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EXECUTIVE SUMMARY

This study used a propensity scores-potential outcomes framework to evaluate the safety
performance of the continuous green T (CGT) intersection relative to a conventional signalized T
intersection. Data from 30 CGT (treated) and 38 conventional signalized (untreated) intersections
from Florida were used in the evaluation, as were 16 treated and 21 untreated sites from South
Carolina. In the propensity scores-potential outcomes framework, a propensity scores model was
estimated using a binary logistic regression model, where the dependent variable was codified as
a binary variable based on the presence of the CGT or the conventional T signalized intersection
form. The independent variables in the propensity scores model included safety-influencing
features present at the intersections, including the average annual daily traffic on the major and
minor street approaches, the posted speed limit, cross-sectional widths, and the type of
intersection channelization. The propensity scores were then used to match treated (CGT) to
untreated (conventional signalized) intersections, mimicking a randomized experiment. After
matching, the potential outcomes were estimated using mixed effects negative binomial or
Poisson count regression models (where possible) and weighted using negative binomial
regression with robust standard errors otherwise. The expected total, fatal and injury, and target
crash frequencies were used as the dependent variables in the count models, while the
intersection safety-influencing variables were used as independent variables. In addition, an
indicator variable was used in the potential outcomes model to assess the safety performance of
the CGT relative to a conventional T signalized intersection.

The results showed that there was a small but statistically insignificant benefit associated with
the CGT intersection relative to the conventional signalized T intersection. The crash
modification factors (CMFs) associated with total crashes, fatal and injury crashes, and target
crashes were 0.958 (p-value = 0.699, 95-percent confidence interval (CI) = 0.772-1.189), 0.846
(p-value = 0.211, 95-percent CI = 0.651-1.099), and 0.920 (p-value = 0.519, 95-percent CI =
0.714-1.185), respectively. Because the propensity scores-potential outcomes framework
involves matching, some treated and untreated intersections in the database were not included in
the analysis sample. For purposes of comparison, cross-sectional regression models using all
available data were estimated, and the results were similar to the propensity scores-potential
outcomes results. In these models, the CMFs associated with total, fatal and injury, and target
crashes were 0.886 (p-value = 0.389), 0.844 (p-value = 0.230), and 0.808 (p-value = 0.187),
respectively. The benefit-cost analysis confirmed that the CGT is a cost-effective intersection
design alternative to the conventional T signalized intersection.






CHAPTER 1. INTRODUCTION

BACKGROUND ON CGT INTERSECTION

The Federal Highway Administration’s (FHWA) Development of Crash Modification Factors
(DCMF) program was established in 2012 to address highway safety research needs for
evaluating new and innovative safety strategies (improvements) by developing reliable
quantitative estimates of their effectiveness in reducing crashes. The goal of the DCMF program
is to provide measures of their safety effectiveness and benefit-cost (B/C) ratios for new safety
strategies based on research. Promotion of the effective safety strategies has the potential benefit
of decreasing total crashes and, subsequently, reducing fatalities. Furthermore, transportation
agencies will be able to use safety effectiveness estimates and B/C ratios to manage safety on the
highway and street network by making effective use of limited resources. There are 40 State
transportation departments that provide technical feedback on safety improvements to the DCMF
program and implement new safety improvements to facilitate evaluations. These States are
members of the Evaluation of Low Cost Safety Improvements Pooled Fund Study (ELCSI-PFS)
and have selected this study to be conducted under this program.

At-grade intersections are an inherent conflict location on the highway and street network
because the turning or crossing paths of motorized and non-motorized users frequently interact at
these locations. As a result, crashes involving both user groups often occur at intersections.
FHWA estimates that, on average, 26 percent of fatal and 50 percent of injury crashes in the
United States occur at intersections. National Cooperative Highway Research Program (NCHRP)
Report 500, Volume 12, 4 Guide for Reducing Collisions at Signalized Intersections estimated
that approximately 30 percent of fatal intersection crashes occur at locations with signalized
control.() Intersection safety is a priority among transportation agencies in the United States.

Alternative intersection designs have emerged in recent years to improve traffic operations and
safety. Implementation of specific alternative intersection forms is dependent on the conditions
present at the location of interest. The presence of traffic congestion, high crash frequencies, or
severe crash outcomes at existing intersections often necessitates either operational or safety
improvements. Rather than seeking traditional traffic measures to mitigate delay or traffic safety
problems, practitioners are now seeking opportunities to convert conventional intersections into
alternative, innovative forms. Examples of alternative intersections include the displaced left-
turn, restricted crossing U-turn, and median U-turn.

Another alternative intersection type that has been employed in several States is the continuous
green T (CGT) intersection. CGT intersections are an alternative to conventional signalized T
intersections. CGT intersections are characterized by a channelized left-turn movement from the
minor street approach onto the mainline (major street), along with a continuous mainline through
movement that occurs at the same time.” The continuous-moving through lanes are not
controlled by a traffic signal phase, while the other intersection movements are controlled by a
three-phase signal. The through lanes on the mainline that have continuous flow typically contain
a green through arrow signal indicator to inform drivers that they do not have to stop. The
continuous through lanes are often separated from the left-turn and merge lanes with delineators,
curbed islands, pavement markings, or other separations. Figure 1 shows a major street approach



to the continuous through lanes of a CGT intersection. An aerial view of a full CGT intersection
is shown in figure 2.
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Figure 1. Photo. Driver view of approach toward continuous through lanes at CGT
intersection (latitude: 32.210420, longitude: -80.695000).
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Figure 2. Photo. Overhead view of approach toward continuous through lanes at CGT
intersection (latitude: 32.240866, longitude: -80.816626).)

BACKGROUND ON STUDY

In 1997, the American Association of State Highway and Transportation Officials (AASHTO)
Standing Committee on Highway Traffic Safety, with the assistance of FHWA, the National
Highway Traffic Safety Administration, and the Transportation Research Board Committee on
Transportation Safety Management, met with safety experts in the fields of driver, vehicle, and
highway issues from various organizations to develop a strategic plan for highway safety. These
participants developed 22 key emphasis areas that affect highway safety. NCHRP published a
series of guides to advance the implementation of countermeasures targeted to reduce crashes
and injuries. Each guide addresses one of the emphasis areas and includes an introduction to the
problem, a list of objectives for improving safety, and strategies for each objective. Each strategy
is designated as proven, tried, or experimental. Many of the strategies discussed in these guides
have not been rigorously evaluated; about 80 percent of the strategies are considered tried or
experimental.

In 2005, to support the implementation of the guides, FHWA organized a PFS to evaluate low-
cost safety strategies as part of this strategic highway safety effort. Over the years, the ELCSI-
PFS has grown in size and now includes 40 States. The purpose of the ELCSI-PFS is to evaluate
the safety effectiveness of tried and experimental, low-cost safety strategies through



scientifically rigorous crash-based studies. The use of CGT at signalized intersections was
selected as a strategy to be evaluated as part of this effort.



CHAPTER 2. LITERATURE REVIEW

SAFETY

CGT intersections have been used for several decades in Florida.® It has been reported that
Florida citizens do not feel that CGT intersections are safe, especially for unfamiliar drivers.”®
For this reason, Sando et al. completed a safety evaluation of the CGT intersection using only
data from Florida.® The authors used a paired -test and an ordered probit model to analyze
crash type proportions and severity, respectively. The analysis compared crashes that were
reported on the continuous through lane on the major CGT roadway with crashes that were
reported on the major road turning lane (i.e., the lane that must stop at the signal). Data consisted
of crashes at nine Florida intersections from the years 2003 through 2008. There were a total of
398 crashes in the study sample.

The paired t-tests compared the proportions of total crashes in each direction that were lane-
changing (sideswipe), rear-end, and angle. No differences were found in the proportion of rear-
end and angle crashes when comparing the two travel lanes (i.e., continuous flow versus signal-
controlled travel lane). The continuous flow lanes had a statistically significant higher proportion
of sideswipe crashes than the lanes that had to stop. This was likely due to turning vehicles
merging onto the continuous flow lanes. This analysis did not account for the total crash
frequency or any potential confounding factors. Because the analysis results were based on a
simple comparison of crash proportions between lane groups, rather than rigorous statistical
methods, the results of the study have limited practical value.

The ordered probit was used to analyze crash severity outcomes. The severity levels considered
in the model included no injury, non-incapacitating injury, incapacitating injury, and fatal.

Two ordered probit models were estimated—one model that controlled for crash type and one
that controlled for geometric elements, lighting, weather, time of day, speed limit, and driver age.
The findings indicated that the continuous flow lanes on the CGT major road had lower severity
outcomes when controlling for geometrics, lighting, weather, time of day, speed limit, and driver
age when compared with the turning lane on the major road. The opposite finding occurred when
only crash type was considered in the model. Neither of these findings, however, were
statistically significant.

In a second study using Florida CGT intersection information to evaluate safety, Jarem compiled
crash data from five intersections to compare crash rates at each CGT intersection with a critical
crash rate.®® The method to determine the critical crash rate was not provided by the author;
however, this method often involves determining the average crash rate for similar roadway
types plus an adjustment for the desired level of statistical confidence. The study included
reported crashes at the CGT intersections from 2000 through 2003, which included a total of 117
crashes (10 of which were rear-end collisions caused by drivers inadvertently stopping in the
continuous flow lanes). The crash rate analysis assumes a linear relationship between crash
frequency and traffic volumes, which is rarely found in traffic-safety relationships.”’ The
findings from the analysis suggested that the reported crash rates for each of the CGT
intersections were lower than the critical crash rates, likely indicating that the CGT intersections
did not produce crash rates that exceeded average rates at similar intersections without the



continuous green movement. A diagnostic review of the reported crashes at CGT intersections in
Florida found that rear-end, sideswipe, and angle crashes were the most common types. The rear-
end crashes were often caused by drivers who unexpectedly stopped in the continuous flow lane.
Sideswipe and angle crashes occurred when drivers turning left from the minor leg of the
intersection were turning or merging with the through traffic on the major road.

TRAFFIC OPERATIONS

Jarem also completed an analysis of the operational effectiveness of CGT intersections.® The
analysis considered the five CGT intersections used in the safety analysis and subsequently
performed traffic simulations using traffic analysis software to estimate the total delay savings
(per vehicle) and total fuel savings achieved by the continuous flow lanes (compared with a
standard signalized T intersection). The findings indicated that the CGT intersections resulted in
savings of 3.7 to 28.4 s of delay per vehicle (1,601 and 4,786 vehicles/h, respectively) and 0.005
to 0.015 gal of fuel saved per vehicle (5,275 and 1,622 vehicles/h, respectively). The traffic
volumes for the movements other than for the through lanes were not provided.

Litsas and Rakha provided a more comprehensive operational analysis of CGT intersections.®
Simulation software was used to run 2,445 unique intersection condition combinations to
compare CGT with traditional signalized T intersections.®’ The analysis estimated the reduction
in vehicle delay, fuel usage, hydrocarbon emissions, carbon monoxide emissions, nitrogen oxide
emissions, and carbon dioxide emissions. The simulation results indicated that CGT intersections
resulted in a 10.29 percent reduction in vehicle delay, 2.78 percent fuel savings, 12.47 percent
fewer hydrocarbon emissions, 14.44 percent fewer carbon monoxide emissions, 4.38 percent
fewer nitrogen oxide emissions, and 2.29 percent fewer carbon dioxide emissions than traditional
signalized T intersections.

SUMMARY OF CGT INTERSECTIONS

Safety and operational evaluations of the CGT intersection are relatively limited in the literature.
With regards to safety, crash type proportion analyses have indicated that continuous flow
movements at CGT intersections do not differ from the through lanes in the opposing direction.
There are preliminary findings to suggest that the proportion of sideswipe crashes on the
continuous flow lanes on the major road were higher relative to the opposing through lanes, but
there were not significant differences in other crash types. No statistically significant differences
among severity outcomes have been reported when comparing the CGT continuous flow lanes to
the lanes in the opposing direction. With regard to operations, published research indicates that
the vehicle delay, emissions, and fuel consumption are lower at CGT intersections relative to
traditional signalized T intersections.



