relationship between stated attitudes and behaviors with 
respect to safety and crash involvement of motorcyclists in Europe based on a survey.(9) Principal 
component analysis of the 38 variables collected through the survey grouped variables that 
showed a similar variance and effect on the probability of having been in a crash. A logistic 
regression model was used to model the probability of having been in a crash as a function of the 
declared attitudes and behaviors, age and declared exposure.  

Keall et al. used a case-control study design to quantify fatality risks for motorcyclists based on 
BAC.(10) The authors acquired case (i.e., crash) data from police reports and post-mortem data. 
Control data were collected roadside including BAC tests. The authors used a logistic regression 
to model the data. The results show a much higher risk of fatality, even at low levels of BAC.  
At a BAC of 0.03, the fatality risk was 3 times higher; at a BAC of 0.08, the fatality risk was  
20 times higher. 

Haworth et al. applied a case-control approach to collecting data for 222 motorcycle crashes 
(cases) and 1,195 non-crash involved (controls) motorcyclist trips past a crash site at the same 
time of day and day of week of crash occurrence.(11) Data collection included detailed 
information of each crash, a comparison of features of cases and controls, and motorcycle 
exposure information. The controls comprised three groups. One group included riders who did 
not stop. A second included riders who stopped and were interviewed roadside. A third group 
included riders who gave a roadside interview and a follow-up interview. Odds ratios were 
estimated through conditional logistic regression. The approach was termed “conditional” 
because cases were matched to their controls by day, time, and location, and other confounding 
variables such as age were included in the model as explanatory variables. Some of the factors 
found to increase crash risk included age under 25, never married, unlicensed, increased BAC, 
use of a sidecar, motorcycle engine over 750 cc, and rider not being the owner of the motorcycle. 

Kim and Boski developed a logistic regression model for the probability of being at fault in a 
crash for motorcyclists and drivers using temporal, roadway, and environmental factors.(12)  
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Multinomial Logistic Models 

Multinomial logistic (or logit) models apply when more than two outcomes are possible and 
there is no ordering to the outcomes. A multinomial logistic model is shown in figure 4. 

𝑃𝑃(𝑌𝑌 = 𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖)
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑖𝑖𝑥𝑥𝑖𝑖)𝑖𝑖

 
 

Figure 4. Equation. Multinomial logistic model. 

Where: 

P(Y = i) = The probability that the outcome, i, was observed given the family of possible 
outcomes, I. 

χ  = The characteristics of the person, crash, etc. 

β  = The parameters of the model to be estimated. 

Each possible outcome, i, has its own set of explanatory variables and parameters, otherwise 
known as the “utility function.” 

Mannering and Grodsky developed a multinomial logit model to determine what factors 
significantly influence motorcyclists’ estimates of their likelihood of becoming involved in an 
accident if they continue to ride for 10 more years.(13) A questionnaire was used to collect data 
characterized by four categories: rider characteristics (e.g., age), exposure (e.g., miles driven per 
year), experience (e.g., years of having a motorcycle license), and behavioral attributes (e.g., a 
stated preference for consistently exceeding the speed limit). The questionnaire responses on the 
riders’ estimate of their likelihood to be involved in a crash in the next 10 years were grouped 
into low (0 to 20 percent), medium (30 to 70 percent), and high (80 to 100 percent).  

The model predicted the likelihood of a response given the characteristics represented in the 
model. The model is shown in figure 5. 

Pni =  
∑

i

U

U

ni

ni

e
e

 
Figure 5. Equation. Multinomial logistic response model. 

Where: 

Pni = The probability that rider n would categorize themselves as having a low, medium, or high 
risk of being in an accident in the next 10 years. 

Uni = Linear function of variables which determine the probability of a rider considering 
themselves in the low-, medium-, or high-risk group. 
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Among the studies’ findings was that age, gender, and experience were significant determinants 
of the estimate of self-risk and that riders were generally aware of their relative crash risks. 

In a follow-up study, Shankar and Mannering presented a multinomial logit model for rider 
injury severity in single-vehicle crashes, considering environmental roadway and vehicle 
factors.(14) Using data for Washington, relationships were found between crash severity and 
motorcycle displacement, rider age, alcohol impaired riding, rider ejection, speed, rider attention, 
pavement surface, and type of highway. 

Building on the Shankar and Mannering research, Savolainen and Mannering built multinomial 
logit models of severity separately for single- and multi-vehicle motorcycle crashes in Indiana 
and found important differences for the two crash types.(15) In general, they revealed several 
factors leading to more severe injuries, including poor visibility (horizontal curvature, vertical 
curvature, and darkness), unsafe speed (citations for speeding), alcohol use, not wearing a 
helmet, right-angle and head-on collisions, and collisions with fixed objects. Wet pavement 
conditions, locations near intersections, and passengers on motorcycles were associated with 
severe crashes, suggesting motorcyclists may be managing risks. 

Jung et al. examined factors associated with motorcyclist fatalities. The research found that a 
lack of or improper use of helmets, victim ejection, alcohol/drug effects, collisions (i.e., head-on, 
broadside, and hit-object), and truck involvement were more likely to result in fatal injuries 
regardless of age group.(16) Weekend and non-peak hour activity were found to have a strong 
effect on both the younger and older age groups. The authors determined that two factors—
movement of running off the road preceding a collision and multi-vehicle involvement—were 
statistically significant factors in increasing motorcycle fatalities among drivers in the older age 
group. Use of street lights in the dark decreased the probability of severe injury for older 
motorcyclists. Being the driver (as opposed to passenger), being the at-fault driver, being on a 
local road, and committing a speed violation were significant factors in increasing the fatalities 
of younger motorcyclists. Road conditions and collision location factors were not statistically 
significant to motorcyclist fatalities.  

Jones et al. applied multinomial logistic models to analyze factors affecting the injury severity 
outcome of motorcycle crashes.(17) The variables affecting motorcycle crashes were grouped by 
common characteristics into four categories: motorcyclist, crash, environment, and roadway. 
Crashes in the vicinity of large vehicles, around roadway curves, and in rural areas increased the 
likelihood of severe crash outcomes. 

Geedipally et al. estimated multinomial logit models to identify differences in factors likely to 
affect the severity of crash injuries of motorcyclists.(18) Key findings showed that alcohol, 
gender, lighting, and presence of both horizontal and vertical curves played significant roles in 
injury outcomes of motorcyclist crashes in urban areas. Similar factors were found to have 
significantly affected the injury severity of motorcyclists in rural areas, but older riders (older 
than 55), single-vehicle crashes, angular crashes, and divided highways also affected injury 
severity outcomes in rural motorcycle crashes.  
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Ordered Probit and Logit Models 

Ordered probit and logit models are similar to logistic models. As with unordered models, probit 
and logit models have different assumptions for the error term distribution and link functions. 
These models determine which factors significantly affect the probability of the outcome of an 
event and can be used to predict the likelihood of each possible outcome of an event but differ in 
that they differentiate unequal differences between ordinal categories in the dependent variable 
(e.g., it does not assume that the difference between no injury and minor injury is the same 
difference as between a severe injury and a fatality given a unit change in an explanatory 
variable).  

In the multiple response case, figure 6 displays the ordered model.   

)()()( 1 xxiyP ii βµβµ −Φ−−Φ== −  
Figure 6. Equation. Ordered probit model. 

Where: 

y = The ordinal for the outcome data. 

x = A vector of variables determining the discrete ordering for each observation. 

β  = A vector of estimable parameters. 

μi and μi-1 = The upper bound and lower bounds for injury severity i, respectively.  

The modeling process estimates both the vector or parameters and the upper and lower  
bound limits. 

Barrette et al. studied the impacts of changes to the Michigan universal helmet use law using an 
ordered probit model.(19) The degree of injury severity sustained by crash-involved motorcyclists 
before and after Michigan’s transition from a universal to a partial helmet law was examined. 
The models controlled for a variety of rider, roadway, traffic, and weather characteristics and 
indicated that helmets reduced the probability of fatalities by more than 50 percent. 

Ariannezhad et al. applied ordered logit models to study the factors contributing to crash severity 
of motorcycle crashes on suburban roads.(20) The results indicated that there are several factors 
that increase the severity of motorcycle crashes. Factors include weekends, winter and fall, 
dawn, foggy and clear weather, non-administrative areas, riders older than 60 years old, riders 
without a proper license, lack of helmet, motorcycle at-fault, speeding, overtaking, collisions 
with buses, and heavy vehicle, pedestrian, and single-vehicle crashes. Additional factors 
increasing severity included head-on crashes, fatigue and sleepiness, rules violation, road 
imperfection, and curvature. 

Wang et al. applied ordered probit models to injury severity of single-vehicle motorcycle crashes 
on curved roadways.(21) Results indicated that curve radius is a significant factor influencing 
injury severity of single-motorcycle crashes along horizontal curved roadway segments. The 
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authors estimated that an increase of 1,000 ft in curve radius decreases the likelihood of fatalities 
and serious injuries by 0.2 and 0.15 percent, respectively, in single-motorcycle crashes along a 
curved roadway section. The authors also found that speeding and hit-object increased the 
likelihood of higher severities.  

Blackman and Haworth applied ordered probit models to compare the crash risk and crash 
severity of motorcycles, mopeds, and larger scooters.(22) Greater motorcycle crash severity was 
associated with higher (>50 mi/h (80 km/h)) speed zones, horizontal curves, weekend, single-
vehicle, and nighttime crashes. Moped crashes were more severe at night and in speed zones of 
56 mi/h (90 km/h) or faster. Larger scooter crashes were more severe in 43-mi/h (70-km/h) zones 
than in 37-mi/h (60-km/h) zones but not in higher speed zones, and they were less severe on 
weekends than on weekdays.  

OTHER MODELS 

The literature review revealed several other analysis methods, which were applied to motorcycle 
safety evaluation. 

Haque et al. developed log-linear models of motorcycle crash risk.(23) Log-linear models can be 
used to identify conditions that increase crash risk or severity and to estimate odds multipliers 
that express the increased or decreased risk associated with a change in a variable or interactions 
of variables in the model. Conventionally, contingency tables, which record the number of 
responses for each combination of variable values, are used. However, when the number of 
variables is greater than two, the process can be arduous. A log-linear model predicts the 
frequency of crashes for each combination of levels of explanatory variables. The frequency 
predicted is the number of crashes meeting the levels of each variable out of all crashes 
observed. This should not be confused with predicting the expected crash frequency on the 
roadway. For example, one category may be male riders, aged 25 to 44, with a BAC over 0.08. 
The frequency of crashes meeting these criteria would be predicted. The authors used quasi-
induced exposure to account for exposure. In this approach, it is assumed that the presence of 
not-at-fault riders in the crash data represent the general population. The relative exposure for 
not-at-fault riders within the population of two-vehicle crashes is their crash frequency divided 
by the total population crash frequency. The authors then calculated the relative risk (RR) by 
dividing the respective odds ratios by the odds ratios for exposure under the same conditions. 

Chin and Haque investigated the effects of RLCs on motorcycle crashes.(24) Quasi-induced 
exposure was applied using not-at-fault riders involved in right-angle crashes. Results showed 
that an RLC reduced the relative crash vulnerability or crash-involved exposure of motorcycles 
at right-angle crashes. Log-linear models were also developed and indicated that light and heavy 
vehicles were more likely to experience a right-angle crash with a motorcycle at non-RLC 
locations than intersections with RLCs. 

de Rome et al. studied the effectiveness of protective clothing by recruiting motorcyclists 
involved in crashes through hospitals and repair services and then conducting interviews.(25) 
Hospitalization and injury were modeled using Poisson regression with log-link function to 
estimate the RR controlling for confounding variables. RR can be interpreted as the likelihood of 
the outcome without the variable of interest present divided by the likelihood of the outcome 
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with the variable present. For example, the RR of an injury while wearing a helmet would be the 
ratio of injury crashes to non-injury crashes for riders not wearing helmets to the ratio of injury 
to non-injury for riders wearing helmets. The use of motorcycle jackets, pants, and gloves 
reduces the likelihood of hospitalization, as well as risk of upper body injury, hands/wrists, and 
feet/ankles.  

Huang and Lai applied survival analysis using Cox regression models to identify risk factors for 
time until death comparing single-vehicle crashes for both alcohol- and non-alcohol-related 
crashes.(26) Survival analysis essentially models the probability that if one has survived until time 
t, then they will succumb to the event (in this case death) in the next instant. Cox regression 
models account for the effects of various covariates on the likelihood of survival and the results. 
The results show the impact each covariate has on the risk (in this case, the risk of death). 
Factors increasing risk of death for motorcycle riders included older age, crashing into trees, 
nighttime riding, curved roads, and local roads. 

Chung applied boosted regression trees to classify single-vehicle motorcycle crashes into fatal or 
non-fatal crashes.(27) The output of the analysis indicated which variables contributed most to 
correctly classifying crashes, thus indicating which had the greatest impact on crash severity. 

SUMMARY OF KEY FINDINGS FROM THE LITERATURE REVIEW 

As noted earlier, the vast majority of motorcycle crash research used probability models to 
identify factors associated with crash severity outcomes. These models are not directly relevant 
to the estimation of CMFs and SPFs; however, the research was selectively reviewed because of 
the potential for applying probability models to crash frequency models for total crashes to 
estimate crash frequency by severity type. 

The limited international research does suggest that motorcycle crash frequency models can be 
developed based only on total AADT for all vehicle types. However, the project team researched 
jurisdictions where motorcycle volume constitutes a sizable proportion of and is strongly 
correlated with the total traffic volume. The one significant study from the United States that 
developed crash frequency models for road segments did not use motorcycle volume as a 
variable due to the unavailability of these data. Instead, the number of motorcycle endorsements 
(motorcycle licenses) and number of registered motorcycles were used as surrogate measures of 
motorcycle and motor vehicle traffic, but these could only be compiled and applied at a regional 
level. In addition, spatial random effects modeling reduced model error due to the unavailability 
of motorcycle AADT data. However, the fact that this benefit is specific to the Ohio dataset 
modeled suggests that the developed models will not be easily transferable to another 
jurisdiction. Nevertheless, the research does suggest that there is promise in seeking alternatives 
to directly including motorcycle volumes in motorcycle crash frequency prediction models. 

The literature review found very few studies focused on the prediction of crash frequency but 
many studies concerned with motorcycle safety. Crash frequency models are required for 
developing SPFs and CMFs. Table 1 provides a brief summary of the methods reviewed, 
including the data required, outcomes, uses, strengths, and limitations. 
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Table 1. Analytic methods from literature review. 

Method Data Required Outcomes Uses Strengths Limitations 
Discrete choice Crash data and 

presence or 
absence of 
feature of 
interest 

Estimates the 
increased likelihood 
of dependent variable 
being present, given a 
crash has occurred, as 
a function of 
explanatory variables 

Useful for 
identifying risk 
factors and 
comparing the RR 
between two or 
more factors 

Advanced statistical 
methods are 
available; can often 
be accomplished 
using only readily 
available crash record 
data 

Does not provide 
an estimate of 
crash frequency 

Count frequency Crash data, 
exposure data, 
and geometric 
data 

Provides an estimate 
of expected crash 
frequency; CMFs can 
be inferred from 
parameter estimates 

Useful for 
estimating CMFs 
and developing 
predictive models 
for before-after 
studies and 
network screening 

Advanced statistical 
methods are available 

Modeling can be 
difficult for rare 
crash types; 
exposure is the 
biggest influence 
of expected 
crashes, but 
motorcycle 
volumes are often 
unavailable 

Log-linear/contingency 
table 

Crash data and 
presence or 
absence of 
feature of 
interest 

Estimates the 
increased likelihood 
of dependent variable 
being present, given a 
crash has occurred, as 
a function of 
explanatory variables 

Useful for 
identifying risk 
factors and 
comparing the RR 
between two or 
more factors 

Advanced statistical 
methods are 
available; can often 
be accomplished 
using only readily 
available crash record 
data 

Does not provide 
an estimate of 
crash frequency 

Quasi-induced exposure Crash data Estimates the relative 
presence of units (i.e. 
motorcyclists) in a 
population 

Can be used as an 
estimate of 
motorcycle 
exposure in the 
absence of volume 
data 

Requires only crash 
data to apply 

Cannot be used as 
an estimate of 
motorcycle 
exposure at 
specific locations 
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Method Data Required Outcomes Uses Strengths Limitations 
RR/Poisson model Crash data and 

presence or 
absence of 
feature of 
interest 

Estimates increased 
risk of event without 
a variable of interest 
present compared to 
when it is present 

Useful for 
identifying risk 
factors and 
comparing the RR 
between two or 
more factors 

Requires only crash 
data to apply 

Does not provide 
estimate of crash 
frequency 

Survival analysis/Cox 
regression 

Crash data and 
presence or 
absence of 
feature of 
interest 

Estimates the effect a 
variable has on the 
risk of an event 
occurring 

Useful for 
identifying risk 
factors and 
comparing the RR 
between two or 
more factors 

Requires only crash 
data to apply 

Does not provide 
estimate of crash 
frequency 

Boosted regression 
trees 

Crash data and 
presence or 
absence of 
feature of 
interest 

Classifies crashes and 
indicates which 
variables influence 
this classification 

Useful for 
identifying risk 
factors and 
determining which 
most affect the 
outcome of 
interest 

Requires only crash 
data to apply 

Does not provide 
estimate of crash 
frequency 
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CHAPTER 3. ANALYSIS METHODS 

The project team developed and undertook a number of analytical approaches in order to do the 
following: 

• Explore how much predictive power for an SPF is lost when motorcycle volumes are 
unknown and how this lack of information may affect a study of motorcycle 
countermeasures estimating a CMF. 

• Explore alternative methods for deriving accurate predictions of motorcycle crashes or 
motorcycle volume data. 

This chapter provides an overview of each analysis method and a discussion of which research 
goal(s) were met by its application. The project team pursued modeling of motorcycle crash data 
on several fronts that are helpful in casting light on the two research questions. 

The methods applied may be broadly classified into two groups: avenue A and avenue B. The  
methods for avenue A focus on investigating the difference in predictive performance for 
motorcycle SPFs calibrated with motorcycle AADT versus total AADT only. The methods for 
avenue B focus on the difference in CMF estimates found when using motorcycle AADT versus 
total AADT only. 

AVENUE A METHODS 

The three methods applied in avenue A focus on the impact of the lack of motorcycle AADT on 
modeling motorcycle crashes and the development of tools for those jurisdictions lacking these 
data. The methods make use of statewide databases for States that have motorcycle AADT 
estimates available. The following section discusses the three methods, all of which involve the 
estimation of predictive models. Table 2 summarizes the details of these methods for quick and 
easy reference throughout this report. 
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Table 2. Summary of avenue A methods. 

Model Type and 
Intended Function Basic Purpose SPFs Developed Approach 
A1: Provide a direct 
measure of how the 
predictive power of 
a model is affected 
by either including 
or excluding 
motorcycle 
volumes. 

Explore how much predictive 
power is lost when motorcycle 
volumes are not known. 

• A1.1. Motorcycle 
crashes versus total 
AADT and other 
independent variables. 

• A1.2. Motorcycle 
crashes versus 
motorcycle AADT and 
other independent 
variables. 

1. Assess goodness-of-fit of two model sets 
and compare. 

2. Assess how well each model set predicts 
motorcycle crashes at high crash 
locations. 

3. Using the results from the steps above, 
assess predictive ability of SPF A1.1.  

4. Consider SPF A1.1 for application to 
any jurisdiction if successful. 

5. Use FHWA SPF calibration tool to 
assess application of SPF A1.1 to 
selected jurisdictions. 

A2: Allow 
jurisdictions 
without motorcycle 
volumes to predict 
motorcycle crashes 
based on SPFs for 
total crashes. 

Develop a relationship between 
predicted motorcycle crash 
frequency and predicted total crash 
frequency. 

• A2.1. Motorcycle 
crashes versus 
motorcycle AADT. 

• A2.2. All crashes versus 
total AADT. 

• A2.3 Motorcycle 
crashes versus predicted 
total crashes and other 
variables. 

 

1. Develop and assess a model that relates 
predictions from SPF A2.1 to 
predictions from SPF A2.2. 

2. Consider SPF A2.3 for application to 
any jurisdiction if successful. 

 

A3: Allow 
jurisdictions to 
directly estimate 
motorcycle 
volumes. 

Develop models to estimate 
motorcycle traffic volumes based 
on roadway characteristics and 
other variables that may influence 
motorcycle trip generation. 

A3. Motorcycle AADT 
versus variables related to 
roadway, motorcycle 
registrations, licensing, and 
sociodemographic 
characteristics. 

1. Assess/include variables that cause 
motorcycle AADT to vary.  

2. Consider model A3 for estimating 
AADT in any jurisdiction where causal 
variables available if successful.  

FHWA = Federal Highway Administration.    
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All models were calibrated using generalized linear modeling (GLM) using the R software. GLM 
allows the specification of various error structures. The negative binomial error structure is 
recognized as an appropriate form for modeling crash data. The negative binomial 
overdispersion parameter (the inverse of the shape parameter provided by R), which is estimated 
in the modeling process, can be used in the comparative assessment of models fit to the same 
data in that a smaller value indicates a better fit model. Crash counts at sample sites are used as 
estimates of the dependent variable, which is the expected number of crashes per year while 
corresponding road characteristics and traffic data are used as estimates of the independent 
variables. 

Model Type A1 

The purpose of model type A1 is to explore how much predictive power is lost when motorcycle 
volumes are unknown and how this lack of information would affect an evaluation of motorcycle 
countermeasures. The approach is to first develop SPFs for several road classes for motorcycle 
crashes with and without motorcycle volumes. The performance of each SPF pair, with and 
without motorcycle volumes, is then evaluated across the range of motorcycle AADTs to  
assess the overall goodness-of-fit to the data, as well as ranges of motorcycle AADTs and any 
other variables to identify circumstances where the lack of motorcycle AADT may cause the 
model to perform poorly. Assessment measures, in addition to the overdispersion parameters, 
include mean absolute deviation (MAD), adjusted R2 values, and CURE plots described in 
subsequent paragraphs. 

MAD gives a measure of the average magnitude of variability of prediction. Smaller values are 
preferred to larger values. MAD is the sum of the absolute value of predicted minus observed 
crashes divided by the number of sites, as shown in figure 7. 
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Figure 7. Equation. MAD. 

Where: 

n = Validation data sample size. 

Fridstrom et al. introduced a modified R2 value.(28) This goodness-of-fit measurement subtracts 
the normal amount of random variation that would be expected even with a perfectly specified 
model. As a result, the amount of systematic variation explained by the model is measured. 
Larger values indicate a better fit to the data. Values greater than 1 indicate that the model is 
overfit, and some of the expected random variation is incorrectly explained as the systematic 
variation. Figure 8 shows the calculation. 

𝑅𝑅2 =
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 −∑ 𝜇𝜇𝑖𝑖2�𝑖𝑖𝑖𝑖

∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2 − ∑ 𝑦𝑦𝑖𝑖�𝑖𝑖𝑖𝑖
 
 

Figure 8. Equation. Modified R2 goodness-of-fit measure. 
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Where: 

yi = Observed counts. 
𝑦𝑦𝑖𝑖�   = Predicted values from the SPF. 
𝑦𝑦�   = Sample average. 
𝜇𝜇𝑖𝑖�  = 𝑦𝑦𝑖𝑖-𝑦𝑦𝑖𝑖�  . 

For an SPF to produce useful estimates, it must be good for all values of every variable. An 
alternative tool to describe goodness-of-fit is the CURE plot. A CURE plot is a graph of the 
cumulative residuals (observed minus predicted crashes) against a variable of interest sorted in 
ascending order. Long trends (increasing or decreasing) indicate regions of bias that should be 
rectified through model improvement either by the addition of new variables or by a change of 
functional form. Large vertical changes in the CURE plot invite the examination of outliers. The 
CURE plot is useful in determining whether an SPF is acceptable and in comparing multiple 
SPFs. The following steps are used to construct a CURE plot: 

• Step 1: Sort sites in ascending order of the variable of interest so that N is the number of 
sites, n is an integer between 1 and N, and S(n) is the cumulative sum of residuals from 1 
to n. 

• Step 2: For each site calculate the residuals, res, as the observed minus predicted crashes. 

• Step 3: For each site calculate the CURE, S(n), which is the sum of residuals from 1 to n. 

• Step 4: For each site calculate the squared residuals, res2. 

• Step 5: For each site calculate the cumulative squared residuals, σ2 (n), which is the sum 
of squared residuals from 1 to n. 

• Step 6: Sum the cumulative squared residuals over all sites, σ2 (N). 

• Step 7: For each site, estimate the variance of the random walk using the equation in 
figure 9. 

𝜎𝜎2 = 𝜎𝜎2(𝑛𝑛)[1 −
𝜎𝜎2(𝑛𝑛)
𝜎𝜎2(𝑁𝑁)

] 
 

Figure 9. Equation. CURE plot variance estimate. 

• Step 8: For each site, calculate the 95-percent confidence limits using the equations in 
figure 10 and figure 11. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  −1.96�𝜎𝜎2  
Figure 10. Equation. Lower limit of 95-percent confidence interval. 



21 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  +1.96�𝜎𝜎2  
Figure 11. Equation. Upper limit of 95-percent confidence interval. 

• Step 9: Plot the CURE S(n) and the 95-percent confidence limits on the y-axis against the 
explanatory variable of interest on the x-axis. Figure 12 displays an example CURE plot 
for the variable major road AADT. In this example, the model is performing relatively 
well, as the CURE remain within the 95-percent confidence limits over most of the range, 
only crossing outside the boundary limits for a short range of lower AADT. The areas 
outside the boundary limits indicate a poor fit as indicated in the figure. If the graph of 
CURE was in that area frequently, then this would indicate the presence of model bias. 

 
©Persaud and Lyon. 

Figure 12. Graph. Example CURE plot. 

The project team used two comparative measures to assess the CURE plots for competing 
models. One is the maximum CURE deviation, which has a value of 237 at an AADT of 159,000 
in the figure 1 example. The other is percent CURE deviation, which is defined as the percent of 
the range of the x-axis variable for which the CURE plot is outside the 95-percent confidence 
limits. In figure 12, this occurs between AADTs of approximately 35,000 and 70,000; about 16 
percent of the individual data points lie outside the 95 percent confidence limits. 

It is also of particular interest to assess how well the models predict motorcycle crashes for high-
crash locations, as these sites are the ones typically of interest in treatment applications that 
would form the basis for future CMF development. To do this, sites are ranked first by the crash 
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counts per mile in one period; the Empirical Bayes (EB) estimates based on the calibrated SPFs 
and crash counts in that period for the highest ranked locations are then compared to crash counts 
for these locations in a subsequent period. 

Model A1 was applied because it provides a direct measure of how the predictive power of a 
model is affected by either including or excluding motorcycle volumes. By using the same data 
for both sets of models, the impact of motorcycle volumes on predictive power was assessed 
directly without any biases. The use of CURE plots also allows this assessment to be broken 
down by ranges of motorcycle volumes. 

Model Type A2 

The purpose of model type A2 is to develop a relationship between motorcycle crash frequency 
and total crash frequency as a function of traffic volumes for the two vehicle categories. Models 
were calibrated for both motorcycle and total crashes using traffic volumes for motorcycles and 
all vehicles, respectively. Then, a relationship between the SPFs for the two crash types can be 
inferred from the motorcycle SPF prediction using the total crash SPF prediction as an 
explanatory variable. If successful, this relationship could then be applied to the SPF for total 
crashes for another State to infer an SPF for motorcycle crashes for that State. In turn, that SPF 
can be used in the evaluation of retrospective and prospective before-after evaluations of the 
effects on motorcycle crashes of infrastructure countermeasures. The assessment of success uses 
similar measures (MAD, etc.) as for assessing model type A1. 

Model A2 was applied because, if successful, it would allow jurisdictions without motorcycle 
volumes to predict motorcycle crashes based on SPFs for total crashes. The limitation of the 
approach is that the models may not transfer well between jurisdictions that differ in terms of 
factors influencing motorcycle VMT and riding patterns. 

Model Type A3 

The purpose of investigating model type A3 was to attempt the development of models to 
estimate motorcycle traffic volumes based on roadway characteristics and other variables that 
may influence motorcycle trip generation. For the latter, information on motorcycle registrations, 
licensing, and sociodemographic variables was collected. If successful, these models could be 
used to estimate motorcycle volumes in similar jurisdictions. Due to differences in weather, 
motorcycle riding culture, commuter versus recreational riding, and other factors affecting 
motorcycle volumes between jurisdictions, it will be important to identify which of these factors 
need consideration when determining the applicability of a model. The assessment of success 
used similar measures as for assessing model type A1. 

