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EXECUTIVE SUMMARY 

This Federal Highway Administration (FHWA) Climate Change Vulnerability Assessment Pilot 

project is the only one of the 19 FHWA pilot projects to link climate projections of precipitation 

with streamflow simulation to enable vulnerability assessment under projections of climate 

change. The methodology extracts climate model daily precipitation data from 19 climate models 

at 22,781 grid points for 1960 – 2100 (22,118,072,900 precipitation data points). It generates 

continuous 140-year streamflow simulation and uses U.S. Geological Survey (USGS) protocol 

for estimating streamflow quantiles.  

To evaluate change in exposure to critical streamflow levels and assess change in bridge 

vulnerability, projected streamflow statistics are integrated with the Iowa Department of 

Transportation (DOT) bridge and roadway asset infrastructure database. 

The pilot addresses inland flooding under climate change in basins for which precipitation 

cannot be used to directly inform hydraulic loads due to poor correlation between peak flows and 

precipitation metrics. The innovative methodology quantitatively evaluates the characteristics of 

information needed in order to have confidence in the approach for selecting climate data and 

generating simulated streamflow statistics as input to vulnerability assessment of highway 

infrastructure. The pilot methodology assesses the following. 

 Spatial and temporal precision needed for climate model data to be credible for hydrologic 

simulation 

 Accuracy of predicted changes in rainfall 

 Sensitivity of hydrologic simulation to variability in climate projection data 

 Practical considerations for the approach to translate simulated hydrology into engineering 

metrics 

 Vulnerability of six bridge and highway locations 

 Solutions to increase resilience of existing hydraulic design for bridges based on current 

methodologies 

River floods can persist for days to weeks in river basins with gently sloping landscapes, because 

the basins drain slowly, creating an extended period over which rainfall can feed into a flood 

pulse in the river system. This complicated rainfall and streamflow timing mechanism was 

clearly responsible for the 2008 Cedar Rapids, Iowa flood that exceeded 1.4 times its 500-year-

interval flood and for which Interstate 80 (I-80) was closed. 

Furthermore, climate projections of rainfall must be integrated within a river system model to 

predict river flood response to climate change. This requires an innovative methodology, and we 

document, in our key findings, the analyses and graphs that were instrumental in developing the 

dialogue between engineers and researchers to establish a common knowledge base and co-

develop the methodology. 



 

xiv 

Finding 1: Simulated peak flow statistics have acceptably low error for floods greater than twice 

the mean annual peak in basins larger than 250 km
2
 (about 100 square miles), when generated 

from climate projection rainfall data having daily time step and grid spacing of one-eighth 

degree. 

Finding 2: The credibility of climate projection data for use as input data to generate a 

continuous 140-year hydrological simulation is confirmed with a novel analysis of prediction 

error. Accuracy is evaluated for basin-average annual maximum precipitation (AMP) over a 

historical climate scenario period (1960 – 1999) and a future climate scenario period (2000 – 

2013). Bias is small in the historical period and much larger in the future scenario period, as 

expected. The projection range of AMP in the future climate scenario period, however, 

enveloped an abrupt change of observed AMP, indicating the projection values are plausible and 

may serve as input values to hydrological models. 

Finding 3: Streamflow simulation data have larger bias than climate model precipitation data 

because the lack of correspondence in sequences of precipitation from observed and climate 

model datasets create different annual peak flow statistics. Streamflow simulation error is 

tractable in vulnerability analysis because it is smaller than the predicted streamflow change due 

to greenhouse gas increases. 

Finding 4: An approach was developed to maintain consistency with USGS protocol for 

calculating flood quantiles by defining two estimation periods for which full simulated 

streamflow records are used: historical period (1960 – 2009) and hypothetical bridge lifetime 

period (1960 – 2059). The primary engineering metric of interest is the 100-year flow (1% 

annual exceedance-probability discharge or AEPD). Confidence intervals are used to evaluate 

change in 1% AEPD estimates for the historical period and hypothetical bridge lifetime period. 

The analysis showed a median of the 19 climate projection 1% AEPD estimates for each period 

increases more in the Cedar River Basin compared to the smaller South Skunk River Basin (see 

Figure). The use of confidence intervals was critical to enabling professional judgment within 

design analysis. 
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 Cedar River Basin South Skunk River Basin 

 
Legend: 

Shaded region (1960-2009) and dashed lines (1960-2059) demarcate quantile projection range bounded by median 

of upper and lower 95th confidence interval. 

Each solid line is the median of the 19 projection quantile estimates with black at the bottom for 1960-2009 and blue 

at the top for 1960-2059. 

Figure. Using climate projections, current and future ranges for quantiles of peak flow for 

Cedar River Basin (left) and South Skunk River Basin (right) 

Finding 5: Under the climate model projections, all six critical interstate and highway locations 

would be exposed to streamflow that exceeds current design standards. Each location is projected 

to have increased vulnerability from more frequent episodes of highway overtopping and 

potential bridge scour. For instance, I-80 over the Cedar River currently overtops for the 1.6% 

AEPD (60-year flood), but the same discharge is projected to be approximately a 10% AEPD 

(10-year flood) over the lifetime of the bridge. Potential impacts include significant disruption to 

commerce and the traveling public and possible flood damages to the road embankment, 

pavement, and bridge. 

Finding 6: Bridge and highway resilience would need to be improved in four of the six pilot 

bridge locations to withstand the projected increase in frequency of extreme streamflow 

conditions. Balance must be obtained between the disruption to the traveling public and damage 

associated with highway overtopping versus the integrity of a bridge to accept all the flow from 

an extreme flood event. We illustrate cost-effective bridge design based on the 100-year flood 

(1% AEPD) estimate from measurements, using the flexible projection streamflow analysis 

approach described in Findings 3 through 5. 

 

Legend:	
Shaded	region	(1960-2009)	and	dashed	lines	(1960-2059)	demarcate	quan le	projec on	range	
bounded	by	median	of	upper	and	lower	95th	confidence	interval.	
Solid	line	(black,	1960-2009;	blue,	1960-2059)	is	median	of	the	19	projec on	quan le	
es mates.	
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INTRODUCTION TO THE PROJECT 

Goals 

The Iowa Department of Transportation (DOT) is responsible for approximately 4,100 bridges 

on the primary highway system. Many structures along the primary highway system (Interstate, 

US, and Iowa highways) are located on the floodplains of streams and rivers. The goal of this 

project for the Iowa DOT, in particular, is to develop the necessary building blocks of an 

interactive and proactive planning process for maintenance, repair, and replacement of Iowa’s 

primary highway structures. The envisioned process will include the following tasks: 

 Collect, monitor, predict, and evaluate performance of existing highway structures and 

roadway embankments with respect to flood inundation during severe rainfall events 

 Assist in proactively mitigating the impacts of these events 

 Prepare and plan for future highway improvements 

A key objective for reaching the project goal is to develop a system for assessing bridge and 

roadway vulnerability to streamflow change under climate change projections. This pilot uses 

bridge sites recently impacted by record streamflow to evaluate the following steps in climate 

change vulnerability assessment: 

 Determination of relevant precipitation metrics in climate projections 

 Quantification of sensitivity of simulated streamflow to projected precipitation change 

 Assessment of bridge vulnerability to simulated streamflow change using an integrated asset 

database and bridge-monitoring software application called BridgeWatch 

Scope 

The number of structures in Iowa prevents climate change vulnerability analysis for all of the 

structures for this pilot project. Therefore, this project develops the vulnerability analysis 

framework and applies it in two basins for which record annual peak streamflow has occurred in 

recent years: the South Skunk River Basin in central Iowa and the Cedar River Basin in northeast 

Iowa (see Figure 1).  
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Figure 1. Cedar River Basin (larger area on the right) and South Skunk River Basin 

(smaller area on the left) watershed locations used for this study 

Within the basins, five streamflow gauges for six bridge locations were selected for detailed 

analysis and streamflow simulation evaluation (see Table 1). 

Table 1. Stream gauge and basin drainage information for the five stream gauges selected 

to evaluate bridge vulnerability to climate change 

Map 

(No.)* Bridge/Location 

USGS  

Gauge  

(No.) 

Drainage Area 
Drainage  

Time 

(days) km
2
 mi

2
 

1 Cedar River: US 20 in Waterloo 05464000 13,294  5,133 4 

2 Cedar River: US 151 in Cedar Rapids 05464500 16,814  6,492 7 

3 Cedar River: I-80 near Conesville 05465000 20,080 7,753 9 

4 Skunk River: US 30 in Ames 05471000 1,458 563 1 

5 Skunk River: I-35 south of Ames 05471000 1,458 563 1 

6 Skunk River: I-80 in Colfax 05471050 2,105 813 2 

* Corresponds to numbered locations in Figure 1 map 



 

3 

The time that water takes to move from the northern extremity of the basin through an outlet is 

the basin drainage time. During the drainage time, new rainfall may amplify a flood pulse before 

it reaches the outlet. Structures along the primary highway system in Iowa are affected by flood 

pulses that occur in response to rainfall accumulation over hours to weeks. The basins chosen for 

detailed analysis represent short drainage time (South Skunk River) with drainage time of about 

1 day and moderate drainage time (Cedar River) with drainage time of about 1 week (Table 1). 

Integrated vulnerability analysis for these bridges is facilitated by a database of structure 

characteristics accessed with the BridgeWatch alert system. The database includes more than 180 

scour-critical bridges and highway locations that are vulnerable to overtopping. The database 

includes information about critical streamflow thresholds, age of structure, scour vulnerability, 

maintenance, past damages and closures, and current plan of action when the bridge is threatened 

by high streamflow. The infrastructure database through the use of the real-time BridgeWatch 

warning system will provide a proactive approach to public safety for roadway overtopping and 

increased bridge scour vulnerability due to the impacts associated with climate change and 

extreme weather. 