CHAPTER 3. OBJECTIVES

The objective of the present study was to examine the safety effectiveness of CGT intersections
in terms of crash frequency using a rigorous methodology. The propensity scores-potential
outcomes framework described by Sasidharan and Donnell was used.®’ In this analysis, the
safety performance of CGT intersections was compared with the safety performance of
traditional, signalized T intersections. The following target crashes were included in the
evaluation:

e Total crashes within 250 ft of the intersection.
e Fatal and injury crashes within 250 ft of the intersection.
e Rear-end, angle, and sideswipe crashes within 250 ft of the intersection.

The 250-ft measurement was defined by Harwood et al. as the boundary for intersection-related
crashes when assessing the safety performance of left- and right-turn lanes at three- and
four-legged, stop- and signal-controlled intersections.!?






CHAPTER 4. METHODOLOGY

This chapter describes the propensity scores-potential outcomes framework that was used to
estimate the safety effectiveness of the CGT intersection relative to a traditional signalized T
intersection. The propensity scores estimation method, matching methods, and the potential
outcomes estimation method are described in this chapter. An observational before-after
evaluation (using the empirical Bayes (EB) method) could not be used in the present study,
because the CGT intersections were either constructed as such or the conversion from a
traditional signalized T intersection to a CGT intersection took place long ago, precluding the
availability of electronic crash data from the before period. Recent research has shown that the
propensity scores-potential outcomes framework produces safety effect estimates (i.e., CMFs)
that are nearly identical to EB observational before-after and cross-sectional statistical models
when treatments are deployed at locations that were not selected for countermeasure
implementation based on high crash frequencies.!!") Because the CGT is an intersection form that
is constructed to improve traffic operations when site conditions permit, and because only after
data were available for analysis (i.e., no crash data were available when the intersections may
have operated either under a different configuration or with different control), the analysis is
therefore not subject to site-selection bias. Thus, it is assumed that the propensity scores-
potential outcomes framework will produce results equivalent to the EB method.

The propensity scores-potential outcomes methodology used in the study controlled for the
following:

e Comparability of the comparison intersections (traditional signalized T intersection).
e Missing traffic volume data.
e The need to pool data from multiple States to improve the sample size.

PROPENSITY SCORES FRAMEWORK

Randomized experiments are considered the gold standard for determining the causal effects of
treatments. Well-conducted randomized experiments yield unbiased estimates of average
treatment effects because there is no correlation between the treatment and all other important
covariates, other than the outcome of interest (i.e., there is no confounding).!*!¥ Thus, methods
that remove correlation between the treatment and other important predictor (independent)
variables in observational studies lead to estimates of treatment effects that are similar to the
results of a randomized experiment.

Propensity score analysis can be used to mimic randomized experiments by using observed
covariates to estimate the probability that an observation received a treatment (i.e., the propensity
score).'¥) Propensity scores can be viewed as a scalar summary of the multivariate covariates,
and balancing the true propensity score will lead to balance of all observed covariates.'¥ In the
context of traffic safety, examples may include the probability that an at-grade intersection
contains lighting (or not) based on site-specific features such as traffic volume, type of traffic
control, and level of pedestrian demand. Another example may be the probability that a roadway
segment contains a horizontal curve as a function of traffic volume, lane width, and roadside
geometry. The estimated propensity scores are then used to match treated and untreated
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observations.!>1®) This process removes correlation between the treatment and observed
covariates. When propensity score matching is paired with regression analysis (performed after
matching), selection bias is reduced.

Binary logit or probit models are commonly used to estimate propensity scores.!>%) The
estimated propensity scores should include all variables that could potentially be relevant to the
treatment. As such, the variables included in the propensity score model should not be selected
based on statistical significance."!”!® Since the goal of propensity score analysis is to remove
correlation between the treatment and other potentially important predictor variables, the
functional form of the variables in the propensity score model should be selected based on which
functional form yields the best matching results.

Propensity Score Assumptions
The following assumptions are associated with propensity score analysis:©®-1%:1¢)

1. Stable Unit Treatment Value Assumption (SUTVA): This assumption states that when a
treatment is applied to an entity, it does not affect the outcome for any other entity. Since the
CGT intersections and the comparison intersections were separated, it is not likely that the
CGT intersections affected the safety outcomes for the comparison intersections. Thus, the
SUTVA was met for this study.

2. Positivity: This assumption states that the probability of receiving the treatment is non-zero
for all observations. The comparison intersections were carefully selected to ensure that it
would be possible to install CGT intersections at the reference intersection locations. The
comparison intersections all had high enough traffic volumes on the main road to warrant
continuous flow lanes (on major highways). In addition, they were all signalized T
intersections, were in urban/suburban areas, were located near the CGT intersections
(whenever possible), and had existing left-turn lanes from the major road onto the
intersecting road. Thus, this assumption was met for the current study.

3. Unconfoundedness: The treatment assignment is unconfounded if the treatment status
(treated or untreated) is conditionally independent of the potential outcomes for a given set of
covariates. It must be assumed that all confounding covariates were measured and available
for this analysis.

Binary Logit Estimation

The propensity score for a treatment was estimated in the present study using binary logit
regression, which is specified in the equation in figure 3.9

__exp(f,)
1+exp(Ar,)

Figure 3. Equation. Binary logit model for propensity scores.
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Where:

xi = A set of covariates for entity 1 (i.e., intersection safety-influencing features such as average
annual daily traffic (AADT), the intersection skew angle, and the intersection’s location (if any)
on a horizontal curve).

B = A vector of parameters to be estimated.
p(i) = The propensity score for entity i.

The standard error for the propensity score can also be calculated. The formula for the standard
error of a binary logit is specified as seen in the equation in figure 4. ??

Figure 4. Equation. Binary logit standard error.
Where:

n = The sample size used to estimate the propensity score.
SE(p.(i)) = The standard error of the propensity score for entity 1.

In traffic safety evaluations, it is common to assess the quality of model fit using the McFadden
Pseudo R-squared (p?), which is analogous to the R-squared value used to express the goodness-
of-fit of an ordinary least squares regression model, where higher values indicate a better fit to
the data, and can take a value between 0 and 1. It is expressed as seen in the equation in

figure 5:(1%:21)

2y L(full)

P L(0)

Figure 5. Equation. Psuedo R-squared goodness-of-fit.
Where:

L(full) = Log-likelihood of the model with explanatory variables.
L(0) = Log-likelihood of the intercept-only model.

However, the best model when using matching, within the propensity scores-potential outcomes
framework, is the model that yields the best covariate balance, not the model with the best

2
p~ value.

MATCHING ALGORITHMS AND METHODS
Numerous algorithms exist for propensity score matching. Among them are nearest-neighbor

(NN) matching, K-nearest neighbor matching, radius matching, kernel matching, and
Mahalanobis matching.®"!>!® The optimal method for matching is dependent on the available
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data. Typically, either caliper-based NN or Mahalanobis matching is used.'® Either 1:1 (one
treated to one untreated) matching or 1:z (1 treated to n untreated) matching can be done using
either NN or Mahalanobis matching. If the sample sizes of the treated and untreated groups are
similar, 1:1 matching is often an appropriate choice. (!¢

Other issues related to propensity score matching relate to allowing replacement (permitting a
comparison or untreated entity to be matched to more than one treated entity) and eliminating
data for use in the potential outcomes estimation.®*!>!®) Discussion of these issues follow
descriptions of the NN and Mahalanobis matching algorithms in the following subsections.

NN Matching

The first step in NN matching is to randomly order the data.”) If the data are not randomly
ordered and there are multiple observations with the same propensity scores, the results may be
biased.!® Once this is done, it is possible to use either 1:1 or 1:n matching. When closeness of
the match is critical (how similar the matched entities are based on the estimated propensity
score), or the sample size of the two groups are similar, 1:1 matching is preferred.!® On the
other hand, 1:» matching increases the total sample size, leading to lower standard errors in
regression estimates of the potential outcomes (with potentially smaller standard errors than in
simple cross-sectional analysis of the data). ?® However, this often comes at the expense of
making the treated and comparison groups less comparable.'® Issues related to replacement are
described in more detail in the following sections.

When using NN matching, the differences between treated and untreated observations may be
small or large. In order to account for large differences, two things should be considered. First,
the data should be checked for common overlap (the distribution of propensity scores that is
shared between the treated and comparison groups). Second, use of calipers or confidence
intervals (Cls) should be used to ensure that differences between matched treated and untreated
observations are not significantly dissimilar.®-13-16

Specifying a caliper width ensures that all matched observations will have a maximum
propensity score difference within the range of the caliper width. Common caliper widths used
are 0.25 or 0.20 multiplied by the standard deviation of the propensity scores within the treated
group.®19 Other caliper widths can be used as long as the standardized bias in the matching
results is not too large (typically assumed to be greater than 0.25 or 0.20). Larger caliper widths
allow increased selection bias to remain in the data due to larger differences between the treated
and comparison groups. Smaller caliper widths minimize the differences between the treated and
comparison groups but often come at the expense of dropped observations.(!®) However, it has
been shown that with large datasets, the treatment effects estimates do not change significantly
as the caliper width changes.®®

Once the matching criteria have been established, the treated observations are matched to the
untreated observations with the most similar propensity score (within the caliper width or
CI).1319 If replacement is allowed, a single untreated observation can be copied and matched to
multiple treated observations if it has the nearest propensity score. If replacement is not
permitted, then each untreated observation may only be used once. After matching has occurred,
unmatched treated and comparison observations are dropped from the dataset and not used in the
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potential outcomes.) The results should then be checked, and the standardized bias for the
unmatched data and the matched data should be compared.” The standardized bias indicates
whether the matching was effective in achieving covariate balance.

Mahalanobis Matching

Mahalanobis matching uses the same algorithm as NN matching with one difference: the treated
observations are matched to the untreated observations with the closest match based on multiple
variables, not just the propensity score.!® The closest match based on multiple variables uses the
Mahalanobis distance. This method may specify that the untreated observations available for
matching to a treated observation be within a specified caliper or CI based on the propensity
score, but this is not required as long as the matching results lead to small values of standardized
bias.®*1316 As with NN matching, the data should be randomly ordered prior to matching. The
Mahalanobis distance is calculated using the equation in figure 6.9

d(%,7)=FE-5) S (3~ 7)

Figure 6. Equation. Mahalanobis distance.

Where:

d(;, ;) = The Mahalanobis distance matrix between groups x and y (i.e., treated and untreated
groups) using the variables specified for the matching.

(¥ 5) = The matrix of the differences in values between groups x and y for the variables
included in the matching.

S = The covariance matrix between x and y.

The propensity scores can be included as one of the variables in the Mahalanobis distance along
with other important matching variables.

Genetic Matching

Genetic matching is a sequential process that optimizes covariate balance by finding the best
matches for each treated entity.(!®) The genetic matching process minimizes imbalance across the
covariates; therefore, it optimizes covariate balance.** This is accomplished by minimizing a
general Mahalanobis distance defined in figure 7.2

- - = (oY < B~ -
GMD(3,5,W)=.|(x - ¥) (S 2) S 2w (3 -y)
Figure 7. Equation. Genetic matching distance.
Where:

GMD = The genetic matching distance.
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§2 = The Cholesky decomposition of S (i.e., § = S72(S%)7).
W = The weighting matrix.

With genetic matching, both the propensity score and other covariates can be included in the
matching scheme. The iterative process uses Kolmogorov-Smirnov (K-S) statistics to measure
covariate balance in addition to standardized bias measures.* Genetic matching results in
optimal matches but often does so at the cost of high computation times.!®

Replacement

Replacement is defined as allowing a single untreated observation to be replicated and matched
to multiple treated observations. Allowing replacement may be beneficial when the amount of
common overlap (portion of distribution of propensity scores shared by the treated and
comparison groups) is not sufficient to produce good matching or when a significant amount of
dropped observations would result if replacement is not permitted. When there is only a
moderate amount of common overlap, replacement reduces the amount of dropped observations
and is likely to reduce the amount of bias in the data.'® When there is a significant amount of
common overlap, matching without replacement is preferred.®

Dropped Observations

Dropped observations can result from poor common overlap and from narrow caliper widths.
Dropped untreated observations often occur when matching. However, restricting caliper widths
will result in treated observations being dropped from the analysis sample when no untreated
observations have propensity scores within the acceptable range for matching. The tradeoffs
between caliper width, replacement allowance, and the number of dropped observations must be
considered in the propensity scores-potential outcomes framework. When caliper width is
increased, the standardized bias (discussed in the next subsection) could increase, which will also
increase the sample size used in the analysis (i.e., fewer dropped observations resulting from
matching). An increased sample size often leads to greater statistical power (i.e., smaller
standard errors of the estimates). It has been shown in previous research that when the
standardized bias is kept within a small maximum value (usually 0.20 to 0.25), and the sample
size is maximized, the matched estimates of treatment effects can yield unbiased estimates of the
treatment effects that have smaller standard errors than an unmatched sample.??