The project team applied this approach because, if successful, it would allow jurisdictions to 
directly estimate motorcycle volumes. If the important factors influencing motorcycle VMT can 
be identified and included in the models developed, this approach should provide for better 
model transferability than model type A2.  
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AVENUE B METHODS 

The methods applied in avenue B focus on the impact of the lack of motorcycle AADT on the 
estimation of CMFs. These methods make use of simulated data. Simulating data creates a 
database with many locations and with assumed relationships between roadway geometry or 
other countermeasures and motorcycle crashes. The ability to accurately measure this “true” 
relationship is then tested when motorcycle volumes are and are not used in the process. The 
fixed relationships affecting motorcycle crashes were determined considering a likely range of 
values based on existing safety knowledge. 

To investigate the impact of the lack of motorcycle AADTs on the estimation of CMFs, 
two CMF estimation approaches were investigated: B1, the EB before-after approach, and B2, 
cross-sectional generalized linear models. 

For the EB before-after approach, one or more countermeasures were assumed with a known 
value of its CMF. The simulated database was divided into two time periods, and the after  
period expected crash means for each location is adjusted by the value of the CMF. The new 
after period counts are then generated from the Poisson distribution. The EB approach was then 
applied to the data for these treated sites, using the remaining sites as a reference group. This  
was done once using the motorcycle AADTs and once for total AADT. A comparison was then 
made to see how the lack of motorcycle AADT affected the estimate of the CMF and its 
variance. This entire process, beginning with the simulated data, was performed multiple times 
and with multiple sample sizes so that conclusions could be made with confidence and have 
broad applicability. 

For the cross-sectional regression model approach, an assumed relationship, based on logical 
considerations and related research, was defined between one or more geometric variables and 
added to the SPFs developed in model A1. The relationship was defined in terms of a CMF. This 
modified SPF was then used to simulate the data as described above. GLM was then used to re-
estimate the SPF, including the fictional variable, using motorcycle AADT and then using total 
AADT only. A comparison was then made to see how the lack of motorcycle AADT affected the 
estimate of the CMF and its variance.  

This entire process, beginning with the simulated data, was performed multiple times so that 
conclusions could be made with confidence. 

This approach for avenue B was applied because it provided a direct measure of how the lack of 
motorcycle AADT affects CMF estimation by replicating the process of estimating CMFs. The 
use of simulated data provides a realistic and unbiased dataset for making this assessment. The 
limitation is that the true relationships between motorcycle AADT and crashes and geometric 
features and crashes need to be assumed. However, the knowledge gained in avenue A using real 
data informed these decisions.
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CHAPTER 4. DATA COLLECTION AND SUMMARY 

This chapter describes the data collection procedures undertaken to support the analyses outlined 
in chapter 3. In general terms, these data are primarily roadway inventory, crash data, total traffic 
volumes, and motorcycle traffic volumes. Other data collection includes further information on 
motorcycle licenses, registrations, and other sociodemographic data at the county level. 

To identify which States could provide a substantial sample of motorcycle volume counts, the 
project team asked various contacts for this information, primarily through the following 
channels: 

• A request to the Transportation Research Board committee on motorcycles and mopeds, 
ANF30. 

• Listserv communication with State highway safety engineers. 

• Requests to members of the FHWA Development of CMFs Project Technical Advisory 
Committee. 

These inquiries quickly confirmed that few States have substantial motorcycle volume  
estimates. For many States, the only available motorcycle counts come from permanent  
counting stations, where full class counts are performed and the interest is focused on truck 
traffic, not motorcycles. No attempt is made to estimate motorcycle counts for nearby segments 
in these instances.  

There were, however, a number of States reported by these contacts as having a large number of 
classification count locations from permanent and short-term count programs. These States 
focused on for determining which States could provide the best datasets for the analyses. 

The prioritization of States for data collection considered several factors, including the 
following: 

• Availability of electronically linked and stored data on the roadway geometry, traffic 
volumes (including motorcycle volumes), and crash data for 5 years.  

• For crash data, the necessary ability to identify motorcycle-involved crashes. 

• For traffic data, classification counts, including motorcycles (a distinct class) and the total 
count for each site.  

• Availability of data on variables useful for predicting motorcycle AADT, such as 
motorcycle licensure and socio-demographics.  

• The ability to provide seasonal estimates of motorcycle volumes. These are known to 
fluctuate significantly, and it would be desirable to reflect this in the models developed.  

• Geographic diversification by including States from northern and southern regions. 
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For each method applied, this section describes the source of data, variables acquired, and steps 
taken to assemble the data into an appropriate format for analysis.  

AVENUE A DATABASES 

For developing the avenue A models, data were collected from Florida and Pennsylvania.  
The project team selected these States because they had a large number of locations with an 
estimated motorcycle AADT; were able to provide linkable roadway inventory, traffic, and  
crash data; and expressed an interest in providing data in a timely manner. They also provided a 
degree of geographical diversity. The project team acquired data from Virginia to validate the 
models developed. 

The following sections provide further details on the data acquired and data manipulation. 

Florida 

Florida provided statewide roadway inventory, traffic volume, and crash data. The Florida 
Department of Transportation (FDOT) provided the roadway inventory and traffic volume data 
on the 2012 Florida Transportation Information DVD. Roadway and traffic volume data 
variables included the following: 

• Segment location and length. 

• AADT estimates for current and past years. 

• Motorcycle AADT estimates for current and past years for those segments where an 
estimate exists. 

• Number of lanes. 

• Posted speed. 

• Surface width. 

• Functional class. 

• Divided versus undivided. 

• Inside and outside shoulder widths. 

• Median width. 

• Median type. 

• Degree of curvature. 
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Crash data were provided for 2008 to 2012, including the following: 

• Location. 
• Date. 
• Severity. 
• First and second harmful events. 
• Location type. 
• Crash type. 
• Vehicle types involved. 
• Number of vehicles involved. 

The query included total, motorcycle, multi-vehicle motorcycle, and single-vehicle  
motorcycle crashes. 

Roadway identification numbers and mileposts linked all roadway, traffic, and crash data. 
Segments were defined so that all variables were homogeneous for the entire length. 

Further data collected included the number of motorcycle licenses and registrations by county 
from 2008 to 2012. These data were available from the Florida Department of Highway Safety 
and Motor Vehicles and were linked to the other data by county. 

Sociodemographic data were obtained from the U.S. Census Bureau at the county level. These 
variables included the following: 

• Population by age. 
• Population by sex. 
• Percentage of population with high school or college degree. 
• Mean travel time to work. 
• Housing units. 
• Home ownership rate. 
• Persons per household. 
• Median household income. 
• Percentage of persons below poverty level. 
• Non-employer establishments. 
• Number of firms. 
• Land area in square miles. 
• Population per square mile. 

These data were also linked to the other data by county. Segments were initially grouped into the 
following six categories for analysis: 

• Rural freeway (type 1). 
• Urban freeway (type 2). 
• Rural arterial (type 3). 
• Urban arterial (type 4). 
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• Rural collector/local (type 5). 
• Urban collector/local (type 6). 

Table 3 provides the variable definitions of the database created. Table 4 shows the total length 
of roadway and total number of crashes by crash type for the six site types in Florida. Table 5 
through table 8 provide summary statistics for other variables included in the Florida dataset by 
site type.  
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Table 3. Florida data variable definitions. 

Variable Definition 
AVGMOTO Motorcycle AADT 
AVGAADT Total vehicle AADT 
NOLANES Number of lanes 
SPDLIMT Posted speed limit (mi/h) 
SURFWIDTH Surface width in ft 
DIVUND Divided versus undivided 
OUTSHLDWID Outside shoulder width in ft 
MEDWIDTH Median width in ft 
INSHLDWID Inside shoulder width in ft 
CURVLENGTH Length of horizontal curves in segment in mi 
LENGTH Total segment length in mi 
TOT Total crash frequency 
MOTO Motorcycle crash frequency 
MOTOSINGLE Single-vehicle motorcycle crash frequency 
MOTOMULTI Multi-vehicle motorcycle crash frequency 
VEHREG Number of registered motorcycles in county 
LIC Number of motorcycle-licensed individuals in county 
PST045213 Population, 2013 estimate 
AGE135213 Persons under 5 years, percent, 2013 
AGE295213 Persons under 18 years, percent, 2013 
AGE775213 Persons 65 years and over, percent, 2013 
SEX255213 Female persons, percent, 2013 
EDU635213 High school graduate or higher, percent of persons age 25+, 2009–2013 
EDU685213 Bachelor’s degree or higher, percent of persons age 25+, 2009–2013 
LFE305213 Mean travel time to work (minutes), workers age 16+, 2009–2013 
HSG010213 Housing units, 2013 
HSG445213 Homeownership rate, 2009–2013 
HSD310213 Persons per household, 2009–2013 
INC110213 Median household income, 2009–2013 
PVY020213 Persons below poverty level, percent, 2009–2013 
NES010212 Non-employer establishments, 2012 
SBO001207 Total number of firms, 2007 
LND110210 Land area in mi2, 2010 
POP060210 Population per mi2, 2010 
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Table 4. Total length and crash frequency for Florida data. 

Type 
LENGTH 

(mi) TOT MOTO MOTOSINGLE MOTOMULTI 
1 494.2 10,611 174 111 63 
2 552.6 49,453 921 385 536 
3 3,068.2 21,400 1,031 449 582 
4 3,425.8 269,689 9,539 2,341 7,198 
5 640.8 698 33 20 13 
6 1,041.2 2,800 152 57 95 

1 mi = 1.6 km.      
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Table 5. Summary statistics for Florida data. 

Type Statistic AVGMOTO 
AVGAADT 

(mi) NOLANES 
SPDLIMT 

(mi/h) 
SURFWIDTH 

(ft) DIVUND 
OUTSHLDWID 

(ft) 
1 No. Segments 482 482 482 482 482 482 482 
1 MIN 18.9 16,050.0 4.0 65.0 48.0 2.0 6.0 
1 MAX 339.9 98,700.0 8.0 70.0 96.0 2.0 21.0 
1 MEAN 105.6 34,845.0 4.5 69.9 53.4 2.0 10.0 
1 STD 72.2 19,303.0 0.9 0.8 10.3 0.0 1.2 
2 No. Segments 952 952 952 952 952 952 952 
2 MIN 18.9 6,120.0 2.0 30.0 24.0 0.0 2.0 
2 MAX 39,488.9 316,000.0 10.0 70.0 128.0 2.0 35.0 
2 MEAN 862.1 84,174.3 5.7 64.8 68.5 2.0 10.0 
2 STD 3,795.4 56,359.9 1.6 6.8 20.0 0.1 3.0 
3 No. Segments 3,243 3,243 3,243 3,243 3,243 3,243 3,243 
3 MIN 1.4 450.0 2.0 25.0 18.0 0.0 2.0 
3 MAX 507.8 43,000.0 6.0 70.0 72.0 2.0 26.0 
3 MEAN 51.0 8,044.0 2.6 54.4 30.7 0.9 5.3 
3 STD 52.5 6,820.3 0.9 7.6 11.0 1.0 2.2 
4 No. Segments 8,721 8,721 8,721 8,721 8,721 8,721 8,721 
4 MIN 0.6 170.0 2.0 20.0 18.0 0.0 1.0 
4 MAX 2,416.4 92,785.0 10.0 65.0 120.0 2.0 32.0 
4 MEAN 171.5 26,198.8 4.0 44.4 47.4 1.7 4.6 
4 STD 141.2 15,797.2 1.6 6.9 18.3 0.7 2.9 
5 No. Segments 622 622 622 622 622 622 622 
5 MIN 1.4 100.0 1.0 25.0 12.0 0.0 1.0 
5 MAX 274.4 31,000.0 4.0 60.0 52.0 2.0 12.0 
5 MEAN 32.3 4,416.6 2.1 47.5 23.7 0.3 6.1 
5 STD 37.9 4,211.4 0.3 8.6 4.6 0.7 3.1 
6 No. Segments 2,345 2,345 2,345 2,345 2,345 2,345 2,345 
6 MIN 1.9 170.0 2.0 15.0 14.0 0.0 1.0 
6 MAX 362.1 55,000.0 6.0 55.0 78.0 2.0 25.0 
6 MEAN 63.8 8,498.3 2.4 37.9 27.3 0.8 6.3 
6 STD 51.1 6,679.8 0.9 7.6 10.1 1.0 3.9 

STD = Standard deviation.          
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Table 6. Summary statistics for Florida data continued—roadway geometry. 

Type Statistic 
MEDWIDTH 

(ft) 
INSHLDWID 

(ft) 
CURVLENGTH 

(mi) 
LENGTH 

(mi) TOT MOTO MOTOSINGLE MOTOMULTI 
1 No. Segments 482 482 482 482 482 482 482 482 
1 MIN 3.0 3.0 0.0 0.1 0.0 0.0 0.0 0.0 
1 MAX 961.0 24.0 1.1 23.4 232.0 5.0 4.0 3.0 
1 MEAN 147.2 6.5 0.1 1.0 22.0 0.4 0.2 0.13 
1 STD 159.2 3.6 0.2 1.8 31.4 0.8 0.6 0.39 
2 No. Segments 952 932 952 952 952 952 952 952 
2 MIN 0.0 2.0 0.0 0.1 0.0 0.0 0.0 0.0 
2 MAX 989.0 51.0 2.0 7.8 707.0 13.0 5.0 9.0 
2 MEAN 84.8 9.3 0.1 0.6 51.9 1.0 0.4 0.56 
2 STD 98.3 4.3 0.1 0.8 76.2 1.6 0.8 1.08 
3 No. Segments 3,243 496 3,243 3,243 3,243 3,243 3,243 3,243 
3 MIN 0.0 1.0 0.0 0.1 0.0 0.0 0.0 0.0 
3 MAX 480.0 15.0 1.2 16.4 155.0 11.0 7.0 7.0 
3 MEAN 13.8 2.9 0.0 0.9 6.6 0.3 0.1 0.18 
3 STD 21.9 1.6 0.1 1.6 11.4 0.8 0.5 0.54 
4 No. Segments 8,721 3,459 8,721 8,721 8,721 8,721 8,721 8,721 
4 MIN 0.0 1.0 0.0 0.1 0.0 0.0 0.0 0.0 
4 MAX 377.0 27.0 2.0 6.1 1,578.0 77.0 16.0 69.0 
4 MEAN 20.8 2.3 0.0 0.4 30.9 1.1 0.3 0.83 
4 STD 18.5 1.4 0.1 0.4 60.2 2.3 0.7 1.91 
5 No. Segments 622 16 622 622 622 622 622 622 
5 MIN 0.0 2.0 0.0 0.1 0.0 0.0 0.0 0.0 
5 MAX 170.0 7.0 5.3 14.6 25.0 4.0 1.0 3.0 
5 MEAN 2.5 2.4 0.0 1.0 1.1 0.1 0.0 0.02 
5 STD 10.1 1.3 0.2 1.8 2.9 0.3 0.2 0.17 
6 No. Segments 2,345 222 2,345 2,345 2,345 2,345 2,345 2,345 
6 MIN 0.0 1.0 0.0 0.1 0.0 0.0 0.0 0.0 
6 MAX 154.0 25.0 0.5 5.4 95.0 5.0 3.0 3.0 
6 MEAN 7.0 2.3 0.0 0.4 1.2 0.1 0.0 0.0 
6 STD 12.5 2.1 0.0 0.5 5.2 0.3 0.2 0.2 
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Table 7. Summary statistics for Florida data continued—model estimates for variables VEHREG, LIC, and a through i. 

Type Statistic VEHREG LIC a b c d e f g h i 
1 No. Segments 482 482 482 482 482 482 482 482 482 482 482 
1 MIN 0.03 0.06 14,194.00 2.10 7.70 10.90 42.10 75.10 9.40 19.90 5,663.00 
1 MAX 4.00 6.94 1,838,844.00 6.80 25.10 51.60 52.50 91.90 44.20 30.00 812,565.00 
1 MEAN 0.77 1.45 232,353.61 5.22 19.57 21.67 49.71 84.83 21.65 25.57 115,870.27 
1 STD 0.84 1.51 272,384.41 1.06 3.39 8.60 2.03 4.86 7.02 2.56 125,062.91 
2 No. Segments 952 952 952 952 952 952 952 952 952 952 952 
2 MIN 0.11 0.22 48,922.00 3.20 13.30 10.50 45.00 78.00 13.30 19.90 20,715.00 
2 MAX 4.21 6.94 2,617,176.00 6.80 25.40 37.00 52.50 91.90 44.20 30.60 993,993.00 
2 MEAN 2.43 4.26 1,034,493.61 5.62 20.89 17.54 51.27 86.72 27.49 25.63 450,529.30 
2 STD 1.23 1.97 736047.64 0.76 2.23.00 5.84 0.70 3.27 5.66 2.40 286,103.34 
3 No. Segments 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 
3 MIN 0.01 0.03 8,349.00 2.10 7.70 10.50 35.30 64.20 7.80 18.80 3,282.00 
3 MAX 4.21 6.94 2,617,176.00 7.90 28.30 51.60 52.50 93.20 44.20 32.10 993,993.00 
3 MEAN 0.81 1.47 272,039.92 5.28 19.96 20.86 48.93 82.95 19.81 25.58 126,694.96 
3 STD 0.94 1.61 426,048.86 0.94 3.11 7.30 3.30 6.67 8.10 2.81 176,082.45 
4 No. Segments 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 
4 MIN 0.04 0.09 22,857.00 2.10 7.70 10.50 43.60 64.20 8.80 18.80 9,516.00 
4 MAX 4.21 6.94 2,617,176.00 7.90 28.30 51.60 52.50 93.20 44.20 32.10 993,993.00 
4 MEAN 2.13 3.77 847,443.97 5.42 20.40 19.87 51.14 86.43 25.92 25.47 382,889.66 
4 STD 1.25 2.06 694,603.48 0.81 2.55 6.35 1.07 4.09 6.24 2.53 281,445.36 
5 No. Segments 622 622 622 622 622 622 622 622 622 622 622 
5 MIN 0.01 0.03 8,349.00 2.10 7.70 10.90 35.30 71.30 7.80 18.80 3,298.00 
5 MAX 4.21 6.17 2,617,176.00 6.70 25.40 51.60 52.50 91.80 44.20 32.10 993,993.00 
5 MEAN 0.92 1.74 329,206.54 5.14 19.63 20.78 48.63 83.03 19.41 26.18 156,257.94 
5 STD 0.99 1.80 426,773.89 0.83 2.97 7.78 3.64 5.12 7.38 2.79 191,564.69 
6 No. Segments 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 
6 MIN 0.07 0.14 26,850.00 2.10 7.70 10.50 43.70 64.40 9.20 18.80 10,837.00 
6 MAX 4.21 6.94 2,617,176.00 7.90 28.30 51.60 52.50 91.90 44.20 30.60 993,993.00 
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Type Statistic VEHREG LIC a b c d e f g h i 
6 MEAN 1.76 3.23 620,362.09 5.14 19.73 23.25 51.23 86.51 24.22 25.32 295,750.35 
6 STD 1.03 1.73 504,284.65 0.83 2.71 6.64 0.89 3.15 5.76 2.40 216,888.03 

a = PST045213.  
b = AGE135213.  
c = AGE295213.  
d = AGE775213.  
e = SEX255213.  
f = EDU635213.  
g = EDU685213.  
h = LFE305213.  
i = HSG010213. 
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Table 8. Summary statistics for Florida data continued—model estimates for variables J through r. 

Type Statistic J k l m N o p q r 
1 No. Segments 482 482 482 482 482 482 482 482 482 
1 MIN 5,663.00 53.80 4,657.00 33,833.00 12.00 527.00 816.00 472.54 24.70 
1 MAX 812,565.00 90.20 663,458.00 57,703.00 26.50 215,377.00 237,524.00 1,998.32 1,444.90 
1 MEAN 115,870.27 73.38 88,345.35 44,336.88 17.38 179,14.67 21,492.63 838.31 260.78 
1 STD 125,062.91 5.89 100,444.19 6,209.94 4.41 25,988.27 29,450.56 377.32 258.27 
2 No. Segments 952 952 952 952 952 952 952 952 952 
2 MIN 20,715.00 53.80 16,244.00 36,809.00 11.30 2,642.00 3,106.00 273.80 54.20 
2 MAX 993,993.00 80.20 828,031.00 58,175.00 23.20 385,593.00 40,3672.00 1,998.32 3,347.50 
2 MEAN 450,529.30 65.13 369,088.93 47,390.83 16.60 107,506.72 119,041.09 1,017.32 1,049.15 
2 STD 286,103.34 6.99 240,329.25 3,870.59 2.60 109,657.00 114,337.80 486.79 764.17 
3 No. Segments 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 3,243 
3 MIN 3,282.00 53.80 2,305.00 32,497.00 9.60 318.00 247.00 243.56 10.00 
3 MAX 993,993.00 90.20 828,031.00 64,876.00 29.60 385,593.00 403,672.00 1,998.32 1,444.90 
3 MEAN 126,694.96 72.58 98,822.28 43,205.24 18.48 24,274.26 27,818.92 905.12 255.82 
3 STD 176,082.45 6.72 143,902.59 6,734.04 4.79 55,716.44 58,978.97 419.83 289.70 
4 No. Segments 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 8,721 
4 MIN 9,516.00 53.80 7,463.00 32,497.00 9.60 976.00 1,363.00 273.80 21.60 
4 MAX 993,993.00 90.20 828,031.00 64,876.00 29.60 385,593.00 403,672.00 1,998.32 3,347.50 
4 MEAN 382,889.66 68.15 308,052.76 47,074.35 16.14 85,823.48 96,295.40 1,050.18 870.48 
4 STD 281,445.36 6.85 234,944.41 4,691.20 3.01 97,161.36 102,438.99 515.71 789.18 
5 No. Segments 622 622 622 622 622 622 622 622 622 
5 MIN 3,298.00 53.80 2,305.00 32,780.00 9.80 411.00 354.00 243.56 10.00 
5 MAX 993,993.00 90.20 828,031.00 59,482.00 29.60 385,593.00 403,672.00 1,998.32 1,315.50 
5 MEAN 156,257.94 73.17 120,845.27 42,810.66 18.18 27,168.37 31,470.86 894.82 311.57 
5 STD 191,564.69 6.68 152,005.26 6,072.52 3.98 48,519.98 52,539.47 441.17 316.27 
6 No. Segments 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 2,345 
6 MIN 10,837.00 53.80 8,857.00 34,963.00 11.30 1,229.00 1,899.00 273.80 34.00 
6 MAX 993,993.00 90.20 828,031.00 58,175.00 29.60 385,593.00 403,672.00 1,998.32 3,347.50 
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Type Statistic J k l m N o p q r 
6 MEAN 295,750.35 71.55 231,854.99 46,281.02 15.71 55,193.08 63,522.63 1,089.80 609.38 
6 STD 216,888.03 5.71 178,603.72 4,641.58 2.49 63,611.04 68,193.67 529.46 578.72 

j = HSG010213.  
k = HSG445213. 
l = HSD410213. 
m = INC110213. 
n = PVY020213. 
o = NES010212. 
p = SBO001207. 
q = LND110210. 
r = POP060210. 
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Pennsylvania 

Pennsylvania provided statewide roadway inventory, traffic volume, and crash data. Roadway 
and traffic volume data variables included the following: 

• Segment location and length. 
• AADT estimates for current and past years. 
• Motorcycle AADT estimates for current and past years for those segments where an 

estimate exists. 
• Divided versus undivided. 
• Surface width. 
• Lane width. 
• Posted speed. 
• Number of lanes. 
• Right shoulder type. 
• Right shoulder width. 
• Left shoulder type. 
• Left shoulder width. 

Crash data were provided for 2009–2013, including the following: 

• Location. 
• Date. 
• Severity. 
• Location type. 
• Crash type. 
• Vehicle types involved. 
• Number of vehicles involved. 

The query included total, motorcycle, multi-vehicle motorcycle, and single-vehicle motorcycle 
crashes. County, route number, segment number, and offset linked all roadway, traffic, and crash 
data. Segments were defined so that all variables were homogeneous for the entire length. The 
data for freeways are for one direction of travel only. 

Further data collected included the number of motorcycle licenses and registrations by county 
from 2009–2013. These data were available from the Department of Motor Vehicles and linked 
to the other data by county. 

The project team obtained sociodemographic data from the U.S. Census Bureau at the county 
level. These variables included the following: 

• Population by age. 
• Population by sex. 
• Percent of population with high school or college degree. 
• Mean travel time to work. 
• Housing units. 
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• Home ownership rate. 
• Persons per household. 
• Median household income. 
• Percent of persons below poverty level. 
• Non-employer establishments. 
• Number of firms. 
• Lane area in mi2. 
• Population per mi2. 

These data were also linked to the other data by county. Segments were initially grouped into the 
following four categories for analysis: 

• Rural freeway (type 1). 
• Urban freeway (type 2). 
• Rural non-freeway (type 3). 
• Urban non-freeway (type 4). 

Table 9 provides the variables’ definitions. Table 10 shows the total length of roadway and total 
number of crashes by crash type for the six site types in Pennsylvania. Table 11 to table 14 
provide summary statistics for other variables included in the Pennsylvania dataset by site type. 
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Table 9. Pennsylvania data variable definitions. 

Variable Definition 
AVGMOTO Motorcycle AADT 
AVGAADT Total vehicle AADT 
NOLANES Number of lanes 
SPDLIMT Posted speed limit (mi/h) 
SURFWIDTH Surface width in ft 
DIVUND Divided versus undivided 
LSHLDWID Left side shoulder width in ft 
MEDWIDTH Median width in ft 
RSHLDWID Right side shoulder width in ft 
WIDTH Total lane widths in ft 
LENGTH Total segment length in mi 
TOT Total crash frequency 
MOTO Motorcycle crash frequency 
MOTOSINGLE Single-vehicle motorcycle crash frequency 
MOTOMULTI Multi-vehicle motorcycle crash frequency 
VEHREG Number of registered motorcycles in county 
LIC Number of motorcycle licenced individuals in county 
PST045213 Population, 2013 estimate 
AGE135213 Persons under 5 years, percent, 2013 
AGE295213 Persons under 18 years, percent, 2013 
AGE775213 Persons 65 years and over, percent, 2013 
SEX255213 Female persons, percent, 2013 
EDU635213 High school graduate or higher, percent of persons age 25+, 2009–2013 
EDU685213 Bachelor’s degree or higher, percent of persons age 25+, 2009–2013 
LFE305213 Mean travel time to work (minutes), workers age 16+, 2009–2013 
HSG010213 Housing units, 2013 
HSG445213 Homeownership rate, 2009–2013 
HSD310213 Persons per household, 2009–2013 
INC110213 Median household income, 2009–2013 
PVY020213 Persons below poverty level, percent, 2009–2013 
NES010212 Non-employer establishments, 2012 
SBO001207 Total number of firms, 2007 
LND110210 Land area in mi2, 2010 
POP060210 Population per mi2, 2010 
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Table 10. Summary of length and crash frequency for Pennsylvania data. 

Type LENGTH (mi) TOT MOTO MOTOSINGLE MOTOMULTI 
1 2,136 15,603 234 184 50 
2 1,666 31,853 615 382 233 
3 20,559 82,666 3,749 2,432 1,317 
4 6,252 125,642 3,893 1,530 2,363 

Note: Type 1 and type 2 data are for one direction of travel only. 
1 mi = 1.6 km.  
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Table 11. Summary statistics for Pennsylvania data. 