Partners 

The lead of this pilot study was the Iowa DOT with Iowa State University (ISU) and the 

University of Iowa (UI) as partners providing expertise in support of streamflow simulation. ISU 

provided expertise in climate projection models and analysis and interpretation of rainfall 

statistics. UI provided expertise in streamflow models and analysis and interpretation of 

streamflow statistics. ISU supplied UI with climate projections of rainfall to use as input to 

mechanistic streamflow models built on surface and sub-surface hydrological fluid dynamic 

equations. The streamflow modeling system has been developed and evaluated extensively in 

support of the Iowa Flood Information System (IFIS) from the Iowa Flood Center (IFC) at UI. 

  



 

4 

APPROACH 

Data Gathering and Analysis 

Asset Inventory (including the function and interdependence of the transportation network) 

Transportation assets were limited to bridges for the primary highway system. The Iowa DOT 

bridge and roadway asset infrastructure database contained for all highway locations the age of 

structure, elevations of low road and low beam, critical streamflow thresholds, scour 

vulnerability, current plan of action when the bridge is threatened by high streamflow, soils 

information, past damages from extreme streamflow, and maintenance record.  

The database was updated by performing hydraulic analysis at each of the 80 bridge locations 

within the two pilot basins to develop streamflow rating curves either based on U.S. Geological 

Survey (USGS) gauge data (where available) or USGS regression equations. An example of the 

hydraulic information in the bridge database is given for the bridges in this pilot study in Table 2. 

Table 2. Stream gauge and basin hydraulic information for pilot bridge locations 

River Bridge/Location 

Overtopping  

Discharge 

ft
3
/sec Frequency 

Cedar  I-380/US 20 in Waterloo > 122,000 > 500-year 

Cedar  US 30/US 151 in Cedar Rapids 90,000 90-year 

Cedar  South of I-80 near Conesville 84,000 60-year 

South Skunk  US 30 in Ames 19,000 25-year 

South Skunk  I-35 south of Ames 19,000 25-year 

South Skunk  I-80 near Colfax > 27,000 > 500-year  

 

The primary highway system in these basins supports high volumes of interstate commerce and 

public traffic. Detours, when bridges are closed, range anywhere from 50 to 150 miles. 

Climate Data 

The primary infrastructure stressor is streamflow. We used annual peak flow from USGS 

streamflow gauge records at each pilot bridge location. The record length for the South Skunk 

River gauge near Colfax was 27 years, but the record length for the other four gauge locations 

ranged from 83 to 110 years. 

We used several types of precipitation data. The precipitation data we used depended on the 

objective of the analysis within which it was used. We used precipitation data to address the 

following questions: 
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 What spatial and temporal resolution of precipitation data is needed for accurate streamflow 

simulation? 

 What is the accuracy and prediction error of climate projection precipitation data? 

 What is the climate projection of precipitation change? 

To address the first question (What spatial and temporal resolution of precipitation data is needed 

for accurate streamflow simulation?), we used historical data from the National Oceanic 

Atmospheric Administration (NOAA) Stage IV precipitation analysis (Stage IV, henceforth). 

Stage IV data are a national mosaic of multi-sensor regional precipitation analyses produced by 

the 12 NOAA National Weather Service River Forecast Centers. Precipitation data remotely 

sensed by radar and measured in situ by gauges were combined; then, human quality control was 

applied. Stage IV precipitation analysis was available on a 4-km by 4-km (2.49-mile by 2.49-

mile) grid with an hourly increment. More information is available about the collection of data 

and processing procedures for Stage IV at 

www.emc.ncep.noaa.gov/mmb/ylin/pcpanl/QandA/#STAGEX and 

www.crh.noaa.gov/ncrfc/content/documents/rfcwide.php. 

To address the second question (What is the accuracy and prediction error of climate projection 

precipitation data?), we used historical daily precipitation measurements that had been 

interpolated to a one-eighth-degree latitude-longitude grid across the entire U.S. (Maurer et al. 

2002). These data are available at www.engr.scu.edu/~emaurer/data.shtml. 

To address the third question (What is the climate projection of precipitation change?), we used 

climate projections of daily precipitation downscaled to a one-eighth-degree grid across the 

entire U.S. The latitude-longitude grid is identical for the interpolated historical daily 

measurements and downscaled daily climate projections. The downscaled data were generated 

using the asynchronous regional regression model (ARRM) (Stoner et al. 2013). ARRM data 

were used in support of the Gulf Coast Study, Phase 2: Temperature and Precipitation 

Projections for the Mobile Bay Region (Hayhoe and Stoner 2012). The ARRM data were 

obtained by direct access to the Texas Tech University supercomputing archives granted to ISU. 

These data are also available online at the USGS Geo Data Portal (cida.usgs.gov/gdp/). 

Data Integration Activities 

Integration of streamflow data with the Iowa DOT infrastructure database had several steps. 

Climate data were obtained by climate scientists at ISU and processed using Fortran 90 routines. 

The routines extracted grid points covering Iowa and generated ASCII data files formatted for 

ingestion into the UI Iowa Flood Center database. The climate data were used as input to the 

river networks analysis tool, CUENCAS, to generate streamflow stored within the database. 

Through discussion with the Iowa DOT bridge engineer, a graph was designed to inform bridge 

vulnerability analysis. 
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Methods  

Selection of Assets 

Bridge locations were selected that had recently experienced record streamflow. Iowa has had 

several years since 2000 in which widespread flooding has affected the primary highway 

network. Across the state, flood recovery since 2008 has exceeded $4 billion. In 2008, the Cedar 

River at Cedar Rapids had catastrophic flooding that exceeded 1.4-times the 0.2% annual 

exceedance probability discharge (AEPD) or 500-year flood. Downstream, I-80 was closed for 

four days and required a 120-mile detour. In 2010, the South Skunk River near Ames reached the 

0.2% AEPD (500-year flood), resulting in the closing of I-35 and US 30 for several days. 

Selection of Climate Stressors and Associated Analytical Activities 

Considerations in selecting climate projection data: The primary climate stressor is 

precipitation, but it is used to produce simulations of streamflow, the primary infrastructure 

stressor. Because linking climate projection data to streamflow simulation models is a novel 

technology in transportation design analysis, our goal was to produce a report with procedures 

that were transparent, collaborative, analytically-grounded, pragmatic, and action-oriented. We 

applied several criteria for selection of the climate projection dataset (Table 3), many of which 

were suggested in Sections 2.4 and 3.3 of The Federal Highway Administration’s Climate 

Change and Extreme Weather Vulnerability Assessment Framework (FHWA 2012), and we 

developed novel analytical techniques to evaluate the credibility of the linked precipitation-

streamflow modeling system. These selection criteria and analytical techniques may be applied 

to any precipitation-runoff model, such as the Hydrologic Engineering Centers River Analysis 

System (HEC-RAS), which was developed by the U.S. Army Corps of Engineers (USACE), the 

soil and water assessment tool (SWAT), or the U.S. Soil Conservation Service/Natural 

Resources Conservation Service (NRCS) TR-20 hydrologic analysis model. In this pilot, we used 

CUENCAS (which means river basins in Spanish). 
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Table 3. Considerations in selecting downscaled climate dataset 

Consideration Comments 

Temporal and 

Spatial Scale 

Hydrological simulation will be poor should climate data with 

inappropriate temporal and spatial scales be used. We used 

historical data to evaluate error from coarseness of climate 

data to determine appropriate climate data temporal and 

spatial scale. 

Accuracy We use downscaled climate data that have been evaluated 

against observed data. For the empirically downscaled data 

used in this pilot study, this means the comparison is during 

the training period for the parameters of the empirical model 

(1960 – 1999). Error evaluation is undertaken for annual, 

seasonal, daily, and extreme precipitation. 

Methodological 

Assumptions 

The empirical downscaling approach assumes model 

parameters estimated during an historical period (1960 – 

1999) are unchanged in the future period. This assumption 

has been evaluated by the perfect model framework 

developed at the Geophysical Fluid Dynamics Laboratory 

(gfdl.noaa.gov/esd_eval_stationarity_pg1). 

Variability The downscaled climate projections database adequately 

samples the three forms of variability in climate projections: 

greenhouse gas emissions scenario, climate model response to 

greenhouse gas emissions, and natural climate variability. 

Availability The downscaled climate projections database was 

immediately available to our project through direct provision 

by the Texas Tech University High-Performance Computing 

Center). 

Use in other Assessments The downscaled climate projections database is derived from 

the database of projections informing the Intergovernmental 

Panel on Climate Change (IPCC). The downscaled database 

has been used in other assessments. This ensures we are using 

a well-reviewed dataset and can draw from and contribute to 

learning of its best uses. 

 

We selected daily precipitation on the one-eighth-degree grid from ARRM for three main 

reasons. First, its spatial and temporal resolution is state-of-the-science within the climate 

projection downscaling research field. We would prefer to have even finer-spaced gridded data 

with sub-daily increments. However, given that daily historical measurements are the most 

widely available data, sub-daily climate projection precipitation data are rarely evaluated, and 

sub-daily downscaling methods are highly experimental. Second, use of these data in this context 

adds new insight to findings in the Gulf Coast Study, Phase 2 Temperature and Precipitation 

Projections for the Mobile Bay Region Final Report (Hayhoe and Stoner 2012). Consistent 

datasets among pilot studies further establish their best uses and limitations. The Gulf Coast 

Study, Phase 2 analysis used ARRM data at 10 locations to inform sensitivity to local future 
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conditions. We extracted data for 22,781 grid points in order to inform the streamflow model. 