Standardized Bias

As noted previously, standardized bias should be checked for propensity scores and other
important covariates to assess the quality of covariate balance achieved from matching. The
equation in figure 8 is used to compute the standardized bias.’

_ 100(x, - %..)

(s2+52)
2

Figure 8. Equation. Standardized bias.

SB
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Where:

SB = The standardized bias.
*r = The sample mean of the treated group for variable x.
X¢ = The sample mean of the comparison group for variable x.

S; = The sample variance of the treated group for variable x.
2
Sc =The sample variance of the comparison group for variable x.

Before-after matching comparisons of standardized bias for the propensity score and other
covariates provide an indication of the improvement in covariate balance resulting from
matching on the propensity score. A standardized bias with an absolute value of 20 or smaller
indicates no statistical difference between the treated and comparison groups (i.e., they are
equivalent).(®

It has also been pointed out that even when the mean and standard error two groups are similar,
the distributions of the two groups may still be significantly different due to different
distributional shapes.*> Thus, a K-S test is also used to assess covariate balance.®® The K-S test
compares the cumulative frequencies of two samples. Based on this comparison, the statistical fit
of the two distributions is estimated.?” This test uses the maximum difference (D,) between the
two distributions to estimate the statistical fit. The distance is calculated using figure 9.7

Dn = maX‘Ez (‘xi )_ Sn (xiX
Figure 9. Equation. K-S test.
Where:

Max = Maximize function.
Fu(x;) = The cumulative distribution function (CDF) of the treated group for variable x at value i.
Su(xi) = The CDF of the untreated group for variable x at value i.

The p-values for the K-S tests are obtained from a standard mathematical table.?” This test can
be used to test the covariate balance for any covariate of interest.

In summary, the present study estimated the propensity scores using a binary logistic regression
model. The propensity scores compare the probability that a signalized intersection in the pool of
observations is a CGT form versus a traditional signalized intersection based on the covariates
(e.g., traffic volume, intersection skew angle, and presence of horizontal curve). NN matching
was first used to match each CGT intersection (treatment site) to a traditional signalized
intersection (comparison site). If, based on the reduction of the standardized bias in the
covariates among the matched data, acceptable matching was not produced, then Mahalanobis
matching was used. Replacement was permitted when matching to minimize the amount of
dropped data from the analysis sample.
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POTENTIAL OUTCOMES USING COUNT REGRESSION MODELS

After matching treated (CGT) and untreated sites (conventional signalized T intersections), the
potential outcomes (crash frequency) were estimated using count regression models. The use of
Poisson regression to model crash frequency was introduced in 1986.%® Negative binomial
regression, a general form of Poisson regression that accounts for overdispersion, was later used
to estimate crash frequencies in the traffic safety literature.?%3% Negative binomial regression
was used to develop the safety performance functions in the first edition of the Highway Safety
Manual (HSM).®D However, the standard Poisson and negative binomial models do not account
for serial correlation, which results when crash data are recorded annually at a site over a period
of years, and these repeated observations are the analysis unit (i.e., annual expected crash
frequency is the dependent variable in a statistical model). Thus, the standard errors for the
regression results using these models were likely underestimated.

Regression models that account for the count nature of crash frequency data, serial (spatial or
temporal) correlation, and correlation between variables in the model (e.g., major and minor road
traffic volumes) and that can estimate parameters for variables that do not vary over time include
mixed effects negative binomial and Poisson models.*!*?) Since this study used data with
correlation between variables included in the model, the data included yearly data (repeated
measurements) for each of the intersections and the variable of interest (if it was a CGT
intersection or not), all of these issues were present in this study. A discussion of each of these
models follows.

Mixed Effects Negative Binomial

The mixed effects negative binomial allows parameters to be fixed or random when specifying
the model.®? The inclusion of random parameters corrects for serial correlation while allowing
estimation of an overdispersion parameter to capture the effects of within-cluster overdispersion
(i.e., when the variance of crashes is greater than the mean for each individual intersection). The
log-likelihood function for the mixed effects negative binomial is shown in figure 10.¢%

0p,>,a)= (277)_q/2|2|_1/2_[f(yk | uk,a)exp(—u'k >u, /2)du,
Figure 10. Equation. Mixed effects negative binomial log-likelihood.

Where:

ur = The random intercept/slope for entity k.
vk = The outcome for entity £.
g = The number of covariates included in the model.

n 1
7, Juy )= exp Zf —logl"(yik +%{)—10g1"(yik +l)—logl“(%[)—glog{l+exp(xikﬂ+uk +loga)}—

i=1

Vi IOg{1+exp(_xi/c:B_uk _IOga)}

B = The vector of coefficients.
& = The overdispersion parameter.

18



A mixed effects negative binomial regression model with only the intercept allowed to be
random is known as a random intercept model.*" If all parameters are specified to be random,
the model is known as a random parameters model. The mixed effects model is sometimes
referred to as a random parameter or random coefficient model, even if some of the parameters
are specified as fixed parameters.*!’ When multiple parameters are allowed to be random, the
model adds more adjustment for overdispersion into the model than the mixed-effects Poisson or
the random intercept negative binomial. Thus, the model must be checked to ensure that it is not
adjusting for more correlation than is warranted in the data.?? This can be done by assessing the
statistical significance of the overdispersion parameter as well as using a chi-square test to assess
if the mixed effects model is preferred to a standard negative binomial regression. The null
hypothesis for the chi-square test is that the mixed effects model does not fit the data better than
the standard negative binomial regression.

When multiple random coefficients are used, the variance function for a mixed effects model is
difficult to derive. However, for the case of a random intercept negative binomial, the variance
function (for observation i) is specified as seen in figure 11.¢3

Var(u,) = p, + fexplo 1 - )~ 1)(x, )
Figure 11. Equation. Mixed effects negative binomial variance function.

Var = The variance.
K = The expected mean.
6 = The standard deviation of the random intercept.

@ = The overdispersion parameter.

When the overdispersion parameter is not statistically significant, the mixed effects negative
binomial regression model reduces to a mixed effects Poisson model. The expected mean for

observation 7, based on the random intercept negative binomial model, is given as seen in
figure 12.6%

H; = eXp(gi )eXp(ﬂ‘xi)
Figure 12. Equation. Mixed effects predictions.

Where:

¢; = The random intercept for observation i.
x; = The vector of variables for observation i.

When a mixed effects model is used for prediction, the mean values of the estimated random
parameters are used as the constant for the prediction model.

Mixed Effects Poisson

The mixed effects Poisson model is the same as a mixed effects negative binomial model but
without overdispersion within clusters (a cluster for this study is defined as multiple repeated
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measurements at the same intersection over time). The log-likelihood for the mixed effects
Poisson is shown in figure 13.6%

f(ﬁ:Z) = (2”)_q/2|2|71/2_"f(yk | u, )exp(_”'k > u, /2)du,
Figure 13. Equation. Mixed Poisson log-likelihood.
Where:

nj

f(yk |y ) = eXp|:Z {yik (‘xikﬂ Tu; )_ eXp(xik:B +u; )_ log(yik ')}

i=1

In figure 13, the subscript i refers to the observation, while all other variables and subscripts are
defined in figure 10 and figure 12. In the context of this study, the observation i refers to a year
associated intersection or entity 4.

The variance function for a mixed effects Poisson model with the random term limited to the
intercept only (random intercept Poisson) is specified using the equation in figure 14.6?

Var(u,)= u, + fexplo® )-1)(u,
Figure 14. Equation. Mixed effects Poisson variance function.

The expected mean value for an observation using a random intercept Poisson model is found
using the equation in figure 12.

CMF Estimation

CMFs derived from regression models in the propensity scores-potential outcomes framework
are estimated using the coefficient for the treatment indicator variable (included in the model) as
the exponent of the base number e. The formula for this is shown in figure 15.

CMF Treatment = eXp(IB Treatment )

Figure 15. Equation. Regression CMF estimation.
Where:

CMF 1reatmens = The CMF for the treatment.
B 1reammens = The estimated coefficient for the treatment.

It should be noted that figure 15 uses the regression coefficient for the treatment indicator
variable, which is included in the mixed effects Poisson or negative binomial regression model.

The 95-percent Cls for CMFs using count models are calculated using the equation in figure 16.
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C[95% = eXp(ﬂTreatment i 1'960Treatment )

Figure 16. Equation. Regression CMF CI.
Where:

Closo; = The 95-percent CI.
O rreament = The standard error of B rveammen: from the regression model.

Cross-Sectional Modeling Comparison

Because traffic safety evaluations often estimate CMFs using a cross-sectional regression model,
the present study also utilized this approach with all of the observations as a means of
comparison to the propensity scores-potential outcomes framework. The cross-sectional model
did not use any matched data and was estimated using a mixed-effects negative binomial
regression model, which was previously described. The cross-sectional statistical model was
specified using the form shown in figure 12. In the model, an indicator variable (CGT versus
conventional signalized T intersection) was included in the specification to assess the safety
performance of the CGT relative to the conventional signalized T intersection.
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CHAPTER 5. DATA COLLECTION

Florida and South Carolina are two States with multiple CGT intersections that have existed for
several years. Data from both of these States were used in the present study. The data collection
procedure and summary of the data are provided in this chapter of the report.

FLORIDA

Florida began installing CGT intersections as early as 1972. CGT intersections considered in this
study were constructed between 1972 and 2004, and the geometry remained unchanged during
the safety evaluation period. The Florida Department of Transportation (FDOT) provided
locations of CGT and comparable conventional signalized T intersections for analysis.

FDOT provided traffic volume data for the major and minor roads for each intersection where
possible. When FDOT did not have traffic volume data, local jurisdictions were contacted to
obtain traffic volume data. Traffic volumes for 2013 were available for all of the major roads,
which included the high-speed, continuous through movement at the CGT intersections. When
FDOT and the local jurisdictions did not have traffic volume data for the intersecting roadway,
the Trip Generation Manual was used to predict the traffic volume based on the land uses along
the properties adjacent to the minor intersecting roadway.® After these steps were taken, there
were 4 CGT and 11 comparison intersections from Florida with missing traffic volumes on the
minor street approach. Because most of the minor street approaches with missing traffic volume
data were in residential areas, it was assumed that the volumes on these approach roadways
would be approximately equal to 500 vehicles per day. One local jurisdiction (Melbourne, FL)
performed a multiday traffic count for one of the missing minor street approaches and confirmed
that a 500 vehicle per day volume was accurate.

FDOT also provided crash data in geographic information system files. These files were used to
identify all crashes (total crashes), fatal and injury crashes, rear-end crashes, sideswipe crashes,
and angle crashes within 250 ft of the intersections for 2008—2012 (inclusive).

Google Earth™ was used to collect other key variables, including variables related to the
intersection design and traffic control features. These variables included the following:

e Posted speed limits on the major and minor street approaches.

e Lane and shoulder widths on all approaches.

e The number of through lanes on the major and minor approaches.

e The presence of right- and left-turn lanes on the through and intersecting roadways.

e The presence of a channelized right-turn lane from the major approach to the
minor street.

e The presence of a channelized right-turn lane from the minor approach to the
major street.
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e Whether right-turn-on-red movements were permitted on either the major or minor street
approaches.

e  Whether the intersection is located on a horizontal curve.
e  Whether a rail line crosses the intersecting roadway near the intersection.

e  Whether there was a driveway (right-in, right-out only) where a fourth leg of the
intersection would be.

e The skew angle for the intersection.