Type Statistic 
SURFWID 

(ft) 
WID 
(ft) 

SPDLIMT 
(mi/h) NOLANES 

LSHLDWID 
(ft) 

RSHLDWID 
(ft) 

AVGAADT 
(mi) 

AVGMOTO 
(mi) DIVUND 

LENGTH 
(mi) 

1 No. Segments 4,350 4,350 4,350 4,350 4,350 4,350 4,350 4,350 4,350 4,350 
1 MIN 52.0 12.0 35.0 1.0 0.0 0.0 390.7 0.1 1.0 0.1 
1 MAX 98.0 52.0 70.0 4.0 15.0 14.0 27,673.3 735.0 1.0 1.1 
1 MEAN 64.4 24.5 63.5 2.0 7.0 6.8 4,515.0 72.0 1.0 0.5 
1 STD 5.2 2.7 3.8 0.1 3.1 3.1 4,010.6 81.6 0.0 0.1 
2 No. Segments 3,459 3,459 3,459 3,459 3,459 3,459 3,459 3,459 3,459 3,459 
2 MIN 52.0 12.0 35.0 1.0 0.0 0.0 347.3 1.1 1.0 0.1 
2 MAX 98.0 72.0 65.0 5.0 24.0 20.0 118,193.2 817.0 1.0 1.2 
2 MEAN 65.6 26.6 57.0 2.1 6.4 6.7 10,524.0 125.3 1.0 0.5 
2 STD 6.8 6.8 6.0 0.4 3.5 3.5 9,871.5 127.4 0.0 0.1 
3 No. Segments 43,914 43,914 43,914 43,914 43,914 43,914 4,3908 43,914 43,914 43,914 
3 MIN 20.0 8.0 0.0 1.0 0.0 0.0 14.8 0.2 0.0 0.1 
3 MAX 99.0 70.0 55.0 3.0 14.0 14.0 27,958.8 727.0 0.0 1.3 
3 MEAN 57.2 20.9 45.2 2.0 1.5 1.5 1,753.0 22.1 0.0 0.5 
3 STD 7.1 3.4 8.2 0.1 2.1 2.2 2,345.1 36.2 0.0 0.1 
4 No. Segments 14,438 14,438 14,438 14,438 14,438 14,438 14,438 14,438 14,438 14,438 
4 MIN 40.0 10.0 0.0 1.0 0.0 0.0 71.2 0.8 0.0 0.1 
4 MAX 99.0 80.0 60.0 5.0 15.0 22.0 36,010.6 2,078.0 0.0 0.8 
4 MEAN 59.0 26.0 37.8 2.0 2.1 2.2 6,599.0 64.8 0.0 0.4 
4 STD 8.1 7.7 7.6 0.2 2.6 2.7 4,969.9 71.5 0.0 0.2 
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Table 12. Summary statistics for Pennsylvania data continued—roadway geometry. 

Type Statistic TOT MOTO MOTOSINGLE MOTOMULTI 
1 No. Segments 4,350 4,350 4,350 4,350 
1 MIN 0.0 0.0 0.0 0.0 
1 MAX 34.0 3.0 2.0 2.0 
1 MEAN 3.6 0.1 0.0 0.0 
1 STD 3.0 0.2 0.2 0.1 
2 No. Segments 3,459 3,459 3,459 3,459 
2 MIN 0.0 0.0 0.0 0.0 
2 MAX 125.0 6.0 6.0 3.0 
2 MEAN 9.2 0.2 0.1 0.1 
2 STD 12.2 0.5 0.4 0.3 
3 No. Segments 43,914 43,914 43,914 43,914 
3 MIN 0.0 0.0 0.0 0.0 
3 MAX 83.0 9.0 9.0 3.0 
3 MEAN 1.9 0.1 0.1 0.0 
3 STD 3.1 0.3 0.3 0.2 
4 No. Segments 14,438 14,438 14,438 14,438 
4 MIN 0.0 0.0 0.0 0.0 
4 MAX 129.0 9.0 7.0 6.0 
4 MEAN 8.7 0.3 0.1 0.2 
4 STD 10.8 0.6 0.4 0.5 
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Table 13. Summary statistics for Pennsylvania data continued—model estimates for variables VEHREG, LIC,  
and A through H. 

Type Statistic VEHREG LIC A B C D E F G H 
1 No. Segments 5,817 5,817 5,817 5,817 5,817 5,817 5,817 5,817 5,817 5,817 
1 MIN 574.4 1,388.6 14,670.0 3.9 15.5 12.3 44.7 81.5 11.5 18.6 
1 MAX 27,476.4 61,992.6 1,231,527.0 6.6 24.3 20.2 52.1 93.3 40.4 41.5 
1 MEAN 5,287.3 10,998.6 135,337.1 5.2 20.5 17.9 50.4 88.1 20.5 23.9 
1 STD 3,602.3 7,474.1 105,230.9 0.6 1.6 1.8 1.1 2.4 6.3 4.4 
2 No. Segments 4,340 4,340 4,340 4,340 4,340 4,340 4,340 4,340 4,340 4,340 
2 MIN 16,55.6 3,090.8 37,838.0 4.1 15.5 12.3 44.7 81.2 11.5 18.6 
2 MAX 27,476.4 61,992.6 1,553,165.0 7.0 24.3 20.2 52.7 93.5 48.5 38.9 
2 MEAN 11,897.6 25,884.1 459,256.6 5.4 20.9 16.7 51.0 89.5 28.3 24.5 
2 STD 7,327.3 16,611.3 415,431.1 0.6 1.8 2.0 0.9 3.4 9.2 3.6 
3 No. Segments 58,095 58,095 58,095 58,095 58,095 58,095 58,095 58,095 58,095 58,095 
3 MIN 306.6 655.6 4,886.0 1.7 8.8 12.3 33.1 81.5 7.8 15.2 
3 MAX 27,476.4 61,992.6 1,231,527.0 6.6 24.3 26.5 52.1 93.5 48.5 41.5 
3 MEAN 5,525.3 11,481.7 141,715.9 5.1 20.4 18.2 50.0 87.8 19.6 24.5 
3 STD 5,092.4 10,551.0 152,302.6 0.6 2.0 2.0 1.9 2.4 6.6 4.0 
4 No. Segments 19,074 19,074 19,074 19,074 19,074 19,074 19,074 19,074 19,074 19,074 
4 MIN 731.0 1,633.0 18,541.0 4.0 16.0 12.0 45.0 81.0 12.0 17.0 
4 MAX 27,476.0 61,993.0 1,553,165.0 7.0 24.0 20.0 53.0 94.0 49.0 39.0 
4 MEAN 12,526.0 27,127.0 444,862.0 5.0 21.0 17.0 51.0 90.0 28.0 25.0 
4 STD 7,315.0 16,543.0 359,173.0 1.0 2.0 2.0 1.0 3.0 10.0 3.0 

A = PST045213.  
B = AGE135213.  
C = AGE295213.  
D = AGE775213.    
E = SEX255213.  
F = EDU635213.  
G = EDU685213.  
H = LFE305213. 
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Table 14. Summary statistics for Pennsylvania data continued—model estimates for variables I through Q. 
Type Statistic I J K L M N O P Q 

1 No. Segments 5,817 5,817 5,817 5,817 5,817 5,817 5,817 5,817 5,817 
1 MIN 70,71.0 59.6 5,965.0 39,115.0 5.4 941.0 1,238.0 130.2 33.9 
1 MAX 587,831.0 84.2 526,004.0 76,555.0 20.5 73,833.0 95,698.0 1,228.6 1,675.6 
1 MEAN 60,026.7 73.4 53,304.0 47,603.9 13.6 7,672.9 10,309.8 731.6 196.3 
1 STD 43,747.3 4.5 40,928.5 6,013.2 2.8 6,441.7 8,289.7 233.1 147.2 
2 No. Segments 4,340 4,340 4,340 4,340 4,340 4,340 4,340 4,340 4,340 
2 MIN 16,057.0 53.3 14,397.0 37,192.0 5.4 1,541.0 2,203.0 134.1 44.2 
2 MAX 667,571.0 80.0 580,017.0 86,050.0 26.5 77,675.0 95,698.0 1,228.6 11,379.5 
2 MEAN 199,906.7 70.6 180,965.5 54,722.2 12.6 28,434.4 36,364.3 695.1 1,108.6 
2 STD 189,067.9 5.9 167,709.4 12,955.0 4.7 25,000.5 31,022.7 245.8 2,312.7 
3 No. Segments 58,095 58,095 58,095 58,095 58,095 58,095 58,095 58,095 58,095 
3 MIN 4,382.0 59.6 2,001.0 36,556.0 5.4 250.0 0.0 130.2 12.8 
3 MAX 587,831.0 84.2 526,004.0 86,050.0 20.5 73,833.0 95,698.0 1,228.6 1,675.6 
3 MEAN 62,360.2 74.5 55,271.9 48,178.5 13.2 8,516.2 11,287.3 769.3 198.4 
3 STD 62,676.0 4.1 58,856.9 7,852.3 2.8 10,328.0 13,173.8 250.1 220.8 
4 No. Segments 19,074 19,074 19,074 19,074 19,074 19,074 19,074 19,074 19,074 
4 MIN 8,003.0 53.0 7,233.0 37,192.0 5.0 1,042.0 1,353.0 130.0 39.0 
4 MAX 667,571.0 80.0 580,017.0 86,050.0 27.0 77,675.0 95,698.0 1,229.0 11,380.0 
4 MEAN 190,998.0 72.0 174,372.0 56,612.0 12.0 28,809.0 37,125.0 678.0 905.0 
4 STD 163,509.0 5.0 146,785.0 13,132.0 4.0 23,597.0 29,774.0 243.0 1,517.0 

I = HSG010213. 
J = HSG445213.  
K = HSD410213.  
L = INC110213     
M = PVY020213.  
N = NES010212.  
O = SBO001207.  
P = LND110210.  
Q = POP060210. 
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Virginia 

Virginia provided statewide roadway inventory, traffic volume, and crash data. The roadway 
inventory and total AADT data were provided from the Virginia Department of Transportation 
(VDOT) EYROAD data files. Motorcycle AADTs, where available, were queried specifically 
for the project and provided by VDOT staff. Crash data were downloaded from the VDOT  
Web site. 

Roadway and traffic volume data variables included the following: 

• Segment location and length. 
• Functional class. 
• AADT estimates for current and past years. 
• Motorcycle AADT estimates for the most current year available. 
• Surface width. 
• Pavement width. 
• Number of lanes. 
• Shoulder width. 
• Minimum and maximum median widths within the segment. 

Crash data were provided for 2010–2014, including the following: 

• Location. 
• Date. 
• Severity. 
• Location type. 
• Crash type. 
• Vehicle types involved. 
• Number of vehicles involved. 

Total, motorcycle, multi-vehicle motorcycle, and single-vehicle motorcycle crashes were 
queried. All roadway, traffic, and crash data were linked together by a route name variable 
unique to each segment and milepost. Segments were defined so that all variables were 
homogeneous for the entire length. 

Segments were grouped into the following four categories for validation: 

• Rural freeway (type 1). 
• Urban freeway (type 2). 
• Rural arterial (type 3). 
• Urban arterial (type 4). 

Table 15 provides variable definitions in the database. Table 16 shows the total length of 
roadway and total number of crashes by crash type for the four site types in Virginia. Due to the 
low numbers of motorcycle crashes for rural and urban freeways (18 and 90, respectively), the 
data for freeways were not used for validation of the avenue A models. Table 17 and table 18 
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provide summary statistics for other variables included in the Virginia dataset for rural arterials 
(type 3) and urban arterials (type 4).  

Table 15. Virginia data variable definitions. 

Variable Definition 
AVGMOTO Motorcycle AADT 
AVGAADT Total vehicle AADT 
NOLANES Number of lanes 
SURFWIDTH Surface width in ft 
PAVEMENTWIDTH Pavement width in ft 
OUTSHLDWID Outside shoulder width in ft 
MINMEDWIDTH Minimum median width in ft 
MAXMEDWIDTH Maximum median width in ft 
INSHLDWID Inside shoulder width in ft 
LENGTH Total segment length in mi 
TOT Total crash frequency 
MOTO Motorcycle crash frequency 
MOTOSINGLE Single-vehicle motorcycle crash frequency 
MOTOMULTI Multi-vehicle motorcycle crash frequency 

Table 16. Total length and crash frequency for Virginia data. 

Type LENGTH (mi) TOT MOTO MOTOSINGLE MOTOMULTI 
1 22.30 246 18 16 2 
2 278.25 4,700 90 50 40 
3 4,441.53 33,325 799 410 388 
4 3,323.39 125,313 2,705 836 1,865 

1 mi = 1.6 km.
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Table 17. Summary statistics for Virginia data. 

Type Statistic 
AVGMOTO 

(mi) 
AVGAADT 

(mi) NOLANES 
SURFWIDTH 

(ft) 
PAVEMENTWIDTH 

(ft) 
OUTSHLDWID 

(ft) 
3 No. Segments 12,574 12,574 12,574 12,574 12,574 12,574 
3 MIN 1.00 305.00 1.00 12.00 0.00 0.00 
3 MAX 245.00 58,715.40 7.00 86.00 90.00 33.00 
3 MEAN 34.72 8,146.82 2.80 32.65 32.38 5.29 
3 STD 30.69 6,816.04 0.99 12.86 15.40 2.94 
4 No. Segments 25,390 25,390 25,390 25,390 25,390 25,390 
4 MIN 1.00 131.00 1.00 0.00 0.00 0.00 
4 MAX 509.00 130,076.50 9.00 108.00 138.00 33.50 
4 MEAN 54.27 17,565.15 3.28 40.14 37.13 2.19 
4 STD 55.20 14,331.02 1.28 15.54 24.13 3.12 

Table 18. Summary statistics for Virginia data continued. 

Type Statistic 
MINMEDWIDTH 

(ft) 
MAXMEDWIDTH 

(ft) 
INSHLDWID 

(ft) 
LENGTH 

(ft) TOT MOTO MOTOSINGLE MOTOMULTI 
3 No. Segments 12,574 12,574 12,574 12,574 12,574 12,574 12,574 12,574 
3 MIN 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
3 MAX 120.00 460.00 12.00 8.59 143.00 19.00 14.00 5.00 
3 MEAN 11.66 20.66 1.16 0.35 2.65 0.06 0.03 0.03 
3 STD 19.76 45.31 2.02 0.47 4.72 0.35 0.25 0.19 
4 Segments 25,390 25,390 25,390 25,390 25,390 25,390 25,390 25,390 
4 MIN 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 
4 MAX 100.00 460.00 16.50 4.40 155.00 7.00 3.00 6.00 
4 MEAN 4.79 9.34 0.41 0.13 4.94 0.11 0.03 0.07 
4 STD 10.11 20.58 1.31 0.17 8.53 0.37 0.19 0.30 
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AVENUE B DATABASES 

The databases used for the avenue B analyses are a combination of actual and simulated data. 
The roadway inventory used total AADT and motorcycle AADT collected for the avenue A 
methods in Florida and Pennsylvania. This ensured that realistic combinations of roadway 
geometry and traffic volumes were represented. For motorcycle crashes, the crash counts were 
simulated using the SPFs developed in the A1 models as a starting point. Further details on this 
approach follow for both the B1 and B2 models.  

Model B1 Approach 

The model B1 approach was to develop CMFs using the EB before-after method. Using the 
simulated data, a countermeasure was assumed with a known value of its CMF. The CMF was 
applied to the simulated after period crashes for a selection of sites. Then, the CMF was 
estimated twice, once using the motorcycle AADTs and once for total AADT. A comparison was 
then made to see how the lack of motorcycle AADT affected the estimate of the CMF and its 
variance. The following steps discuss this process in greater detail: 

1. Estimate the existing roadway geometry and traffic volume file for a given class of road (e.g., 
rural freeway). The appropriate SPF from the A1 modeling, including the overdispersion 
parameter k, is used to estimate the mean motorcycle crash frequency for each site, mu. This 
represents the expected mean value of all sites with the same road geometry and traffic 
volumes. The SPFs used are documented in chapter 5. 

2. Estimate the site-specific mean crash frequency mi by simulating a multiplier, r, to be applied 
to mu. The multiplier r is generated from a gamma distribution with the shape and rate 
parameters equal to the overdispersion parameter, k. This is done using the equation: 
 mi = r × mu. 

3. Simulate the observed crash count at a site. The count in year j is assumed to follow a 
Poisson distribution about its mean, mi. In this step, the number of motorcycle crashes for 
each site i in year j , Xij, are simulated using the Poisson distribution and the site mean, mi. 
Counts for 6 years are simulated. 

4. Select a subset of the sites as the treatment group, with the remainder to be used as a 
reference group. For the treatment sites, a CMF is assumed for a fictitious treatment with a 
known value. The first 3 years are used as a before period and the second 3 years as an after 
period. The crash counts for the after period are simulated by first applying the CMF value to 
the site-specific mean, CMF x mi. Then, simulate the after period crashes at the treated sites 
using this new expected mean as was done for all sites in step 4. For the treated sites, these 
new crash counts in the after period replace those simulated in step 4. 

5. Use the reference group sites to estimate two SPFs to predict motorcycle crashes. The first 
uses motorcycle AADT as an exposure variable, and the second uses total AADT. The 
geometric and volume data adopted for the B1 analysis came from Florida. The A1 models 
developed for Florida did not always support both motorcycle and non-motorcycle volumes 
in the same model, and where they were both included, the model performance was roughly 
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the same as the model including only motorcycle AADT. For this reason, the B1 analysis did 
not apply models including both motorcycle and non-motorcycle AADT. 

6. Use the SPFs from step 6 with the treatment site data to estimate the expected number of 
crashes in the after period and estimate the CMF and its variance using the EB before-after 
study methodology. 

7. Compare the estimated CMFs and standard errors (SEs) of these estimates from step 7 to 
each other as well as to the assumed CMF value to determine whether using total AADT 
SPFs is less accurate than using SPFs with motorcycle AADTs and, if so, the magnitude of 
this bias. 

8. Repeat steps 2 through 8 multiple times so that conclusions can be made with confidence and 
have broad applicability. 

Model B2 Approach 

The model B2 approach was to develop CMFs using cross-sectional regression modeling. In this 
approach, an assumed relationship was defined between one or more geometric variables and 
added to the SPFs developed in model A1. The relationship was defined in terms of a CMF. This 
modified SPF was then used to simulate the motorcycle crash counts. Then, a GLM was used to 
re-estimate the SPF using motorcycle AADT and then using total AADT only. A comparison 
was then made to see how the lack of motorcycle AADT affected the estimate of the CMF and 
its variance. The following steps discuss this process in greater detail: 

1. Adopt the existing roadway geometry and traffic volume file for a given class of road (e.g., 
rural freeway). Re-estimate the appropriate SPF from the A1 modeling, including the 
overdispersion parameter k, after first assuming a CMF and including this CMF in the SPF as 
an offset in the model formulation. This ensures that the predicted motorcycle frequencies are 
realistic, given the assumed CMF value. 

2. Use the new SPF from step 1 to estimate the mean motorcycle crash frequency for each site, 
mu. This represents the expected mean value of all sites with the same road geometry and 
traffic volumes. 

3. Estimate the site-specific mean crash frequency mi by simulating a multiplier, r, and applied 
to mu. The multiplier r is generated from a gamma distribution with the shape and rate 
parameters equal to the overdispersion parameter, k. This is done using the equation:  
mi = r × mu. 

4. Simulate the observed crash count at a site. The count is assumed to follow a Poisson 
distribution about its mean, mi. In this step, use the Poisson distribution and site mean mi to 
simulate the number of motorcycle crashes for each site for a 5-year period.  

5. Use the data with simulated motorcycle crash counts to develop SPFs with the same model 
form as from step 1, first using motorcycle AADT as an exposure variable and then using 
total AADT. 
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6. Compare the CMFs and SEs of these estimates derived from the parameter estimates of the 
SPFs developed in step 6 to each other as well as to the assumed CMF value to determine 
whether using total AADT SPFs is less accurate than using SPFs with motorcycle AADTs 
and, if so, the magnitude of this bias. Repeat steps 3 through 7 so that conclusions can be 
made with confidence and have broad applicability. 
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CHAPTER 5. DATA ANALYSIS AND RESULTS 

As outlined in chapter 4, the project team investigated two groups, or avenues. The methods for 
avenue A focus on investigating (1) the difference in predictive performance for motorcycle 
SPFs calibrated with motorcycle AADT versus total AADT, (2) the relation of total crash SPFs 
to motorcycle crash SPFs so jurisdictions without motorcycle volumes could predict motorcycle 
crashes using total crash SPFs, and (3) methods to predict segment-level motorcycle AADT. The 
methods for avenue B focus on the differences in CMF estimates found when using motorcycle 
AADT versus total AADT when applying before-after or cross-sectional regression CMF 
estimation methods. 

The avenue A models were developed with data collected from Florida and Pennsylvania, both 
of which had a large number of locations with an estimated motorcycle AADT and that could 
provide linkable roadway inventory, traffic, and crash data, Data acquired from Virginia were 
used for validation of the models developed. 

AVENUE A MODEL TYPE A1 

The purpose of model type A1 was to explore how much predictive power is lost when 
motorcycle volumes are unknown and how this lack of information would affect an evaluation of 
motorcycle countermeasures. The project team attempted models for all motorcycle crashes 
(MOTO), single-vehicle motorcycle crashes (MOTOSINGLE), and multi-vehicle motorcycle 
crashes (MOTOMULTI).  

For each dependent variable, the project team attempted three separate models, with motorcycle 
AADT, total AADT, and motorcycle and non-motorcycle AADT as separate terms. In some 
cases, mainly due to limited samples, it was not possible to develop robust models for each of the 
three dependent variables and for each of the three independent AADT variable specifications. 

Additional variables were included where possible, but it should be noted that the models 
developed were done to derive the most accurate models for predicting crash frequency, as 
opposed to the objectives of causal models. With this goal, it is possible to include variables that 
indicate an opposite relationship to crashes than what is expected or to treat a logically 
categorical variable, such as speed, as continuous. If a variable correlates with other variables 
that affect crash risk, then the counterintuitive relationship frequently occurs. 

To assess a variable for inclusion in the model, it was added to the basic SPF including the 
AADT terms and the model estimated. Then, an assessment was made of the improvement in fit 
with the additional variable as measured by the overdispersion parameter and the statistical 
significance of the parameter estimate. 

The project team developed the A1 models using both Florida and Pennsylvania data and using 
data from Virginia for validation. The first three sections of this chapter detail the analysis and 
results based on the data from these three States. The final section presents the results of the 
assessment of how well the four sets of models predict motorcycle crashes for high-crash 
locations. 
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Florida 

Models were successfully calibrated for site types 1–4. The data for site types 5 and 6 (rural 
collector/local and urban collector/local) did not allow for models to be developed. As table 4 
shows, these site types had very few motorcycle crashes. 

Note that the posted speed limit variable, SPDLIMT, which appears in the types 2–4 models, has 
been modeled as a continuous variable. Often, posted speed is considered as a categorical 
variable since limits are typically set in multiples of 5, (i.e. 45 mi/h (72 km/h), 55 mi/h 
(89 km/h), etc.). During model development, however, treating posted speed as a categorical 
variable showed inconsistent results and no logical groupings of posted speed into similar 
categories. 

The following sections detail the calibrated models and goodness-of-fit assessments for each  
site type. 

Florida Type 1—Rural Freeways 
For rural freeways, models were successfully calibrated for MOTO and MOTOSINGLE crashes 
but not for multi-vehicle motorcycle crashes. The models are of two forms, dependent on the 
exposure measure used, as seen in figure 13 and figure 14. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐  
Figure 13. Equation. Florida rural freeway crashes per year using motorcycle traffic 

counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐   
Figure 14. Equation. Florida rural freeway crashes per year using total traffic counts. 

Attempts to estimate models with separate terms for motorcycle and non-motorcycle volumes 
were not successful because illogical parameter estimates resulted in decreasing crash 
frequencies with motorcycle volumes. Such illogical results can occur when highly correlated 
variables are included in the same model. Table 19 provides the parameter estimates for these 
models with the SE provided in parenthesis after the parameter estimates. Table 20 provides 
overall goodness-of-fit statistics. Table 21 provides goodness-of-fit statistics from CURE plots 
for variables included in the models. 
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Table 19. A1 models for Florida type 1 sites. 

Model Type Parameter MOTO (SE) MOTOSINGLE (SE) 
Motorcycle AADT Intercept -5.5368 (0.6033) -5.1341 (0.7741) 
Motorcycle AADT b 0.8239 (0.0801) 0.8939 (0.1102) 
Motorcycle AADT c 0.6622 (0.1274) 0.4755 (0.1663) 
Motorcycle AADT Dispersion 0.4353 (0.2160) 1.1346 (0.4327) 
Total AADT Intercept -15.2081 (1.7870) -14.3297 (2.4202) 
Total AADT b 0.8289 (0.0780) 0.9101 (0.1099) 
Total AADT c 1.2118 (0.1684) 1.0847 (0.2292) 
Total AADT Dispersion 0.2886 (0.1920) 0.9233 (0.3863) 

Table 20. Goodness-of-fit statistics for A1 models for Florida type 1 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 174 0.43 0.65 0.44 
MOTO Total AADT 174 0.41 0.77 0.29 
MOTOSINGLE Motorcycle AADT 111 0.32 0.34 1.14 
MOTOSINGLE Total AADT 111 0.31 0.44 0.92 

Table 21. CURE plot statistics for A1 models for Florida type 1 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

MOTO Motorcycle 
AADT 

15.83 11 7.42 3 

MOTO Total AADT 12.55 5 8.35 3 
MOTOSINGLE Motorcycle 

AADT 
10.42 5 7.80 3 

MOTOSINGLE Total AADT 10.83 5 6.83 3 
 
The goodness-of-fit statistics indicate that the models using motorcycle AADT performed very 
similarly to those using total AADT for both MOTO and MOTOSINGLE crashes. In fact, there 
are some indications that the models using total AADT may be slightly better when considering 
the modified R2 and dispersion parameter. 

Florida Type 2—Urban Freeways 
For urban freeways, the project team successfully calibrated models for MOTO, 
MOTOSINGLE, and MOTOMULTI crashes. The models are of two forms, depending  
on the exposure measure used, as shown in figure 15 and figure 16. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑑𝑑∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )  
Figure 15. Equation. Florida urban freeway crashes per year using motorcycle traffic 

counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑑𝑑∗𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )  
Figure 16. Equation. Florida urban freeway crashes per year using total traffic counts. 

Where: 

CURVE = 1 if a horizontal curve is present in the segment and 0 if not. 

Table 3 provides definitions for the other variables. As with the results for type 1, illogical 
parameter estimates resulted when terms for motorcycle and non-motorcycle volumes were 
included in the same model. Table 22 provides the parameter estimates for these models, and 
table 23 provides overall goodness-of-fit statistics. Table 24 provides goodness-of-fit statistics 
from CURE plots for variables included in the models. Table 25 provides calibration factors for 
each level of the non-continuous variables that were included in at least one of the models for 
that crash type. 
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Table 22. A1 models for Florida type 2 sites. 

Model Type Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Motorcycle AADT Intercept -0.0067 

(0.4894) 
-1.1643 

(0.6538) 
-0.2295 

(0.5733) 
Motorcycle AADT b 0.8107  

(0.0480) 
0.7942 

(0.1191) 
0.8121 

(0.0579) 
Motorcycle AADT c 0.1628 

(0.0447) 
0.1191 

(0.0564) 
0.1693 

(0.0513) 
Motorcycle AADT d 0.2459 

(0.0987) 
N/A 0.3874 

(0.1236) 
Motorcycle AADT e -0.0532 

(0.0067) 
-0.0354 

(0.0091) 
-0.0654 

(0.0080) 
Motorcycle AADT f 0.0173 

(0.0023) 
0.0116 

(0.0031) 
0.0212 

(0.0027) 
Motorcycle AADT Dispersion 0.4300 

(0.0757) 
0.2592 

(0.1224) 
0.3766 

(0.0993) 
Total AADT Intercept -10.3484 

(0.8758) 
-8.4768 

(1.2158) 
-13.1836 
(1.1053) 

Total AADT b 0.8080 
(0.0442) 

0.7853 
(0.0580) 

0.8194 
(0.0547) 

Total AADT c 1.0563 
(0.0662) 

0.7429 
(0.0885) 

1.2948 
(0.0842) 

Total AADT d 0.2294 
(0.0913) 

N/A 0.3752 
(0.1153) 

Total AADT e -0.0447 
(0.0064) 

-0.0290 
(0.0091) 

-0.0537 
(0.0078) 

Total AADT f N/A N/A N/A 

Total AADT dispersion 0.2285 
(0.0570) 

0.1309 
(0.1061) 

0.1670 
(0.0707) 

N/A = Not applicable. 

Table 23. Goodness-of-fit statistics for A1 models for Florida type 2 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 921 0.86 0.56 0.43 
MOTO Total AADT 921 0.77 0.73 0.23 
MOTOSINGLE Motorcycle AADT 385 0.47 0.66 0.26 
MOTOSINGLE Total AADT 385 0.46 0.82 0.13 
MOTOMULTI Motorcycle AADT 536 0.58 0.59 0.38 
MOTOMULTI Total AADT 536 0.50 0.77 0.17 
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Table 24. CURE plot statistics for A1 models for Florida type 2 sites. 