Third, this approach has been scrutinized through extensive and transparent evaluation of its bias 

and its central assumption of stationary. This ensures we have a transparent, well-reviewed, and 

repeatable data method. 

The ARRM dataset we used contained 19 climate projections. This is a uniquely large dataset at 

this resolution. Nevertheless, the small number of projections resulted in the main limitation of 

our pilot study being an imbalance in the number of projections for the greenhouse gas scenarios. 

The collection contains seven A1B, nine A2, and three A1FI greenhouse gas scenario projections 

(Table 4). In our analysis, this means only tenuous conclusions can be drawn about differences 

of results between greenhouse gas scenarios. 

Table 4. Global climate model and greenhouse gas scenario of ARRM climate projections 

used in pilot study 

Global  

Climate Model 

Greenhouse  

Gas Scenario 

CCSM A2, A1FI 

CGCM3_T47 A1B, A2 

CGCM2_T63 A1B, A2 

CNRM A1B, A2 

ECHAM5 A1B, A2 

ECHO A1B, A2 

GFDL_2.1 A2, A1FI 

HADCM3 A1B, A2, A1FI 

HADGEM A1B, A2 

 

Streamflow modeling: We used statewide implementation of the CUENCAS hydrological 

model, which is a distributed rainfall-runoff hillslope model (Mantilla and Gupta 2005). 

CUENCAS is a parsimonious model, which means that it minimizes the computational resources 

needed for physically-based models by capturing only the essential features in a watershed and 

using as few parameters as possible to obtain acceptable results. The numerical solution of the 

system of ordinary differential equations that make up the statewide implementation are solved 

using a state-of-the-art parallelized implementation of a numerical solver that runs in the high-

performance-computing cluster, Helium, at UI. 

The model consists of a large number of river links (the portion of a river channel that connects 

two junctions of a river network) and hillslopes (adjacent areas that drain into the links), with 

each link and hillslope having a system of differential equations assigned to it in order to solve 

for water fluxes and storages, as depicted in Figure 2.  
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Figure 2. Depiction of hill slope areas used in CUENCAS 

This rainfall-runoff model accounts for the routing of water through the river network’s 

channels, hillslope runoff generation (through an approach for runoff consistent with the U.S. 

Department of Agriculture (USDA) Soil Conservation Service (SCS) curve number (CN) 

method), and soil water storage dynamics. It applies these equations on hillslope area with 

average of 0.052 km² (0.03 square miles) and average link length of 400m (437.45 yards). The 

small hillslope elements were made possible by the statewide light detection and ranging 

(LiDAR) database funded by the Iowa Department of Natural Resources (DNR), the Iowa DOT, 

and the Iowa Department of Agriculture and Land Stewardship. 

CUENCAS performance has been evaluated extensively through application to several river 

basins of varying sizes across Iowa. It has reproduced very accurately the historical, catastrophic 

2008 Cedar Rapids flood, in which peak streamflow exceeded 1.4-times the 0.2% AEPD. 

Credibility analysis: Our engineering professionals raised questions about the credibility of 

linking climate projection data with a streamflow simulation model. We developed novel 

analyses to address the following questions. 

 What resolution of precipitation data is needed for accurate streamflow simulation? 

 What is the accuracy and prediction error of climate projection precipitation data? 
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Error analysis for climate data resolution: Our hydrological engineers developed an approach 

to evaluate the accuracy of streamflow simulation given relatively coarse-resolution climate 

projection data. A two-stage procedure was used to separate errors of the streamflow model from 

those of the coarseness of precipitation data (see Figure 3). The two-stage error evaluation is 

applicable to any combination of climate dataset and streamflow model (e.g., HEC-RAS, SWAT, 

TR-20). 

 

Figure 3. Streamflow error evaluation process for baseline and climate data simulations 

Flowcharts: Streamflow error evaluation process for baseline simulation (top) and climate data 

simulation (bottom), each showing from left to right, input data, left, simulation mode in the 

middle, and baseline simulation error evaluation, right 

The climate data simulation (bottom part of the figure) in the two-stage error analysis used the 

Stage IV data after they had been coarsened to the spatial and temporal increments of the climate 

data. The ARRM data were available on a one-eighth-degree grid with daily increments. The 

Stage IV data were systematically coarsened from their native hourly time step and 4-km by 4-

km (2.49-mile by 2.49-mile) grid until matching the daily time step and one-eighth-degree grid 

of the ARRM data.  

Plausibility analysis for continuous climate data series: The research team concluded the use 

of continuous precipitation change data would require a demonstration of their plausibility. We 

selected annual maximum precipitation (AMP) as a metric for climate model evaluation. 

Although AMP is not the sole driver of annual peak flow in the pilot basins, this extreme rainfall 
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metric is one of the driving processes, and, as the basis for the National Weather Service (NWS) 

precipitation frequency estimates published in NOAA Atlas 14 Precipitation-Frequency Atlas of 

the United States (Perica et al. 2013), it is a metric familiar to engineers. 

The climate scientists developed a two-stage AMP analysis. The first stage evaluated error 

during the historical period of the climate scenarios (1960 – 1999). The second stage evaluated 

error during the future period of the climate scenarios (2000 – 2013). The future climate scenario 

period also is an out-of-sample period for the empirical downscaling method, ARRM, for which 

1960 – 1999 data were used to train model coefficients. This framework allowed the team to 

make the following determination for the suitability of the continuous precipitation change data 

in vulnerability analysis. 

If large errors in AMP were evident during the historical climate scenario period (1960 – 1999), 

it would mean the downscaled data were inaccurate and, therefore, had low credibility as input to 

hydrological simulation of floods. If large errors in AMP were evident during the future climate 

scenario period (2000 – 2010), it would mean the downscaled data had not replicated real-world 

change. The climate projections would have limited credibility in the near term, particularly with 

the design engineers, and would be appropriately used as time-slice climate change data rather 

than continuous climate change data. 

Flood quantile estimation: It was necessary to contrast flood quantiles computed with and 

without future climate change in order to identify the vulnerability due to climate change. It 

wasn’t straightforward to reconcile this analysis component with current USGS protocols that 

only permit subsetting of streamflow records into sub-periods when non-stationarity is evident in 

the annual peak streamflow series.  

We developed an alternative to subsetting by defining two periods of record based on bridge life 

expectancy. For both periods, PeakFQ was applied to the entire period of record. (USGS PeakFQ 

software uses Bulletin #17B of the Hydrology Subcommittee, Guidelines for Determining Flood 

Flow Frequency (1982), procedures to calculate estimates of instantaneous annual-maximum 

peak flows having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years or annual-

exceedance probabilities of 0.50, 0.20, 0.10, 0.04, 0.02, 0.01, 0.005, and 0.002, respectively.) 

The analysis was shifted away from conflicting with established USGS protocol that focuses on 

subsets of a single data record, because our focus was on comparing records that included or 

excluded future information. By using PeakFQ, we ensured the translation of simulated annual 

peak flow into salient engineering metrics for interpretation within bridge design, maintenance, 

and operations. 

We defined the historical period of record as containing no future climate projection data, and it 

covered the years 1960 – 2009. For all gauges, this historical period was much shorter than the 

observed period of record, because the climate projection data did not extend back in time as far 

as the gauge measurement record. The result is that confidence intervals are larger for flood 

quantiles when using the historical period of record than the full gauge measurement record.  
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We defined a second period that extended into the future to cover the expected bridge lifetime. 

The hypothetical bridge lifetime period was 1960 – 2059. In practice, the bridge lifetime period 

would be determined from the date it was constructed. In our experimentation with this 

approach, we assumed all bridges were constructed at the beginning of the climate projection 

data. A 100-year bridge lifetime expectancy is reasonable. We applied PeakFQ to the full 

simulated streamflow data record (generated by climate projection data feeding into CUENCAS) 

for the historical and bridge lifetime periods. Figure 4 shows the 1% AEPD (100-year flood) 

estimate and its confidence intervals for one of the climate models (HadCM3) under two of the 

greenhouse gas emissions scenarios (A1FI top and A2 bottom). 

HadCM3 Climate Model and A1FI Scenario 

 

HadCM3 Climate Model and A2 Scenario 

 

Figure 4. 1% AEPD (100-year flood) estimate and its confidence intervals for one of the 

climate models (HadCM3) under two of the greenhouse gas emissions scenarios (A1FI top 

and A2 bottom) 
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Figure 4 shows the annual peak flow series (black line plotted line at the bottom) from the 

streamflow simulations based on precipitation from HadCM3 with A1FI (top) and A2 (bottom) 

greenhouse gas emissions scenarios at the Cedar River gauge in Cedar Rapids.  

The solid and dotted black lines horizontally straight across the charts toward the bottoms of 

them show PeakFQ estimates of 1% AEPD (100-year flood) using gauge measurements for the 

entire gauge data record (1903 – 2013). The blue solid and dotted lines horizontally straight 

across the charts toward the tops of them show PeakFQ estimates using climate projection data 

for the bridge lifetime period (1960 – 2059). The two matched sets of dotted lines indicate the 

5% confidence level at the bottom and the 95% confidence level at the top. 

The HadCM3 A1FI compared to A2 series has substantially more peak events during 2020 – 

2100 in excess of peaks during 1960 – 1999. Consequently, the 1% AEPD estimate from 

HadCM3 A1FI compared to A2 is substantially higher (solid blue line) and has a wider 5% to 

95% confidence interval (between the two dotted blue lines). 