In total, there were 30 CGT intersections and 38 comparison intersections from Florida included
in the analysis database. Variable names and the associated definitions are provided in table 1 for
the Florida intersections. The variables include traffic volumes and posted speed limits on the
through and intersecting roadways, lane-use controls, cross-section dimensions, geometric
characteristics, and crash-related information.
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Table 1. Variable descriptions for Florida intersections.

Variable Variable Description
AADTThrough Through road AADT (2013)
AADTIntersecting Intersecting road AADT (2013)

LN AADTThrough

The natural log of the through road AADT (2013)

LN AADTIntersecting

The natural log of the intersecting road AADT (2013)

AADTMiss AADT on intersecting road missing
THRU SPEED Through road posted speed limit (mi/h)
INT SPEED Intersecting road posted speed limit (mi/h)
RTOR Allowed 1 = right-turn-on-red allowed from through to intersecting legs,
Through 0 = otherwise
RTOR Intersecting 1 =right-turn-on-red allowed from intersecting to through legs,
0 = otherwise
INT LW Intersecting road lane width (ft)
INT SW Intersecting road shoulder width (ft)
IntNumLane Intersecting road number of lanes
THRU LW Through road lane width (ft)
THRU SW Through road shoulder width (ft)
ThruNumLane Through road number of lanes
THRU RLT 1 = right-turn lane from through road to intersecting road,
0 = otherwise
INT RTL 1 = right-turn lane from intersecting road to through road,
0 = otherwise
THRU LTL 1 = left-turn lane from through road to intersecting road,
0 = otherwise
INT LTL 1 = left-turn lane from intersecting road to through road,
0 = otherwise
RAILCROSS 1 = railroad crossing intersecting road near the intersection,
0 = otherwise
FRTH_LEG 1 = driveway where fourth leg would be (right-in, right-out only),
0 = otherwise
CURVE 1 = intersection located on horizontal curve, 0 = otherwise
SKEW Intersection skew angle (degrees)

CHAN RTL_THRU

1 = channelized right-turn lane from through road to intersecting road,
0 = otherwise

CHAN RTL INT

1 = channelized right-turn lane from intersecting road to through road,
0 = otherwise

TOT 2008 Total crashes in 2008
TOT 2009 Total crashes in 2009
TOT 2010 Total crashes in 2010
TOT 2011 Total crashes in 2011
TOT 2012 Total crashes in 2012
TOT 2013 Total crashes in 2013
FI 2008 Fatal and injury crashes in 2008
F1 2009 Fatal and injury crashes in 2009
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FI 2010 Fatal and injury crashes in 2010
FI1 2011 Fatal and injury crashes in 2011
F1 2012 Fatal and injury crashes in 2012
FI 2013 Fatal and injury crashes in 2013
RREND 2008 Rear-end crashes in 2008
RREND 2009 Rear-end crashes in 2009
RREND 2010 Rear-end crashes in 2010
RREND 2011 Rear-end crashes in 2011
RREND 2012 Rear-end crashes in 2012
RREND 2013 Rear-end crashes in 2013
ANGLE 2008 Angle crashes in 2008

ANGLE 2009 Angle crashes in 2009
ANGLE 2010 Angle crashes in 2010

ANGLE 2011 Angle crashes in 2011
ANGLE 2012 Angle crashes in 2012
ANGLE 2013 Angle crashes in 2013

SDSWPE 2008

Sideswipe crashes in 2008

SDSWPE 2009

Sideswipe crashes in 2009

SDSWPE 2010

Sideswipe crashes in 2010

SDSWPE 2011

Sideswipe crashes in 2011

SDSWPE 2012

Sideswipe crashes in 2012

SDSWPE 2013

Sideswipe crashes in 2013

Florida 1 = intersection located in Florida, 0 = otherwise
Treated 1 = CGT intersection, 0 = comparison intersection
Thru Spd 35 1 = through road posted speed is 35 mi/h, 0 = otherwise
Thru Spd 40 1 = through road posted speed is 40 mi/h, 0 = otherwise
Thru Spd 45 1 = through road posted speed is 45 mi/h, 0 = otherwise
Thru Spd 50 1 = through road posted speed is 50 mi/h, 0 = otherwise
Thru Spd 60 1 = through road posted speed is 60 mi/h, 0 = otherwise
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Descriptive statistics for CGT intersection variables included in the Florida analysis data files are
provided in table 2 and table 3.

Table 2. Descriptive statistics of continuous variables for Florida CGT intersections.

Variable Mean Standard Deviation Minimum Maximum
AADTThrough 28,822 10,189 14,400 47,000
AADTIntersecting 11,269 9,997 500 40,000
THRU SPEED 45.63 5.51 35 55
INT SPEED 35.07 10.17 15 55
SKEW 7.42 12.71 0 54.37
INT LW 11.42 0.84 10 14
THRU LW 11.30 0.67 10 12
INT SW 1.61 2.21 0 9
IntNumLane 3.36 1.10 2 6
THRU SW 3.30 2.59 0 9
ThruNumLane 5.51 0.88 4 8
TOT 2008 3.36 2.64 0 13
TOT 2009 4.00 4.42 0 24
TOT 2010 3.93 4.82 0 25
TOT 2011 3.33 3.70 0 18
TOT 2012 4.96 4.38 1 23
RREND 2008 1.14 1.86 0 9
RREND 2009 1.37 2.27 0 11
RREND 2010 1.33 2.54 0 13
RREND 2011 1.37 1.94 0 9
RREND 2012 2.19 2.10 0 10
ANGLE 2008 0.36 0.68 0 2
ANGLE 2009 0.26 0.53 0 2
ANGLE 2010 0.37 0.63 0 2
ANGLE 2011 0.37 0.69 0 3
ANGLE 2012 0.42 0.64 0 2
F1 2008 1.36 1.28 0 5
F1 2009 1.78 1.40 0 5
F1 2010 1.56 1.25 0 4
F1 2011 1.67 1.57 0 6
F1 2012 2.27 1.95 0 9
SDSWPE 2008 0.32 0.61 0 2
SDSWPE 2009 0.33 0.55 0 2
SDSWPE 2010 0.19 0.40 0 1
SDSWPE 2011 0 0.00 0 0
SDSWPE 2012 0 0.00 0 0
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Table 3. Descriptive statistics of categorical variables for Florida CGT intersections.

Proportion with a
Variable Value of 1

AADTMiss 0.15
RTOR Allowed 1.00
Through

RTOR Intersecting 0.96
THRU RLT 0.60
INT RTL 0.85
THRU LTL 1.00
INT LTL 0.85
RAILCROSS 0.03
FRTH LEG 0.11
CURVE 0.26
CHAN RTL THRU 0.38
CHAN RTL INT 0.22
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Descriptive statistics for the comparison intersection variables included in the Florida analysis
data files are provided in table 4 and table 5.

Table 4. Descriptive statistics of continuous variables for Florida comparison intersections.

Variable Mean Standard Deviation Minimum Maximum
AADTThrough 22,332 10,206 5,600 42,500
AADTIntersecting 8,372 9,134 500 43,000
THRU SPEED 38.07 7.04 25 60
INT SPEED 32.44 7.15 15 55
SKEW 5.21 8.13 0 29.40
INT LW 11.09 0.83 9 12
THRU LW 11.25 0.64 10 12
INT SW 1.50 1.77 0 6
IntNumLane 3.53 1.01 2 6
THRU SW 2.63 2.39 0 8
ThruNumLane 4.59 0.92 3 7
TOT 2008 2.79 2.05 0 9
TOT 2009 2.51 2.14 0 8
TOT 2010 2.87 2.87 0 15
TOT 2011 2.23 2.14 0 10
TOT 2012 2.53 2.33 0 9
RREND 2008 1.10 1.17 0 4
RREND 2009 0.95 1.43 0 5
RREND 2010 0.79 1.10 0 4
RREND 2011 0.85 1.17 0 5
RREND 2012 0.90 1.32 0 5
ANGLE 2008 0.23 0.43 0 1
ANGLE 2009 0.21 0.41 0 1
ANGLE 2010 0.36 0.74 0 4
ANGLE 2011 0.30 0.61 0 2
ANGLE 2012 0.30 0.61 0 3
F1 2008 1.28 1.38 0 7
F1 2009 1.33 1.42 0 6
FI1 2010 1.41 1.80 0 9
F1 2011 0.98 1.00 0 4
F1 2012 1.13 1.45 0 6
SDSWPE 2008 0.23 0.43 0 1
SDSWPE 2009 0.05 0.22 0 1
SDSWPE 2010 0.13 0.34 0 1
SDSWPE 2011 0.00 0.00 0 0
SDSWPE 2012 0.00 0.00 0 0
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Table S. Descriptive statistics of categorical variables for Florida comparison intersections.

Proportion with a Value
Variable of 1

AADTMiss 0.279
RTOR Allowed 1.00
Through

RTOR Intersecting 0.98
THRU RLT 0.47
INT RTL 0.82
THRU LTL 0.92
INT LTL 0.90
RAILCROSS 0.03
FRTH LEG 0.18
CURVE 0.20
CHAN RTL THRU 0.19
CHAN RTL INT 0.13
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SOUTH CAROLINA

CGT intersections in South Carolina included in the database for this evaluation were
installed between the period prior to 1990 through 2010. The South Carolina Department of
Transportation (SCDOT) worked with the research team to identify the CGT and comparison
intersections for use in the analysis.

Traffic volume data for the major and minor approach roads for each intersection were obtained
from SCDOT where possible. Traffic volumes for 2013 were available for all of the major roads.
When SCDOT did not have traffic volume data for the intersecting roadway, the Trip Generation
Manual was used to predict the traffic volumes based on the land use of land adjacent to the
minor street approach.®¥ After these steps were taken, there were no intersections from South
Carolina with missing traffic volumes.

SCDOT also provided crash data for 2009 through 2013. These files were used to identify all
crashes (total crashes), fatal and injury crashes, rear-end crashes, sideswipe crashes, and angle
crashes within 260 ft of the intersections for each of the years. The distance of 260 ft was
selected due to the measurement values associated with the crash data. (It was not possible to use
250 ft.)

Google Earth™ was used to collect other geometric and traffic control data. The variables were
the same as those collected for the Florida data.

In total, there were 16 CGT intersections and 21 comparison intersections from South Carolina
included in the analysis database. One CGT intersection was constructed in 2009, and one was
constructed in 2010. Thus, data for the years of construction and the year before (in the case of
the CGT intersection constructed in 2010) were excluded from the analysis period. The
descriptive statistics for CGT intersections from South Carolina are provided in table 6 and
table 7.
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Table 6. Descriptive statistics of continuous variables for South Carolina CGT

intersections.

Variable Mean Standard Deviation | Minimum Maximum
AADTThrough 34,944 12,170 8,300 59,000
AADTIntersecting 5,957 4,667 1,075 15,000
THRU SPEED 45.63 3.02 40 55
INT SPEED 31.56 4.94 25 45
SKEW 6.84 12.74 0 35.34
INT LW 11.94 0.24 11 12
THRU LW 12.00 0.00 12 12
INT SW 0.00 0.00 0 0
IntNumLane 3.19 0.53 2 4
THRU SW 0.19 0.73 0 3
ThruNumLane 6.69 1.05 5 8
TOT 2009 8.13 7.56 0 27
TOT 2010 8.88 7.82 0 29
TOT 2011 4.69 3.63 0 14
TOT 2012 6.06 4.75 0 20
TOT 2013 7.56 4.16 1 17
F1 2009 2.31 2.09 0 7
F1 2010 2.13 1.75 0 7
F1 2011 1.19 1.05 0 4
F1 2012 2.13 1.86 0 6
F1 2013 1.50 1.55 0 4
RREND 2009 3.88 4.49 0 16
RREND 2010 5.38 6.26 0 24
RREND 2011 3.06 2.82 0 11
RREND 2012 3.69 3.55 0 14
RREND 2013 3.25 2.41 0 7
ANGLE 2009 2.25 2.96 0 9
ANGLE 2010 1.44 1.31 0 4
ANGLE 2011 0.88 0.96 0 3
ANGLE 2012 1.06 1.06 0 3
ANGLE 2013 2.13 1.89 0 6
SDSWPE 2009 0.06 0.25 0 1
SDSWPE 2010 0 0.00 0 0
SDSWPE 2011 0.06 0.25 0 1
SDSWPE 2012 0 0.00 0 0
SDSWPE 2013 0 0.00 0 0

32




Table 7. Descriptive statistics of categorical variables for South Carolina CGT

intersections.
Proportion with a Value

Variable of 1
RTOR Allowed 1.00
Through
RTOR Intersecting 1.00
THRU RTL 0.44
INT RTL 0.94
THRU LTL 1.00
INT LTL 0.94
RAILCROSS 0.06
FRTH LEG 0.81
CURVE 0.06
CHAN RTL THRU 0.13
CHAN RTL INT 0.13
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The descriptive statistics for comparison intersections from South Carolina are provided in
table 8 and table 9.