Crash Type 
Exposure 
Measure 

Max Curve 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

Max 
CURE 

Deviation 
for 

SPDLIMT 

CURE 
Deviation 

for 
SPDLIMT 
(Percent) 

Max CURE 
Deviation for 

SURFWIDTH 

CURE 
Deviation for 

SURFWIDTH 
(Percent) 

MOTO Motorcycle AADT 54.69 35 22.11 0 65.75 46 67.7 28 
MOTO Total AADT 27.39 1 21.31 0 25.59 0 41.21 9 
MOTOSINGLE Motorcycle AADT 26.21 16 11.53 0 19.10 4 17.08 10 
MOTOSINGLE Total AADT 15.81 0 11.83 0 18.40 3 16.58 0 
MOTOMULTI Motorcycle AADT 37.34 41 18.12 16 37.07 19 42.43 30 
MOTOMULTI Total AADT 14.23 2 15.88 11 15.99 1 36.81 31 
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Table 25. Calibration factors for A1 models for Florida type 2 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTO crash SPF using motorcycle AADT 
with no curvature 

706 1.02 

MOTO crash SPF using motorcycle AADT 
with curvature 

215 0.95 

MOTO crash SPF with total AADT with no 
curvature 

706 1.01 

MOTO crash SPF with total AADT with 
curvature 

215 0.97 

MOTOMULTI crash SPF using motorcycle 
AADT with no curvature 

423 1.01 

MOTOMULTI crash SPF using motorcycle 
AADT with curvature 

113 0.95 

MOTOMULTI crash SPF with total AADT 
with no curvature 

423 1.01 

MOTOMULTI crash SPF with total AADT 
with curvature 

113 0.98 

 
As was the case for type 1 sites (rural freeways), the goodness-of-fit statistics indicate that the 
models using total AADT not only performed similarly to those with motorcycle AADT but may 
be slightly better, especially when considering the modified R2 and dispersion parameter. The 
calibration factors indicate that both sets of AADT predictor models were just as successful 
when applied to segments with or without horizontal curves. 

Florida Type 3—Rural Arterials 
For rural arterials, the project team successfully calibrated models for MOTO, MOTOSINGLE, 
and MOTOMULTI crashes.  

The models are of three forms, one of which uses estimates of motorcycle AADT and other 
AADT (AVGOTHER = AVGAADT – AVGMOTO), depending on the exposure measure used, 
as shown in figure 17 through figure 19. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑖𝑖∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 )  

Figure 17. Equation. Florida rural arterial crashes per year using motorcycle traffic 
counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +𝑖𝑖∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 )  

Figure 18. Equation. Florida rural arterial crashes per year using total traffic counts.  
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝐻𝐻𝐻𝐻𝐻𝐻𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 +𝑖𝑖∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 )  

Figure 19. Equation. Florida rural arterial crashes per year using separate traffic counts. 

Where: 

DIVUND = 1 if road is undivided; 0 if road is divided. (Note: medwidth is 0 for an undivided 
road.) 

AVGOTHER = Non-motorcycle AADT = AVGAADT – AVGMOTO. 

Table 26 provides the parameter estimates for these models, and table 27 provides overall 
goodness-of-fit statistics. Table 28 provides goodness-of-fit statistics from CURE plots for 
variables included in the models. Table 29 through table 31 provide calibration factors for each 
level of the non-continuous variables that were included in at least one of the models for that 
crash type. 
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Table 26. A1 models for Florida type 3 sites. 

Model Type Parameter 
MOTO 

(SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Motorcycle AADT Intercept -1.8929 

(0.4016) 
-3.5059 
(0.5816) 

-2.0657 
(0.5044) 

Motorcycle AADT b 0.8158 
(0.0380) 

0.8112 
(0.0517) 

0.8105 
(0.0485) 

Motorcycle AADT c 0.4904 
(0.0442) 

0.3901 
(0.0611) 

0.5806 
(0.0568) 

Motorcycle AADT d N/A N/A N/A 
Motorcycle AADT e -0.0323 

(0.0062) 
-0.0206 
(0.0090) 

-0.0418 
(0.0078) 

Motorcycle AADT f -0.6195 
(0.0875) 

N/A -0.6275 
(0.1100) 

Motorcycle AADT g -0.0595 
(0.0211) 

N/A -0.1043 
(0.0295) 

Motorcycle AADT h N/A N/A N/A 
Motorcycle AADT i N/A 0.0053 

(0.0024) 
N/A 

Motorcycle AADT Dispersion 0.7653 
(0.1091) 

0.9094 
(0.2160) 

0.8522 
(0.1708) 

Total AADT Intercept -5.8092 
(0.6436) 

-5.6814 
(0.8963) 

-7.4544 
(0.8249) 

Total AADT b 0.8299 
(0.0392) 

0.8260 
(0.0518) 

0.8080 
(0.0482) 

Total AADT c 0.7014 
(0.0649) 

0.4310 
(0.0836) 

0.8506 
(0.0786) 

Total AADT d N/A N/A N/A 
Total AADT e -0.0332 

(0.0062) 
-0.0215 
(0.0088) 

-0.0421 
(0.0077) 

Total AADT f -0.5221 
(0.1262) 

N/A N/A 

Total AADT g -0.0881 
(0.0217) 

N/A -0.1364 
(0.0296) 

Total AADT h N/A N/A N/A 
Total AADT Dispersion 0.7699 

(0.1093) 
1.0111 

(0.2286) 
0.8010 

(0.1671) 
Motorcycle AADT and 
other AADT 

Intercept -4.5690 
(0.6860) 

-4.4664 
(0.9559) 

-6.1709 
(0.8906) 

Motorcycle AADT and 
other AADT 

b 0.8158 
(0.0377) 

0.8254 
(0.0516) 

0.8103 
(0.0480) 

Motorcycle AADT and 
other AADT 

c 0.3042 
(0.0581) 

0.3203 
(0.0800) 

0.2960 
(0.0747) 

Motorcycle AADT and 
other AADT 

d 0.3820 
(0.0798) 

0.1493 
(0.1090) 

0.5771 
(0.1040) 
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Model Type Parameter 
MOTO 

(SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Motorcycle AADT and 
other AADT 

e -0.0333 
(0.0062) 

-0.0196 
(0.0089) 

-0.0422 
(0.0077) 

Motorcycle AADT and 
other AADT 

f -0.4142 
(0.0967) 

-0.5140 
(0.1375) 

-0.3190 
(0.1218) 

Motorcycle AADT and 
other AADT 

g -0.0714 
(0.0214) 

N/A -0.1214 
(0.0295) 

Motorcycle AADT and 
other AADT 

h N/A N/A N/A 

Motorcycle AADT and 
other AADT 

Dispersion 0.7116 
(0.1055) 

0.9179 
(0.2178) 

0.7421 
(0.1611) 

N/A =Not applicable. 

Table 27. Goodness-of-fit statistics for A1 models for Florida type 3 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 1,031 0.40 0.44 0.77 
MOTO Total AADT 1,031 0.40 0.44 0.77 
MOTO Motorcycle and other AADT 1,031 0.39 0.48 0.71 
MOTOSINGLE Motorcycle AADT 449 0.21 0.43 0.91 
MOTOSINGLE Total AADT 449 0.21 0.39 1.01 
MOTOSINGLE Motorcycle and other AADT 449 0.21 0.43 0.92 
MOTOMULTI Motorcycle AADT 582 0.26 0.37 0.85 
MOTOMULTI Total AADT 582 0.26 0.43 0.80 
MOTOMULTI Motorcycle and other AADT 582 0.26 0.46 0.74 
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Table 28. CURE plot statistics for A1 models for Florida type 3 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

Max 
CURE 

Deviation 
for 

SPDLIMT 

CURE 
Deviation 

for 
SPDLIMT 
(Percent) 

Max CURE 
Deviation for 

OUTSHLDWID 

CURE Deviation 
for 

OUTSHLDWID 
(Percent) 

MOTO Motorcycle 
AADT 

37.40 0 21.32 0 50.60 7 32.36 1 

MOTO Total AADT 88.41 70 18.85 0 60.83 29 26.11 1 
MOTO Motorcycle 

and other 
AADT 

38.67 1 17.85 0 37.79 3 29.70 3 

MOTOSINGLE Motorcycle 
AADT 

24.33 1 8.21 0 16.28 3 15.25 0 

MOTOSINGLE Total AADT 47.99 56 9.61 0 24.74 8 10.86 0 
MOTOSINGLE Motorcycle 

and other 
AADT 

25.94 2 9.01 0 15.20 3 13.29 0 

MOTOMULTI Motorcycle 
AADT 

19.71 1 20.19 6 26.67 3 18.19 2 

MOTOMULTI Total AADT 44.70 47 14.53 6 35.54 23 27.60 4 
MOTOMULTI Motorcycle 

and other 
AADT 

20.14 1 15.73 6 24.40 3 23.13 3 
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Table 29. Calibration factors for A1 MOTO models for Florida type 3 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTO crash SPF using motorcycle 
AADT for divided roads 

529 1.00 

MOTO crash SPF using motorcycle 
AADT for undivided roads 

502 1.00 

MOTO crash SPF with total AADT for 
divided roads 

529 1.00 

MOTO crash SPF with total AADT for 
undivided roads 

502 1.00 

MOTO crash SPF using motorcycle 
AADT and non-motorcycle AADT for 
divided roads 

529 1.00 

MOTO crash SPF using motorcycle 
AADT and non-motorcycle AADT for 
undivided roads 

502 1.00 

MOTO crash SPF using motorcycle 
AADT with no curvature 

706 1.02 

MOTO crash SPF using motorcycle 
AADT with curvature 

215 0.95 

MOTO crash SPF with total AADT with 
no curvature 

706 1.02 

MOTO crash SPF with total AADT with 
curvature 

215 0.95 

Table 30. Calibration factors for A1 MOTOSINGLE models for Florida type 3 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTOSINGLE crash SPF using 
motorcycle AADT for divided roads 

224 1.00 

MOTOSINGLE crash SPF using 
motorcycle AADT for undivided roads 

225 1.00 

MOTOSINGLE crash SPF with total 
AADT for divided roads 

224 1.01 

MOTOSINGLE crash SPF with total 
AADT for undivided roads 

225 0.99 

MOTOSINGLE crash SPF using 
motorcycle AADT and non-motorcycle 
AADT for divided roads 

224 1.01 

MOTOSINGLE crash SPF using 
motorcycle AADT and non-motorcycle 
AADT for undivided roads 

225 0.99 
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Table 31. Calibration factors for A1 MOTOMULIT models for Florida type 3 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTOMULTI crash SPF using motorcycle 
AADT for divided roads 

305 0.99 

MOTOMULTI crash SPF using motorcycle 
AADT for undivided roads 

277 1.01 

MOTOMULTI crash SPF with total AADT 
for divided roads 

305 0.99 

MOTOMULTI crash SPF with total AADT 
for undivided roads 

277 1.01 

MOTOMULTI crash SPF using motorcycle 
AADT and non-motorcycle AADT for 
divided roads 

305 0.99 

MOTOMULTI crash SPF using motorcycle 
AADT and non-motorcycle AADT for 
undivided roads 

277 1.01 

MOTOMULTI crash SPF using motorcycle 
AADT with no curvature 

423 1.01 

MOTOMULTI crash SPF using motorcycle 
AADT with curvature 

113 0.95 

MOTOMULTI crash SPF with total AADT 
with no curvature 

423 1.01 

MOTOMULTI crash SPF with total AADT 
with curvature 

113 0.95 

 
The goodness-of-fit results in table 27 indicate overall that models with total AADT performed 
as well as those with motorcycle AADT in terms of MAD, modified R2, and dispersion 
parameter. However, the CURE plot statistics indicate that the models with motorcycle AADT 
outperformed those with total AADT for these measures. As expected, some measures (MAD, 
modified R2, and dispersion parameter) indicate that some models (single- and multi-vehicle 
crashes) that include both motorcycle AADT and non-motorcycle AADT can outperform models 
with only motorcycle AADT. Finally, the calibration factors in table 29 indicate that all three 
sets of AADT predictor models were just as successful when applied to segments with the two 
levels of the two indicator variables. 

Florida Type 4—Urban Arterials 
For urban arterials, the project team successfully calibrated models for MOTO, MOTOSINGLE, 
and MOTOMULTI crashes. The models are of three forms, depending on the exposure measure 
used, as shown in figure 20 through figure 22. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )  

Figure 20. Equation. Florida urban arterial crashes per year using motorcycle traffic 
counts. 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 +ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )  
Figure 21. Equation. Florida urban arterial crashes per year using total traffic counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑓𝑓∗𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷+𝑔𝑔∗𝑂𝑂𝑂𝑂𝑂𝑂𝑆𝑆𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻+ℎ∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 )  
Figure 22. Equation. Florida urban arterial crashes per year using separate traffic counts. 

Where: 

DIVUND = 1 if road is undivided and 0 if road is divided. 
AVGOTHER = The non-motorcycle AADT = AVGAADT – AVGMOTO. 

Table 32 provides the parameter estimates for these models, and table 33 provides overall 
goodness-of-fit statistics. Table 34 provides goodness-of-fit statistics from CURE plots for 
variables included in the models. Table 35 through table 37 provide calibration factors for each 
level of the non-continuous variables that were included in at least one of the models for that 
crash type. 
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Table 32. A1 models for Florida type 4 sites. 

Model Type Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Motorcycle 
AADT 

Intercept -2.4685 
(0.1821) 

-4.5196 
(0.2039) 

-3.2128 
(0.1911) 

Motorcycle 
AADT 

b 0.7885 
(0.0219) 

0.7349 
(0.0297) 

0.7895 
(0.0240) 

Motorcycle 
AADT 

c 0.6274 
(0.0253) 

0.4006 
(0.0414) 

0.7543 
(0.0274) 

Motorcycle 
AADT 

d N/A N/A N/A 

Motorcycle 
AADT 

e -0.0238 
(0.0026) 

N/A -0.0278 
(0.0029) 

Motorcycle 
AADT 

f -0.6686 
(0.0595) 

-0.4541 
(0.1035) 

N/A 

Motorcycle 
AADT 

g -0.0695 
(0.0070) 

-0.0361 
(0.0106) 

-0.0905 
(0.0078) 

Motorcycle 
AADT 

h N/A 0.0105 
(0.0018) 

N/A 

Motorcycle 
AADT 

Dispersion 1.1890 
(0.0433) 

1.1191 
(0.0940) 

1.3242 
(0.0536) 

Total AADT Intercept -9.0362 
(0.3447) 

-9.0785 
(0.4910) 

-10.4836 
(0.3447) 

Total AADT b 0.7936 
(0.0213) 

0.7408 
(0.0296) 

0.8154 
(0.0233) 

Total AADT c 0.9657 
(0.0317) 

0.7026 
(0.0472) 

1.1176 
(0.0325) 

Total AADT d N/A N/A N/A 
Total AADT e -0.0277 

(0.0025) 
N/A -0.0361 

(0.0028) 
Total AADT f -0.2442 

(0.0625) 
-0.3694 
(0.1022) 

N/A 

Total AADT g -0.0563 
(0.0069) 

-0.0375 
(0.0105) 

-0.0653 
(0.0076) 

Total AADT h N/A N/A N/A 
Total AADT Dispersion 1.0505 

(0.0403) 
1.0857 

(0.0931) 
1.1042 

(0.0478) 
Motorcycle 
AADT and 
other AADT 

Intercept -8.3451 
(0.3585) 

-8.2796 
(0.5137) 

-9.8429 
(0.3615) 

Motorcycle 
AADT and 
other AADT 

b 0.7923 
(0.0212) 

0.7423 
(0.0296) 

0.8138 
(0.0232) 
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Model Type Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Motorcycle 
AADT and 
other AADT 

c 0.2018 
(0.0327) 

0.2307 
(0.0495) 

0.1862 
(0.0360) 

Motorcycle 
AADT and 
other AADT 

d 0.7935 
(0.0416) 

0.5094 
(0.0619) 

0.9587 
(0.0440) 

Motorcycle 
AADT and 
other AADT 

e -0.0267 
(0.0025) 

N/A -0.0352 
(0.0028) 

Motorcycle 
AADT and 
other AADT 

f -0.2536 
(0.0624) 

-0.3815 
(0.1021) 

N/A 

Motorcycle 
AADT and 
other AADT 

g -0.0570 
(0.0069) 

-0.0368 
(0.0105) 

-0.0663 
(0.0076) 

Motorcycle 
AADT and 
other AADT 

h N/A N/A N/A 

Motorcycle 
AADT and 
other AADT 

Dispersion 1.0370 
(0.0400) 

1.0688 
(0.0922) 

1.0924 
(0.0475) 

N/A = Not applicable. 

Table 33. Goodness-of-fit statistics for A1 models for Florida type 4 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 9,539 1.11 0.28 1.19 
MOTO Total AADT 9,539 1.06 0.33 1.05 
MOTO Motorcycle and other AADT 9,539 1.06 0.34 1.04 
MOTOSINGLE Motorcycle AADT 2,341 0.38 0.31 1.12 
MOTOSINGLE Total AADT 2,341 0.38 0.33 1.09 
MOTOSINGLE Motorcycle and other AADT 2,341 0.38 0.34 1.07 
MOTOMULTI Motorcycle AADT 7,198 0.91 0.25 1.32 
MOTOMULTI Total AADT 7,198 0.86 0.32 1.10 
MOTOMULTI Motorcycle and other AADT 7,198 0.86 0.33 1.09 
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Table 34. CURE plot statistics for A1 models for Florida type 4 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

Max CURE 
Deviation 

for 
SPDLIMT 

CURE 
Deviation 

for 
SPDLIMT 
(Percent) 

Max CURE 
Deviation for 

OUTSHLDWID 

CURE Deviation 
for 

OUTSHLDWID 
(Percent) 

MOTO Motorcycle 
AADT 

242.23 14 120.12 0 392.26 24 210.64 6 

MOTO Total 
AADT 

468.42 84 143.90 1 315.80 30 158.88 6 

MOTO Motorcycle 
and other 
AADT 

219.81 10 145.09 1 203.80 6 143.64 6 

MOTOSINGLE Motorcycle 
AADT 

52.04 2 51.84 0 65.67 15 72.11 13 

MOTOSINGLE Total 
AADT 

121.49 69 58.40 1 77.36 36 81.69 34 

MOTOSINGLE Motorcycle 
and other 
AADT 

51.58 1 58.64 1 77.66 42 84.46 39 

MOTOMULTI Motorcycle 
AADT 

178.29 8 120.03 1 223.54 3 157.08 1 

MOTOMULTI Total 
AADT 

324.78 80 119.832 1 167.83 8 98.79 1 

MOTOMULTI Motorcycle 
and other 
AADT 

154.31 3 125.87 1 135.86 3 101.34 5 
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Table 35. Calibration factors for A1 MOTO models for Florida type 4 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTO crash SPF using motorcycle AADT 
for divided roads 

623 1.09 

MOTO crash SPF using motorcycle AADT 
for undivided roads 

8,916 0.99 

MOTO crash SPF with total AADT for 
divided roads 

623 1.10 

MOTO crash SPF with total AADT for 
undivided roads 

8,916 0.99 

MOTO crash SPF using motorcycle AADT 
and non-motorcycle AADT for divided 
roads 

623 1.10 

MOTO crash SPF using motorcycle AADT 
and non-motorcycle AADT for undivided 
Roads 

8,916 0.99 

Table 36. Calibration factors for A1 MOTOSINGLE models for Florida type 4 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTOSINGLE crash SPF using motorcycle AADT for divided roads 151 1.00 
MOTOSINGLE crash SPF using motorcycle AADT for undivided 
roads 

2,190 1.00 

MOTOSINGLE crash SPF with total AADT for divided roads 151 1.00 
MOTOSINGLE crash SPF with total AADT for undivided roads 2,190 1.00 
MOTOSINGLE crash SPF using motorcycle AADT and non-
motorcycle AADT for divided roads 

151 1.00 

MOTOSINGLE crash SPF using motorcycle AADT and non-
motorcycle AADT for undivided roads 

2,190 1.00 

Table 37. Calibration factors for A1 MOTOMULIT models for Florida type 4 sites. 

Crash SPF Conditions Observed Observed/Predicted 
MOTOMULTI crash SPF using motorcycle AADT for divided roads 472 0.66 
MOTOMULTI crash SPF using motorcycle AADT for undivided 
roads 

6,726 1.04 

MOTOMULTI crash SPF with total AADT for divided roads 472 1.00 
MOTOMULTI crash SPF with total AADT for undivided roads 6,726 1.00 
MOTOMULTI crash SPF using motorcycle AADT and non-
motorcycle AADT for divided roads 

472 0.99 

MOTOMULTI crash SPF using motorcycle AADT and non-
motorcycle AADT for undivided roads 

6,726 1.00 

 
The goodness-of-fit results in table 33 indicate overall that models with total AADT performed 
at least as well as those with motorcycle AADT in terms of MAD, modified R2, and dispersion 
parameter. In fact, models with total AADT were somewhat better by these measures for MOTO 
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and MOTOMULTI. However, the CURE plot statistics for the key AADT variable in table 34 
indicate the opposite—the models with motorcycle AADT outperformed those with total AADT 
for the CURE measures. Not surprisingly, some measures (modified R2, dispersion parameter, 
and CURE plot measures) indicate that the three sets of models that include both motorcycle 
AADT and non-motorcycle AADT can outperform models with only motorcycle AADT. 
Finally, the calibration factors in table 35 through table 37 indicate that all three sets of AADT 
predictor models were just as successful when applied to segments with the two levels of the  
two indicator variables, with the exception of multi-vehicle motorcycle crashes on divided roads 
that are overpredicted. 

Pennsylvania 

Using Pennsylvania data, the project team could not calibrate separate models by area type 
(urban versus rural), so data were combined by area type to develop the SPFs with the use of an 
area type indicator variable. 

Pennsylvania Type 1 and 2—Rural and Urban Freeways 
For Pennsylvania freeways, the data and models pertain to one direction of travel only. For 
freeways, the project team successfully calibrated models for MOTO and MOTOMULTI crashes 
but not for single-vehicle motorcycle crashes, likely because of the small sample. The models are 
of three forms, depending on the exposure measure used, as shown in figure 23 through figure 
25. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 )  
Figure 23. Equation. Pennsylvania rural and urban freeway crashes per year using 

motorcycle traffic counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝑁𝑁𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 )  
Figure 24. Equation. Pennsylvania rural and urban freeway crashes per year using total 

traffic counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 )  
Figure 25. Equation. Pennsylvania rural and urban freeway crashes per year using 

separate traffic counts. 

Where: 

URBRUR = 1 if rural and 0 otherwise. 
AVGOTHER = The non-motorcycle AADT = AVGAADT – AVGMOTO. 

Other variables as defined in table 9.  

Table 38 provides the parameter estimates for these models, and table 39 provides overall 
goodness-of-fit statistics. Table 40 provides goodness-of-fit statistics from CURE plots for 
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variables included in the models. Table 41 provides calibration factors for the categorical 
variables included in the models.  

Table 38. A1 models for Pennsylvania type 1 and 2 sites. 

Model Type Parameter MOTO (SE) MOTOMULTI (SE) 
Motorcycle AADT Intercept -5.0846 

(0.2753) 
-5.7901 
(0.3879) 

Motorcycle AADT b 0.7159 
(0.1689) 

0.6652 
(0.2717) 

Motorcycle AADT c 0.2309 
(0.0399) 

0.4313 
(0.0686) 

Motorcycle AADT d N/A N/A 
Motorcycle AADT e -0.8489 

(0.0873) 
-1.5526 
(0.1657) 

Motorcycle AADT f 0.0505 
(0.0048) 

N/A 

Motorcycle AADT g -0.0333 
(0.0111) 

N/A 

Motorcycle AADT Dispersion 1.2724 
(0.2056) 

3.2825 
(0.7948) 

Total AADT Intercept -7.4047 
(0.4663) 

-10.9414 
(0.7837) 

Total AADT b 0.6908 
(0.1621) 

0.6018 
(0.2491) 

Total AADT c 0.3776 
(0.0468) 

0.7716 
(0.0803) 

Total AADT d N/A N/A 
Total AADT e -0.6855 

(0.0921) 
-1.1491 
(0.1752) 

Total AADT f 0.0467 
(0.0047) 

N/A 

Total AADT g -0.0293 
(0.0110) 

N/A 

Total AADT Dispersion 1.1204 
(0.1918) 

2.5169 
(0.6548) 

Motorcycle and Other AADT Intercept -7.3820 
(0.4615) 

 

Motorcycle and Other AADT b 0.6891 
(0.1628) 

 

Motorcycle and Other AADT c 0.1256 
(0.0420) 

 

Motorcycle and Other AADT d 0.3151 
(0.0501) 

 

Motorcycle and Other AADT e -0.6651 
(0.0924) 
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Model Type Parameter MOTO (SE) MOTOMULTI (SE) 
Motorcycle and Other AADT f 0.0460 

(0.0047) 
 

Motorcycle and Other AADT g -0.0291 
(0.0110) 

 

Motorcycle and Other AADT Dispersion 1.1196 
(0.1912) 

 

N/A = Parameter was not included in the model. 
Blank cell = SPF was not calibrated for that crash type.  

Table 39. Goodness-of-fit statistics for A1 models for Pennsylvania type 1 and 2 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 849 0.18 0.26 1.27 
MOTO Total AADT 849 0.18 0.31 1.12 
MOTO Motorcycle and other AADT 849 0.18 0.31 1.12 
MOTOMULTI Motorcycle AADT 283 0.07 0.21 3.28 
MOTOMULTI Total AADT 283 0.07 0.21 2.52 
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Table 40. CURE plot statistics for A1 models for Pennsylvania type 1 and 2 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

Max 
CURE 

Deviation 
for 

WIDTH 

CURE 
Deviation 

for 
WIDTH 

Max CURE 
Deviation 

for 
LSHLDWID 

CURE 
Deviation for 
LSHLDWID 

(Percent) 
MOTO Motorcycle 

AADT 
33.56 3 41.11 27 31.95 3 38.33 25 

MOTO Total AADT 38.67 31 31.14 5 26.73 1 35.78 22 
MOTO Motorcycle and 

other AADT 
38.30 9 32.32 7 26.11 1 37.42 23 

MOTOMULTI Motorcycle 
AADT 

24.52 16 30.00 45 70.57 73 29.44 39 

MOTOMULTI Total AADT 34.42 51 23.89 10 66.04 77 22.62 15 
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Table 41. Calibration factors for A1 models for Pennsylvania type 1 and 2 sites. 

Crash Type Observed Observed/Predicted 
MOTO with AVGMOTO urban 420 1.07 
MOTO with AVGMOTO rural 359 0.93 
MOTO with AVGAADT urban 420 1.07 
MOTO with AVGAADT rural 359 0.92 
MOTO with AVGAADT and OTHER urban 420 1.06 
MOTO with AVGAADT and OTHER rural 359 0.94 

 
The goodness-of-fit results in table 39 indicate the opposite result from the previous models—the 
models with motorcycle AADT outperformed those with total AADT for the CURE measures. 
Not surprisingly, some measures (modified R2 and dispersion parameter) indicate that the 
MOTO model that includes both motorcycle AADT and non-motorcycle AADT can outperform 
the model with only motorcycle AADT. However, its performance by these measures is similar 
to that of the MOTO model  
with only total AADT. Finally, the calibration factors in table 41 indicate that all AADT 
predictor models were just as successful when applied to segments with the two levels of the 
indicator variables. 

Pennsylvania Type 3 and 4—Rural and Urban Non-Freeways 
For non-freeways, the project team successfully calibrated models only for MOTO crashes and 
not for single- or multi-vehicle motorcycle crashes. The models are of three forms, depending on 
the exposure measure used, as shown in figure 26 through figure 28. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 )  
Figure 26. Equation. Pennsylvania rural and urban non-freeway crashes per year using 

motorcycle traffic counts. 

𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 )  
Figure 27. Equation. Pennsylvania rural and urban non-freeway crashes per year using 

total traffic counts. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
= 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑑𝑑𝑒𝑒𝑥𝑥𝑥𝑥(𝑒𝑒∗𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈+𝑓𝑓∗𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊+𝑔𝑔∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 )  
Figure 28. Equation. Pennsylvania rural and urban non-freeway crashes per year using 

separated traffic counts. 