Using this approach, we developed 19 estimates of flood quantiles and associated 95% 

confidence intervals for each bridge (Figure 5) for both historical (1960 – 1999) and bridge 

lifetime (1960 – 2059) periods, from which we extracted the 1% AEPD.  
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Figure 5. Data generation for inputs to bridge vulnerability assessment
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We did not follow the practice of grouping the streamflow simulations by greenhouse gas 

emissions scenario (A1B, A1FI, A2), because the number of simulations was too small to reach 

the conclusion that each scenario produced different streamflow statistics. Instead, we used the 

median value of the 19 projection streamflow quantile estimates as the streamflow quantile 

estimate within a period. We bounded the projection quantile estimate by the median values of 

the 19 high and low bounds for the 95% confidence intervals. 

Vulnerability and risk assessment: A qualitative approach to risk assessment was performed to 

document the potential exposure to high streamflow and costs associated with future streamflow 

conditions under current bridge and roadway sites. The analysis used 1% AEPD (100-year flood) 

as the key metric for indicating changes in potentially damaging streamflow. For four of the six 

bridges, the 1% AEPD exceeds current design standards for overtopping. This is also being 

considered as a design streamflow for scour calculations. Significant change in 1% AEPD, 

therefore, would imply change in frequency of overtopping and integrity of landscape supporting 

bridge structures. Increase in overtopping frequency would result in bridge closures and detours 

of substantial distance under the current highway system. 
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FINDINGS 

Finding 1 

Simulated peak flow statistics have acceptably low error for floods greater than twice the mean 

annual peak in basins larger than 250 km
2
 (96.53 square miles) when generated from climate 

projection rainfall data having daily time step and grid spacing of one-eighth degree. 

The infrastructure stressor of interest is streamflow, and the climate variable of interest is 

precipitation. It was not possible in this case to use regression equations to predict flood 

quantiles from precipitation (as in Section 3.3.2 in The Federal Highway Administration’s 

Climate Change and Extreme Weather Vulnerability Assessment Framework). Instead, we 

simulated streamflow by using precipitation data as input to a streamflow model. We applied the 

two-stage error analysis (see description in Approach chapter under Selection of Climate 

Stressors and Associated Analytical Activities, Credibility analysis) to determine whether the 

coarse resolution of the ARRM data would result in unacceptable simulation errors. 

Simulated streamflow traces from May 1, 2013 through June 14, 2013 are shown in Figure 6 for 

the Cedar River in Cedar Rapids, Iowa (USGS gauge 05464500), an outlet point from a basin 

with drainage area of nearly 17000 km
2
 (about 6,500 square miles). Simulated streamflow traces 

along the bottom axis were obtained from the baseline simulation (lighter blue) and climate data 

simulation (darker blue). Precipitation is shown on the top axis for baseline simulation (lighter 

blue) and climate data simulation (darker blue). Differences were typical of errors for this basin. 

Every basin in the state was simulated, and the climate data error for peak annual flow was 

computed as climate data simulation minus baseline simulation. Peak annual flow error was 

sorted by basin size and by flood size, defined as ratio of peak annual flow to mean annual flow. 

Differences relative to baseline simulation for 250 km
2
 (nearly 100 square miles), 1300 km

2
 (a 

little over 500 square miles), and 2500 km
2
 (nearly 1,000 square miles) were bounded by ±80%, 

±50%, and ±30%, respectively. Flood sizes greater than twice the mean annual flood were 

bounded by ±10%. 

The team concluded this simulation approach using the one-eighth-degree grid with daily time 

step would be used best for analysis of peak flow in “big basins and big floods.” It could be 

argued that basins as small as 250 km
2
 (nearly 100 square miles) may be well simulated. The 

pilot basins were greater than 500 km
2
 (nearly 200 square miles).
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Figure 6. Simulated streamflow trace for the Cedar River in Cedar Rapids, Iowa May 1 through June 14, 2013 

 



 

18 

Finding 2 

The credibility of climate projection data for use as input data to generate a continuous 140-year 

hydrological simulation is confirmed with a novel analysis of prediction error. Accuracy is 

evaluated for basin-average annual maximum precipitation (AMP) over a historical climate 

scenario period (1960 – 1999) and a future climate scenario period (2000 – 2013). Bias is small 

in the historical period and much larger in the future scenario period, as expected. The 

projection range of AMP in the future climate scenario period, however, enveloped an abrupt 

change of observed AMP, indicating the projection values are plausible and may serve as input 

values to hydrological models. 

We decided to adhere as much as possible to standard USGS protocols in order to produce 

engineering design metrics that were salient to existing design analysis procedures and replicable 

outside of our pilot basins. The protocol for estimating flood quantiles from streamflow requires 

using the entire period of record, unless the data record is clearly shown to be nonstationary. To 

date, pilot projects have used time-slice climate change data wherein climate projection data are 

aggregated over a minimum of 30-year periods and change is computed as the difference 

between past and future 30-year periods (see, for example, Gulf Coast Study, Phase 2: 

Temperature and Precipitation Projections for the Mobile Bay Region (Hayhoe and Stoner 

2012)). Guidance on how to incorporate continuous climate change data into vulnerability 

assessment is not provided in The Federal Highway Administration’s Climate Change and 

Extreme Weather Vulnerability Assessment Framework (FHWA 2012). 

We applied the two-stage error analysis of AMP predictions to determine the plausibility of 

continuous precipitation sequences (see description in Approach chapter under Selection of 

Climate Stressors and Associated Analytical Activities, Credibility analysis). Over both 

historical and future climate scenario periods, we evaluated the mean error (bias) and the rank of 

observed AMP within the 19 climate projections of AMP. 

We illustrate the analysis using the Cedar River Basin AMP. The Cedar River Basin AMP is the 

average of AMP computed at each grid point within the Cedar River Basin (323 grid points). 

Figure 7 shows observed AMP as solid black circles. 

Prior to 2000, observed AMP ranged from 35 to 65 mm (1.38 in. to 2.56 in.) and exceeded 55 

mm only three times with most values between 40 and 55 mm (1.57 in. to 2.17 in.). During 

2000 – 2010, observed AMP exceeded 55 mm (2.17 in.) in all but two years, and the upper limit 

of the previous 40 years, 65 mm (2.56 in.), was exceeded six of the 11 years. 
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Figure 7. Average AMP for grid points in Cedar River Basin 
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The climate projection AMP is summarized in Figure 7 with the 10th percentile (bottom line), 

mean (middle line), and 90th percentile (top line). The 10th percentile meant that 10% of the 19 

climate projection AMP values in that year were less than the value indicated by that line. 

Likewise, the 90th percentile meant that 90% of the 19 climate projection AMP values in that 

year were less than the value indicated by that line.  

The mean error of climate projection AMP during the historical climate scenario period was only 

-2.6% of the observed 1960 – 1999 mean AMP, but it became more severe during the future 

climate scenario period, dropping to -25.2% (see Table 5). The climate scientists interpreted the 

mean error to be an indication of the effects of natural variability during near-term climate 

change. 

Table 5. Mean error of climate projection AMP 

Summary Statistic 

Percent Difference of 

Projection minus  

Observation (%) 

Projection Mean AMP (1960 – 1999) -2.6% 

Projection Maximum AMP (1960 – 1999) 46.9% 

Projection Mean AMP (2000 – 2010) -25.2% 

Projections Maximum AMP (2000 – 2010) 47.1% 

 

The plausibility of climate projection AMP was evaluated by the rank of observed AMP within 

the 19 climate projections of AMP. The range of the 10th to 90th percentiles of climate 

projection AMP is much larger in the future compared to historical climate scenario period. The 

increase of range was due to higher values for the 90th percentile. Despite the abrupt increase in 

observed Cedar Rapids Basin AMP, the climate projection AMP enveloped the observed AMP. 

From this result, we concluded the climate projection data were a plausible continuous time 

series of precipitation and were acceptable as drivers for continuous streamflow simulation. 

Finding 3 

Streamflow simulation data have larger bias than climate model precipitation data because the 

lack of correspondence in sequences of precipitation from observed and climate model datasets 

create different annual peak flow statistics. Streamflow simulation error is tractable in 

vulnerability analysis because it is smaller than the predicted streamflow change due to 

greenhouse gas increases. 

The continuous streamflow series required further evaluation for credibility as input to flood 

quantile estimation procedures because it was unclear what streamflow error to expect as the 

river network translated the precipitation variability into streamflow variability. The climate 

simulations produce a continuous sequence of daily rainfall, but the sequence of precipitation is 

not identical to the observed sequence. This meant the timing of climate model precipitation 

integrated within the streamflow model would result in different annual peak flow than observed. 
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We used the two-stage framework of the precipitation error analysis for the streamflow error 

analysis. We used the USGS stream gauge measurements as the observation basis. If large error 

were evident in annual peak flow during the historical climate scenario period (1960 – 1999), it 

would mean, despite accurate precipitation amount, differences in sequencing of precipitation 

caused poor performance of the streamflow simulation. The streamflow simulation would be of 

low utility. If large error in annual peak flow were evident during the future climate scenario 

period (2000 – 2010), it would mean the streamflow simulation would have limited utility in the 

near term, and it would be more appropriately used for time-slice analysis. 

The Cedar River Basin USGS streamflow gauge in Cedar Rapids, Iowa is used to demonstrate 

the analysis. The historical climate scenario period (1960 – 1999) mean and maximum annual 

peak flow were 879 m
3
/sec (31,061 cubic feet per second) and 2,067 m

3
/sec (73,000 cubic feet 

per second), respectively, and the values for the future climate scenario period (2000 – 2010) 

were 1186 m
3
/sec (41,918 cubic feet per second) and 3964 m

3
/sec (140,000 cubic feet per 

second), respectively. During the 40-year historical climate scenario period, the projection mean 

annual peak flow had error of -9.1% (Table 6), considerably larger than the mean error of the 

climate projection AMP, -2.6% (Table 5). We concluded that the streamflow simulation was 

affected adversely by both the AMP mean error and the sequence of daily precipitation. 