Table 8. Descriptive statistics of continuous variables for South Carolina comparison

intersections.

Variable Mean Standard Deviation Minimum Maximum
AADTThrough 22,452 10,499 8,500 45,450
AADTIntersecting 8,462 7,419 1,950 30,100
THRU SPEED 42.62 3.68 35 45
INT SPEED 34.52 6.56 25 55
SKEW 12.10 13.20 0 45.86
INT LW 11.81 0.36 11 12
THRU LW 11.79 0.37 11 12
INT SW 0.76 2.01 0 8
IntNumLane 343 1.05 2 6
THRU SW 2.00 4.05 0 15
ThruNumLane 5.57 1.18 4 9
TOT 2009 7.67 9.18 0 37
TOT 2010 6.71 8.14 0 31
TOT 2011 5.33 5.24 0 24
TOT 2012 6.57 5.30 0 22
TOT 2013 6.81 5.60 0 22
F1 2009 2.38 2.97 0 11
FI1 2010 1.76 2.23 0 8
F1 2011 1.81 1.81 0 7
F1 2012 2.10 1.95 0 6
F1 2013 1.86 1.28 0 4
RREND 2009 3.38 4.64 0 19
RREND 2010 3.57 6.14 0 25
RREND 2011 3.10 3.92 0 18
RREND 2012 3.67 4.48 0 19
RREND 2013 3.38 3.79 0 15
ANGLE 2009 2.19 2.68 0 9
ANGLE 2010 1.71 1.49 0 4
ANGLE 2011 1.52 2.06 0 8
ANGLE 2012 2.00 1.61 0 6
ANGLE 2013 2.19 2.23 0 9
SDSWPE 2009 0.33 1.11 0 5
SDSWPE 2010 0.19 0.51 0 2
SDSWPE 2011 0.00 0.00 0 0
SDSWPE 2012 0.05 0.22 0 1
SDSWPE 2013 0.10 0.30 0 1
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Table 9. Descriptive statistics of categorical variables for South Carolina comparison

intersections.
Proportion with a Value

Variable of 1
RTOR Allowed 1.00
Through
RTOR Intersecting 0.95
THRU RLT 0.57
INT RTL 0.86
THRU LTL 0.95
INT LTL 0.91
RAILCROSS 0.09
FRTH LEG 0.29
CURVE 0.33
CHAN RTL THRU 0.33
CHAN RTL INT 0.19
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CHAPTER 6. MATCHING

Since the intersections in Florida and South Carolina likely differ with regard to unobservable
variables (e.g., reporting thresholds and driver demographics), matching was done separately for
each State. As described in the methodology, binary logistic regression was used to estimate the
propensity scores for both States. Since the goal of the binary logit model was to yield matches
with good covariate balance, the functional form of the variables in the propensity score models
differed between Florida and South Carolina.

The binary logit models estimated the probability that the intersections were CGT intersections
(i.e., the propensity score). The models were estimated at the intersection level (all years of data
for each intersection). The propensity score model for Florida is shown in table 10, and the
model for South Carolina is shown in table 11. For Florida, there were 68 observations, the
pseudo R? was 0.1850, and the log-likelihood was -37.546. For South Carolina, there were 37
observations, the pseudo R? was 0.3318, and the log-likelihood was -16.911.

Table 10. Florida propensity score model.

Variable Coefficient Standard Error p-Value
AADTThrough 0.00009 0.00003 0.010
AADTIntersecting 0.00001 0.00003 0.743
AADTmiss -1.09534 0.99280 0.270
THRU RLT 0.13667 0.67546 0.840
INT RTL -0.29956 0.83036 0.718
RAILCROSS 2.53527 1.60811 0.115
FRTH LEG -0.03758 0.95639 0.969
CURVE 0.99022 0.70849 0.162
SKEW 0.02244 0.02772 0.418
THRU SW 0.99344 0.79216 0.210
INT SW -0.48141 0.66091 0.466
Intercept -3.33964 1.56424 0.033
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Table 11. South Carolina propensity score model.

Variable Coefficient Standard Error p-Value
LN AADTThrough 1.49003 1.37409 0.278
LN AADTIntersecting -0.70140 0.41815 0.093
THRU RLT -0.19744 0.92572 0.831
INT RTL 0.53584 1.55880 0.731
FRTH LEG 1.73509 1.14918 0.131
CURVE -0.93645 1.36229 0.492
Through Shoulder -0.24410 1.50289 0.871
Intercept -10.5416 13.05849 0.420

The distributions of the estimated propensity scores for Florida and South Carolina (by
intersection type) are shown in figure 17. The box plot of distributions of propensity scores for
the unmatched groups show that the ranges of values were similar for Florida and dissimilar for
South Carolina. Since the sample size for both States was small, the amount of overlap in the
propensity score distributions between CGT and comparison intersections was not large enough
to obtain covariate balance using NN matching. When NN matching was used, there were fewer
than 10 total intersections from both States combined that matched well based strictly on the
estimated propensity scores.

Propensity Score Distributions Propensity Score Distributions
(Unmatched) - South Carolina (Unmatched) - Florida
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mUntreated = Treated Untreated mTreated

Figure 17. Graphs. Plots of estimated propensity scores by State and treatment status
(South Carolina left and Florida right).

Since NN matching did not yield the desired covariate balance without a significant reduction in
sample size, Mahalanobis matching was implemented. For the Mahalanobis matching using the
Florida data, the propensity score, through and intersecting road traffic volumes, through and
intersecting road posted speed limits, and intersecting road shoulder width were included as
covariates. For Mahalanobis matching using the South Carolina data, the natural log of through
and intersecting road traffic volumes, through and intersecting road posted speed limits, and
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through and intersecting road lane and shoulder widths were included as covariates. Replacement
was allowed. No CGT intersection was dropped from the dataset. The majority of comparison
intersections were not duplicated for replacement. (Eight intersections were used more than
once: seven in Florida and one in South Carolina.)

The matching results for both States indicated no significant differences for the majority of the
covariates based on the standardized bias. Plots of the absolute standardized bias for each of the
covariates are shown for Florida and South Carolina in figure 18 and figure 19, respectively. For
Florida, the variables with significant bias (greater than 25 percent) remaining after matching
included the through road traffic volumes and posted speeds. For South Carolina, the variables
with significant bias remaining after matching included the natural log of through and
intersecting road traffic volumes, as well as the through road posted speeds. The Mahalanobis
matching was effective at removing the bias in all of the other observed covariates. The variables
with significant bias remaining were included in each of the CMF models (added as predictor
variables) to account for the differences in the CGT and comparison intersections. By adding the
variables with significant remaining bias to the regression model as a predictor variable, the
regression model adjusts for the remaining differences in the data for the treated and untreated
intersections.
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Figure 18. Graph. Absolute standardized bias for covariates in Florida.
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South Carolina
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Figure 19. Graph. Absolute standardized bias for covariates in South Carolina.

Since there were still a number of covariates that were not balanced based on the standardized
bias measures, genetic matching was also implemented to improve the matching. K-S tests were
then done using the entire sample (both states combined) to help determine the level of covariate
balance (for both matching methods and the unmatched data). The results of the tests are shown

in table 12.
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As shown in table 12, the K-S tests indicate that the following variables were all significantly
different at the 95-percent confidence level using Mahalanobis matching:

AADTThrough.
AADTIntersecting.
THRU_SPEED.
ThruNumLane.
DEFLECTION.

The following variables were all marginally different when using Mahalanobis matching:

INT SPEED.
IntNumLane.
THRU LW.
THRU_ SW.

When using genetic matching, the covariate balance was improved over the Mahalanobis
matching. The results of the genetic matching indicate that the only variables that were
significantly different between the two groups were INT SPEED, TruNumLane, and
FRTH_LEG.
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CHAPTER 7. CMF ESTIMATION

Due to the small sample sizes of the two datasets, the data from both States were combined to
estimate CMFs for CGT intersections. The resulting CMFs indicated the average safety effect of
the CGT intersections between the two states. CMFs for total, fatal and injury, and target crashes
(rear-end, angle, and sideswipe) are described in the following subsections.

Variable selection and model specification were based on the crash prediction model forms
found in the HSM.CY In addition, matching was used to remove the correlation between the
treatment (CGT) and other variables in the model. The potential outcomes models considered
these same variable forms, as well as the standardized bias, to further minimize the correlation
between the treatment and other variables in the model. If the K-S test found that the difference
was statistically significant, the variable was included in the regression model to adjust for the
remaining correlation between it and the treatment (for both matching methods and the
unmatched data). Failing to account for this correlation produces biased treatment effect
estimates.'>¥) The decision to use indicator variables for the posted speed limit on the
continuous flow lane was made to fully account for the correlation in the full distribution of
posted speed limits between the CGT and comparison group. If the posted speeds were grouped
into ranges (e.g., lower than 50 mi/h and greater than or equal to 50 mi/h), the aggregation led to
bias resulting from correlation between the posted speed indicator variables and the treatment.

As discussed in the Methods section, mixed effects negative binomial or Poisson regression was
used to estimate the CMFs whenever possible. The optimal weights found using the genetic
matching could not be accommodated using mixed effects regression, so weighted standard
negative binomial regression with robust standard errors was used with the genetic matching
results. The regression models for estimating the CMFs, along with the CMFs and 95-percent
CIs, are shown in table 13 and table 14 for the genetic and Mahalanobis matching, respectively.
For table 13, there were 297 observations used in the analysis. A weighted standard negative
binomial regression model, with robust standard errors, was used to estimate the CMFs. The log-
likelihood for the total, fatal and injury, and target crashes was -717.62695, -491.9991, and
-599.30626, respectively. For table 14, there were 434 observations and 73 group (i.e.,
intersections) used in the analysis. A mixed-effects negative binomial regression model was used
to estimate the CMF for total crashes, which had a log-likelihood of -938.44178. A mixed-effects
Poisson regression model was used to estimate the CMF for fatal and injury crashes, which

had a log-likelihood of -805.2616. Finally, a mixed-effects negative binomial regression

model was used to estimate the CMF for target crashes, which had a log-likelihood of
-665.20078.The statistical modeling output for the potential outcomes models for each crash
type shown in table 13 and table 14 is provided in appendix A.
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The weighted negative binomial model was used for total crashes, fatal and injury crashes, and
target crashes (rear-end, angle, and sideswipe) using the genetic matched data. The models
shown in table 13 included all independent variables that, theoretically, correlated with total,
fatal and injury, or target crashes (based on the K-S tests in table 12). Variables that were not
statistically significant in the negative binomial models were included in the model because
Mannering and Bhat pointed out that parsimonious models are biased, are fundamentally flawed,
and have little practical value.®® Thus, the statistical models estimated in this evaluation were
not specified based on statistical significance at the 95-percent confidence level.

The coefficients for all of the models were consistent with engineering intuition. The purpose of
CGT intersections is to improve traffic operations. The results indicate that there were no
statistically significant differences (at the 95-percent confidence level) between signalized T
intersections without continuous flow lanes and CGT intersections in terms of total, fatal and
injury, or target crashes (rear-end, angle, and sideswipe). It is worth noting, however, that the
point estimates of the CMFs for total, fatal and injury, and target crashes were all less than 1,
suggesting that there is a potential reduction in crash frequency associated with the CGT
intersection relative to the conventional signalized-T intersection and that the lack of statistical
significance is likely due to the small sample size rather than the lack of an effect. Thus, it is
concluded that CGT intersections can have a beneficial effect on crash frequency. The CGT
CMFs for each crash type and severity, with the associated 95-percent Cls, are shown in

table 13.