Where: 

URBRUR = 1 if rural and 0 otherwise. 
AVGSHLDWID = The average shoulder width on both sides of roadway. 
AVGOTHER = The non-motorcycle AADT = AVGAADT – AVGMOTO. 
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Table 42 provides the parameter estimates for these models, and table 43 provides overall 
goodness-of-fit statistics. The project team calibrated the models using the full dataset, but the 
goodness-of-fit statistics pertain to a random sample of 6,000 road segments. The project team 
used a subset to make the calculations and CURE plots more manageable. Table 44 provides 
goodness-of-fit statistics from CURE plots for variables included in the models, and table 45 
provides calibration factors for the categorical variables included in the models. 

Table 42. A1 models for Pennsylvania type 3 and 4 sites. 

Model Type Parameter MOTO 
Motorcycle AADT Intercept -4.7635 

(0.0667) 
Motorcycle AADT b 0.7377 

(0.0352) 
Motorcycle AADT c 0.4585 

(0.0123) 
Motorcycle AADT d  
Motorcycle AADT e -0.4861 

(0.0295) 
Motorcycle AADT f 0.0263 

(0.0020) 
Motorcycle AADT g -0.0153 

(0.0054) 
Motorcycle AADT Dispersion 0.8197 

(0.0528) 
Total AADT Intercept -8.0110 

(0.1180) 
Total AADT b 0.7225 

(0.0353) 
Total AADT c 0.6232 

(0.0146) 
Total AADT d  
Total AADT e -0.1730 

(0.0315) 
Total AADT f 0.0150 

(0.0021) 
Total AADT g -0.0433 

(0.0055) 
Total AADT Dispersion 0.7239 

(0.0497) 
Motorcycle and other AADT Intercept -7.4806 

(0.1329) 
Motorcycle and other AADT b 0.7221 

(0.0353) 
Motorcycle and other AADT c 0.1414 

(0.0172) 
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Model Type Parameter MOTO 
Motorcycle and other AADT d 0.5026 

(0.0205) 
Motorcycle and other AADT e -0.1874 

(0.0315) 
Motorcycle and other AADT f 0.0139 

(0.0021) 
Motorcycle and other AADT g -0.0438 

(0.0055) 
Motorcycle and other AADT Dispersion 0.7120 

(0.0493) 
 Note: Blank cell indicates parameter was not included in the model.   

Table 43. Goodness-of-fit statistics for A1 models for Pennsylvania type 3 and 4 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 779 0.21 0.42 0.84 
MOTO Total AADT 779 0.20 0.46 0.74 
MOTO Motorcycle and other AADT 779 0.20 0.46 0.73 
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Table 44. CURE plot statistics for A1 models for Pennsylvania type 3 and 4 sites. 

Crash 
Type 

Exposure 
Measure 

Max CURE 
Deviation for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for  
LENGTH 
(Percent) 

Max 
CURE 

Deviation 
for 

WIDTH 

CURE 
Deviation. 

for 
WIDTH 
(Percent) 

Max CURE 
Deviation for 

AVGSHLDWID 

CURE Deviation 
for 

AVGSHLDWID 
(Percent) 

MOTO Motor AADT 20.78 4 28.39 3 34.92 42 35.76 18 
MOTO Total AADT 33.93 7 28.63 3 34.81 11 41.93 41 
MOTO Motor and other 

AADT 
20.04 0 29.42 4 31.87 4 41.24 32 
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Table 45. Calibration factors for A1 models for Pennsylvania type 3 and 4 sites. 

Crash Type Observed Observed/Predicted 
MOTO with AVGMOTO urban 420 1.07 
MOTO with AVGMOTO rural 359 0.93 
MOTO with AVGAADT urban 420 1.07 
MOTO with AVGAADT rural 359 0.92 
MOTO with AVGAADT and other urban 420 1.06 
MOTO with AVGAADT and other rural 359 0.94 

 
The goodness-of-fit results in table 43 indicate overall that MOTO model with total AADT 
performs slightly better than that with motorcycle AADT in terms of the modified R2 and 
dispersion parameter. However, the CURE plot statistics for the key motorcycle AADT variable 
in table 45 indicate that all AADT predictor models were just as successful when applied to 
segments with the two levels of the indicator variables. 

Virginia 

The project team used Virginia data to validate the A1 models developed. The goal was to assess 
whether the motorcycle crash SPFs transferred well to a new jurisdiction and to assess whether 
the models using motorcycle AADT or total AADT transferred better (or worse). Table 46 
through table 51 provide a comparison of goodness-of-fit statistics for the Florida and 
Pennsylvania A1 models applied to Virginia data. 

Because the Florida and Pennsylvania A1 models require input variables that are unavailable in 
Virginia, mean values of these variables in the calibration data were used to reduce the models to 
segment length, AADT of interest, and, when necessary, a rural/urban indicator. Mean values 
were determined from the descriptive statistics by individual roadway type. 
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Table 46. Validation of A1 models for MOTO crashes. 

State 
Site 

Type 

AADT 
Type in 
Model 

Observed 
Crashes MAD 

Modified 
R2 Dispersion 

Florida 1 Total  18 0.25 0 29.52 
Florida 1 Motorcycle  18 0.26 0 17.12 
Florida 2 Total  90 0.15 0 3.09 
Florida 2 Motorcycle  90 0.15 0.15 2.16 
Florida 3 Total  799 0.11 0.04 4.16 
Florida 3 Motorcycle  799 0.11 0.11 3.07 
Florida 3 Other 799 0.11 0.06 3.65 
Florida 4 Total  2,705 0.18 0.14 1.12 
Florida 4 Motorcycle  2,705 0.18 0.23 1.03 
Florida 4 Other 2,705 0.18 0.13 1.11 
Pennsylvania 1 and 2 Total  108 0.16 0.02 5.00 
Pennsylvania 1 and 2 Motorcycle  108 0.16 0.04 4.59 
Pennsylvania 1 and 2 Other 108 0.16 0.03 5.17 
Pennsylvania 3 and 4 Total  3,504 0.16 0.16 1.53 
Pennsylvania 3 and 4 Motorcycle  3,504 0.16 0.20 1.40 
Pennsylvania 3 and4 Other 3,504 0.16 0.17 1.47 

Table 47. CURE statistics for the validation of A1 models for MOTO crashes. 

State Type AADT Type 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

Florida 1 Total  10.87 64 7.87 41 
Florida 1 Motorcycle  13.57 76 5.08 31 
Florida 2 Total  25.12 91 18.96 41 
Florida 2 Motorcycle  8.84 0 20.20 46 
Florida 3 Total  159.31 97 77.86 68 
Florida 3 Motorcycle  72.69 73 68.06 74 
Florida 3 Other 91.73 84 76.42 69 
Florida 4 Total  362.81 99 186.12 96 
Florida 4 Motorcycle  225.83 99 188.34 98 
Florida 4 Other 277.37 100 207.65 98 
Pennsylvania 1 and 2 Total  23.23 68 16.77 16 
Pennsylvania 1 and 2 Motorcycle  19.13 33 18.67 22 
Pennsylvania 1 and 2 Other 21.79 60 17.79 17 
Pennsylvania 3 and 4 Total  96.99 28 190.65 94 
Pennsylvania 3 and 4 Motorcycle  112.28 46 253.52 96 
Pennsylvania 3 and 4 Other 77.42 27 206.63 95 
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The results for MOTO crashes were not clear on whether the Florida or Pennsylvania models 
calibrated better to the Virginia data. Whichever one was better depends on the specific measure 
and site type considered. What was consistent, however, is that the motorcycle AADT-based 
models showed a better goodness-of-fit as measured by the modified R2 and dispersion. While it 
is not true that the models using motorcycle AADT always are preferred in terms of maximum 
CURE deviation and percent CURE deviation, this is mostly true. However, all of the models 
showed a significant amount of bias as measured by the percent CURE deviation. 

Table 48. Validation of A1 models for MOTOSINGLE crashes in Florida. 

Site 
Type 

AADT 
Type in 
Model 

Observed 
Crashes MAD 

Modified 
R2 Dispersion 

1 Total  16 0.23 0 30.27 
1 Motorcycle  16 0.23 0 16.77 
2 Total  50 0.09 0.11 2.84 
2 Motorcycle  50 0.09 0.26 1.71 
3 Total  410 0.06 0.05 6.12 
3 Motorcycle  410 0.06 0.08 4.93 
3 Other 410 0.06 0.07 5.38 
4 Total  836 0.06 0.43 0.70 
4 Motorcycle  836 0.06 0.44 0.68 
4 Other 836 0.06 0.43 0.70 

Table 49. CURE statistics for the validation of A1 models for MOTOSINGLE crashes in 
Florida. 

Type AADT Type 

Max CURE 
Deviation for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

1 Total  12.51 77  4.60 28  
1 Motorcycle  9.29 56  6.66 39  
2 Total  14.53 88  11.60 30  
2 Motorcycle  7.78 8  12.17 32  
3 Total  93.62 95  65.26 27  
3 Motorcycle  42.98 73  62.86 25  
3 Other 47.21 82  63.58 25  
4 Total  56.50 78  39.07 16  
4 Motorcycle  26.23 11  34.83 10  
4 Other 65.58 87  34.21 12  

 
For MOTOSINGLE crashes, the project team did not calibrate models from Pennsylvania. The 
Florida models using motorcycle AADT showed better goodness-of-fit statistics in general. 
These models, however, showed significant bias as measured by the percent CURE deviation. 
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Table 50. Validation of A1 models for MOTOMULTI crashes. 

State 
Site 

Type 

AADT 
Type in 
Model 

Observed 
Crashes MAD 

Modified 
R2 Dispersion 

Florida 2 Total  40 0.07 0 3.83 
Florida 2 Motorcycle  40 0.07 0.01 3.27 
Florida 3 Total  388 0.06 0.03 3.30 
Florida 3 Motorcycle  388 0.06 0.12 2.48 
Florida 3 Other 388 0.06 0.05 3.01 
Florida 4 Total  1,865 0.13 0 1.61 
Florida 4 Motorcycle  1,865 0.13 0.10 1.43 
Florida 4 Other 1,865 0.13 0 1.60 
Pennsylvania 1 and 2 Total  42 0.07 0.12 2.69 
Pennsylvania 1 and 2 Motorcycle  42 0.07 0.18 2.20 

Table 51. CURE statistics for the validation of A1 models for MOTOMULTI crashes in 
Pennsylvania. 

Site 
Type AADT Type 

Maximum 
CURE 

Deviation 
for 

AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Maximum 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

2 Total  11.29 48 7.91 18 
2 Motorcycle  6.40 29 8.55 26 
3 Total  58.27 82 54.77 78 
3 Motorcycle  28.23 26 62.30 86 
3 Other 42.09 70 56.82 83 
4 Total  332.44 98 191.56 97 
4 Motorcycle  222.02 99 187.75 97 
4 Other 236.70 97 210.38 98 

1/2 Total  7.98 29 4.43 5 
1/2 Motorcycle  4.67 7 7.14 9 

 
The results for MOTOMULTI crashes indicate that the Pennsylvania models may transfer better 
than the Florida models to the Virginia data. The motorcycle AADT-based models in general 
showed better goodness-of-fit measures. However, almost all of the models showed a significant 
amount of bias as measured by the percent CURE deviation. 

Assessment of A1 Models for Predictions at High Crash Locations 

The project team conducted an assessment of how well the A1 models predict motorcycle 
crashes for high-crash locations. Such locations are typically of interest in treatment applications 
that form the basis for future CMF development. To do this, sites of a specific type were first 
ranked in descending order of the crash counts per mile in one period (denoted as a before 
period). EB estimates were then obtained for the top-ranked sites based on the calibrated SPFs 
using motorcycle AADT and total AADT and crash counts in that period. The sum of these EB 
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estimates for the top-ranked sites were then compared to the sum of the crash counts for these 
locations in a subsequent period (denoted as an after period) after adjusting the EB estimates for 
the difference in years between the two periods. For Florida, the top 10 percent of sites were 
ranked based on a 3-year before period from 2008–2010; the after period was a 2-year period 
from 2011 to 2012.  

For Pennsylvania, sites with at least one motorcycle crash, which constituted less than 10 percent 
of all sites, were top ranked based on a 3-year before period from 2009–2011; the after period 
was a 2-year period from 2012 to 2013. Table 52 shows the results of this assessment. 
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Table 52. Assessment of type 1 models for predictions at high crash locations. 

State 
Site 

Type 

Number of 
Top- 

Ranked 
Sites 

Motorcycle 
Crash Count 

(2-Year 
Before Period) 

Motorcycle 
Crash Count 

(2-Year 
After Period) 

EB Expected 
Crashes in 2-
Year After 

Period Using 
Model with 
Motorcycle 

AADT 

EB Expected 
Crashes in 

2-Year After 
Period Using 
Model with 
Total AADT 

MAD for 
Comparison to 

after Period 
Crashes with EB 

Estimate from 
Model with 

Motorcycle AADT 

MAD for 
Comparison to 

after Period 
Crashes with EB 

Estimate from 
Model with 
Total AADT 

Florida 1 48 45.3 13 10.28 11.13 0.363 0.364 
Florida 2 96 136.7 56 43.45 47.44 0.568 0.575 
Florida 3 325 311.3 109 79.43 107.99 0.408 0.433 
Florida 4 872 1,584.7 926 650.37 675.17 0.849 0.852 
Pennsylvania 1 and 2 434 327.3 70 26.3 29.7 0.025 0.028 
Pennsylvania 3 and 4 4,348 3,126.0 632 423.5 456.6 0.212 0.215 
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The results in table 52 show that, although MAD tended to be slightly higher for the total AADT 
models, the EB estimates from the total AADT models of crashes at the top-ranked sites were 
marginally closer to the actual counts than those based on the motorcycle AADT models.  

It should be noted in passing that before period counts (adjusted for a 2-year period) were much 
higher than the 2-year after period counts because of a substantial regression to the mean effect. 
The EB estimates were much closer, but precise matching should not be expected because trends 
in crash occurrence and traffic volume differences between the before and after periods were not 
considered as they would be in a rigorous EB before-after study. In the case of type 4 Florida 
sites and the Pennsylvania sites, an additional factor is that the top-ranked sites are likely heavily 
biased towards the ranges of variables such as traffic volume and segment length where the SPF 
may be underpredicting. This result would indicate that there is room for model improvement but 
should not be interpreted as saying these models and methods should not be applied for site-
based analyses. 

AVENUE A MODEL TYPE A2 

The purpose of model type A2 is to develop a relationship between motorcycle crash frequency 
and total crash frequency. The project team developed models for both motorcycle crashes and 
total crashes using traffic volumes for motorcycles and all vehicles, respectively. Other 
geometric variables from table 3 and table 9 were not included in these models because the goal 
is for these models to be transferable to any jurisdiction. 

The goal was to infer a relationship between the models for the two crash types. This relationship 
can then be applied to the model for total crashes for another State to infer a model for 
motorcycle crashes for that State. In turn, that model can be used in the evaluation of 
retrospective and prospective before-after evaluations of the effects of infrastructure 
countermeasures on motorcycle crashes. 

Because the goal is to develop models that may be transferable between jurisdictions, only length 
and traffic volume variables were included since other jurisdictions may not have the same data 
available. 

The modeling is a three-step process. The first is to develop a model for total crashes, as shown 
in figure 29. 

𝑇𝑇𝑇𝑇𝑇𝑇/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐   
Figure 29. Equation. Type A2 total crashes model. 

The predicted values from this model are given the name PREDTOT. The second step is to 
develop a model for the motorcycle crashes of interest. For example, for MOTO crashes, this 
would be the model shown in figure 30. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝑒𝑒𝑒𝑒𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑏𝑏𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑐𝑐  
Figure 30. Equation. Type A2 motorcycle crashes model. 
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The predicted values from this model are given the name PREDMOTO. The final step is to 
develop a model that predicts the value of PREDMOTO/year. In developing this model, for each 
site, the value of PREDMOTO is the dependent variable, and the value of PREDTOT is 
considered as one of the possible explanatory variables in the model. 

The project team pursued the A2 models using both data from Florida and Pennsylvania and 
using data from Virginia for validation. The remainder of this section reports on the results of 
model development and validation. 

Florida 

An exponential model and a linear model were attempted. The project team found that although 
the two models performed similarly over most sites, the exponential model overpredicts crashes 
significantly when the total crash frequency is high. For this reason, the project team adopted the 
linear model form as shown in figure 31 through figure 33. The error distribution for these 
models was assumed as a gamma distribution. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
10,000

 
 

Figure 31. Equation. Florida type A2 motorcycle crash model. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
10,000

 
 

Figure 32. Equation. Florida type A2 motorcycle single-vehicle crash model. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑟𝑟 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
10,000

 
 

Figure 33. Equation. Florida type A2 motorcycle multi-vehicle crash model. 

Florida Type 1—Rural Freeways 
Table 53 presents the parameter estimates for the type 1 sites. Attempts to estimate a full set of 
corresponding models for MOTOMULTI were unsuccessful. There are three models for each 
category of motorcycle crashes: the model for total crashes, the model for the motorcycle crashes 
of interest, and the model that predicts the value of the motorcycle crash model based on the 
predicted value of total crashes and total AADT. Table 54 and table 55 provide goodness-of-fit 
statistics for the A2 model predictions and compare them to the predictions from the A1 models 
using motorcycle AADT as an explanatory variable. The A2 model predictions use the third 
model (i.e., the model that predicts the estimate from a motorcycle crash SPF based on the 
prediction from a total crash SPF). 
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Table 53. A2 models for Florida type 1 sites. 

Model Parameter MOTO MOTOSINGLE 
Total crashes Intercept -10.6602 

(0.7239) 
-10.6602 
(0.7239) 

Total crashes b 0.7995 
(0.0300) 

0.7995 
(0.0300) 

Total crashes c 1.1700 
(0.0697) 

1.1700 
(0.0697) 

Total crashes Dispersion 0.4541 
(0.0403) 

0.4541 
(0.0403) 

Motorcycle crashes Intercept -5.5368 
(0.6033) 

-5.1341 
(0.7741) 

Motorcycle crashes b 0.8239 
(0.0801) 

0.8939 
(0.1102) 

Motorcycle crashes c 0.6622 
(0.1274) 

0.4755 
(0.1663) 

Motorcycle crashes Dispersion 0.4353 
(0.2160) 

1.1346 
(0.4327) 

Predicted motorcycle crashes Intercept 0.0555 
(0.0037) 

0.0436 
(0.0020) 

Predicted motorcycle crashes b 0.0187 
(0.0004) 

0.0125 
(0.0003) 

Predicted motorcycle crashes c -0.0217 
(0.0016) 

-0.0191 
(0.0007) 

Table 54. Goodness-of-fit statistics for A2 models for Florida type 1 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 174 0.43 0.65 0.44 
MOTO A2 model 174 0.41 0.78 0.29 
MOTOSINGLE Motorcycle AADT 111 0.32 0.34 1.14 
MOTOSINGLE A2 model 111 0.31 0.46 0.93 
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Table 55. CURE plot statistics for A2 models for Florida type 1 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation for 
AVGMOTO 

CURE 
Deviation for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

MOTO Motorcycle 
AADT 

15.83 11 7.42 3 

MOTO A2 model 13.08 3 7.31 3 
MOTOSINGLE Motorcycle 

AADT 
10.42 5 7.80 3 

MOTOSINGLE A2 model 10.96 6 9.17 5 
 
The results indicate (especially for the modified R2 and dispersion parameter measures) that both 
A2 models, which predict motorcycle crashes from predictions from a total crash versus total 
AADT model, outperformed the corresponding models that predict motorcycle crashes from 
motorcycle AADT. 

Florida Type 2—Urban Freeways 
Table 56 presents the parameter estimates for the type 2 sites. There are three models for each 
category of motorcycle crashes: the model for total crashes, the model for the motorcycle crashes 
of interest, and the model that predicts the value of the motorcycle crash model based on the 
predicted value of total crashes and total AADT. Table 57 and table 58 provide goodness-of-fit 
statistics for the A2 model predictions and compare them to the predictions from the A1 models 
using motorcycle AADT as an explanatory variable. The A2 model predictions use the third 
model (i.e., the model that predicts the estimate from a motorcycle crash SPF based on the 
prediction from a total crash SPF). 
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Table 56. A2 models for Florida type 2 sites. 

Model Parameter MOTO MOTOSINGLE MOTOMULTI 
Total crashes Intercept -12.2924 

(0.4305) 
-12.2924 
(0.4305) 

-12.2924 
(0.4305) 

Total crashes b 0.7559 
(0.0268) 

0.7559 
(0.0268) 

0.7559 
(0.0268) 

Total crashes c 1.3304 
(0.0384) 

1.3304 
(0.0384) 

1.3304 
(0.0384) 

Total crashes Dispersion 0.5179 
(0.0264) 

0.5179 
(0.0264) 

0.5179 
(0.0264) 

Motorcycle crashes Intercept -3.1295 
(0.2465) 

-3.3297 
(0.2688) 

-3.8930 
(0.2930) 

Motorcycle crashes B 0.7184 
(0.0488) 

0.7283 
(0.0575) 

0.6943 
(0.0591) 

Motorcycle crashes C 0.3553 
(0.0433) 

0.2371 
(0.0469) 

0.3910 
(0.0509) 

Motorcycle crashes Dispersion 0.6978 
(0.0951) 

0.3559 
(0.1347) 

0.8087 
(0.1392) 

Predicted 
motorcycle crashes 

Intercept 0.4952 
(0.0158) 

0.2362 
(0.0053) 

0.2762 
(0.0101) 

Predicted 
motorcycle crashes 

b 0.0196 
(0.0007) 

0.0079 
(0.0002) 

0.0111 
(0.0004) 

Predicted 
motorcycle crashes 

c -0.0520 
(0.0026) 

-0.0250 
(0.0008) 

-0.0269 
(0.0017) 

Table 57. Goodness-of-fit statistics for A2 models for Florida type 2 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 921 0.86 0.56 0.43 
MOTO A2 model 921 0.84 0.65 0.35 
MOTOSINGLE Motorcycle AADT 385 0.47 0.66 0.26 
MOTOSINGLE A2 model 385 0.47 0.75 0.18 
MOTOMULTI Motorcycle AADT 536 0.58 0.59 0.38 
MOTOMULTI A2 model 536 0.58 0.63 0.34 
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Table 58. CURE plot statistics for A2 models for Florida type 2 sites. 

Crash Type Exposure Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

MOTO Motorcycle AADT 54.69 35 22.11 0 
MOTO A2 model 90.73 80 24.3 5 
MOTOSINGLE Motorcycle AADT 26.21 16 11.53 0 
MOTOSINGLE A2 model 24.26 11 17.94 0 
MOTOMULTI Motorcycle AADT 37.34 41 18.12 16 
MOTOMULTI A2 model 71.80 83 20.62 31 

 
The results indicate, especially for the modified R2 and dispersion parameter measures, that the 
three A2 models, which predict motorcycle crashes from predictions from a total-crash versus 
total AADT model, outperformed corresponding models that predict motorcycle crashes from 
motorcycle AADT. However, the CURE plot statistics for the key AADT variable, AVGMOTO, 
indicate the opposite for the MOTO and MOTOMULTI models. 

Florida Type 3—Rural Arterials 
Table 59 presents the parameter estimates for the type 3 sites. There are three models for each 
category of motorcycle crashes: the model for total crashes, the model for the motorcycle crashes 
of interest, and the model that predicts the value of the motorcycle crash model based on the 
predicted value of total crashes and total AADT.  

Table 60 and table 61 provide goodness-of-fit statistics for the A2 model predictions and 
compare them to the predictions from the A1 models using motorcycle AADT as an explanatory 
variable. The A2 model predictions use the third model (i.e., the model that predicts the estimate 
from a motorcycle crash SPF based on the prediction from a total crash SPF). 
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Table 59. A2 models for Florida type 3 sites. 

Model Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Total crashes Intercept -6.9586 

(0.2236) 
-6.9586 
(0.2236) 

-6.9586 
(0.2236) 

Total crashes b 0.7145 
(0.0163) 

0.7145 
(0.0163) 

0.7145 
(0.0163) 

Total crashes c 0.8411 
(0.0256) 

0.8411 
(0.0256) 

0.8411 
(0.0256) 

Total crashes Dispersion 0.8672 
(0.0312) 

0.8672 
(0.0312) 

0.8672 
(0.0312) 

Motorcycle 
crashes 

Intercept -4.6303 
(0.1684) 

-5.1015 
(0.2302) 

-5.5552 
(0.2199) 

Motorcycle 
crashes 

B 0.6780 
(0.0315) 

0.7210 
(0.0436) 

0.6494 
(0.0397) 

Motorcycle 
crashes 

C 0.5671 
(0.0431) 

0.4712 
(0.0591) 

0.6592 
(0.0553) 

Motorcycle 
crashes 

Dispersion 0.8912 
(0.1194) 

1.0532 
(0.2348) 

1.0096 
(0.1892) 

Predicted 
motorcycle crashes 

Intercept 0.0499 
(0.0018) 

0.0235 
(0.0007) 

0.0232 
(0.0011) 

Predicted 
motorcycle crashes 

b 0.0534 
(0.0007) 

0.0239 
(0.0003) 

0.0294 
(0.0005) 

Predicted 
motorcycle crashes 

c -0.0720 
(0.0028) 

-0.0404 
(0.0009) 

-0.0267 
(0.0020) 

Table 60. Goodness-of-fit statistics for A2 models for Florida type 3 sites. 

Crash Type Exposure Measure 
Total 

Observed MAD 
Modified 

R2 Dispersion 
MOTO Motorcycle AADT 1,031 0.40 0.44 0.77 
MOTO A2 model 1,031 0.41 0.39 0.89 
MOTOSINGLE Motorcycle AADT 449 0.21 0.43 0.91 
MOTOSINGLE A2 model 449 0.21 0.35 1.10 
MOTOMULTI Motorcycle AADT 582 0.26 0.37 0.85 
MOTOMULTI A2 model 582 0.27 0.37 0.99 

   



90 

Table 61. CURE plot statistics for A2 models for Florida type 3 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

MOTO Motorcycle AADT 37.40 0 21.32 0 
MOTO A2 model 106.65 76 27.08 0 
MOTOSINGLE Motorcycle AADT 24.33 1 8.21 0 
MOTOSINGLE A2 model 41.21 25 19.82 0 
MOTOMULTI Motorcycle AADT 19.71 1 20.19 6 
MOTOMULTI A2 model 69.92 89 25.57 7 

 
All of the results consistently indicate that the three models that predict motorcycle crashes from 
motorcycle AADT outperformed the corresponding A2 models, which predict motorcycle 
crashes from predictions from a total-crash vs total AADT model. This is somewhat contrary to 
the findings for type 1 and type 2 sites. 

Florida Type 4Urban Arterials 
Table 62 presents the parameter estimates for the type 4 sites. There are three models for each 
category of motorcycle crashes: the model for total crashes, the model for the motorcycle crashes 
of interest, and the model that predicts the value of the motorcycle crash model based on the 
predicted value of total crashes and total AADT. Table 63 and table 64 provide goodness-of-fit 
statistics for the A2 model predictions and compare them to the predictions from the A1 models 
using motorcycle AADT as an explanatory variable. The A2 model predictions use the third 
model (i.e., the model that predicts the estimate from a motorcycle crash SPF based on the 
prediction from a total crash SPF). 
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Table 62. A2 models for Florida type 4 sites. 

Model Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Total crashes Intercept -11.6281 

(0.2286) 
-11.6281 
(0.2286) 

-11.6281 
(0.2286) 

Total crashes b 0.5894 
(0.0204) 

0.5894 
(0.0204) 

0.5894 
(0.0204) 

Total crashes c 1.3751 
(0.0227) 

1.3751 
(0.0227) 

1.3751 
(0.0227) 

Total crashes Dispersion 2.0547 
(0.0336) 

2.0547 
(0.0336) 

2.0547 
(0.0336) 

Motorcycle 
crashes 

Intercept -4.5339 
(0.1272) 

-5.2472 
(0.1857) 

-5.0429 
(0.1427) 

Motorcycle 
crashes 

b 0.7419 
(0.0218) 

0.7375 
(0.0301) 

0.7488 
(0.0241) 

Motorcycle 
crashes 

c 0.7469 
(0.0248) 

0.6129 
(0.0360) 

0.7918 
(0.0278) 

Motorcycle 
crashes 

Dispersion 1.3244 
(0.0465) 

1.2330 
(0.0093) 

1.4792 
(0.0574) 

Predicted 
motorcycle crashes 

Intercept 0.5031 
(0.0067) 

0.1470 
(0.0015) 

0.3572 
(0.0051) 

Predicted 
motorcycle crashes 

b 0.0479 
(0.0006) 

0.0114 
(0.0001) 

0.0367 
(0.0005) 

Predicted 
motorcycle crashes 

c -0.2972 
(0.0054) 

-0.0791 
(0.0012) 

-0.2204 
(0.0043) 

Table 63. Goodness-of-fit statistics for A2 models for Florida type 4 sites. 