Table 6. Mean error of projection streamflow 

Summary Statistic 

Percent Difference of 

Projection minus  

Observations (%) 

Mean annual peak flow (1960 – 1999) -9.1% 

Maximum annual peak flow (1960 – 1999) 59.8% 

Mean annual peak flow (2000 – 2010) -19.3% 

Maximum annual peak flow (2000 – 2010) 47.7% 

 

For the future climate scenario period (2000 – 2010), the mean error of annual simulated peak 

flow was -19.1%. The increase of error was expected because the mean error of climate 

projection AMP had increased. Yet, observed annual peak streamflow was bounded by 

projection streamflow. We concluded the continuous streamflow simulations were acceptable for 

estimating flood quantiles. 

The utility of projection streamflow was provided context by comparing it to the projection 

streamflow change. If the mean errors were as large or larger than the projection streamflow 

change, the ability of the streamflow simulations to detect a change would be questionable. 

Through exploratory analysis, we found the 40-year mean annual simulated peak flow was more 

accurately simulated than other metrics, such as the maximum of annual peak flow. We used the 

40-year running mean to diagnose the change of simulated streamflow due to climate change. 

The running 40-year mean annual simulated peak flow was computed for 1960 – 2099 (Figure 8 

shows data at the center years of the 40-year averaging period for 1979 through 2079). 
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Figure 8. 40-year mean simulated annual peak flow for 1979 through 2079 

The first entry in the time series is identical to the values used to compute percent difference in 

Table 4. The 40-year mean annual peak flow in 14 of the 19 climate projections increased 

abruptly during 2000 – 2049 and decreased in only two of the climate projections. The average 

increase of 40-year mean projected annual peak flow was 38.5%. Because the change in the 40-

year mean annual peak flow projection was substantially larger than mean error, we concluded 

the simulated streamflow could detect a response to climate change. 

Finding 4 

An approach was developed to maintain consistency with USGS protocol for calculating flood 

quantiles by defining two estimation periods for which full simulated streamflow records are 

used: historical period (1960 – 2009) and hypothetical bridge lifetime period (1960 – 2059). The 

primary engineering metric of interest is the 100-year flow (1% annual exceedance-probability 

discharge or AEPD). Confidence intervals are used to evaluate change in 1% AEPD estimates 

for the historical period and hypothetical bridge lifetime period. The analysis showed a median 

of the 19 climate projection 1% AEPD estimates for each period increases more in the Cedar 

River Basin compared to the smaller South Skunk River Basin (see Figure). The use of 

confidence intervals was critical to enabling professional judgment within design analysis. 
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Before applying the two-period analysis of flood quantiles, we conducted error evaluation for 

streamflow quantile estimates. If the simulated annual peak flow error had translated into large 

flood quantile errors, bridge vulnerability analysis would not be possible. The evaluation is 

illustrated for the Cedar River Basin. The median simulated streamflow quantile estimate was 

similar to the observed estimate for quantiles below the 10% AEPD (10-year return period), but 

for quantiles above the 4% AEPD (25-year return period), it was larger (Figure 9). 

 

Figure 9. Discharge values for several streamflow quantiles from gauge measurements 

(left) and streamflow projections (right) at the Cedar River gauge in Cedar Rapids from 

1960 through 1999 

It is a curious outcome that an apparent inconsistency is evident between errors for annual peak 

flow and upper flood quantiles. The annual peak flow had negative bias, meaning it was under 

predicted, yet the 4% to 0.5% AEPD had positive bias. We took a cautious interpretation to this 

result in that we recognized it may not be an actual inconsistency between the analyses because 

the use of confidence intervals showed large overlap of uncertainty bounds for observed and 

simulated streamflow quantiles. The overlap suggested the differences of median values were 

statistically insignificant. Because the uncertainty bounds of simulated flood quantiles enveloped 

those of the observed record, we concluded the simulated flood quantiles could be used in design 

analysis. 

We evaluated flood quantile response to climate change using only simulated flood quantile 

estimates and associated confidence intervals. Through several discussions, we concluded the 

use of observed and simulated data in the comparison would create a mixture of differences from 

simulation error and simulated response to climate change and would prevent identification of 

the climate change response. 

We overlaid flood quantile estimates and confidence intervals of the simulated streamflow for 

the historical period and hypothetical bridge lifetime period (Figure 10).  
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 Cedar River South Skunk River 

 
Legend: 

Shaded region (1960-2009) and dashed lines (1960-2059) demarcate quantile projection range bounded by median 

of upper and lower 95th confidence interval. 

Each solid line is the median of the 19 projection quantile estimates with black at the bottom for 1960-2009 and blue 

at the top for 1960-2059. 

Figure 10. Flood quantile estimates and confidence regions for historical period (black line 

at bottom and gray shaded area) and hypothetical bridge lifetime period (blue dashed and 

solid lines at top) for Cedar River in Cedar Rapids (left) and South Skunk River at Ames 

(right) 

For both basins, we found the discharge at all quantiles increased from the historical to the 

hypothetical bridge lifetime period, but the increase was larger for the Cedar Rapids Basin 

compared to the South Skunk River Basin, which has smaller drainage area. Because the 1% 

AEPD is an important design standard in Iowa, we extracted the range of increase for 1% AEPD 

for guidance used by the bridge engineer in bridge design analysis.  

To compute the range of increase, we took the difference between the 95% confidence interval 

bounds of the hypothetical bridge lifetime period and the median estimate of the historical 

period. The 1% AEPD increased by a range of 37% to 67% for the Cedar River Basin and by a 

range of 9% to 50% for the South Skunk River Basin. For both basins, overlap of 95% 

confidence regions meant the differences in flood quantile estimates were statistically 

insignificant. 

The bridge engineer liked that the confidence interval approach could provide a mechanism for 

using professional judgment in selecting design levels. For instance, in the case of the Cedar 

River Basin, we found the 1% AEPD estimate of the hypothetical bridge lifetime period nearly 

equaled the top bound of the 95% confidence interval for the historical period. This result could 

be used to argue for the use of the top bound of the 95% confidence interval for the historical 

period as a design standard. Even though we did not group simulations by greenhouse gas 

scenario, this confidence interval approach would have been applicable even if we had. 

Legend:	
Shaded	region	(1960-2009)	and	dashed	lines	(1960-2059)	demarcate	quan le	projec on	range	
bounded	by	median	of	upper	and	lower	95th	confidence	interval.	
Solid	line	(black,	1960-2009;	blue,	1960-2059)	is	median	of	the	19	projec on	quan le	
es mates.	
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The confidence interval approach resulted in dialogue that guided further diagnostics of factors 

resulting in basin-specific change of flood quantiles. We found substantial difference in the 95% 

confidence interval overlap for Cedar River and South Skunk River basins with about 25% 

overlap for the Cedar River Basin and 50% overlap for the South Skunk River Basin. We used 

the results from the two-step streamflow simulation error analysis (Finding 1) to better 

understand this difference.  

The error analysis had indicated the range of errors from the inherent coarseness of climate 

projection data were ±50% and ±30% for 1300 km
2
 (500 square miles) and 2500 km

2
 (1000 

square miles) basin sizes, respectively. The error for the South Skunk River Basin (563 square 

miles) was remarkably small: -12%. We concluded the precipitation-runoff model reasonably 

captured the processes responsible for annual peak streamflow in the South Skunk River. This 

suggested the difference in flood quantile response was due to one of or combinations of many 

possible basin factors that would require further research to understand with greater clarity (e.g., 

river network topology). The bridge engineer would be justified in concluding the bridge design 

may not need to include climate change data for the South Skunk River basin. 

Finding 5 

Under the climate model projections, all six critical interstate and highway locations would be 

exposed to streamflow that exceeds current design standards. Each location is projected to have 

increased vulnerability from more frequent episodes of highway overtopping and potential 

bridge scour. For instance, I-80 over the Cedar River currently overtops for the 1.6% AEPD 

(60-year flood), but the same discharge is projected to be approximately a 10% AEPD (10-year 

flood) over the lifetime of the bridge. Potential impacts include significant disruption to 

commerce and the traveling public and possible flood damages to the road embankment, 

pavement, and bridge. 

We developed an innovative flood design graph to convey succinctly to bridge design engineers 

the climate projection 1% AEPD (100-year flood) estimates (see, for example, Figure 11). The 

graph contains three pieces of information: historical time series of annual peak streamflow, 1% 

AEPD and its confidence intervals from all measurements in the gauge period of record, and 1% 

AEPD and its confidence intervals from climate projection data over the hypothetical bridge 

lifetime (1960 – 2059). The climate projection estimates of the 100-year flood and its upper and 

lower confidence interval bounds are the median values as described in Finding 4. 

This flood design graph is intended for use in this pilot project alone. We are not making a 

recommendation for the adoption of this graph as an analytical tool. We developed this graph 

because guidelines on computing flood quantiles from climate projection data do not currently 

exist. Our intent in developing the flood design graph was to maintain consistency with USGS 

protocol. 

The flood design graph requires careful interpretation. It is intended to enable engineering 

professionals to have flexibility in their design process. It contains, however, a mixture of 

historical data and climate projection data that are not strictly fair to compare. The flood design 
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graph combines these data in order to provide the engineer with a visual context for the 

projection data. It allows the engineering professional to see the distance between projected and 

historical 100-year flood estimates in terms of the bounds of the 95% confidence intervals for the 

historical data. It may be used, for instance, to suggest using the upper bound of the historical 

95% confidence interval as a design standard. 