The signs and magnitudes of the coefficients for traffic volumes are consistent with the major
and minor road coefficients for at-grade intersections found in the HSM.V For the through
street posted speed limit, the baseline condition was a posted speed limit of 35 mi/h. For the
intersecting street posted speed limit, the baseline condition was a posted speed limit of 20 mi/h.
A positive coefficient indicates that the expected number of crashes is higher for the speed limit
shown relative to the baseline condition. The posted speed limit indicator variables, while mostly
insignificant, were retained in the model to minimize bias associated with the covariates in the
matched data used to estimate the potential outcomes model that were not balanced after
matching. The indicator variable for Florida indicated that there were fewer crashes in Florida
than in South Carolina, which matches the descriptive statistics. The indicator variable for five or
more through lanes was used because using individual indicator variables for the individual
number of through lanes resulted in estimates that were nearly identical for any indicator
variables for five or more lanes. The negative signs that indicate whether there were shoulders on
the through and intersecting roads are logical because shoulders provide a recovery area for
vehicles that leave the travel lanes. The variable ThruSUpShoulder is an interaction variable
between five or more through lanes and the existence of a shoulder. The positive value indicates
that intersections with five or more through lanes and shoulders on the through street did not
receive the same safety benefits from the shoulders as intersections with fewer than five lanes on
the through street. Finally, the presence of a fourth leg at the intersection that only allowed right-
in and right-out movements correlated with lower crash frequencies. This was likely due to the
fourth leg only being allowed on intersections with specific characteristics that were not
collected as a part of this study but that are associated with lower crash frequencies.

Since traffic volume data were missing for several of the Florida intersections, a sensitivity
analysis was performed by varying the traffic volumes for the missing locations. Traffic volumes
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of 500, 1,000, and 3,000 vehicles per day were tested. (As mentioned in the Data Collection
section, a local jurisdiction performed a traffic count for one of the missing locations and found
the AADT to be 500 vehicles per day; most missing minor street approaches had similar land use
characteristics.) The difference in results was minimal when using 500, 1,000, and 3,000 vehicles
per day for the missing minor street approach traffic volumes. Thus, only the results with the
missing traffic volumes set at 500 vehicles per day are provided in this report.

The mixed effects negative binomial model was used for total crashes and target crashes (rear-
end, angle, and sideswipe) using the Mahalanobis matched data. For fatal and injury crashes, the
overdispersion parameter was not statistically significant when the mixed effects negative
binomial was used, so the mixed effects Poisson was used for the final model. The random
intercept was statistically significant in all of the models.

The results of the models in table 14 indicate that there were no statistically significant
differences (at the 95-percent confidence level) between signalized T intersections without
continuous flow lanes and CGT intersections in terms of total, fatal and injury, or target crashes
(rear-end, angle, and sideswipe). As with the results from the genetic matching, the point
estimates of the CMFs for total, fatal and injury, and target crashes are all less than 1.0,
suggesting that there is a potential reduction in crash frequency associated with the CGT
intersection relative to the conventional signalized T intersection. The lack of statistical
significance is likely due to the small sample size rather than the lack of an effect. The CGT
CMFs for each crash type and severity, with the associated 95-percent confidence level, are
shown in table 14.

The signs and magnitudes of the coefficients for traffic volumes are consistent with the major
and minor road coefficients for at-grade intersections found in the HSM.GD For the posted speed
limit, the baseline condition is a posted speed limit of 35 mi/h. A positive coefficient indicates
that the expected number of crashes is higher for the speed limit shown relative to the baseline
condition. The posted speed limit indicator variables, while mostly insignificant, were retained in
the model to minimize bias associated with the covariates from the Mahalanobis matched data
that were significantly different (based on the K-S tests in table 12).

The sensitivity analysis for the missing traffic volumes that was used with the genetic matching
CMF models was also performed with the Mahalanobis CMF models. The results were the same,
and the missing traffic volumes were set to 500 vehicles per day.

The models in table 14 also indicate that crash frequency increased as intersection skew angle
increased. This is consistent with the HSM.®V The finding that the expected crash frequency in
Florida was lower than in South Carolina was consistent with the descriptive statistics.

As noted earlier, the propensity scores-potential outcomes framework reduced the overall sample
size from the original data due to matching (i.e., some intersections are dropped). As such, cross-
sectional models using the unmatched data were also estimated for comparison. The CMFs
estimated using the full, unmatched database were provided to show the magnitude of bias that
the CMFs would have had if matching was not used. The regression models and CMFs for total,
fatal and injury, and the target crashes using the full dataset (i.e., no matching) are shown in
table 13. The statistical modeling outputs for the models shown in table 13 and table 14 are
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provided in appendix A. The statistical modeling outputs for the models shown in table 15 are
provided in appendix B. For table 15, there were 516 observations and 104 groups (i.e.,
intersections) used in the analysis. A mixed-effects negative binomial regression model was used
to estimate the CMF for total crashes, which had a log-likelihood of -1134.5724. A mixed-effects
Poisson regression model was used to estimate the CMF for fatal and injury crashes, which had a
log-likelihood of -795.8822. Finally, a mixed-effects negative binomial regression model was
used to estimate the CMF for target crashes, which had a log-likelihood of -960.89489.

The CMFs estimated using the unmatched data are more likely to be biased than the estimates
using the matched data, so the CMFs from the latter should be regarded as more robust. It is
encouraging that the CMFs estimated using the unmatched data are similar to the CMFs from the
matched data, although the safety benefit estimated with both sets of models is statistically
insignificant. Based on the K-S test results, the genetic matching resulted in the best covariate
balance. Thus, the CMFs estimated from the genetic matching are preferred over the other

two methods.
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CHAPTER 8. ECONOMIC ANALYSIS

A B/C analysis compared the safety benefits with the construction costs of a CGT relative to a
conventional signalized three-leg intersection. This chapter describes the assumptions used in the
analysis, describes the differences in the construction costs between the CGT and the
conventional signalized three-leg intersection, derives the safety benefits associated with the
CGT, and computes the B/C ratio for the CGT relative to a conventional signalized three-leg
intersection.

ASSUMPTIONS

Because this study was unable to use an observational before-after study methodology, the B/C
analysis presented in this report compared two different intersection forms (CGT versus
conventional three-leg signalized intersection). To complete the B/C analysis, the following

assumptions were made:

e The median width was as wide as the left-turn lane adjacent to the continuous flow lane
on the major street.

e The median was unpaved.

e There were shoulders on both the major and minor streets.

e There was no fourth leg at the intersection.

e There were fewer than five through lanes.

e The comparison intersection was a signalized T intersection.
e The pavement design life was 20 years.

e The average traffic volume for the comparison group was constant over the 20-year
period (to be used for predictions).

e All safety benefits were derived using the South Carolina data, so the Florida indicator
variable in table 13 was set equal to zero. It should be noted that the Florida indicator
variable was negative, so the B/C ratios for Florida were larger than those computed
using the South Carolina data.

e There were no maintenance costs because the project design life was equivalent to the
pavement design life.

e The existing traffic signals could be used for the CGT intersection.

e The only cost associated with the treatment was the additional pavement for the
acceleration lane, as shown in figure 20.
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Figure 20. Schematic. Traditional and CGT intersections.
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The CMFs used for the evaluation were those estimated using the propensity scores-potential
outcomes framework (genetic matching results (table 13)). The treatment cost was dependent on
the posted speed limit. A minimum (35 mi/h on the major road) and maximum (55 mi/h on the
major road) cost for the treatment are estimated in figure 21 and figure 22.

For the new pavement, the low (posted speed = 35 mi/h) value required is as follows:

e 210 ft to the beginning of the taper at 12 ft wide =210 x 12 = 2,520 ft°.
e 125-ft taper with an average of 6 ft wide = 125 x 6 = 750 ft.

Total Pavement Required = 2,520 ft + 750 ft = 3,270 ft> = 363 yd?

Figure 21. Equation. Total pavement required for low posted speed.
For the new pavement, the high (posted speed = 55 mi/h) value required is as follows:

e 435 ft to the beginning of the taper at 12 ft wide = 435 x 12 = 5,220 ft%.
e 540-ft taper with an average of 6 ft wide = 540 x 6 = 3,240 ft%.

Total Pavement Required= 5,220 ft + 3,240 ft = 8,460 ft* = 940 yd*
Figure 22. Equation. Total pavement required for high posted speed.

The cost for asphalt pavement used for the analysis was $28/yd?. The cost for concrete pavement
was $70/yd?. Thus, the cost for 35 mi/h was $10,173.33 for asphalt and $25,433.33 for concrete.
The cost for 55 mi/h was $26,320 for asphalt and $65,800 for concrete.>

The number of crashes (total, fatal and injury, and property damage only (PDO)) with and
without the CGT, using the average AADTs from the comparison group, were predicted for the
20-year service life. For example, the total expected number of crashes for the untreated
intersections were computed using the equation in figure 23, assuming that the posted speed limit
on the major road was 35 mi/h (indicator variable for Thru Spd was set equal to zero because it
is the baseline value), minor (intersecting) roadway was 35 mi/h (indicator variable for

Int_ Spd 35 in table 13 was 0.494), the site was a comparison site (treated variable was set equal
to zero), and the intersection was located in South Carolina (Florida indicator was zero).

— p—4.542 0.492 0.216 0 0.494 —0.295 —0.566
Ntotal =e X AADTthroug h X AADTintersecting xe Xe xe xe

Figure 23. Equation. Total number of expected crashes for untreated intersections.

Nl = Total number of expected crashes.

e = The exponential function.

through = The subscript related to through street traffic volume (veh/day).
intersecting = The subscript related to the intersecting road traffic volume (veh/day).

The descriptive statistics for the South Carolina comparison group are shown in table 8 and
table 9, and the average through and intersecting roadway AADT volumes are 22,452 and
8,452 vehicles per day, respectively. Inputting these values produced the expected number of
total crashes per year, as seen in figure 24.
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Niptar = €424 x 22,4520492 % 8,4620216 x g0 x 0494 x 70295 % =0566 = 72() crashes/year

Figure 24. Equation. Total number of expected crashes per year for the untreated
intersections.

As such, the expected annual total crash frequency for the South Carolina comparison group sites
was 7.20 crashes per year, as shown in table 16. Multiplying the annual crash frequency by

20 years produces 144 crashes. The number of property damage only (PDO) crashes was
estimated by subtracting the number of fatal and injury crashes from the total crashes. The
treated crash frequency predictions were derived by applying the CMFs shown in table 13. The
total treated crash frequency estimates were derived by multiplying 144 crashes (untreated
crashes) times the CMF for total crashes. This resulted in 144 times 0.958, which equals 137.95
crashes over a 20-year period. All of the predicted crash frequency estimates for the untreated
and treated intersections are shown in table 16.

Table 16. Annual predicted crash frequencies.

Reduction
Untreated Treated (Untreated - Treated)
Posted Fatal Fatal Fatal
Speed and and and
(mi/h) Total | Injury PDO Total | Injury PDO Total | Injury PDO
35 7.20 1.57 5.63 6.90 1.33 5.57 0.30 0.24 0.06
55 9.97 2.19 7.78 9.55 1.85 7.70 0.42 0.34 0.08

Bold = Reduction in annual crash frequencies.

The comprehensive crash costs used for this analysis were derived using 2001 dollar values from
Council et al.®® As suggested by the authors, the crash cost values were multiplied by the ratio
of the Consumer Price Index for 2001 and 2014. This ratio was 2.425. The 2001 comprehensive
crash costs were $129,418 for fatal and injury crashes and $10,249 for PDO crashes on roads
with posted speed limits below 50 mi/h. The 2001 comprehensive crash costs were $146,281 for
fatal and injury crashes and $4,015 for PDO crashes on roads with posted speed limits equal to or
above 50 mi/h. This produces crash cost savings of $1,536,250 for the 35 mi/h posted speed and
$2,427,752 for the 55 mi/h posted speed limit for the 20-year project life. The annual benefits
(from crash costs) were $76,813 for the 35 mi/h posted speed limit major roads and $121,388 for
the 55 mi/h posted speed limit major roads. Thus, the B/C ratio, by pavement type and posted
speed limit, were estimated and are provided in table 17.
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Table 17. B/C ratios for different pavement types.