Crash Type 
Exposure 
Measure 

Total 
Observed MAD 

Modified 
R2 Dispersion 

MOTO Motorcycle 
AADT 

9,539 1.11 0.28 1.19 

MOTO A2 model 9,539 1.10 0.30 1.20 
MOTOSINGLE Motorcycle 

AADT 
2,341 0.38 0.31 1.12 

MOTOSINGLE A2 model 2,341 0.38 0.32 1.16 
MOTOMULTI Motorcycle 

AADT 
7,198 0.91 0.25 1.32 

MOTOMULTI A2 model 7,198 0.90 0.27 1.32 
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Table 64. CURE plot statistics for A2 models for Florida type 4 sites. 

Crash Type 
Exposure 
Measure 

Max CURE 
Deviation 

for 
AVGMOTO 

CURE 
Deviation 

for 
AVGMOTO 

(Percent) 

Max 
CURE 

Deviation 
for 

LENGTH 

CURE 
Deviation 

for 
LENGTH 
(Percent) 

MOTO Motorcycle AADT 242.23 14 120.12 0 
MOTO A2 model 288.17 45 644.54 95 
MOTOSINGLE Motorcycle AADT 52.04 2 51.84 0 
MOTOSINGLE A2 model 123.19 76 105.03 21 
MOTOMULTI Motorcycle AADT 178.29 8 120.03 1 
MOTOMULTI A2 model 528.91 96 223.50 34 
 
The results indicate that the performance of the three A2 models, which predict motorcycle 
crashes from predictions from a total-crash versus total AADT model, was similar to that of the 
corresponding models that predict motorcycle crashes from motorcycle AADT. However, the 
CURE plot statistics for the key AADT variable, AVGMOTO, indicate that models that predict 
motorcycle crashes from motorcycle AADT were better in terms of the CURE measures than the 
corresponding A2 models. These results for urban arterials, overall, were consistent with 
findings for rural arterials. 

Pennsylvania 

The linear model form that worked for the Florida dataset failed to converge for the 
Pennsylvania dataset. While the exponential model form did converge for the Pennsylvania 
dataset, the sum of the predictions was significantly higher than the observed number of crashes. 
Similar to the Florida exponential model, this overprediction occurred for sites where the total 
crash frequency was high. For this reason, the project team concluded that the A2 models using 
the Pennsylvania data were not successful. 

Virginia 

To validate the A2 models developed, the project team split the data for Virginia into calibration 
and validation datasets for rural and urban arterials. The data for freeways did not include 
enough crashes for validation of the A2 models. The project team used the calibration datasets to 
develop the total crash SPF required for application of the A2 models. The project team also 
used the calibration data to develop motorcycle crash SPFs using total AADT to compare to the 
A2 models. 

The project team used the validation datasets to evaluate the performance of the A2 models and 
compare that to the performance of a total AADT SPF for motorcycle crashes. To perform this 
validation, the project team calibrated the predictions from both the A2 model process and the 
Virginia motorcycle SPFs to the calibration data and goodness-of-fit statistics determined. Table 
65 provides the summary data for split validation and calibration datasets for rural and urban 
arterials.  
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Table 65. Length and crash frequency for Virginia model type A2 validation analysis. 

Type 
LENGTH 

(mi) TOT MOTO MOTOSINGLE  MOTOMULTI  
3A calibration 2,195.4 1,6653 373 183 189 
3B validation 2,246.1 1,6672 426 227 199 
4A calibration 1,665.0 6,4651 1,414 432 981 
4B validation 1,658.4 6,0662 1,291 404 884 

1 mi = 1.6 km. 

Table 66 provides summary data for motorcycle AADT, total AADT, and number of lanes. 
Comparisons between calibration and validation datasets shows consistency in minimum, 
maximum, and average values.  

Table 66. Summary statistics for Virginia model type A2 validation analysis. 

Type Statistic AVGMOTO AVGAADT NOLANES 
3A No. Segments 6,287 6,287 6,287 
3A MIN 1.0 305.0 1.0 
3A MAX 245.0 58,715.0 7.0 
3A MEAN 34.8 8,187.0 2.8 
3A STD 31.1 6,782.6 1.0 
3B No. Segments 6,287 6,287 6,287 
3B MIN 1.0 305.0 1.0 
3B MAX 245.0 58,715.0 6.0 
3B MEAN 34.6 8,106.6 2.8 
3B STD 30.3 6,849.6 1.0 
4A No. Segments 12,695 12,695 12,695 
4A MIN 1.0 131.0 1.0 
4A MAX 509.0 130,077.0 9.0 
4A MEAN 54.8 17,705.1 3.3 
4A STD 54.7 14,380.2 1.3 
4B No. Segments 12,695 12,695 12,695 
4B MIN 1.0 270.0 1.0 
4B MAX 509.0 130,077.0 9.0 
4B MEAN 53.8 17,425.2 3.3 
4B STD 55.7 14,280.9 1.3 

 
For rural arterials, the project team developed SPFs for total, motorcycle, and multi-vehicle 
motorcycle crashes. Total AADT and segment length were used as explanatory variables for all 
SPFs. Table 67 shows the parameter estimates for the total crash SPF, the motorcycle crash SPF, 
and the A2 model applied. Using the Virginia data, an SPF for predicting single-vehicle 
motorcycle crashes did not converge. 
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Table 67. SPFs for validating model types A2 for Virginia type 3 (rural arterial) sites. 

Model Parameter MOTO (SE) 
MOTOMULTI 

(SE) 
Total crash SPF Intercept -5.3321 

(0.1575) 
-5.3321 
(0.1575) 

Total crash SPF b 0.6160 
(0.0122) 

0.6160 
(0.0122) 

Total crash SPF c 0.6224 
(0.0181) 

0.6224 
(0.0181) 

Total crash SPF Dispersion 0.7529 
(0.0253) 

0.7529 
(0.0253) 

Motorcycle crash SPF using 
total AADT 

Intercept -5.3223 
(0.5848) 

-8.1803 
(0.8208) 

Motorcycle crash SPF using 
total AADT 

b 0.6302 
(0.0519) 

0.5152 
(0.0658) 

Motorcycle crash SPF using 
total AADT 

c 0.1957 
(0.0679) 

0.4306 
(0.0927) 

Motorcycle crash SPF using 
total AADT 

Dispersion 3.0688 
(0.5901) 

1.4954 
(0.7830) 

Florida A2 models Intercept 0.0499 
(0.0018) 

0.0232 
(0.0011) 

Florida A2 models b 0.0534 
(0.0007) 

0.0294 
(0.0005) 

Florida A2 models c -0.0720 
(0.0028) 

-0.0267 
(0.0020) 

 
For urban arterials, the project team developed SPFs for total, motorcycle, single-vehicle 
motorcycle, and multi-vehicle motorcycle crashes in Virginia. Total AADT and segment length 
were used as explanatory variables for all SPFs. Table 68 shows the parameter estimates for the 
total crash SPF, the motorcycle crash SPF, and the A2 model applied.  
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Table 68. SPFs for validating A2 models for Virginia type 4 (urban arterial) sites. 

Model Parameter MOTO (SE) 
MOTOSINGLE 

(SE) 
MOTOMULTI 

(SE) 
Total crash SPF Intercept -6.3949 

(0.1343) 
-6.3949 
(0.1343) 

-6.3949 
(0.1343) 

Total crash SPF b 0.6202 
(0.0109) 

0.6202 
(0.0109) 

0.6202 
(0.0109) 

Total crash SPF c 0.7988 
(0.0137) 

0.7988 
(0.0137) 

0.7988 
(0.0137) 

Total crash SPF Dispersion 1.0363 
(0.0183) 

1.0363 
(0.0183) 

1.0363 
(0.0183) 

Motorcycle crash SPF 
using total AADT 

Intercept -7.9779 
(0.3824) 

-8.0193 
(0.6428) 

-8.8642 
(0.4583) 

Motorcycle crash SPF 
using total AADT 

b 0.6594 
(0.0309) 

0.8446 
(0.0534) 

0.5772 
(0.0364) 

Motorcycle crash SPF 
using total AADT 

c 0.5808 
(0.0384) 

0.4985 
(0.0650) 

0.6176 
(0.0459) 

Motorcycle crash SPF 
using total AADT 

Dispersion 0.9252 
(0.1389) 

0.9436 
(0.3897) 

1.1309 
(0.2078) 

Florida A2 models Intercept 0.5031 
(0.0067) 

0.1470 
(0.0015) 

0.3572 
(0.0051) 

Florida A2 models b 0.0479 
(0.0006) 

0.0114 
(0.0001) 

0.0367 
(0.0005) 

Florida A2 models c -0.2972 
(0.0054) 

-0.0791 
(0.0012) 

-0.2204 
(0.0043) 

 
When applying the A2 models to the validation data, the project team observed that the 
predictions produced some negative values for expected crashes when the total crash SPF 
prediction was low. This illogical result of negative crash prediction shows that the A2 models 
do not transfer well to another jurisdiction if the expected total crash frequency is markedly 
different. The project team measured the success of the A2 in how well they can predict crashes 
for a new jurisdiction that does not have motorcycle AADT estimates but can develop an SPF for 
total crashes using total AADT. For this reason, the results concluded that the A2 modeling was 
not successful. 

The possibility of negative crash predictions was made possible by the linear model form of the 
A2 models, shown in figure 34, where the parameter c was estimated to be negative. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
10,000

 
 

Figure 34. Equation. A2 linear model form. 

When developing the A2 models, other model forms that would not allow such negative 
predictions were not successful in that they significantly overpredicted crashes at high AADTs. 
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AVENUE A MODEL TYPE A3 

The purpose of investigating model type 3 was to attempt the development of models to estimate 
motorcycle traffic volumes based on roadway characteristics and other variables that may 
influence motorcycle trip generation. If successful, such models could be used to estimate 
motorcycle volumes in similar jurisdictions, and these volumes could be used for any study 
design where motorcycle volumes are desired. 

The A3 models were estimated using simple linear regression, which assumes a normal 
distribution for the error term. The form was adopted from and is consistent with the forms used 
for trip generation models in the transportation planning field. Figure 35 shows an example of an 
estimated model form. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝑏𝑏 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝑐𝑐 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑑𝑑 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃060210 + 𝑒𝑒
∗ 𝐼𝐼𝐼𝐼𝐼𝐼110213 + 𝑓𝑓 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿305213 + 𝑔𝑔 ∗ 𝑆𝑆𝑆𝑆𝑆𝑆255213  

Figure 35. Equation. Type A3 model form example. 

Where: 

MOTOAADT = The motorcycle AADT on a roadway segment. 
LANES = 0 if the roadway has two lanes and 1 if the roadway has more than two lanes. 
SPDLIMT = The posted speed limit in mi/h. 
POP060210 = The population per mi2. 
INC110213 = The median household income. 
LFE305213 = The mean travel time to work in min for workers age 16+. 
SEX255213 = The percentage of the population that is female. 

The project team attempted models for site types 1 through 4 in both Florida and Pennsylvania. 
For both datasets, the project team could not consider the models developed successful. 
Although the models did include parameter estimates that were statistically significant at the 95-
percent confidence limit, the explanatory power of the models was very low and only marginally 
better than simply assuming the average level of motorcycle AADT for all sites. This is likely 
because variables that are most related to motorcycle AADT may not have been available for 
inclusion. 

The lack of explanatory power provided by the models was evident from examining the R2 
coefficient. The R2 coefficient is a statistical measure of how much variation in the data is being 
explained by the model. In equation form, this is expressed as shown in figure 36 and is always 
between 0 and 100 percent. 

𝑅𝑅2 =
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

 
 

Figure 36. Equation. R2 coefficient. 

The models developed for Florida and Pennsylvania showed R2 values typically between 5 and 
15 percent, indicating that they are not explaining much of the variation in motorcycle AADT 
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between road segments and are thus not very useful. For this reason, the project team did not 
consider the A3 modeling a success. 

AVENUE B MODEL TYPE B1 

The model type B1 analyses were conducted using the data for types 1 (rural freeway) and 3 
(rural arterial) in Florida. The approach used for simulating data is described in chapter 4 in the 
subsection titled Avenue B Databases. The open-source software R was used for simulating the 
data and model estimation. Several parameters were changed in running several simulations to 
examine their effects on the results. These included the number of treatment sites, the assumed 
CMF, and how the project team selected the treatment sites. 

Florida Type 1 

Table 69 shows the results for simulation 1 using the Florida type 1 data. In simulation 1, the 
treated sites were selected as those with the highest crash frequency per mi in the before period. 
For simulation 1, there were 100 treatment sites and 382 reference sites. The assumed CMF was 
0.70, and there were 3 years of before and after data. There were 10 separate trials indicated by 
trial ID in the table. For each trial, the project team simulated the observed number of crashes for 
all sites so that the data were different for each trial. For each trial, the table provides the 
estimated CMF and its SE using the SPF with motorcycle AADT as an explanatory variable, the 
estimated CMF and its SE using the SPF with total AADT as an explanatory variable, and the 
absolute value of the difference between the two estimated CMFs and the SE of this difference. 
The average values are provided in the last row. 

Table 69. Model type B2 results for simulation 1 using type 1 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
1 1.13 0.22 1.13 0.22 0.00 0.31 
2 1.28 0.24 1.28 0.24 0.00 0.34 
3 1.03 0.20 1.09 0.21 0.06 0.29 
4 0.78 0.15 0.85 0.17 0.07 0.23 
5 0.82 0.17 0.88 0.18 0.06 0.25 
6 0.93 0.19 0.82 0.17 0.11 0.25 
7 1.76 0.30 1.74 0.30 0.02 0.42 
8 0.57 0.13 0.59 0.14 0.02 0.19 
9 1.19 0.21 1.27 0.23 0.08 0.31 
10 0.57 0.14 0.54 0.13 0.03 0.19 
Average 1.01 0.20 1.02 0.20 0.05 0.28 

 
The results from simulation 1 showed that the estimated CMF could vary a lot between trials, 
and the SEs of the CMF estimates were high. Very few of the CMF estimates were statistically 
different from a value of 1.0.  

A value of 1.0 for a CMF indicated that there was no effect on crashes. This illustrates the 
difficulty in estimating accurate CMFs using motorcycle crashes, which are rare. While this is 
illustrative of this fact, the prime interest is to investigate whether the CMF estimates differ 
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greatly depending on whether the SPFs using motorcycle AADT or total AADT are applied in 
the EB before-after study approach. For this comparison, the results showed little difference. The 
average CMFs using the motorcycle and total AADT respectively were 1.01 and 1.02, and the 
average difference across all trials was 0.05. 

The estimated CMFs that tended to be higher than 0.70 indicated that regression-to-the-mean 
was being overcorrected. Because the treatment sites were selected based on high crash rate, this 
left low crash rate sites for the reference sites, and the SPFs required predicted very few crashes 
since they are based on these remaining low crash sites. 

In simulation 2, the project team used 200 sites as treatment sites and only 282 as reference sites. 
The CMF and number of years before and after stayed the same. The results, shown in table 70, 
were very similar to those in simulation 1, although the SEs of estimates were slightly smaller 
due to the larger sample size of treated sites. 

Table 70. B2 results for simulation 2 using type 1 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
11 1.54 0.24 1.62 0.25 0.08 0.35 
12 1.07 0.19 1.07 0.19 0.00 0.27 
13 0.87 0.15 0.90 0.16 0.03 0.22 
14 0.84 0.15 0.79 0.14 0.05 0.21 
15 1.21 0.20 1.29 0.22 0.08 0.30 
16 0.70 0.15 0.67 0.14 0.03 0.21 
17 1.04 0.19 0.96 0.17 0.08 0.25 
18 1.01 0.19 1.00 0.19 0.01 0.27 
19 0.76 0.14 0.79 0.15 0.03 0.21 
20 0.86 0.16 0.82 0.16 0.04 0.23 
Average 0.99 0.18 0.99 0.18 0.04 0.25 
 
In simulation 3, the number of sites and assumed CMF was identical to simulation 2, but now the 
treatment sites were selected by a random variable and not by taking the highest crash rate sites 
in the before period. This random selection would minimize any regression to the mean in the 
data. For these results, shown in table 71, there were near-identical estimates for the CMF 
between using the motorcycle or total AADT model. The average value of estimated CMFs was 
0.69 for both the motorcycle and total AADT SPF approaches. However, significant variation in 
the CMF estimates for between trials remained. 
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Table 71. B2 results for simulation 3 using type 1 Florida. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
21 0.93 0.16 0.93 0.16 0.00 0.23 
22 0.55 0.11 0.55 0.11 0.00 0.16 
23 0.58 0.12 0.59 0.12 0.01 0.17 
24 0.58 0.11 0.58 0.11 0.00 0.16 
25 0.61 0.11 0.59 0.11 0.02 0.16 
26 0.53 0.11 0.53 0.11 0.00 0.16 
27 0.62 0.12 0.64 0.12 0.02 0.17 
28 0.80 0.14 0.78 0.14 0.02 0.20 
29 0.81 0.13 0.80 0.14 0.01 0.19 
30 0.93 0.16 0.93 0.16 0.00 0.23 
Average 0.69 0.13 0.69 0.13 0.01 0.18 

 
In simulation 4, the treatment sites were selected using a random variable only for sites that had 
one or more motorcycle crashes in the before period. The project team also reduced the number 
of treatment sites to 50. The results are shown in table 72. Again, the results showed that the 
estimates using the two SPFs were close, with the average difference being 0.05. The average 
values of the estimated CMFs were also close to 0.70. 

Table 72. Results for simulation 4 using type 1 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
31 0.56 0.16 0.61 0.18 0.05 0.24 
32 0.88 0.20 0.94 0.21 0.06 0.29 
33 0.86 0.19 0.88 0.20 0.02 0.28 
34 0.78 0.18 0.82 0.19 0.04 0.26 
35 0.75 0.18 0.79 0.19 0.04 0.26 
36 0.49 0.15 0.49 0.16 0.00 0.22 
37 0.68 0.17 0.72 0.18 0.04 0.25 
38 0.52 0.16 0.54 0.17 0.02 0.23 
39 0.89 0.22 0.97 0.24 0.08 0.33 
40 0.98 0.25 0.88 0.23 0.10 0.34 
Average 0.74 0.19 0.76 0.20 0.05 0.27 
 
Florida Type 3 

Table 73 shows the results for simulation 1 using the Florida type 3 data. In simulation 1, the 
project team selected the treated sites using a random number for sites that had one or more 
before period crashes. There were 200 treatment sites and 2,997 reference sites. The CMF was 
0.90 with 3 years before and 3 years after.   

Similar to the results for the type 1 sites, the results from simulation 1 showed that the estimated 
CMF could vary a lot between trials. However, the differences for each trial between the 
estimates of the CMF using the SPF with motorcycle AADT versus total AADT were small. The 
average CMFs using the motorcycle and total AADT were 0.78 and 0.73, respectively, and the 
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average difference across all trials was 0.05. The CMF estimates tended to be low, indicating that 
the correction for regression to the mean was not large enough. 

Table 73. Results for simulation 1 using type 3 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
1 0.67 0.09 0.64 0.08 0.03 0.12 
2 0.78 0.11 0.72 0.10 0.06 0.15 
3 0.55 0.08 0.52 0.08 0.03 0.11 
4 0.86 0.11 0.82 0.10 0.04 0.15 
5 0.77 0.10 0.72 0.09 0.05 0.13 
6 0.79 0.10 0.75 0.10 0.04 0.14 
7 0.74 0.10 0.67 0.09 0.07 0.13 
8 0.88 0.10 0.82 0.10 0.06 0.14 
9 0.77 0.10 0.72 0.09 0.05 0.13 
10 0.97 0.12 0.90 0.11 0.07 0.16 
Average 0.78 0.10 0.73 0.09 0.05 0.14 
 
In simulation 2, the number of treatment sites decreased from 200 to 100, the number of 
reference sites increased slightly from 2,997 to 3,097, and the true CMF reduced from 0.90 to 
0.70. 

The results from simulation 2 were consistent, as shown in table 74. However, the estimated 
CMF can vary greatly between trials, and the differences for each trial between the estimates of 
the CMF using the SPF with motorcycle AADT versus total AADT were small. The average 
CMFs using the motorcycle and total AADT respectively were 0.60 and 0.64, and the average 
difference across all trials was 0.04. As with simulation 1, the correction for regression to the 
mean appears not to be enough on average. 
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Table 74. Results for simulation 2 using type 3 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
11 0.73 0.13 0.78 0.14 0.05 0.19 
12 0.30 0.08 0.31 0.08 0.01 0.11 
13 0.50 0.11 0.50 0.11 0.00 0.16 
14 0.65 0.12 0.63 0.12 0.02 0.17 
15 0.72 0.14 0.76 0.15 0.04 0.21 
16 0.57 0.12 0.64 0.14 0.07 0.18 
17 0.54 0.11 0.58 0.13 0.04 0.17 
18 0.64 0.13 0.69 0.15 0.05 0.20 
19 0.81 0.15 0.89 0.16 0.08 0.22 
20 0.55 0.12 0.59 0.13 0.04 0.18 
Average 0.60 0.12 0.64 0.13 0.04 0.18 
 
In simulation 3, the number of treatment sites increased to 1,000, the number of reference sites 
decreased to 2,197, and the true CMF remained 0.70. 

As shown in table 75, the results from simulation 3 were also consistent in that the estimated 
CMF can vary between trials, and the differences for each trial between the estimates of the 
CMF using the SPF with motorcycle AADT versus total AADT were small. The average CMFs 
using the motorcycle and total AADT were 1.06 and 1.07, respectively, and the average 
difference across all trials was 0.03. 

For simulation 3, the correction for regression to the mean appeared too large. With so many of 
the sites in the treatment group, the mean motorcycle crash rate of the reference group would be 
very low. 

Table 75. Results for simulation 3 using type 3 Florida data. 

Trial CMF MOTO SE MOTO CMF AADT SE AADT Difference SE Difference 
21 0.99 0.08 0.99 0.08 0.00 0.11 
22 1.21 0.09 1.23 0.09 0.02 0.13 
23 0.96 0.07 0.99 0.08 0.03 0.11 
24 0.93 0.07 0.94 0.07 0.01 0.10 
25 1.38 0.10 1.45 0.10 0.07 0.14 
26 1.00 0.08 0.98 0.08 0.02 0.11 
27 0.98 0.08 1.03 0.09 0.05 0.12 
28 1.15 0.09 1.12 0.09 0.03 0.13 
29 0.99 0.08 1.00 0.08 0.01 0.11 
30 0.97 0.08 0.96 0.08 0.01 0.11 
Average 1.06 0.08 1.07 0.08 0.03 0.12 
 
AVENUE B MODEL TYPE B2 

The model type B2 analyses were conducted using the data for types 1 (rural freeway) and 3 
(rural arterial) in Florida and for type 3 (rural non-freeway) in Pennsylvania. 



102 

Florida Type 1 

Simulation 1 
Figure 37 shows the model used to simulate the data for simulation 1 where dispersion equals 
0.4975 and the CMF for AVGSHLDWID equals 0.89. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑒𝑒𝑒𝑒𝑒𝑒−5.3785𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.8438𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0.8227𝑒𝑒𝑒𝑒𝑒𝑒−0.118∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   
Figure 37. Equation. Florida type 1 simulation model 1. 

The goal of the analysis was to re-estimate the model, including the parameter in the model for 
the average shoulder width variable, AVGSHLDWID. The project did this once with 
AVGMOTO and once with AVGAADT as the exposure measure. 

Column 1 in table 76 indicates the trial number. Columns 2 and 3 show the parameter estimate 
and SE for the AVGSHLDWID variable using AVGMOTO in the model. Columns 4 and 5 show 
the same information for the model using AVGAADT in the model. Columns 6 and 7 provide 
the absolute value of the difference in parameter estimates and the SE of this difference. 
Columns 8 and 9 provide the inferred CMFs for the parameter values estimated. The last row 
shows the average value for all estimates across all trials. The estimated CMFs using the two 
exposure measures were very close for each trial and the average over all trials was very close to 
the true value of 0.89. 
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Table 76. B2 results simulation 1 for Florida type 1 data. 

Trial 

Estimate Using 
Motorcycle 

AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using Total 

AADT 

SE Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation Of 

Difference 

CMF Using 
Motorcycle 

AADT 

CMF Using 
Total 

AADT 
1 -0.0153 0.0567 -0.0146 0.0655 0.0007 0.0866 0.98 0.99 
2 -0.1098 0.0571 -0.0775 0.0669 0.0323 0.0880 0.90 0.93 
3 -0.1182 0.0570 -0.1342 0.0670 0.0160 0.0880 0.89 0.87 
4 -0.1999 0.0624 -0.2226 0.0718 0.0227 0.0951 0.82 0.80 
5 -0.1039 0.0585 -0.0976 0.0684 0.0063 0.0900 0.90 0.91 
6 -0.0946 0.0544 -0.1419 0.0622 0.0473 0.0826 0.91 0.87 
7 -0.0682 0.0586 -0.0511 0.0671 0.0171 0.0891 0.93 0.95 
8 -0.1488 0.0572 -0.1584 0.0663 0.0096 0.0876 0.86 0.85 
9 -0.1155 0.0553 -0.0678 0.0642 0.0477 0.0847 0.89 0.93 
10 -0.1397 0.0511 -0.1606 0.0601 0.0209 0.0789 0.87 0.85 
11 -0.1443 0.0635 -0.2093 0.0722 0.0650 0.0962 0.87 0.81 
12 -0.2069 0.0645 -0.2454 0.0737 0.0385 0.0979 0.81 0.78 
13 -0.2297 0.0589 -0.2360 0.0702 0.0063 0.0916 0.79 0.79 
14 -0.1308 0.0541 -0.1274 0.0639 0.0034 0.0837 0.88 0.88 
15 -0.1457 0.0561 -0.1459 0.0655 0.0002 0.0862 0.86 0.86 
16 -0.1323 0.0574 -0.1216 0.0665 0.0107 0.0878 0.88 0.89 
17 -0.0811 0.0554 -0.0614 0.0634 0.0197 0.0842 0.92 0.94 
18 -0.1994 0.0577 -0.1742 0.0680 0.0252 0.0892 0.82 0.84 
19 -0.1478 0.0548 -0.1817 0.0625 0.0339 0.0831 0.86 0.83 
20 -0.0923 0.0589 -0.0910 0.0678 0.0013 0.0898 0.91 0.91 
Average -0.1312 0.0575 -0.1360 0.0667 0.0212 0.0880 0.88 0.87 
STD N/A N/A N/A N/A N/A N/A 0.05 0.06 
Minimum N/A N/A N/A N/A N/A N/A 0.79 0.78 
Maximum N/A N/A N/A N/A N/A N/A 0.98 0.99 

N/A = The statistic is not of interest and was not calculated. 
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Simulation 2 

For simulation 2, the project team applied the same model used for simulation 1 (see figure 38) 
but with a much higher dispersion parameter equal to 5. The CMF for AVGSHLDWID equaled 
0.89 per 1-ft increase in average shoulder width. The impact of the larger dispersion parameter 
was to create much more variability in crash counts between sites with similar road 
characteristics and traffic volumes. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑒𝑒𝑒𝑒𝑒𝑒−5.3785𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.8438𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0.8227𝑒𝑒𝑒𝑒𝑒𝑒−0.118∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴   
Figure 38. Equation. Florida type 1 simulation model 2. 

The results in table 77 again show that the estimated CMFs are close when using either the 
motorcycle or total AADT as an exposure measure. The average over all trials was close to the 
true value of 0.89: 0.92 for the motorcycle AADT model and 0.91 for the total AADT model. 
However, the standard deviation of the CMF estimates between trials is about double that for 
simulation 1. 
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Table 77. Model type B2 results simulation 2 for Florida type 1 data. 