Vulnerability Assessment for Cedar River Bridge at US 30 and US 151 in Cedar Rapids 

The bridge for US 30 and its intersection with US 151 in Cedar Rapids experienced its largest 

flood on record (1903 to present) in 2008. The 2008 discharge was 1.4 times the 500-year-

interval flood (0.2% AEPD). The highway and bridge design currently overtops at approximately 

the 90-year-interval flood (1.1% AEPD or 91,000 cubic feet per second). In 2008, the bridge 

experienced several days of significant overtopping. This caused multi-day disruptions to traffic 

and damage to the shoulder and undermining of the pavement along US 30. 

The flood design graph illustrates the substantial impact the 2008 flood had on the 100-year 

flood estimate (Figure 11).  

 

Figure 11. For the Cedar River bridge at US 151 in Cedar Rapids, annual peak flow 

(bottom black plotted line), 100-year flood estimate from 1903 – 2013 measurements (lower 

solid line straight across) and confidence intervals from measurements (two bottom dotted 

lines straight across) and, from 1960 – 2059, climate projections of the 100-year flood 

estimate (top solid line straight across) and confidence intervals (top two dotted lines 

straight across) 
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Notably, the peak flow of 2008 is the only one in the 111-year series of annual peak flow that 

exceeds the upper bound of the 95% confidence interval of the 100-year flood. Yet, a hypothesis 

of the time series fails to reject stationarity, so there is no justification to select a sub-period of 

the measurement record to compute flood quantile estimates. 

The projected 100-year flood for the hypothetical bridge lifetime (1960 – 2059) is substantially 

larger than the historical estimate. In fact, it has an increase of 67% compared to the 

measurement estimate, and it lies essentially on top of the upper bound of the 95% confidence 

interval of the measurement estimate. Furthermore, it exceeds the worst flood on record (2008) 

by 12%. It is safe to conclude under the projected climate conditions, overtopping and damages 

may be as severe as 2008 and damaging events would occur more frequently than expected from 

measurements. 

Vulnerability Assessment for Cedar River Bridge at I-380/US 20 in Waterloo 

The bridge at US 20 in Waterloo is designed so that the road grade along I-380/US 20 

downstream of the Waterloo gauge is well above the 500-year flood (0.2% AEDP; 122,000 cubic 

feet per second) estimated from measurements. At this bridge, scour is calculated for the 500-

year flood. Care should be taken regarding the impacts to a bridge when a greater than 500-year 

flood event occurs and the roadway does not overtop, because the exponential increase of force 

with stream velocity means additional scour and erosive impacts on the bridge foundations may 

be well beyond the design standards. 

The flood design graph reveals substantially higher 100-year flood discharge in the climate 

projection data compared to the 1930 – 2013 measurement record (Figure 12).  
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Figure 12. For the Cedar River bridge at US 20 in Waterloo, annual peak flow (bottom 

black plotted line), 100-year flood estimate from 1930 – 2013 measurements (lower solid 

line straight across) and confidence intervals from measurements (two black dotted lines 

straight across), and from 1960 – 2059 climate projections of the 100-year flood estimate 

(upper solid line straight across) and confidence intervals (two blue dotted lines straight 

across) 

The climate projection 100-year flood estimate is 37% higher than the measurement estimate, 

and it is very close to the upper bound of the 95% confidence interval for the measurement 

estimate. Furthermore, it would exceed by 19% the 500-year flood estimate from measurements. 

For this reason, the bridge plans were reviewed in more detail. The bridge foundation is located 

in un-cohesive sandy soil, which is erodible from the effects of scour. Therefore, the 

vulnerability of the I-380/US 20 bridge downstream of the Waterloo gauge would be at elevated 

risk under the projected 100-year flood streamflow estimate due to the potential increase in 

scour. 

Vulnerability Assessment for Cedar River Bridge at I-80 near West Branch and Conesville 

The Cedar River gauge near Conesville (downstream of the I-80 bridge near West Branch) 

measures drainage from the largest basin in the pilot study. The basin size is 7,787 square miles 

(about 20% larger than the drainage area for the gauge at Cedar Rapids), although the 100-year 

flood estimate is essentially the same at both gauge locations.  

The Cedar River bridge at I-80 near West Branch experienced its worst flood on record in 2008. 

Major disruption to traffic and commerce occurred in 2008 when I-80 was overtopped, closing it 

for four days and causing significant out-of-distance costs (120-mile detour) for the traveling 
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public. In addition, other highway locations were impassible or experienced significant 

embankment failure adding to the impacts associated with the flood. 

The current design for the I-80 bridge allows overtopping for the 60-year flood (1.6% AEDP). 

This vulnerability analysis, however, is focused on the 100-year-interval flood (1% AEDP). The 

flood design graph reveals substantially higher 100-year flood discharge in the climate projection 

data compared to the 1940 – 2013 measurement record (Figure 13).  

 

Figure 13. For the Cedar River bridge at I-80 near Conesville, annual peak flow (bottom 

black plotted line), 100-year flood estimate from 1940 – 2013 measurements (lower solid 

line straight across) and confidence intervals from measurements (two black dotted lines 

straight across), and from 1960 – 2059 climate projections of the 100-year flood estimate 

(upper solid line straight across) and confidence intervals (two blue dotted lines straight 

across) 

The climate projection 100-year flood estimate is 55% higher than the measurement 100-year 

flood estimate, and it exceeds the upper bound of the 95% confidence interval for the 

measurement estimate. A rough extrapolation in order to facilitate assessment of potential future 

overtopping of the I-80 bridge is performed by assuming a 55% increase for the frequency-

discharge relationship. Under the projected climate conditions, the bridge at I-80 would overtop 

for a 10-year flood (10% AEDP). Under the projected climate conditions, a significant increase 

in vulnerability for I-80 at this location is clear. 
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Vulnerability Assessment for South Skunk River Bridges at US 30 in Ames and I-35 South of 

Ames 

The gauge beneath (or south of) the South Skunk River junction with Squaw Creek in Ames 

measures drainage from the smallest basin (563 square miles) in the pilot study. Its record annual 

peak flow occurred in 2010 and equaled the 0.2% AEPD (500-year flood). The gauge serves 

vulnerability analysis for two bridges that are within 3 river miles of one another and provide 

river conveyance in, around, and under US 30 and I-35 in this basin. 

The flood design graph reveals very little change of 1% AEPD (100-year flood) in the climate 

projection data compared to the 1953 – 2013 measurement record (Figure 14).  

 

Figure 14. For the South Skunk River bridges at US 30 in Ames and I-35 south of Ames, 

annual peak flow (bottom black plotted line), 100-year and 500-year flood estimates from 

1940 – 2013 measurements (bottom and top solid lines straight across, respectively) and 

confidence intervals from measurements (two black dotted lines straight across), and from 

1960 – 2059 climate projections of the 100-year flood estimate (middle solid line straight 

across) and confidence intervals (two blue dotted lines straight across) 

The response to climate change was a 9% increase in 1% AEPD (100-year flood). Overtopping 

for the I-35 bridge was designed to the 0.5% AEPD (200-year flood) with river conveyance 

designed so that no increase in flood elevations would occur up to 0.2% AEPD (500-year flood).  
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Vulnerability Assessment for South Skunk River Bridge at I-80 in Colfax 

I-80 over the South Skunk River experienced its record flood in 2010. The record discharge was 

above the 1% AEPD (100-year flood) but less than the 0.2% AEPD (500-year flood), and it 

nearly resulted in closing I-80. This bridge location, if closed, would severely impact commerce 

because it is 15 miles east of the intersection of I-35 and I-80, which is a major crossroad for 

truck traffic and the traveling public. Information from the Iowa DOT’s infrastructure database 

determined that inundation of I-80 would occur at a discharge greater than 0.2% AEPD (500-

year flood). 

The flood design graph reveals substantially higher 1% AEPD (100-year flood) in the climate 

projection data compared to the 1986 – 2013 measurement record (Figure 15).  

 

Figure 15. For the South Skunk River bridge at I-80 in Colfax, annual peak flow (bottom 

black plotted line), 100-year flood estimate from 1940 – 2013 measurements (lower solid 

line straight across) and confidence intervals from measurements (two black dotted lines 

straight across), and from 1960 – 2059 climate projections of the 100-year flood estimate 

(upper solid line straight across) and confidence intervals (two blue dotted lines straight 

across) 

The hypothetical bridge lifetime 1% AEPD (100-year flood) is 50% higher than the 

measurement estimate, nearly coincident with the upper bound of the 95% confidence interval 

for the measurement estimate, and it exceeds the 0.2% AEPD estimated from measurements. 

This bridge was determined to be at higher risk of overtopping under the climate change 

projection. 
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Finding 6 

Bridge and highway resilience would need to be improved in four of the six pilot bridge locations 

to withstand the projected increase in frequency of extreme streamflow conditions. Balance must 

be obtained between the disruption to the traveling public and damage associated with highway 

overtopping versus the integrity of a bridge to accept all the flow from an extreme flood event. 

We illustrate cost-effective bridge design based on the 100-year flood (1% AEPD) estimate from 

measurements, using the flexible projection streamflow analysis approach described in Findings 

3 through 5. 

The vulnerability analysis revealed the Iowa DOT’s methods for the repair, design, and 

construction of bridge infrastructure cannot be based on current design methodologies that do not 

include future climate conditions. The risks posed from climate change must be weighed against 

the costs associated with adapting the infrastructure. This task requires site-specific analysis as 

the response to flooding at each site would be unique, and there are many factors that could 

impact a bridge and roadway during a flood event. These include peak discharge, duration of 

flood, bridge and abutment type, elevation of the road relative to the low bridge beam elevation, 

backwater or head differential across the roadway embankment, debris load of a flooding stream, 

and other metrics to assess the vulnerability the of each site. 