Posted Speed Limit (mi/h) Asphalt Pavement Concrete Pavement
35 76,813/956.30 = 80.3 76,813/2,390.70 = 32.1
55 121,388/2,474.10 =49.1 121,388/6,185.20 =19.6

The annual costs (based on the initial paving costs and no maintenance over the 20-year project
life), discounted at 7 percent over the 20-year project life, were $956.30 for asphalt and $2390.70
for concrete pavements at 35 mi/h intersections and $2474.10 for asphalt and $6185.20 for
concrete at 55 mi/h intersections, respectively.

Sensitivity Analysis

In order to test the sensitivity of the B/C ratios to variability in the safety benefits, the upper and
lower bound of the 95-percent CI of the CMF estimate for total crashes in table 13 was applied to
the safety benefit estimates shown in table 17. This produced B/C ratios that ranged from 62.0 to
95.5 for the 35 mi/h posted speed limit on asphalt pavements and from 37.9 to 58.4 for the

55 mi/h posted speed limit on asphalt pavement. The B/C ratio ranged from 24.8 to 38.2 for

35 mi/h posted speed limits on concrete pavements and from 15.1 to 23.3 for 55 mi/h posted
speed limits on concrete pavements.

Further sensitivity analysis was done to determine the construction costs that would still achieve
a B/C ratio of 2.0 (lower bound) for the 35 and 55 mi/h posted speed limits. (The crash costs
were equal for asphalt and concrete pavements.) For the 35 mi/h posted speed limit, a B/C ratio
of 2.0 could be achieved with annual construction costs up to $38,407. For a 55 mi/h posted
speed limit, annual construction costs up to $60,694 produce a B/C ratio up to 2.0.

57







CHAPTER 9. SUMMARY AND CONCLUSIONS

The objective of this study was to evaluate the safety impacts of CGT intersections. Total, fatal
and injury, and target (rear-end, angle, and sideswipe) crash types were considered. Data from
Florida and South Carolina were used for this study to estimate CMFs for CGT intersections
relative to conventional signalized T intersections. The propensity scores—potential outcomes—
was used to estimate the CMFs. Genetic matching provided better matching results than NN or
Mahalanobis matching. The CMFs were estimated using weighted negative binomial regression
with the genetic matched data.

Based on the propensity scores-potential outcomes results (with genetic matching), the CMF
point estimates for total, fatal and injury, and target crashes were 0.958, 0.846, and 0.920,
respectively, suggesting that there was a potential reduction in crash frequency associated with
the CGT intersection relative to the conventional T signalized intersection. Although the results
were not statistically significant, it was likely due to the small sample rather than the lack of an
effect. Because the CGT was not expected to compromise safety performance relative to a
conventional signalized T intersection but affords improved traffic operational performance and
fewer environmental impacts (lower vehicle emissions), it should be considered as a candidate
alternative intersection form when conditions exist to effectively implement.

Based on the findings of this research and the literature review, CGT intersections are likely to
be favorable over traditional signalized intersections when there are high through traffic volumes
on the major street approach on the far side of the intersection (opposite the minor street
approach). This approach could function as the continuous flow lane. The CGT intersection is
also likely to be a favorable form if there is low cyclist demand and either no pedestrian demand
or an alternative pedestrian crossing nearby.

The B/C analysis confirmed that the CGT is a cost-effective intersection design alternative to the
conventional signalized T intersection (based on the point estimates of the CMFs). The B/C
ratios for both asphalt and concrete pavements, as well as 35 and 55 mi/h posted speed limits on
the major road, produced B/C ratios that significantly exceeded 1.0.

Potential Issues with CGT Intersections

Throughout the course of the present study, it was learned that several CGT intersections were
being converted to conventional signalized T intersections in Florida. Anecdotal feedback
indicated that non-motorized users at these locations have expressed concern with the high-
speed, continuous flow lanes on the major approach. Pedestrians and bicyclists wishing to cross
from the minor street approach to the far side of the high-speed continuous flow lanes may have
difficulty identifying adequate gaps. As such, implementation of the CGT intersections at
locations with anticipated pedestrian and bicycle users should be weighed against the operational
and environmental benefits.
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APPENDIX A. MATCHED DATA MODELS

This appendix contains the regression output for the models using the matched data (genetic and
Mahalanobis matching). These models were used to develop the CMFs.

GENETIC MATCHING
Total Crashes
Negative binomial regression Number of obs = 297
Dispersion = mean Wald chi2 (19 = 287.53
Log pseudolikelihood = -717.k2kA5 Prob > chig = 0.0000
| Robust
TOT | Coef . Std. Err. z P>1zl [95% Conf. Intervall
______________ o o o e
Treated | =-.04258k2 . 1101659 -0.39 0.699 -.2585075 .1733351
LNAADTMaj | -4923199 -1459936 3.37 0.00L -20E1778 . 7784621
LNAADTMin | .21l5468Y .0385375 5.59 D.000 -13993k3 .291000k
Florida | =-.b3k259k -1k2479 -3.92 0.000 -.95471258 -.31780kL7
ThruLaneSUp | -1.0L5885 .212755 -5.01 D.000 -1.482878 -.b488932
IntShoulder | -.294L033 -124379k -2.37 0.018 -.5383828 -.0508239
ThruShoulder | =.5L5E151 .47Lb38k -1.20 D.230 -1.49001 .3587795
ThruSUpShlder | 1-.-115338 . 517546y 2.1k 0.031 .1009k53 2.12971
FRTH_LEG | -.2411121 -1375897 -1.75 0.080 -.510783 .0285588
|
INT_SPEED |
25 | .2900747 .354013 D.82 0D.-413 -.4037781 .9839275
30 | -4594779 -32k298 1.4 0.159 -.180054Yy 1.09901
35 | -4942091 .3434051 1.4y 0.150 -.178852k 1.1k7271
uo | -311181Y4 -3817203 0.82 0.415 -.43L97kk 1.059339
us | -b7995k1 .3540597 1.92 D.055 -.0L39882 1.3739
55 | -4E08L5] -3985745 1.1k 0.248 -.32032kk L.242057
|
THRU_SPEED |
4o | -.10bL29k? . 3269923 -0.33 0.745 -.7471.898 . 534596y
us | .2109157 .2818383 0.75 0.u5y -.341y772 . 7633087
50 | -.bY4kL520Y4 . 3619147 -1.79 D.074 -1.3558k .0b28194
55 | -32k27kY -3029884 1.08 0.282 -.2k757 -9201229
|
cons | =-4.5417L5 L.447841 -3.14 0.002 -7.379481 -1.704048
______________ S ——
/lnalpha | -1-429498 -1727079 -1.7679199 -1.090997
______________ N ——
alpha | -239429 .0413513 -1706741 .3358815
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Fatal and Injury Crashes

Negative binomial regression

Dispersion

= mean

Log pseudolikelihood = -491.09991

Number of obs
Wald chi2(19)

297
56-78
0.0000

Treated
LNAADTMa j
LNAADTMin

Florida

ThruLanebUp
IntShoulder
ThruShoulder
ThruSUpShlder
FRTH_LEG

INT_SPEED
25
30
35
40
45
55

THRU_SPEED

40
45

Intervall

o ooeE o

oooooo

Ooooooooo

oooo

.0946283
-b397291
.277883
-0528L485
-.04519k65
-0944k647?
-400292
2-164903
- 104969k

-920k857
1.15E4kL5

1.01375
-9894141
1.1450kL8
1.235321

. 759835
- 777441
- 597967k

1.004kb

-.3107779

Robust

Coef Std. Err
-.1bb9481 .1334598
-302753Y4 +1719295
-1910L33 .04429kkL
-.331kk29 +1961931
-.5849208 275374k
-.23292k .1k70391
-.7050994 . 563985k
-9365371 .b2k7288
-.2530k72 .182k752
-1490k9k »393k889
-457390Y4 . 356L774
-259880k .384L343
-195327 . 4051539
-38L1851 .3871922
-3522804 . 4505391
-0477?759 .3b633107
-1k91577 .3103545
-.2235057 . 41912kL8
-3347177 -3418134
-3.k35727 L.b9k43Y
-2.569357 - 5916134
-07658448 .045308k

Prob > chig

>lzl [95% Conf.
21l -.428524k
078 -.0342222
ooo .104243k
091 -.71k61943
03y -1.124k45
1k3 -.5b031kL48
21l -1.810491
135 -.2918288
1kk -.5111041
-705 -.b2254k5
.200 -.241kLA84S
-499 -.4939888
-b30 -.5987kL01
.319 -.372L977
-43y -.5307b
895 -.bb43L7
58k -.43912k
59y =-1.044979
327 -.335224Y4
03e -b-960kL7k
-3.728898
-0240193
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Target Crashe

S

Negative binomial regression

Number of obs
Wald chi2(19)
Prob > chig

297
324.75
0.0000

[ I~ o I o~

.51
.40
-27
.3k
-?75
.79

oOoooooo

Oooooooooo

-ble
-1kl
-204
.721
-080
-431

[95% Conf.

-.3371979
-231k047
-138bL19kE

-1.593372

-2-117973
-.840932

-3.34432a

-983k74kE

-b183315

-.734947
-.2k7L0048
-345k729
-.88970k1
-10bb339
-.b59294

-1.258053
-.7bE1249
-2.20k7a82
-.8433083

-8.054495

Intervall

-1701303
-8940k52
-311k942
-.753kk5k
-.7789092
-.1742957
=-4974k7kb
4.089347
-0709695

-248b21
-b£13031
-b22418
-265301
-915833
- 545909

H e

-32b99k9
. 587809k
-.2897009
- 5296598

-1.60811

Dispersion = mean
Log pseudolikelihood = =-599.30k2k
| Robust
Target | Coef - Std- Err.
______________ +
Treated | -.0835338 .1294228
LNAADTMaj | -5b2835 .1b89981
LNAADTMin | .2251839 0441408
Florida | =1.173519 2142147
ThruLane5Up | -1.448441 .341k042
IntShoulder | =-.507b138 .1700b34
ThruShoulder | -1.920895 . 7262517
Thru5UpShlder | 2.536511 . 7922779
FRTH_LEG | -.273k81 .1758453
|
INT_SPEED |
25 | -256837 . 5060215
30 | -b727153 4797619
35 | -b38372k . 5020733
4o | -1977973 .5548589
45 | -904599Yy . 5159448
855 | -443307k . 5b25k22
|
THRU_SPEED |
40 | -.4b55281 - 40435kL9
45 | -.089157k .3453978
50 | -L.248241 . 4890k02
85 | -.17L&242 . 3604577
|
cons | -4.831303 1.E4451k
______________ +
/lnalpha | =1.257409 .2205592
______________ +
alpha | -2843901 .0b27248
MAHALANOBIS MATCHING

Total Crashes

Mixed-effects nbinomial regression
Overdispersion:
Group variable:

Log likelihoo

d

Loca

-938.44718

mean
tion

Number of obs =

Number of groups =

Wald chi2(1l) =

43y

73

?k.07
0.0000

Treated
LNAADTMaj
LNAADTMin

THRU_SPEED
40
45
50
55
kO

ThruLane5Up
DEFLECTION
Florida
_cons

-04b4587
-5911802
-1827335

-1020133
-3045244
-24b10kL?
-723912k
-3522544

-b13b113

-008991
-7244923
5.54121kb

-160353
.2070058
-05800k9

- 322451
-2456019
-378893k
-322k377
-b128105

-31k45482
.005811k
-148k83E
1.969354

-2b78274
-9969041
-2964249

.7340057
-7658953
-4965112
1.356271
-8488322

-00bb354
.020381k
-.4330787
-1.k81353

Prob > chig

P>1zl [95% Conf.
0.772 -.3L07448
0.004 . 1854563
0.002 -0690421
0.752 -.5299749)
0.215 -.17?b8YES
0.51k -.9887245
0.025 .0915543
0.5k5 -1.55334]
0.053 -1.233858
0.122 -.00239495
0.000 -1.01590k
0.005 -9.401079
0.000 -4.49824k
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Location |
var(_cons) | -2120851 -0475991 -13bk0OkLE -3292k674