Trial 

Estimate Using 
Motorcycle 

AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using Total 

AADT 

SE Using 
Total 

AADT 
Difference in 

Estimates 

Standard 
Deviation Of 

Difference 

CMF Using 
Motorcycle 

AADT 
CMF Using 
Total AADT 

21 0.0017 0.0899 0.0692 0.1021 0.0675 0.1360 1.00 1.07 
22 -0.0753 0.0871 -0.0740 0.0995 0.0013 0.1322 0.93 0.93 
23 -0.1427 0.0894 -0.1690 0.1023 0.0263 0.1359 0.87 0.84 
24 -0.0513 0.0919 -0.0833 0.1042 0.0320 0.1389 0.95 0.92 
25 -0.1485 0.0850 -0.2201 0.0977 0.0716 0.1295 0.86 0.80 
26 -0.2881 0.0975 -0.3399 0.1120 0.0518 0.1485 0.75 0.71 
27 -0.0678 0.0852 -0.1569 0.0985 0.0891 0.1302 0.93 0.85 
28 -0.1741 0.0901 -0.2295 0.1053 0.0554 0.1386 0.84 0.79 
29 -0.0775 0.0901 -0.0503 0.1023 0.0272 0.1363 0.93 0.95 
30 -0.0762 0.0821 -0.0764 0.0923 0.0002 0.1235 0.93 0.93 
31 0.0582 0.0777 0.0634 0.0892 0.0052 0.1183 1.06 1.07 
32 0.0217 0.0801 0.0276 0.0908 0.0059 0.1211 1.02 1.03 
33 0.0406 0.0867 -0.0363 0.0976 0.0769 0.1305 1.04 0.96 
34 -0.0211 0.0856 0.0024 0.0967 0.0235 0.1291 0.98 1.00 
35 -0.1611 0.0912 -0.1655 0.1043 0.0044 0.1385 0.85 0.85 
36 -0.2299 0.0951 -0.3021 0.1119 0.0722 0.1469 0.79 0.74 
37 -0.2107 0.0916 -0.1018 0.1021 0.1089 0.1372 0.81 0.90 
38 -0.2393 0.0834 -0.2532 0.0965 0.0139 0.1275 0.79 0.78 
39 0.1332 0.0902 0.1433 0.1008 0.0101 0.1353 1.14 1.15 
40 -0.1198 0.0808 -0.1585 0.0932 0.0387 0.1233 0.89 0.85 
Average -0.09 0.09 -0.11 0.10 0.04 0.13 0.92 0.91 
STD N/A N/A N/A N/A N/A N/A 0.10 0.12 
Minimum N/A N/A N/A N/A N/A N/A 0.75 0.71 
Maximum N/A N/A N/A N/A N/A N/A 1.14 1.15 

N/A = The statistic is not of interest and was not calculated. 
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Florida Type 3 

Simulation 1 
For the type 3 data in Florida, the project team pursued the simultaneous estimation of  
two CMFs. Figure 39 shows the model used to simulate the data for simulation 1. In this figure, 
dispersion equals 0.3390. The CMF for AVGSHLDWID equals 0.89 per 1-ft increase in average 
shoulder width. The CMF for MEDWIDTH equals 0.99 per 1-ft increase in median width. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
= 𝑒𝑒𝑒𝑒𝑒𝑒−4.1264𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.6155𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0.6683𝑒𝑒𝑒𝑒𝑒𝑒−0.118∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 −0.01∗𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀   

Figure 39. Equation. Florida type 3 simulation model 1. 

The results in table 78 and table 79 show that the estimated CMFs were close when using either 
the motorcycle or total AADT as an exposure measure. The average over all trials was also very 
close to the true value CMF values. 
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Table 78. Model type B2 results simulation 1 for Florida type 3 data for AVGSHLDWID. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
1 -0.1039 0.0237 -0.1226 0.0245 0.0187 0.0341 0.90 0.88 
2 -0.1580 0.0247 -0.1801 0.0256 0.0221 0.0356 0.85 0.84 
3 -0.1532 0.0254 -0.1736 0.0267 0.0204 0.0369 0.86 0.84 
4 -0.1054 0.0229 -0.1259 0.0237 0.0205 0.0330 0.90 0.88 
5 -0.1086 0.0226 -0.1281 0.0233 0.0195 0.0325 0.90 0.88 
6 -0.1122 0.0232 -0.1330 0.0240 0.0208 0.0334 0.89 0.88 
7 -0.0117 0.0021 -0.1604 0.0255 0.1487 0.0256 0.99 0.85 
8 -0.1490 0.0238 -0.1661 0.0245 0.0171 0.0342 0.86 0.85 
9 -0.0937 0.0226 -0.1091 0.0231 0.0154 0.0323 0.91 0.90 
10 -0.1248 0.0234 -0.1474 0.0242 0.0226 0.0269 0.88 0.86 
11 -0.1088 0.0230 -0.1321 0.0240 0.0233 0.0332 0.90 0.88 
12 -0.1175 0.0243 -0.1365 0.0250 0.0190 0.0349 0.89 0.87 
13 -0.1180 0.0231 -0.1381 0.0238 0.0201 0.0332 0.89 0.87 
14 -0.1680 0.0254 -0.1860 0.0260 0.0180 0.0363 0.85 0.83 
15 -0.1233 0.0242 -0.1423 0.0246 0.0190 0.0345 0.88 0.87 
16 -0.1047 0.0233 -0.1283 0.0242 0.0236 0.0336 0.90 0.88 
17 -0.1164 0.0236 -0.1333 0.0245 0.0169 0.0340 0.89 0.88 
18 -0.1392 0.0234 -0.0159 0.0243 0.1233 0.0337 0.87 0.98 
19 -0.1568 0.0246 -0.1780 0.0252 0.0212 0.0352 0.85 0.84 
20 -0.1251 0.0237 -0.1472 0.0246 0.0221 0.0342 0.88 0.86 
Average -0.1199 0.0227 -0.1392 0.0246 0.0316 0.0334 0.89 0.87 
STD N/A N/A N/A N/A N/A N/A 0.03 0.03 
Minimum N/A N/A N/A N/A N/A N/A 0.85 0.83 
Maximum N/A N/A N/A N/A N/A N/A 0.99 0.98 

N/A = The statistic is not of interest and was not calculated. 
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Table 79. Model type B2 results simulation 1 for Florida type 3 data for MEDWIDTH. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
. -0.0062 0.0020 -0.0095 0.0024 0.0033 0.0031 0.99 0.99 
2 -0.0107 0.0020 -0.0131 0.0024 0.0024 0.0031 0.99 0.99 
3 -0.0114 0.0021 -0.0127 0.0025 0.0013 0.0033 0.99 0.99 
4 -0.0122 0.0021 -0.0169 0.0025 0.0047 0.0033 0.99 0.98 
5 -0.0125 0.0020 -0.0169 0.0024 0.0044 0.0031 0.99 0.98 
6 -0.0113 0.0021 -0.0146 0.0024 0.0033 0.0032 0.99 0.99 
7 -0.0117 0.0021 -0.0156 0.0025 0.0039 0.0033 0.99 0.98 
8 -0.0101 0.0020 -0.0132 0.0023 0.0031 0.0030 0.99 0.99 
9 -0.0111 0.0021 -0.0155 0.0024 0.0044 0.0032 0.99 0.98 
10 -0.0087 0.0020 -0.0132 0.0024 0.0045 0.0031 0.99 0.99 
11 -0.0075 0.0019 -0.0104 0.0023 0.0029 0.0030 0.99 0.99 
12 -0.0071 0.0020 -0.0109 0.0024 0.0038 0.0031 0.99 0.99 
13 -0.0105 0.0020 -0.0140 0.0023 0.0035 0.0030 0.99 0.99 
14 -0.0117 0.0021 -0.0146 0.0024 0.0029 0.0032 0.99 0.99 
15 -0.0090 0.0020 -0.0137 0.0024 0.0047 0.0031 0.99 0.99 
16 -0.0103 0.0021 -0.0143 0.0025 0.0040 0.0033 0.99 0.99 
17 -0.0101 0.0021 -0.0125 0.0024 0.0024 0.0032 0.99 0.99 
18 -0.0147 0.0020 -0.0180 0.0024 0.0033 0.0031 0.99 0.98 
19 -0.0121 0.0020 -0.0166 0.0024 0.0045 0.0031 0.99 0.98 
20 -0.0110 0.0020 -0.0155 0.0024 0.0045 0.0031 0.99 0.98 
Average -0.0105 0.0020 -0.0141 0.0024 0.0036 0.0032 0.99 0.99 
STD N/A N/A N/A N/A N/A STD 0.00 0.00 
Minimum N/A N/A N/A N/A N/A Minimum 0.99 0.98 
Maximum N/A N/A N/A N/A N/A Maximum 0.99 0.99 

N/A = The statistic is not of interest and was not calculated. 

Simulation 2 
In simulation 2, the project team chose a random sample of 200 segments to investigate the 
results when the sample size is small. All other assumptions used in simulation 1 remained  
the same. The results in table 80 and table 81 show that as before, the CMF estimates for  
both geometric variables were very close between using motorcycle AADT or total AADT  
as the exposure measure. The average value over all trials was also close to the true value 
estimates. However, with the smaller sample size, the standard deviation of the CMF estimates 
was much higher. 
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Table 80. Model type B2 results simulation 2 for Florida type 3 data for AVGSHLDWID. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
1 -0.0864 0.2578 -0.0934 0.2509 0.0070 0.3597 0.92 0.91 
2 -0.0921 0.2073 -0.1389 0.1859 0.0468 0.2784 0.91 0.87 
3 -0.1128 0.3773 -0.1289 0.3831 0.0161 0.5377 0.89 0.88 
4 -0.0865 0.1781 -0.1167 0.1825 0.0302 0.2550 0.92 0.89 
5 -0.0328 0.1932 -0.0309 0.1874 0.0019 0.2692 0.97 0.97 
6 -0.1992 0.2649 -0.2326 0.2808 0.0334 0.3860 0.82 0.79 
7 -0.5430 0.3211 -0.5201 0.3140 0.0229 0.4491 0.58 0.59 
8 -0.2165 0.2271 -0.2120 0.2226 0.0045 0.3180 0.81 0.81 
9 0.0156 0.1320 0.0043 0.1488 0.0113 0.1989 1.02 1.00 
10 0.0322 0.1865 0.0432 0.1783 0.0110 0.2580 1.03 1.04 
Average -0.1322 0.2345 -0.1426 0.2334 0.0185 0.3310 0.89 0.88 
STD N/A N/A N/A N/A N/A N/A 0.13 0.13 
Minimum N/A N/A N/A N/A N/A N/A 0.58 0.59 
Maximum N/A N/A N/A N/A N/A N/A 1.03 1.04 

N/A = The statistic is not of interest and was not calculated. 

Table 81. Model type B2 results simulation 2 for Florida type 3 data for MEDWIDTH. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
1 -0.0065 0.0195 -0.0219 0.0248 0.0154 0.0315 0.99 0.98 
2 -0.0066 0.0127 -0.0171 0.0153 0.0105 0.0199 0.99 0.98 
3 0.0174 0.0167 0.0183 0.0184 0.0009 0.0248 1.02 1.02 
4 0.0133 0.0112 0.0123 0.0153 0.0010 0.0190 1.01 1.01 
5 0.0051 0.0193 0.0021 0.0205 0.0030 0.0282 1.01 1.00 
6 -0.0121 0.0223 0.0028 0.0250 0.0149 0.0335 0.99 1.00 
7 -0.0120 0.0201 -0.0114 0.0221 0.0006 0.0299 0.99 0.99 
8 -0.0065 0.0161 -0.0082 0.0175 0.0017 0.0238 0.99 0.99 
9 -0.0438 0.0308 -0.0482 0.0312 0.0044 0.0438 0.96 0.95 
10 0.0002 0.0158 0.0024 0.0191 0.0022 0.0248 1.00 1.00 
Average -0.0052 0.0185 -0.0069 0.0209 0.0055 0.0279 0.99 0.99 
STD N/A N/A N/A N/A N/A STD 0.02 0.02 
Minimum N/A N/A N/A N/A N/A Minimum 0.96 0.95 
Maximum N/A N/A N/A N/A N/A Maximum 1.02 1.02 

N/A = The statistic is not of interest and was not calculated. 
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Pennsylvania Type 3 

The project team ran one simulation using the type 3 sites in Pennsylvania. For this simulation, 
two geometric variables were included in the model: average shoulder width (AVGSHLDWID) 
and total surface width (SURFWIDTH). In this model, dispersion equals 0.8647. The CMF for 
AVGSHLDWID equals 0.97 per 1-ft increase in average shoulder width. The CMF for 
SURFWIDTH equals 1.03 per 1-ft increase in total surface width. Figure 40 shows the model 
used to simulate the data for simulation 1. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀
= 𝑒𝑒𝑒𝑒𝑒𝑒−5.0123𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.4623𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0.7370𝑒𝑒𝑒𝑒𝑒𝑒−0.0278∗𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 +0.0256∗𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   

Figure 40. Equation. Pennsylvania type 3 simulation model 1. 

For estimating the new models, the project team selected a random subset of 200 sites for each 
trial. This random selection allowed the project team to evaluate the impact of small sample sizes 
on the results.  

The results in table 82 and table 83 show that, as before, the CMF estimates for both geometric 
variables are very close between using motorcycle AADT or total AADT as the exposure 
measure. The average value over all trials is also very close to the true value estimates. 
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Table 82. Model type B2 results simulation 1 for Pennsylvania type 3 data for 
AVGSHLDWID. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
1 0.0050 0.0572 0.0071 0.0597 0.0021 0.0827 1.01 1.01 
2 0.0123 0.0536 0.0300 0.0555 0.0177 0.0772 1.01 1.03 
3 -0.0634 0.0631 -0.0652 0.0655 0.0018 0.0909 0.94 0.94 
4 -0.0944 0.0628 -0.0814 0.0651 0.0130 0.0905 0.91 0.92 
5 -0.0294 0.0555 -0.0273 0.0577 0.0021 0.0801 0.97 0.97 
6 -0.0954 0.0595 -0.0593 0.0620 0.0361 0.0859 0.91 0.94 
7 -0.0981 0.0676 -0.1270 0.0708 0.0289 0.0979 0.91 0.88 
8 -0.0457 0.0589 -0.0543 0.0618 0.0086 0.0854 0.96 0.95 
9 -0.1707 0.0658 -0.1966 0.0690 0.0259 0.0953 0.84 0.82 
10 -0.0223 0.0561 -0.0359 0.0584 0.0136 0.0810 0.98 0.96 
11 -0.0400 0.0555 -0.0303 0.0578 0.0097 0.0801 0.96 0.97 
12 -0.0504 0.0616 -0.0423 0.0642 0.0081 0.0890 0.95 0.96 
13 0.0799 0.0545 0.0858 0.0564 0.0059 0.0784 1.08 1.09 
14 -0.1335 0.0555 -0.1436 0.0585 0.0101 0.0806 0.88 0.87 
15 -0.0061 0.0555 0.0012 0.0579 0.0073 0.0802 0.99 1.00 
16 -0.0273 0.0560 -0.0276 0.0586 0.0003 0.0811 0.97 0.97 
17 -0.0726 0.0645 -0.0939 0.0674 0.0213 0.0933 0.93 0.91 
18 0.0023 0.0606 -0.0089 0.0629 0.0112 0.0873 1.00 0.99 
19 -0.0777 0.0632 -0.0726 0.0657 0.0051 0.0912 0.93 0.93 
20 -0.0379 0.0556 -0.0234 0.0578 0.0145 0.0802 0.96 0.98 
Average -0.0483 0.0591 -0.0483 0.0616 0.0122 0.0854 0.95 0.95 
STD N/A N/A N/A N/A N/A N/A 0.05 0.06 
Minimum N/A N/A N/A N/A N/A N/A 0.84 0.82 
Maximum N/A N/A N/A N/A N/A N/A 1.08 1.09 

N/A = The statistic is not of interest and was not calculated. 
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Table 83. Model type B2 results simulation 1 for Pennsylvania type 3 data for 
SURFWIDTH. 

Trial 

Estimate 
Using 

Motorcycle 
AADT 

SE Using 
Motorcycle 

AADT 

Estimate 
Using 
Total 

AADT 

SE 
Using 
Total 

AADT 

Difference 
in 

Estimates 

Standard 
Deviation 

of 
Difference 

CMF Using 
Motorcycle 

AADT 

CMF 
Using 
Total 

AADT 
1 0.0132 0.0275 0.0203 0.0275 0.0071 0.0389 1.01 1.02 
2 0.0415 0.0221 0.0532 0.0216 0.0117 0.0309 1.04 1.05 
3 0.0303 0.0289 0.0361 0.0290 0.0058 0.0409 1.03 1.03 
4 0.0536 0.0246 0.0658 0.0241 0.0122 0.0344 1.06 1.07 
5 0.0265 0.0243 0.0327 0.0241 0.0062 0.0342 1.03 1.03 
6 0.0331 0.0244 0.0544 0.0228 0.0213 0.0334 1.03 1.06 
7 0.0110 0.0323 0.0030 0.0339 0.0080 0.0468 1.01 1.00 
8 -.0303 0.0336 -0.0229 0.0342 0.0074 0.0479 0.97 0.98 
9 0.0258 0.0291 0.0185 0.0306 0.0073 0.0422 1.03 1.02 
10 0.0201 0.0261 0.0207 0.0267 0.0006 0.0373 1.02 1.02 
11 0.0233 0.0249 0.0333 0.0243 0.0100 0.0348 1.02 1.03 
12 0.0209 0.0284 0.0315 0.0279 0.0106 0.0398 1.02 1.03 
13 0.0485 0.0226 0.0568 0.0225 0.0083 0.0319 1.05 1.06 
14 0.0587 0.0200 0.0608 0.0201 0.0021 0.0284 1.06 1.06 
15 0.0296 0.0244 0.0392 0.0241 0.0096 0.0343 1.03 1.04 
16 -.0245 0.0318 -0.0147 0.0320 0.0098 0.0451 0.98 0.99 
17 0.0238 0.0298 0.0184 0.0309 0.0054 0.0429 1.02 1.02 
18 0.0389 0.0264 0.0401 0.0267 0.0012 0.0375 1.04 1.04 
19 0.0328 0.0293 0.0391 0.0294 0.0063 0.0415 1.03 1.04 
20 0.0211 0.0257 0.0351 0.0250 0.0140 0.0359 1.02 1.04 
Average 0.0249 0.0268 0.0311 0.0269 0.0082 0.0380 1.03 1.03 
STD N/A N/A N/A N/A N/A N/A 0.02 0.02 
Minimum N/A N/A N/A N/A N/A N/A 0.97 0.98 
Maximum N/A N/A N/A N/A N/A N/A 1.06 1.07 

N/A = The statistic is not of interest and was not calculated. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

Data on traffic volumes are vital to the development of SPFs required for effective 
implementation of strategies to improve the safety of road networks. Mitigating  
motorcycle crashes can be especially challenging in this regard because few jurisdictions  
collect motorcycle traffic volume data systematically. To address this challenge, the project  
team conducted several analyses to explore (1) how much predictive power for an SPF is lost 
when motorcycle volumes are unknown and how this lack of information may affect a study  
of motorcycle countermeasures, and (2) alternative methods for deriving accurate predictions of 
motorcycle crashes or motorcycle volumes. The research investigated and demonstrated methods 
and the mathematical models that can be applied by jurisdictions that lack motorcycle volumes 
when undertaking the development and the evaluation of motorcycle-related safety 
countermeasures to estimate CMFs. 

The project team investigated two groups, or avenues, of methods. The methods for avenue A 
focused on investigating (1) the difference in predictive performance for motorcycle SPFs 
calibrated with motorcycle AADT versus total AADT, (2) relating total crash SPFs to 
motorcycle crash SPFs so jurisdictions without motorcycle volumes could predict motorcycle 
crashes using total crash SPFs, and (3) methods to predict segment-level motorcycle AADT. The 
methods for avenue B focused on the differences in CMF estimates when using motorcycle 
AADT versus total AADT when applying before-after or cross-sectional regression CMF 
estimation methods. 

For developing the avenue A models, data were collected from Florida and Pennsylvania. Both 
States had a large number of locations with an estimated motorcycle AADT and could provide 
linkable roadway inventory, traffic, and crash data. The project team also acquired data from 
Virginia to validate the models developed. 

Table 84 summarizes the avenue A methods, with a final column on conclusions from the 
analysis. In addition to the analyses depicted, an assessment was conducted of how well EB 
estimates derived from the model type A1 models predict future motorcycle crashes for high-
crash locations typically of interest in countermeasure applications that form the basis for future 
CMF development. The results of that assessment show that the models using total AADT and 
those using motorcycle AADT perform similarly, although the EB estimates from the total 
AADT models of the crashes at the high crash sites are marginally closer to the actual future 
crash counts than those based on the motorcycle AADT models. 
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Table 84. Summary of avenue A method elements and results. 

Model Type and 
Intended 
Function Basic Purpose SPFs Developed Approach Conclusion 

A1: Provide a 
direct measure of 
how the predictive 
power of a model 
is affected by 
either including or 
excluding 
motorcycle 
volumes. 

To explore 
how much 
predictive 
power is lost 
when 
motorcycle 
volumes are 
unknown. 

A1.1. Motorcycle 
crashes versus total 
AADT and other 
independent 
variables. 
A1.2. Motorcycle 
crashes versus 
motorcycle AADT 
and other 
independent 
variables. 

1. Assess goodness-of-fit of two model 
sets and compare. 

2. Assess how well each model set 
predicts motorcycle crashes at high 
crash locations. 

3. After steps 1 and 2, assess predictive 
ability of SPF 1.  

4. Consider SPF A1.1 for application to 
any jurisdiction if successful. 

5. Use FHWA SPF calibration tool to 
assess application of SPF A1.1 to 
selected jurisdictions. 

Overall, models with total 
AADT perform at least as 
well as those with 
motorcycle AADT for both 
arterials and freeways and 
even slightly better for 
freeways in Florida. 

A2: Allow 
jurisdictions 
without motorcycle 
volumes to predict 
motorcycle crashes 
based on SPFs for 
total crashes. 

Develop a 
relationship 
between 
predicted 
motorcycle 
crash 
frequency and 
predicted total 
crash 
frequency. 

A2.1. Motorcycle 
crashes versus 
motorcycle AADT. 
A2.2. All crashes 
versus total AADT. 
A2.3. Predicted 
motorcycle crashes 
versus predicted 
total crashes and 
other variables. 
 

1. Develop and assess a model that 
relates predictions from SPF A2.1 to 
predictions from SPF A2.2. 

2. Consider SPF A2.3 for application to 
any jurisdiction if successful. 

 

Models were successfully 
developed using the data for 
Florida. For Pennsylvania, 
no satisfactory models could 
be developed. 
 
In Florida, for urban and 
rural freeways, both A2 
SPFs can outperform the 
corresponding models that 
predict motorcycle crashes 
from motorcycle AADT. For 
urban and rural arterials, the 
opposite is true. 
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Model Type and 
Intended 
Function Basic Purpose SPFs Developed Approach Conclusion 

A3: Allow 
jurisdictions to 
directly estimate 
motorcycle 
volumes. 

Develop 
models to 
estimate 
motorcycle 
traffic volumes 
based on 
roadway 
characteristics 
and other 
variables that 
may influence 
motorcycle trip 
generation. 

A3 Motorcycle 
AADT versus 
variables related to 
roadway segment 
and county-level 
estimates of 
motorcycle 
registrations, 
licensing, and 
sociodemographic 
characteristics. 

1. Assess/include variables that cause 
motorcycle AADT to vary.  
2. Consider model A3 for estimating 
AADT in any jurisdiction where causal 
variables available if successful.  

The models showed low R2 
values indicating that they 
are not explaining much of 
the variation in motorcycle 
AADT between road 
segments. For this reason, 
the A3 modeling was not 
considered a success. 
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The methods applied in avenue B make use of simulated data. Simulating data creates a database 
with many locations and with assumed relationships between roadway geometry or other 
countermeasures and motorcycle crashes. This tests the ability to accurately measure this true 
relationship when motorcycle volumes are and are not used in the process. The fixed 
relationships affecting motorcycle crashes were determined considering a likely range of values 
based on existing safety knowledge. 

To investigate the impact of the lack of motorcycle AADTs on the estimation of CMFs,  
two CMF estimation approaches were investigated: model type B1, the EB before-after 
approach, and model type B2, cross-sectional generalized linear models. The project team chose 
the approach for avenue B because it will provide a direct measure of how the lack of motorcycle 
AADT affects CMF estimation by replicating the process of estimating CMFs. 

For the EB before-after approach, a countermeasure was assumed with a known value of its 
CMF. The project team divided the simulated database into two time periods and adjusted by the 
value of the CMF in the after period the expected crash means for each location. The Poisson 
distribution generated the new after period counts. The project team then applied the EB 
approach to the data for these treated sites, using the remaining sites as a reference group. The 
project team completed this once using the motorcycle AADTs and once total AADT. The 
project team then made a comparison to see how the lack of motorcycle AADT affected the 
estimate of the CMF. The project team performed this entire process, beginning with the 
simulated data, multiple times and with multiple sample sizes and assumed CMF values. 

For the cross-sectional regression model approach, an assumed CMF relationship based on 
logical considerations and related research was defined and added to the SPFs developed in 
model type A1. The project team used this modified SPF to simulate the data. The project team 
then used GLM to re-estimate the SPF, including the fictional variable, with and without 
motorcycle AADTs. The project team then made a comparison to see how the lack of motorcycle 
AADT affected the estimate of the CMF. The project team performed this entire process, 
beginning with the simulated data, multiple times with varying sample sizes and assumed CMF 
values. 

The avenue B analyses used the roadway inventory, total AADT, and motorcycle AADT 
collected for the avenue A methods in Florida and Pennsylvania. For motorcycle crashes, the 
project team simulated the crash counts using the SPFs developed in the model type A1 models 
as a starting point. 

The results for avenue B, which investigated the EB before-after approach, indicate that there 
was relatively little difference (0.05 or less) between the CMFs estimated using the motorcycle 
AADT SPF versus using the total AADT SPF. However, the estimated CMFs between 
simulation runs can vary considerably due to the relatively low frequency of motorcycle crashes. 

The results for avenue B, which investigated the cross-sectional regression approach for 
estimating CMFs, also showed that the estimated CMFs were close when using either the 
motorcycle or total AADT as an exposure measure but that the variability in CMF estimates 
between simulations was large. 
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The findings of both the avenue A and avenue B modeling indicate that when motorcycle 
volumes are not known, using total AADT on its own is sufficient for developing SPFs and 
CMFs. The potential bias due to missing motorcycle-specific AADT is sufficiently negligible 
where it exists so as not to preclude SPF and CMF development. 

The project team concluded that attempting to predict motorcycle volumes is not possible using 
typically available roadway and county-level data. Improvement could possibly be found in trip 
generation type modeling at a disaggregate scale, although given the success of the SPFs using 
total AADT, such an effort may not be worthwhile. 

A more significant issue in developing motorcycle crash SPFs and CMFs is working with a crash 
type that is relatively rare. The analysis did not develop SPFs for all motorcycle crash types or 
site types. More evidently, in the estimation of CMFs, the CMF value varied significantly 
between simulation runs due to the low frequency of motorcycle crashes. 
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CHAPTER 7. LIMITATIONS AND FUTURE RESEARCH NEEDS 

This section summarizes existing data limitations and research gaps identified through the 
assessment of available data sources, analytical methods, and the evaluation results. 

DATA LIMITATIONS 

With respect to developing SPFs and CMFs for motorcycle crashes, there are a number of data 
limitations related to traffic volumes (AADT), crash data, and roadway inventory data. 

AADT Data 

Technology 
States collect traffic volume counts using a variety of techniques and technologies and convert 
these counts into estimated AADT volume estimates. With respect to motorcycle counts, 
NCHRP 08-36, Task 92, Counting Motorcycles, and NCHRP Report 760, Improving Motorcycle 
Travel Data – Data Collection Protocols and Field Tests, provide excellent detail on the 
strengths and weaknesses of the existing counter technologies.(29,30)  

The second of these reports tested five detector technologies for their ability to accurately 
classify all vehicle types, specifically motorcycles. The five detector types tested were  
as follows: 

• Infrared (IR) Classifier: This is a portable or fixed location system using IR beam 
interruption to identify and classify vehicles. The version tested in NCHRP 760 was  
The Infra-Red Traffic Logger (TIRTL).(30) The unit sends beams in four pathways  
(two perpendicular to the direction of travel and two at the diagonals). The receiver 
detects are records two timed events (beam interruption and re-establishment of the 
beam) as a vehicle passes through the four beam paths. 

• Inductive loops/piezo electric sensors: The Traffic Detector Handbook: Third Edition 
describes the principal components of an inductive loop detector as loops of insulated 
wire placed in a slot sawed in the pavement and connected to an electronic controller 
unit.(31) As vehicles pass over the loop, they lower the inductance in the loop, and this 
change is recorded by the electronics in the controller unit. Each passage is time stamped. 
In units capable of classification counts, software is programmed to match the inductance 
changes over time with the pattern expected for each of the 23 FHWA-defined vehicle 
classification bins. Piezoelectric detectors are imbedded sensors that send an electronic 
pulse to the controller unit whenever an axle/tire travels over the sensor. The pulse varies 
by tire force, affecting the sensor. These sensors can be used in an array to provide 
vehicle classification data based on the weight and number of tires going over the  
sensor array. 