Given new levels of vulnerability, the Iowa DOT’s tolerance for service interruption or possible 

flood damages must be determined to provide for cost-effective adaptation options. Some factors 

such as social and economic impact, future maintenance needs, and project feasibility and 

sustainability will make it difficult for decision-makers to decide on a course of action. Once 

information is obtained for both economic and non-economic factors, the criticality or risk of the 

bridge and roadway must be assessed and a course of action determined. 

Overall, a balance between protecting roadways from overtopping versus the ability of a bridge 

to convey extreme streamflow must be determined for the type of facility (State, National 

Highway System (NHS), or Interstate route). For each infrastructure location, this balance 

provides the context for feasibility and costs associated with adaptation. 

Possible Adaptation for South Skunk River Bridges 

A natural opportunity to consider climate projection data in bridge design presented itself 

through the planned work for the I-35 bridges over the Skunk River south of Ames. The current 

Interstate roadway elevation prevents overtopping up to 4% AEPD (25-year flood). While the 

climate projection data produced no indication of an increase in extreme flood quantile discharge 

(Figure 14), it is informative to the bridge design process elsewhere in the state to review the 

process of setting bridge design standards to more extreme flood quantiles. 

The Iowa DOT has programmed the replacement of the I-35 bridges over the South Skunk River 

since they are currently classified as structurally deficient. In order to consider a more resilient 
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design, the project was reviewed to determine the potential impacts associated with flows 

exceeding the 100-year flood (1% AEPD).  

Staging the bridge project is not allowed due to adverse impacts to traffic. Therefore, the project 

was designed on realignment, and that permitted consideration for raising the grade above the 

current design standard (4% AEPD). An analysis of the grade raise was made with a two-

dimensional (2D)-hydraulic model to provide for the most cost effective adaptation design that 

would account for the potential impacts associated with extreme weather conditions beyond the 

current 1% AEPD (100-year flood). 

The most cost effective resilient design involved a grade raise of approximately 2 feet to prevent 

overtopping of the Interstate for a 0.5% AEPD (200-year flood). In order to offset the 

elimination of conveyance provided by overtopping, the project was designed with a quad box 

culvert, an overflow channel, and slightly larger bridge to provide a “no-rise” condition 

upstream. Based on the incremental impacts associated with raising the grade, the most 

economical design provides for a current 200-year protection level. Given the small response of 

flood quantiles at this site to climate change, the design of additional hydraulic capacity along 

with a grade raise of the Interstate is expected to provide relief for the bridge during an extreme 

flood event in the future. 

Possible Adaptation for Cedar River Bridges 

Since I-80 is a critical infrastructure link not only for Iowa but the U.S., the results of the 

vulnerability assessment were used to consider possible adaptation options even though the 

structures have not been programmed for replacement. The vulnerability analysis of the I-80 

Cedar River bridges and road grade indicated substantial change in exposure to extreme 

streamflow. The projected 1% AEPD (100-year flood) estimate for the hypothetical bridge 

lifetime exceeded the upper bound of the 95% confidence interval for the 100-year flood 

estimate from measurements. For the I-80 bridge near Conesville, this translated roughly to an 

increase in the likelihood of overtopping from 1.6% to 10% annual probability. 

One adaptation option for the I-80 bridge near Conesville would be to raise the interstate grade. 

This would be warranted to protect the highway from a 10% chance of overtopping. However, 

by raising the grade, more water would pass through the bridge opening, so that an assessment of 

the bridge scour would need to be determined under the higher flows expected from future 

climate conditions. These two issues (roadway overtopping versus bridge scour) conflict with 

each other and must be balanced to avoid disruption or safety risk, or both, to the traveling 

public, while also ensuring the integrity of the bridge. Quantitative analysis must be performed to 

find the optimal balance. 
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Findings of Exploratory Analysis 

Historical rainfall summaries provided context for projection of future change. Recent changes 

are well known to bridge engineers and problems with bridges across the state are fresh in their 

minds. By identifying recent changes in rainfall, we established a baseline understandable to all 

participants that could be used for interpretation of rainfall changes in climate projections. 

Recent change in frequency of extreme spring rainfall (April through June) is clear (Figure 16).  

The 90th percentile April through June Iowa rainfall for 1873 – 1980 is 373 mm (14.7 in.), 

meaning only 10% of years during this period have spring rainfall exceeding 373 mm (14.7 in.). 

During 1981 – 2013, this threshold has been exceeded 11 times. This is an increase from 10% to 

33% of the years in this period. No other historical 33-year period has had an equally high annual 

frequency for this exceedance threshold. 

The relevance of April through June rainfall to floods is significant. Since 1980, the most 

extreme floods in Iowa have occurred during the late spring through summer months, and they 

clearly have not been affected by snowpack or ice jams in rivers. April through June rainfall may 

be large enough to create a severe flood, such as the June 2008 floods in the Cedar River Basin. 

April through June rainfall may indirectly contribute to flooding by creating saturated soil 

conditions that then persist into the summer months. This was an important role played by April 

through June rainfall in the 2010 floods in the South Skunk River Basin (see Figure 16). 
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Figure 16. Iowa April through June precipitation 1873 – 2013 
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We summarized climate projections of precipitation to determine whether spring rainfall increase 

was a characteristic of future climate conditions. We computed the monthly rainfall and took the 

average (or mean) over the 19 climate projections. We compared the historical climate scenario 

period (1961 – 2000) to a future climate scenario period (2020 – 2059), making sure to use the 

same period length. We found the climate projections predicted an increase in spring and fall but 

not summer (Figure 17).  

 

Figure 17. Iowa 40-year mean historical and climate-scenario projected monthly 

precipitation 

This is not just an artifact of downscaling, and it is a result consistently reported in scientific 

literature dating the analysis of climate projections back to the 1990s. The climate precipitation 

for 2020 – 2059 compared to 1961 – 2000 is predicted to increase by 15% in March through May 

and 12% for April through June, for which the increase is from 290 mm (11.42 in.) in 1961 – 

2000 to 325 mm (12.8 in.) in 2020 – 2059. The spring rainfall increase is predicted in 17 of 19 

climate projections. The bridge engineers found this rainfall increase above and beyond the 

recent increase of spring rainfall alarming. 
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LESSONS LEARNED 

Challenges Encountered 

We learned several lessons in developing and applying methodologies for integrating actionable 

climate projection data into bridge vulnerability engineering design analysis. The key lesson 

learned was the value of dialogue between climate scientists, hydrologists, and bridge engineers. 

Our pilot addressed a transportation problem—climate impacts on river floods in the Midwest—

for which very little engineering design guidance has been provided. From the outset, our pilot 

benefited from exploratory analysis and discussion from each of our perspectives. 

A defining moment was our discussion on climate projection uncertainty. It is not inherently 

obvious to hydrologists and bridge engineers that one of the characteristics of climate projection 

data is that they cannot be expected to replicate the sequence of measured rainfall (or measured 

streamflow). Hydrologists and engineers are accustomed to evaluating simulation systems by 

their ability to replicate past observations. This meant hydrologists and bridge engineers wanted 

to learn more about how climate projections are evaluated to establish their credibility. It also 

inspired us to develop innovative procedures for credibility analysis of our system of climate 

data linked to streamflow models as described in Findings 1 through 3. 

We learned the computing infrastructure for this pilot project was immense compared to the 

other vulnerability projects. We restate that our approach is not unique to the set of models and 

climate projection data we used. It can be replicated with different combinations of downscaled 

datasets and hydrological models. It is an approach that could be implemented in Federal 

agencies, such as the USACE, or universities or research centers, such as the National Center for 

Atmospheric Research (NCAR), with research computing infrastructure. However, in order to 

implement this approach in a consulting engineering firm, several specialized staff would need to 

be employed. 

To begin with, the climate projection rainfall datasets are cumbersome to process from the 

existing online archive (cida.usgs.gov/gdp/). We overcame this challenge simply by knowing the 

persons who generated these data and requesting access to their research project archives, and 

this is clearly not a scalable solution. Once the data were obtained, we found a database structure 

for climate projection data substantially reduced the pre-processing time prior to running the 

hydrological model. The hydrological model was run with cluster computing, and this resource 

may not be available in consulting engineering firms, but it could become much more cost 

effective by using expertise in cloud computing. 

The primary challenge for design analysis was figuring out how to analyze multiple climate 

scenarios in a justifiable manner. The existing design process develops engineering metrics from 

a single historical record of streamflow data. The USGS PeakFQ software contains the accepted 

protocols for estimating flood quantiles. We found it was cumbersome to use multiple 

streamflow data series at a single location. The hydrologists developed software to better 

automate this process. 
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In regard to bridge vulnerabilities in Iowa, we learned that different sized basins may respond 

differently under projections of rainfall increase. In principle, this may be not surprising. First, 

larger basins will respond to consecutive rainfall events separated by days, while smaller basins 

will respond to those events individually. Second, the width function (points at the same river 

network distance from the outlet) and slope of landscape at maximum width function will also 

play a key role in the translation of rainfall into runoff. While not surprising, it does require the 

development of a strategy to prioritize bridges for further evaluation. 

Recommendations for Other Agencies 

Our primary recommendation to other DOTs is to develop approaches that enable flexibility in 

design analysis. In our case, we developed an approach that placed confidence intervals on 

engineering metrics computed from climate projections. This allowed our bridge engineer to 

consider different flood quantile discharges as a possibility for design criteria, and these design 

discharge levels could be determined from analysis of measurement records, using percentiles of 

its confidence intervals. 

The ability to use historical records to define discharge levels consistent with climate projections 

is valuable in at least two ways. First, it allows bridge engineers to work with data they are 

accustomed to using. They have significant intuition built from their experiences with designing 

to historical data and receiving feedback from maintenance and emergency personnel on bridge 

performance under extreme events. Second, it may be easier to communicate in a public process 

the expected climate change impacts in the context of historical data rather than by using climate 

projection data itself. 