LR test vs. nbinomial regression:chibar2(0l) = 133.20 Prob>=chibar2 = D0.0000

Fatal + Injury Crashes

Mixed-effects Poisson regression Number of obs = 43y
Group variable: Location Number of groups = 73
Wald chi2(1l) = 33.52
Log likelihood = -bk5.20078 Prob > chig = 0.0004
FI | Coef . Std. Err. z P>1zl [95% Conf. Intervall
_____________ e
Treated | -.1341782 -138L713 -0.97 0.333 -.4059k9 -137k12k
LNAADTMaj | - 4430583 . 1845915 2.-40 0.01k .0812kL5kL .804851L
LNAADTMin | -11k4183 .0520172 2.24 0.025 -0144EL3 -2183702

|

THRU_SPEED |
uo | -4292983 .2915357 L.47 0.1L41 -.1421011 1.000L98
us | -40498kL5 .222leze 1.82 0.0E8 -.0303kL5) .840338
50 | -10k7951 -3398837 0.31 0.753 -.5593k47 . 772955
55 | .880773 .2683781kb 3.10 0.002 .3245713 1.436975
EO | -.B52E719 -E898198 -0.95 0.34y -2.004k69Y -£993501

|
ThruLaneSUp | -.5191403 .2780189 -1.87 0.0k2 -1.0B4047 .02576kL8
DEFLECTION | .003847Y .0051373 0.75 0.454 -.00e2215 .01391k2
Florida | -.1913353 -13193k9 -1.45 0.147 -.4499269 .0b725k6Y
_cons | -4.805059 1.750959 -2.74 0.006k -8.23L877 -1.373242
_____________ o o o e o e

Location |
var(_cons) | -1022855 -0363784 .0509425 .2053754
LR test vs. nbinomial regression:chibar2(0l) = 24.23 Prob>=chibar2 = 0.0000

Target Crashes
Mixed-effects nbinomial regression Number of obs = 433

Overdispersion: mean

Group variable: Location Number of groups = 73
Wald chi2(1l) = 91.498
Log likelihood = -805.2k01E Prob > chig = 0.0000
Target | Coef . Std. Err. z P>1zl [95% Conf. Intervall
_____________ R ————
Treated | -.03372EL48 -1915727 -0.18 0.8k0 -.4092025 -3417488
LNAADTMaj | .52bk724 .2497115 2-11 0.035 .03724kL8 1.0Lk098
LNAADTMin | -194899k .0712121 2.74 0.00k .05532k4 -3344728

|

THRU_SPEED |
4o | -.0171329 .398288 -0.0u4 0.9kk -.7977L31 . 7634973
45 | .383879k .3013736 L.27 0.203 -.20e8017 .974561
50 | -.1985112 -4589208 -0-.43 0.EES -1.097979 .700957
55 | .bb3101k .393477 1.69 0.0492 -.108099 1.434302
B0 | -.424EL5E . 7859793 -0.54 0.589 -1.965157 1.11582k

|
ThruLanebUp | -.8200212 .3790982 -2.1k 0.031 -1.56304 -.0770024
DEFLECTION | -0100721 .00k932Y4 L.45 0.1l4k -.0035152 .0236594
Florida | =-1.158089 1774422 -k.53 0.000 -1.5058E9 -.8103083
_cons | =5.133955 2.3k07kb -2.17 0.030 -9.7609k -.5069502
_____________ o o e
/lnalpha | -3.240ku42 5155851 -k-.29 0.000 -4.25117) -2.230114
_____________ o o e

Location |
var(_cons) | -2840945 .0b74521 -1783871 -4524413
LR test vs. nbinomial regression:chibar2(0l) = 108.78 Prob>=chibar2 = 0-0000
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APPENDIX B. UNMATCHED DATA MODELS

This appendix contains the regression output for the models using the unmatched data. These
models were used to develop the CMFs.

Total Crashes

Mixed-effects nbinomial regression Number of obs = 51k
Overdispersion: mean
Group variable: Location Number of groups = 104
Wald chi2(21) = 121.79
Log likelihood = -1134.4724 Prob > chig = 0.0000
TOT | Coef . Std. Err. z P>lzl [95% Conf. Intervall
______________ o o o e
Treated | =-.0b51048 - 1452097 -0.45 D.b54 -.3497105 .219501
LNAADTMaj | -8827815 -14999k3 5.89 0.000 -5aa7q4e2 1.1767kL9
LNAADTMin | -1138795 .0520072 2-19 0.029 .0119472 .2158118
|
THRU_SPEED |
30 | -.0bL3538 -b472018 -0.10 0.918 -1.33484k 1.202138
35 | -1191k12 -b194843 0-19 0.847 -1.095014 1.33333k
uo | -3005828 -B4L7LY7? 0.47 0.639 -.9571549 1.558321
us | .37939k5 .b377301 0.59 0.552 -.8705315 1.629325
50 | -.35787kL2 . 7042309 -0.51 0.-611 -1.738143 1.022391
55 | -b11l4kEE2? - 6921769 0.88 0.377 -.745179 1.968104
L0 | -4uL522k .9k37542 0-4b 0.643 =1.442401 2.33544k
|
INT_SPEED |
25 | 40674 -4EE094S 0.87 0.383 -.506789 1.3202k9
30 | .b24kl - 4y5R572 1.40 0.1kl -.2488kLE L.498082
35 | -6398991 -45038kL4 L.u4e 0.155 -.2428419 1.522k4
uo | .603995k - 4907412 L.23 0D.218 -.3578394 1.565831
45 | -9291992 - 4785334 1.9Y4 0.052 -.008709 1.8L7107
55 | .9122952 . 528974 L.72 D.085 -.1244748 1.9490k5
|
THRU_LUW | -1335091 -1174843 1.1Y4 D.256 -.0967559 .3637741
ThruLaneSUp | -.4314039 .2038598 -2.12 0.034 -.8309k17 -.03184k
FRTH_LEG | -.0529904 -1514085 -0.35 0.72k -.3497457 2437649
DEFLECTION | -0075639 .0051582 L.47 0.143 -.00254k .0176739
Florida | =-.58790L8 .158542 -3.71 D.000 -.898L43Y -.2771703
_cons | -10.38209 2.28773k -4.54 0.000 -14.8L597 -5.89821
______________ A ————
/lnalpha | -2.793322 -3145283 -4.488 0.000 -3.40978k -2.17L858
______________ A ————
Location |
var(_cons) | .21lk25kkb .04207kL9 .1476902 .31kE55E
LR test vs. nbinomial regression:chibar2(0l) = 112.31 Prob>=chibar2 = 0.0000
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Fatal + Injury Crashes

Mixed-effects Poisson regression Number of obs = 51k
Group variable: Location Number of groups = 104
Wald chig2(21) = k9.20
Log likelihood = =-795.8822 Prob > chig = 0.0000
FI | Coef . Std. Err. z P>1zl [95% Conf. Intervall
______________ s
Treated | =-.1258947 -14b80kLY -0.8k 0.391 -.413k2199 -1b1840k
LNAADTMaj | - 7880994 .1538588 5.12 D.000 -48L5418 1.089L57
LNAADTMin | -1330u427 .0530407 2.51 0.012 -0290847 .237000k
|
THRU_SPEED |
30 | -3913529 .b7472kY D.58 0.5k62 -.93108k5 L.7L37492
35 | -2297819 -b552kkL7 0.35 0.72k -1.054517 1.514081
uo | -528428Y +B?77L754 0.78 0.435 -.7988111 L.855kLkL8
us | -L428837 -b733534 0.95 0.340 -.b7L8BELY? 1.9k2k32
50 | -234018k . 7384256 0.32 0.751 -1.213269 1.68130k
55 | 1.0L79L8 . 7230297 L.48 0.140 -.349L44k 2.48508
L0 | -028117b 1.0k701L2 0D.03 0.979 -2.063187 2.1L9422
|
INT_SPEED |
25 | -3085L97 24771768 0.5 0.518 -.b2kkL79k 1.243819
30 | -48885kL2 4565184 1.07 D.284 -.405903Y4 1.383kb1kb
35 | -32k4459 -4b24y 0.71 0.u480 -.5799198 1.232812
uo | -52510kL48 . 5007958 1.05 0.294 -.4554349 1.506kL48
us | -4338082 - 488025 0.89 0.374 -.52270k2 1.390323
55 | -5979823 . 5404798 L.11 0.2k9 -.4b1338k 1.557303
|
THRU_LUW | -0928152 .1228kkL3 0.7k 0.450 -.1479983 .333L287
ThruLaneSUp | =-.3819944 .209kk4Y -1.482 0.0L8 -.7929291 .0289403
FRTH_LEG | -.191284 .1558754 -1.23 0.220 -.49E7942 .1l422k3
DEFLECTION | -0018598 .0053054 0.35 0.72k -.008538k .0122583
Florida | =-.2244251 .1b42k601 -1.37 0.17e -.5463kL9 .0975188
_cons | -10.22kLkL5 2.353285 -4.35 0.000 -14.839 -5.k1lu4294
______________ A ——
Location |
var(_cons) | . 15825 .0429838 -09292kL8 .2b94924
LR test vs. nbinomial regression:chibar2(0l) = 33.71 Prob>=chibar2 = 0.0000

66



Target Crash

es

Mixed-effects nbinomial regression

Overdispersi
Group variab

Log likeliho

on:
le: Loca

od = -9k0-89489

mean
tion

Number of obs

Number of groups

Wald chi2(21)

515

104

1kL.72
0.0000

Treate
LNAADTMa
LNAADTMi

THRU_SPEE
30
35
40
45
50
55
kO

INT_SPEE
25
30
35
40
45
55

THRU_L
ThruLane5U
FRTH_LE
DEFLECTIO
Florid
_con

Location
var(_con

d
J
n

-.1857775
-9044383
-1174335

D
L.081438
1.1b7L4B
L-4b4b637
L.b424ke
-8048887
1.700048
1-4b1301

|

+

|

|

|

|

|

|

|

|

|

|

|

|

|
D 1
| -394
| -b71L4898
| -b295828
| -4781859
| 1.09181
| -967884
|
|
|
|
|
|
|
+
|
+
|
|

W
P
G
N
a
s

-1072025
-.554012k
-0024002
.0072983
-1.003kL87?
-11.EkL7?ES

s)

-1k45152
-171L5841
-0598kk

-950747k
-92k7098
-9456078
- 942324k
1.001211
-9904233
1.296715

- 5ELY4751
-5448975
. 5501377
- 59bk0kLE
. 5774279
-b30kAkLS

-13752kb

.234327
-1702k09
.0057975
-1794k2e
2.713kL89

HEOR

HEOREO

Prob > chig
z P>1zl
13 D.259 -
27 0.000
9k D.050
L1y 0.255 -
2k 0.208 -
55 0.121 -
7y 0.081 -
a0 0.421 -
72 0.08k -
13 0.2k0 -
70 0.u487 -
23 0D.218 -
L1y 0.252 -
a0 D0.423 -
89 0.059 -
53 0.125 -
78 0.43k -
3k 0.018 -
.01 0.989 -
.2h 0.208 -
59 D0.000 -
30 0.000 -
15 0.000 -

[95% Conf.

-5082214
-5681397
.0000983

-7819933
-b48LEAS8
-3847202
-2044807
L.157449
-24114kl1
1.080214

-71k2708
-39k4897
-448EE73
-b911408
-0399283
-2ka2584

-1b23447
1.013285
-3313051
-0040k47?
L.35542k
1k.98L38

Intervall

- 13kbEL3
L.240737
.2347L487

-944869
-9839kk
-317994
-489364
-?7b722b
-bhl2ye
-00281b

fFwnuwwmrunu

- 504271
- 7394619
.707833
-b47?7513
.223548
-20402kb

N e e e

376749k
-.0947Y
.33L105Y
.018kkL12
-.L519472
-b.348917

LR test vs.

nbinomial regression:ichibar2(0l)
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75.34 Prob>=chibare

= 0.0000
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