• When combined, as is done in Virginia, the inductive loops and piezo sensors detect 
motorcycles with increased accuracy based on magnetic length (from the inductive loop) 
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and rejection of energy detected from adjacent lanes (based on waveform analysis from 
the piezo). 

• Magnetometers: Magnetometers work in a similar fashion to inductive loops in that  
they detect changes to a magnetic field as vehicles pass through the detection zone. 
Magnetometers installed in an array are used with accompanying software to classify 
vehicles by the timing and extent of changes in the magnetic field. Magnetometers are 
passive, meaning that a portion of the vehicle must pass over the detector. This makes 
this type of detector ideal (when installed in groups in a pattern that covers the lane 
correctly) for classification counts and for detecting vehicle spacing. 

• Multi-technology system: This is a newer technology implemented specifically to count 
motorcycles. At the time of the research for NCHRP 760, the technology had not yet 
advanced to the point where it could reliably classify non-motorcycles.(30) As tested, it is 
a lower cost alternative than the other technologies. 

• Tracking video: At the time of the research for NCHRP 760, video-based real-time 
counting and vehicle classification was undergoing significant changes.(30) The 
technology as tested used digital video processing algorithms to identify and classify 
vehicles based on shape profiles. Planned addition of IR video process would potentially 
improve the technology by allowing the unit to also detect the heat signatures of vehicles 
for use in classification.(30) 

Table 85 compares the five technologies tested in NCHRP 760.(30) For each, there are  
two measures of accuracy: MC for motorcycle detection, and non-MC for detection of all other 
vehicles. Costs for two- and four-lane roadways are shown for initial installation. While there 
may be portable versions of many of the technologies, the only portable system tested was the 
TIRTL. The skill level required to set up and calibrate the detector and associated 
electronics/software is shown as well. Table 86 (table 2 from NCHRP 08-36) shows the 
technology used in 24 States.(29) 
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Table 85. Comparisons of five detector technologies from NCHRP 760.(30) 

Technology 

MC 
Accuracy 
(Percent) 

Non-MC 
Accuracy 
(Percent) 

Initial 
Cost 

(Two-
Lane) 

Initial 
Cost 

(Four-
Lane) Portability 

Skill Level 
for Setupa 

IR Classifier 95 98 $26,850 $26,850 Fixed/portableb Expert 

Inductive loops/ 
piezoelectric 
sensors (full lane-
width) 

45 95 $33,000c $61,000 Fixed Field 
technician 

Magnetometers 80 95 $10,204 $15,964 Fixedd Field 
technician 

Multi-technology 
system 

50 N/A $6,000 $12,000 Fixedd Field 
technician 

Tracking video 
system 

75 90 $15,000 $15,000 Fixedd Field 
technician 

aSetup skill level required: expert versus field technician with proper training. 
bTIRTL is available as either portable or fixed, but only portable TIRTL was tested in this research. 
cEstimated by Texas Department of Transportation: $61,000 total for four-lane site and $33,000 total for two-lane site. 
dSome components could be portable, or the detector could be portable with modification. 
N/A = Not available. 

Table 86. Use of various detector technologies in 24 States as reported in NCHRP 08-36.(29) 

Technology 

Short 
Counts 

Short 
Counts 

Continuous 
Counts 

Continuous 
Counts 

Tested Used Tested Used 
Intrusive 
Road tubes 13 20 N/A N/A 
Piezoelectric cable 3 4 9 17 
Conventional inductive loops 6 2 4 8 
Piezoelectric film 1 0 4 3 
Inductive loop signatures 1 0 2 1 
Quadrupole loops 1 0 1 0 
Magnetometers 1 0 2 0 
Non-Intrusive 
Manual 0 1 N/A N/A 
Radar 7 3 4 5 
Video 1 2 2 1 
IR, including TIRTLs 5 0 4 3 
Acoustic 1 0 2 0 

N/A = Not applicable. 

As can be seen from table 86, road tubes are the most common type of detector for short 
counts—NCHRP 760 did not test the road tubes because they were not considered to be capable 
of providing accurate motorcycle classification counts.(30) Piezoelectric and inductive loops 
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together account for the vast majority of detector installations in the 24 States that responded to 
the survey. Of the non-intrusive methods, the TIRTL is second-most common (after radar), but 
the use of the non-intrusive technologies still lagged far behind the inductive loops and 
piezoelectric installations as of 2010 when the project was completed. 

NCHRP 760 concluded that the TIRTL was the most accurate system for detecting both 
motorcycles and non-motorcycles.(30) It has some higher skill level requirements than the  
other detectors, and a relatively higher price compared to the next-most accurate system, 
magnetometers. The two technologies that performed least well in the test (multi-technology  
and tracking video) are undergoing rapid technology improvements and may become more 
useful in the future. If accuracy is improved, then their pricing and required skill level for 
installation are attractive.  

AADT Data Limitations 
FHWA’s Traffic Detector Handbook provides details on the limitations of motorcycle count  
data available.(31) In general, the report finds the relatively small amount of metal in many 
motorcycles combined with the fact that many motorcyclists ride near lane lines in order to  
give themselves more time to avoid cars moving into their lanes means that inductive loop 
detectors and half-lane axle sensors often undercount motorcycles. When motorcycles ride in 
closely spaced groups, the closely spaced axles and cycles often confuse available traffic 
monitoring equipment that has not been designed to identify the resulting pattern of closely 
spaced axles and vehicles.(31)  

The following summarizes the limitations of motorcycle AADT estimates in the United States: 

• Permanent counter installations: Most permanent count system installations are not 
optimized for counting motorcycles. This is important because permanent counters are 
the source of most classification counts taken by States. There are two main concerns 
with current installations: calibration and detector configuration. Calibration refers to the 
sensitivity settings of the detector and software to arrive at correct bin assignments for 
each vehicle detected. The optimal calibration is different for each detector technology 
and will not be repeated here. However, it is important to recognize that detectors do go 
out of calibration and must be checked and adjusted or replaced. The software interprets 
input signals from the detectors and performs the assignment of vehicle counts into bins 
based on the detected size of the vehicle. Again, the technical details are different for 
each detector technology and will not be repeated here. The software is proprietary 
firmware with some user control over the associations between detected vehicle size and 
bin assignments. This is critical because when detecting motorcycles, the range of vehicle 
sizes can overlap with small cars, and the detector/software arrangement can mis-assign 
motorcycles to other vehicle classes when the motorcycles travel in groups. Depending 
on how the detectors are placed in the roadway, motorcycles traveling near the edge of a 
lane may be missed entirely. 

• Temporary count technology: Temporary classification count methods and technology 
exist that can capture motorcycles accurately. This technology is not widely in use 
throughout the United States at present. The more accurate temporary installations are, 
unfortunately, more complex than older, more familiar technology. As a result, there is 
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concern that it may not be installed properly in all instances or that it is more susceptible 
to failure (at least with respect to accurate motorcycle counting) than the older 
technology. As adoption of the new technologies is slow, there is not enough practical 
field data available to judge the benefit/cost of the newer technology. For the purposes of 
this summary, however, it is important to note is that there are relatively few reliable 
motorcycle classification counts outside of permanent count locations. 

• Detector calibration: Taking temporary counts to be a negligible contribution to the 
motorcycle count data at present, the assessment of how accurate motorcycle AADT is in 
the United States requires detailed knowledge of just the permanent count locations. 
Installations and tracking of sensor calibration vary from State to State. It is difficult, if 
not impossible, to summarize how accurate motorcycle counts are at a national level. At 
the State level, it is possible to assess how well the existing count infrastructure matches 
the recently developed advice on detector types and configuration, though that evaluation 
has not yet been done for every State. Calibration of detectors also varies by State. 
Virginia, for example, keeps records that help to identify failing detectors in advance of a 
complete data loss. Other States may have this information, but Virginia supplies it as 
part of their count database so users can decide for themselves whether to use the data 
from any particular permanent count location.  

Some detector types (such as piezo) have a failure mode that affects small vehicle 
classifications earliest and most severely. When a detector starts to fail, motorcycle and 
small car counts are affected most. If a State is not proactively keeping the detectors 
calibrated and replacing those that are failing, analysts may have to selectively exclude 
some count sites for some time periods based on suspicions of unreliable data. 

• Motorcycles traveling in groups: This issue is related to sensor configuration and 
calibration. When motorcycles travel in groups, they often ride in parallel or staggered 
formations at the outsides of a single lane. Detector systems that are not specifically 
configured (as discussed in NCHRP 08-81) to correctly recognize these groupings do a 
poor job classifying motorcycles into the proper bin.(30,32) 

• Count locations. NCHRP 08-81 addresses another concern often expressed by 
motorcycling advocates—that the count locations are not selected in a way that optimizes 
their reliability for estimating motorcycle AADT.(30,32) In particular, the concern is that 
recreational riders go places where classification counts are rarely collected. The result is 
that State-level aggregated counts are lower than they should be because a large 
proportion of motorcycle trips take place off of the facilities with the best, most accurate 
counting technology; many of those trips are on facilities that have no classification 
counts collected. Estimated factors may be applied to arrive at an estimated motorcycle 
AADT for those locations; however, there is some concern that the factors themselves are 
not accurate for the facilities in question. Middleton et al. were able to show that crash 
locations are a reasonable surrogate for motorcycle traffic volume such that States could 
use that information when deciding where to place counters or to evaluate whether the 
current count locations are sufficient to capture reliable area- or State-level motorcycle 
counts.(33) In their study, the authors found that the placement of counters does vary 
considerably by State with the conclusion being that each State should examine the 
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spatial correlation of permanent count locations and motorcycle crash locations when 
deciding if they need to make additions or changes to the count locations. The findings 
indicated that motorcycle crash locations are not too different from crashes involving 
other vehicle types and that, in general, permanent counters on higher functional class 
roadways are likely to be sufficient. At least on an area-wide basis, the locations with 
high crash counts correlated well with locations of high motorcycle volume counts and 
high total traffic volume counts. 

• Weekday versus weekend counts. This is an issue that affects temporary count 
locations. Typically, these counts are scheduled as mid-week counts because they are 
aimed at obtaining typical travel volumes at a location. While motorcycle crash data 
would indicate that weekday travel is an important component of all motorcycle travel, it 
is unquestionably true that a significant (though unknown) proportion of all motorcycle 
trips take place on the weekends. Of purely recreational motorcycle trips, the weekend 
proportion is much higher. Estimating weekend motorcycle travel is thus complicated by 
the fact that weekend factors developed based on other available data (i.e., from 
permanent count locations) is inaccurate for recreational trips because it captures mainly 
the travel on major roadways. Motorcyclists do not completely avoid those major 
roadways, of course, but much of the recreational motorcycle travel is on weekends and 
off the major roadways. 

For overall traffic safety analysis, these shortcomings indicate that motorcycle counts may be 
inaccurate, and the inaccuracies vary among the States in ways that are difficult to assess or 
make adjustments for an analysis. The data from any specific site (most likely a permanent count 
location in a State) will have unknown under-reporting problems depending on how closely the 
installation matches the ideal design.(30) With few exceptions, the health of the detector—its 
current ability to correctly detect motorcycles—is unknown. Even if a detector’s installation was 
well designed originally, its current status might not be available to researchers who might use 
flawed data without knowing that the detector was beginning to fail during the period in which 
their data was collected. Ultimately, all of the problems would appear to lead to under-reporting 
of motorcycle counts, and thus an analyst might feel secure in viewing the data as a minimum. 
However, even that assurance may be misplaced. Detailed knowledge of the detector system’s 
software and any user-defined settings is needed before analysts could be comfortable that they 
know what happens with mistaken detections of various types and how the software is set to 
record those counts in the various classification bins. 

Crash Data Limitations 

Crash data standards, completeness, and accuracy vary among States. The difficulties using crash 
data in safety analyses are well known but not particularly well documented in the literature. 
Practitioners are, however, well aware of the following data limitations: 

• Accident reports and data definitions: Each State creates its own police accident  
report (PAR) and decides what data elements to include in its centralized State crash 
database. There is a national guideline—the Model Minimum Uniform Crash Criteria 
(MMUCC)—which provides a standardized set of data definitions for a minimum set of 
110 data elements. However, this is a voluntary guideline, and most States’ PAR and 
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crash database are below 100 percent compliance with MMUCC. Analysts have to 
understand the specific data element definitions of each State’s data that was used. 
Depending on which data elements are considered in the analysis, the ability to generalize 
the results from one State to another, or to the national picture, can be quite limited. 

• Location accuracy: States generally do an excellent job of locating crashes on the 
roadway network for any State-maintained roads and for any roadways eligible for 
funding under the Highway Safety Improvement Program (HSIP). Recent FHWA 
requirements for each State to have an all-public-roads linear referencing system (LRS) 
and basic roadway inventory data means that soon all States will be able to place every 
crash in a single LRS. Today, however, there are still States that have not achieved that 
step of assigning LRS location codes to every crash. The result is that safety analysis over 
the entire network is complicated by the fact that only some crashes are readily associated 
with AADT and roadway descriptive data (for example, in a geographic information 
system (GIS) implementation of the State-roads LRS). Local roadway crashes may be 
located only using a non-linear location coding scheme that is incompatible with the 
State’s GIS and LRS. As a result, the ability to access and use local roadway crashes is 
impeded. This may not be a problem for some types of motorcycle safety analyses (e.g., 
ones focusing on motorcycle crashes on interstates), but it can be a serious barrier to 
analyzing motorcycle crashes in intersections at the local level or rural crashes on low-
volume, low-functional class roadways. These crashes also tend to be the ones that State 
crash location staff spend the most time trying to correct. Local law enforcement agencies 
typically use local designations for roadways in their jurisdiction and may not provide the 
information that would allow the State-level staff to identify the location on the official 
State GIS or LRS. As discussed earlier, these are also the locations that are least likely to 
have a classification count available. 

• Crash severity: Most (but not all) States use a variation on the KABCO injury severity 
scale to code personal injuries in crashes. K, A, B, and C are coded as injuries to 
individuals involved in the crash and correspond with the overall crash severity—the 
highest severity single injury in the crash is assigned as the overall crash severity. The 
definitions of these terms can vary markedly between States. Fatalities are typically 
defined based on the FARS criterion of a crash-related death within 30 days of the event. 
A-level injuries are the most severe level, but the descriptions may include “serious,” 
“incapacitating,” or other terms. B-level injuries are typically defined as apparent injuries 
at a lower or moderate level, with “non-incapacitating” and “apparent” often used as 
descriptors. The C-level injury definition may include descriptors such as “slight” or 
“possible.” PDO crashes are those in which there was no personal injury recorded but 
enough property damage to make the crash reportable under the State’s threshold 
criterion. Those criteria also vary among States and in interpretation among law 
enforcement agencies within a State.  

Typically, States set a minimum dollar amount threshold plus any injury or fatality so 
that, in theory, all KABC crashes should be reported along with any crashes with 
property damage about the threshold dollar amount. In practice, the threshold dollar 
amount is treated as a rough approximation, and each agency’s practices dictate how its 
officers interpret the physical damage to vehicles and other property to arrive at the 
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decision of whether or not to report a PDO crash. Another factor affecting reported 
motorcycle crashes is that many single-vehicle motorcycle crashes are unreported. 

Safety analysis addresses the variation in severity codes in two basic ways. One way is to 
use all crashes. In practice, this equates to using all reported crashes, which in turn means 
that there is likely to be some systematic under-reporting. If safety comparisons are 
planned among jurisdictions, using all levels of crash severity can cause problems if the 
law enforcement agencies interpret the crash reporting threshold differently across those 
jurisdictions. For that reason, and because data quality is usually best for reports of 
serious crashes, analysts sometimes concentrate on “serious” crashes by taking fatalities 
and A-level injuries together or sometimes combining K, A, and B injury crashes. This 
has the advantage of providing greater comparability across jurisdictions but at the price 
of missing the majority of reported crashes. Typically, PDO crashes account for about 60 
to 70 percent of all crashes. Analyses focused on crash locations and their attributes, 
excluding PDO and C-level injury crashes, are likely to rob the analysis of 
generalizability. 

No description of crash severity would be complete without also pointing out that the 
KABCO values are determined by law enforcement officers, not trained medical 
personnel. When crash data and medical records are linked (as has been done many times 
in several States), the results point to a large discrepancy between the officers’ 
judgements of injury severity and the actual injury severity coded based on medical 
injury severity codes, medical treatments, or cost of treatment. As might be expected, 
fatalities are judged accurately most of the time (though there are cases of death away 
from the scene that are sometimes missed as well as successful patient resuscitations 
away from the scene). A, B, and C injury codes are often medically incorrect, so the 
calculated crash severity scores based on those injury codes are prone to error. These 
errors do not pose a large concern for most safety analyses because the errors are usually 
randomly distributed and the comparisons being made in the typical safety analysis 
would not be expected to change much. Unfortunately, typical motorcycle crash-related 
injuries are of a nature where the differences between officers’ and medical judgements 
are largest. If an analysis requires comparison of motorcycle crashes to all other vehicles’ 
crashes, the possibility exists that the KABC assignments to the motorcycle crashes are 
less accurate than the ones for occupants of other vehicles. 

• Crash contributing factors, harmful events, and characteristics: Safety data analyses 
sometimes must obtain roadway and human factors information based solely on the PAR. 
For example, if the State lacks a robust roadway inventory system that can supply 
location descriptions, the only information about the crash site will come from the PAR.  

The officers record those circumstances that they judge to have contributed to the crash, 
the apparent sequence of events, most harmful events, etc. When there are inconsistencies 
in data definitions, the ability to reliably aggregate data and form valid comparisons is 
limited. In addition, different States record different aspects of the crash, including the 
basic location descriptions. Most States collect a minimum set of roadway attributes, but 
those attributes differ widely among the States. If the analysis relies on knowing 
something about the roadway attributes, or circumstances of the crash, the analyst must 
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know details about the data definitions as set by the State and, preferably, have some 
measures of accuracy and completeness available in order to judge the sufficiency of the 
database to support the intended analysis. 

Roadway Inventory Limitations 

Safety analyses often make use of roadway inventory data in order to understand the roadway 
attributes’ association with crash risk. There are a few notes worthy of consideration because 
they relate to AADT and crash data and the statewide roadway inventory data. 

• Roadway class/ownership: Because of the limitations of AADT data and in some States 
the limited ability to locate local crashes on a statewide LRS, safety analyses are 
sometimes limited to the State-maintained/HSIP-eligible portions of the roadway 
network. As noted earlier, this selective use of higher functional classification roadways 
can miss an important subset of motorcycle crashes. Crashes on low-volume rural roads 
or at local roadway locations are more likely to be unlinked to any available roadway 
characteristics data. If the analysis focuses on specific roadway characteristics, that data 
may be missing for the local roadways. 

• Missing data: As noted earlier, many State LRSs lack locations for local and low-volume 
roadways, although the systems are adding this information now. A related problem is 
that even when the LRS includes those locations, the roadway inventory file may have 
blanks for some of the key data. Just as AADT is less readily available for local and low-
volume roadways in many States, so too are the roadway inventory data less complete. 
When the analysis requires knowledge of roadway attributes, the ability to compare 
jurisdictions may be impaired if too much of the detailed inventory data is missing. 

ANALYSIS LIMITATIONS 

As discussed in chapter 2, most of the current research concerning motorcycle crashes has 
focused on discrete outcomes (i.e., the probability of a given crash severity, presence of a 
roadway or traffic control feature given that a crash has occurred, or probability of injury 
severity given that feature or crash type). Very little research focuses on developing SPFs or 
CMFs specifically for motorcycle crashes. 

The same analysis methods available for estimating SPFs and CMFs for other crash types are 
applicable for motorcycle crashes. While having estimates of motorcycle volumes is preferred, 
the results of the analyses undertaken for this project indicate that using total AADT volumes is a 
reasonable substitution when motorcycle AADT is not available.  

Where motorcycle use is a small portion of traffic volume, such as the United States, some 
research has attempted to use motorcycle licensing and/or registration data as a surrogate,  
but these data are only available at the county level and so are not very useful for modeling  
site-level data. 

Issues that apply to other rare crash types also hinder analyses of motorcycle crashes in order to 
develop SPFs and/or CMFs. Firstly, with rare crash types, low crash sample sizes make the 
development of reliable SPFs and CMFs difficult. Statistical models may not be estimable, or 
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even if they are, estimated parameters may be very imprecise, and few variables related to 
crashes may be included in the model. 

Another sample size issue is that roadway infrastructure treatments aimed at reducing motorcycle 
crashes are not common. When conducting a before-after study, the rarity of such treatment sites 
combined with low crash frequencies presents a formidable challenge. 

The results of the research conducted for this project confirmed all of the analysis limitations 
stated above. Even with large datasets containing a substantial mileage of roads, SPFs could not 
be estimated for all site types or subtypes of motorcycle crashes. (Single-vehicle and multi-
vehicle were attempted as well as total motorcycle crashes.) The simulation results estimating 
CMFs through before-after studies and cross-sectional regression modeling showed that the 
CMF estimates vary substantially between simulations due to low motorcycle crash frequencies. 

RESEARCH GAPS AND NEEDS 

In terms of research gaps with respect to motorcycle safety and CMFs, very little information is 
known on the effects of roadway geometric and traffic control features on motorcycle crash 
frequency and severity. The reason for this gap is likely twofold: motorcycle crashes are not 
usually the focus of safety related countermeasures, and, the rarity of motorcycle crashes 
combined with the scarcity of treatment locations would result in a small sample size for study. 
Future research will need to explore how to overcome the small sample size issue with 
appropriate methodologies. This discussion provides some thoughts in this regard. 

With respect to SPFs for applying in network screening and other safety management tasks, few 
SPFs at the segment level or intersection level exist. The SPFs developed in this project may 
contribute to filling this void, but there remains work to be done in terms of site types for which 
no SPF was developed and ensuring that models exist that calibrate well in all jurisdictions. 

A major need for the research community would be a database that includes countermeasures 
implemented that are expected to affect motorcycle crashes along with the location, date of 
treatment, and treatment description. This information would aid researchers in identifying 
treatments that are feasible for study. 

In terms of analytical methods and other related gaps, the project team identified of the following 
research needs. 

• Exploration and validation of alternate sources of motorcycle volume data: Given 
the lack of motorcycle volume data in most States, alternative sources of such data are 
one area of potential research. For example, crowd-sourced data from vendors who 
aggregate cell phone locator information are filling gaps for some traffic volume and 
origin/destination study needs, but to our knowledge, none of the commercial sources 
have a way to identify specific vehicle classes.  

There are other methods (including specific phone apps) that can fill this gap, but to the 
research team’s knowledge, a motorcycle trip logger has not been developed (or at least 
not widely promoted) for this purpose. 
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• Investigation of alternate route use by motorcyclists and weekday (commuting) 
versus weekend (recreational) riding patterns: Motorcycle route choice differs on 
weekdays and weekends; however, Middleton et al. found that the weekday and weekend 
spatial correlation between crash locations and traffic volume were essentially the 
same.(32,33) This means that higher crash frequencies are found where higher total and/or 
motorcycle traffic volumes are found, regardless of whether the traffic patterns differ on 
the weekends or weekdays. Because Middleton’s study was based on area-wide volume 
data collected at permanent count locations only, there is some reason to conclude that 
the area-wide volume differences in weekday versus weekend traffic track well with the 
changes in motorcycle riders’ route selections. Again, this does not answer the question 
of which exact roads the riders chose, only that their crashes took place in the parts of the 
State that experienced the most traffic. Further research could help increase our 
knowledge of route choice and the differences between commuter and recreational trips 
as well as help determine whether those differences matter in modeling and CMF 
calculation. 

• Application of case-control study methods: As discussed in the FHWA CMF 
Guidebook, case-control studies have been used in certain areas of highway safety but 
rarely focused on the safety effects of geometric design elements.(34) More recently, the 
case-control method was employed to estimate CMFs for geometric design elements, 
including lane and shoulder width.(34–36) Case-control studies select sites based on 
outcome status (e.g., crash or no crash) and then determine the prior risk factor status 
within each outcome group. Case-control studies assess whether exposure to a potential 
risk factor is disproportionately distributed between the cases and controls, thereby 
indicating the likelihood of an actual risk factor. Strictly speaking, case-control studies 
cannot be used to measure the probability of an event (e.g., crash or severe injury) in 
terms of expected frequency. However, when locations are most likely to have no crashes 
or only one crash, the case-control can get closer to the true CMF value. Use of the case-
control method may hold promise for studying motorcycle crashes and could be explored. 

• Calibration of existing CMFs for motorcycle crashes: NCHRP project 17-63 is 
developing methods for calibrating existing CMFs that are aggregated across crash types, 
(e.g., for total crashes so that they can be applied in any jurisdiction).(37) The principle is 
that the overall CMF should change for any site based on its proportion of crash types. 
For example, in figure 41, the CMF for total crashes is a function of the proportion of two 
crash types (type 1 and type 2) with CMF values of 0.4 and 1.0, respectively. The method 
for developing such an equation requires estimates of the aggregated CMF and the 
proportions of crash types for the data that developed the CMFs. The number of required 
aggregate CMFs is directly related to the desired number of crash type proportions to be 
included in the equation. 

 CMFtotal = 0.4 (TYPE1prop) + 1.0 (TYPE2prop)  
Figure 41. Equation. Aggregate CMF calculation. 

The development of the method focused on getting site-specific estimates of the total 
crash SPF. However, in doing so, estimates of the CMF for each crash type were derived. 
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Such a procedure could potentially be applied for developing CMFs for motorcycle 
treatments. 

• Investigation of methods for identifying and prioritizing cost-effective opportunities 
for reducing motorcycle crashes: Because motorcycle crashes are relatively rare, state-
of-the-art network screening methods documented in the Highway Safety Manual (HSM) 
for identifying sites with promise of safety improvements may not be very effective.(38) 
This difficulty is compounded by the fact that the SPFs needed to apply these methods 
are not as robust as they are for other types of crashes. The research challenge is to 
develop a more appropriate methodology for identifying and prioritizing cost-effective 
opportunities for reducing motorcycle crashes. Lessons can be learned in this regard from 
approaches used in countries such as New Zealand and the Netherlands, where crash 
blackspots are largely non-existent or have been eliminated. For example, methods can be 
focused on identifying routes or corridors for safety improvements rather than individual 
sites that are the focus of the HSM methods.(38) 

• Exploration of data and methods for the analysis of motor cycle crashes at 
intersections: While this study focused on road segments, it is recognized that 
motorcycle crashes may be over-represented at intersections. Exposure data for this site 
type is either non-existent or sparse, and research is needed on methods for analyzing 
motorcycle crashes at intersections in the light of the challenges in obtaining exposure 
data for intersections. This analysis would also include the identification and 
prioritization of cost-effective opportunities for reducing motorcycle crashes specifically 
at intersections (see previous bullet). Research may also be needed on how motorcycle 
exposure data could be routinely obtained or estimated as part of a jurisdiction’s 
intersection traffic counting program. 

• Application of probability models: As noted in chapter 2, there has been substantial 
research on the use of these models to identify factors associated with motorcycle crash 
severity using a variety of approaches, mainly with ordered and unordered logit and 
probit specifications. These models have not traditionally been used in conventional 
safety management applications since they cannot be used directly for estimation of SPFs 
and CMFs. However, they do have the advantage of not requiring exposure data, and they 
could potentially be applied to prediction models for total crashes to estimate crash 
frequency by severity type, similar to the approach used for the freeway crash prediction 
methodology developed for the HSM.(38,39) With advances in modeling in this area, it 
may be worth revisiting this modeling approach with a view to pursuing HSM-type 
applications and exploring the further use of these models to identify opportunities for 
treatments targeted at specific features.(38) These features can then be subject to detailed 
engineering investigations at motorcycle crash blackspots. For example, one study cited 
earlier used probit modeling to find that curve radius is a significant factor influencing 
injury severity of single-motorcycle crashes with an increase of 1,000 ft in curve radius 
estimated to decrease the likelihood of fatalities and serious injuries by 0.2 and 
0.15 percent, respectively, in a single-motorcycle crash along a curved roadway section. 
This finding could be used to develop treatments for a motorcycle crash blackspot on a 
curved roadway section.   
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