State DOTs should work together and with the American Association of State Highway 

Transportation Officials (AASHTO) to develop a framework for hydraulic guidelines. An 

approach for determining scenarios of hydraulic metrics used in design analysis will be more 

robust if it is acceptable across several State DOTs. Across the central U.S., State DOTs will face 

similar streamflow responses to future changes in precipitation, and this suggests this region 

could adopt similar procedures for hydraulic analysis.  

In our pilot, for example, we determined one possible strategy would be to design a critical 

bridge and roadway to the 95% confidence limit for the 1% AEPD or to the 500-year flood, 

whichever has less cost. Consideration for overtopping of the highway at or slightly below the 

design discharge for the bridges should be made to provide relief during a super flood so that the 

bridge does not experience a flood event greater than what is designed. A road embankment is 

much easier and quicker to repair or replace than a failed bridge. Dialogue among State DOTs 

should consider whether an approach similar to this could be used regionally to enable consistent 

design strategies. 

Our secondary recommendation is to be open to the possibility that scenarios of future 

engineering metric responses (like 1% AEPD) may not be best defined relative to greenhouse gas 

scenarios (like A1B or A1FI). In our case, variability is large in climate projections of rainfall, 

and variability can be amplified in river systems. It is critical to keep in mind that, in our case, 
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rainfall increase in spring is a consistent climate projection signal dating to early climate 

projection datasets. We anticipate climate change will mean more streamflow volume. Even so, 

the rainfall response is not necessarily larger under higher greenhouse gas scenarios (A1FI or 

A2). Instead, we recommend developing streamflow and engineering metric scenarios using all 

greenhouse gas scenarios. 

Our final recommendation to other agencies is to find an agency or interagency group that can 

continue to refine the use of sub-daily climate projection data. Our analysis determined the state-

of-the-science resolution of downscaled data likely is too coarse for streamflow analysis in 

basins smaller than 1295 km
2
 (500 square miles). A significant improvement is expected by 

development of sub-daily downscaling strategies. 

Recommendations for the FHWA Vulnerability Assessment Framework 

We have several suggestions for additions to the The Federal Highway Administration’s Climate 

Change and Extreme Weather Vulnerability Assessment Framework document (FHWA 2012). 

Most of these involve incorporation of descriptions for the vulnerability framework within the 

context of streamflow analysis for inland floods, for which very limited examples are currently 

provided. 

Section 2.2.4 Further Delineating Assets 

We found it useful to scope our pilot study by selecting bridges that have had disruptions or 

damage from recent streamflow extremes. These bridges likely have the most recent and possibly 

most relevant response information to use when evaluating projections of future streamflow. We 

recommend adding this as a suggestion for delineating assets. 

Section 3.3.1.1 Examples from Practice: Temperature and Precipitation Projections 

We recommend some description of our findings in the subsection on inland flooding. Some of 

the outputs and findings we think other DOTs might find interesting and that could be included 

in this section follow. We used streamflow simulation generated from using climate projections 

of precipitation as input to a streamflow model. We produced confidence intervals for 

projections of flood quantiles at 50%, 20%, 10%, 4%, 2%, 1%, and 0.5% AEPD. We found 

overlap in streamflow response for the three greenhouse gas emissions scenarios (A1B, A2, 

A1FI), meaning the response could not be categorized by greenhouse gas emission scenario. We 

found the response was basin-size dependent. The smallest basin in our analysis was 1,458 km
2
 

(563 square miles), and the projected increase for 1% AEPD was 9% to 50%. One of the larger 

basins in our analysis was 16,814 km
2
 (6,492 square miles), and the projected increase for 1% 

AEPD was 37% to 67%. 

Section 3.3.3 Resources for Developing Climate Inputs for the Vulnerability Assessment 

We recommend adding the USGS GeoData Portal (cida.usgs.gov/gdp/) to the list of databases. 
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Section 3.5 Considering Adaptive Capacity 

Under the list of key considerations for evaluating adaptation capacity, we recommend adding 

the following question: Does adaptation of some assets impact adaptability of other assets? 

Section 3.6.2 Examples from Practice: Assessing Risk 

We developed an approach for scenarios of inland flooding. A critical step for developing 

scenarios was the choice of period over which the scenario would be determined. We used the 

bridge lifetime to define the scenario periods. We developed a scenario approach based on 

confidence intervals for AEPD over the bridge lifetime period. The most important outcome was 

the ability of the engineer to select different scenarios based upon percentiles of the confidence 

intervals. For instance, by using overlap of confidence intervals from the historical period 

(measurements alone) and the bridge lifetime (climate projections), the bridge engineer might 

find the overlap is at the 95th percentile of the historical period, and this could provide 

justification for setting the design discharge at this level. 

Section 4.2 Incorporating Vulnerability Assessment Results into Transportation Programs and 

Processes 

In the list of activities that the results of vulnerability analysis may be incorporated into, we 

recommend adding a bullet item for engineering design policies. 

Additional FHWA Vulnerability Assessment Framework Content Suggestions 

Given the critical importance of discussions on climate projection uncertainty to the success of 

our project, we recommend encouraging discussion by adding more information on uncertainty. 

We found that it provided a very terse description of climate projection uncertainty. We strongly 

recommend, at minimum, listing the document from the Gulf Coast Study, Phase 2: Temperature 

and Precipitation Projections for the Mobile Bay Region (Hayhoe and Stoner 2012) as a resource 

for deeper description of uncertainty. We further recommend a couple of topics that are not in in 

this resource be incorporated in the discussion of uncertainty.  

A facet of climate projections that is unusual from the perspective of engineers is that the climate 

projections over historical periods will not replicate the sequence of historical weather 

measurements. This is a difficult concept to reconcile with methods that engineers are 

accustomed to using to determine the credibility of data and simulations systems and that are 

based on accurate reproduction of historical flood events.  

We found that, going through this step, a natural transition into a discussion on risk-based 

planning occurred. We also found that our discussion raised the realization of the possibility for 

streamflow simulation to have error due to the sequencing of rainfall in climate projections, a 

consideration independent of the accuracy of rainfall amount.  
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A second topic motivated by this discussion is the way in which climate scientists build 

confidence in climate simulations and projections given the uncertainty inherent in them. This is 

important for establishing not only their credibility with the technical teams who work on 

vulnerability and risk-based analysis but also questions raised in public sessions. 
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CONCLUSIONS AND NEXT STEPS 

Project Successes and Accomplishments 

Iowa’s Bridge and Highway Climate Change and Extreme Weather Vulnerability Assessment 

Pilot developed insights, resources, and infrastructure that could be expanded upon by the Iowa 

DOT and translated into use by other transportation agencies. 

 We determined that the leading edge of downscaled climate projection resolution (one-

eighth-degree and daily increments) was sufficient for vulnerability analysis of “Big Basins 

and Big Floods,” quantitatively defined as basins exceeding 250 km
2
 (100 square miles) with 

floods exceeding twice the mean annual peak flow. 

 We determined engineering design metrics could be developed from streamflow simulation 

over a long, continuous period spanning historical and future climate conditions (e.g., 

continuous streamflow for 1960 – 2059). 

 We determined the annual peak streamflow response to climate change likely will be basin-

size dependent. The larger basin had a larger response in flood quantiles. This could motivate 

a screening strategy for expansion of vulnerability analysis to other bridges across Iowa. 

 We developed an innovative flood design graph for bridge vulnerability analysis that conveys 

succinctly to bridge engineers the historical annual peak streamflow as well as design metrics 

based on historical data and climate projection data. 

 We determined that under climate projections, four of six pilot study bridges would be 

exposed to increased frequency of extreme streamflow and would have higher frequency of 

overtopping. 

 We determined the proposed design for replacing the I-35 bridges over the South Skunk 

River is resilient to climate change. The cost-effective design ensures the bridge would not 

overtop I-35 for the current 0.5% AEPD (200-year flood) and would not change flood 

elevations up to the 0.2% AEPD (500-year flood). 

 We created the software and database infrastructure to perform this analysis statewide and to 

link it with real-time bridge monitoring and alert systems. 

 We identified Iowa DOT bridge design policies that could be reviewed for consideration of 

incorporating climate change information. 
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Planned and Anticipated Next Steps 

We have several planned activities to integrate into other facets of Iowa DOT bridge design, 

planning, and maintenance of the resources and information from this pilot study. 

 The Iowa DOT will improve real-time monitoring of bridges and highway overtopping by 

including the infrastructure database information generated for this pilot project into the 

BridgeWatch program. This will be combined with real-time monitoring of USGS gauge and 

Next-Generation Radar (NEXRAD) to produce real-time alerts for maintenance staff. Iowa 

DOT staff will also be able to build-out new facets of vulnerability and more precise 

estimates of costs by documenting and capturing in real-time the flood damages and 

maintenance costs associated with alerted events. 

 The outcomes and resources of this pilot project will enable the Iowa DOT to consider 

broader assessment of facility-level vulnerability, particularly for assets that could be 

significantly impacted by increased flooding. 

 Policy/guidelines should be developed for analyzing bridge scour when a superflood (greater 

than 500-year flood) occurs, given the increased vulnerability that became apparent with this 

project’s streamflow projections. 

 The pilot outcomes may motivate discussions to incorporate climate projections into policy 

considerations and needs determination for quantitative analysis of risk-based cost-benefit 

analysis. Topics of discussion may include: list of relevant costs, definition of risk for bridge-

potential traffic interruption or bridge failure, identification of adaptation alternatives, and 

policy regarding flood quantile thresholds for critical infrastructure. 
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