
In that section of space closest to the Earth but some 100 km in altitude, 
known as geospace, powerful winds and a complex of physical, chemical, 
and electromechanical phenomena dominate a dynamic region through 

which we travel, navigate, and communicate. Geospace winds (from a 
hurricane force 100 m/s to an incredible 800 m/s), in particular, can alter 
satellite trajectories and induce ionospheric electric fields, making an 
understanding of those winds of high value. This article explains what we know 
about geospace wind and describes the Naval Research Laboratory activities 
aimed at improving modeling of geospace winds and in developing new 
sensors to illuminate this important geospace parameter. 

Winds at the Edge of Space
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What Drives Geospace Winds? 

	 The wind we experience near the Earth’s surface 
is primarily driven by gradients in air pressure and 
is steered by the Coriolis force. These two forces also 
shape wind patterns in the thermosphere (above 90 
km), where large, solar-driven day–night differences 
in temperature (and thus pressure) create wind speeds 
of ~100 m/s that diverge from the subsolar region and 
converge on the nightside, as shown in Fig. 1. However, 
other, more complex forces also drive thermospheric 
winds and create unique modeling challenges. First, at-
mospheric waves and tides propagate up from the lower 
atmosphere to produce thermospheric wind varia-
tions on kilometer scales to global scales; semidiurnal 
oscillations in the lower thermosphere (~90 to 180 
km) are a prominent consequence of this connection 
with the lower atmosphere. Second, as the atmosphere 
becomes thinner with increasing height above 100 km, 
its viscosity becomes very large (due to the increase in 
mean free path), thereby inhibiting vertical gradients 
and dissipating upward-propagating waves. Finally, the 
motion of the ionized portion of the thermosphere (the 
ionosphere) is constrained by geomagnetic and electric 
fields. Collisions between ions and neutrals can thus 

Wind at the Top of the Atmosphere
C.R. Englert, C.M. Brown, D.P. Drob, J.T. Emmert, J.M. Goldspiel, 

A.W. Nicholas, D.E. Siskind, A.W. Stephan, and M.H. Stevens
Space Science Division

J.M. Harlander
St. Cloud State University 

 
K.D. Marr

National Research Council Research Associate, Space Science Division

A t an altitude of 100 km (62 miles), above 99.99997% of the atmospheric mass, pilots and passengers become astro-
nauts. This altitude can be defined as the lower boundary of geospace. The notion that the space around our planet 
is vast and empty, however, is far from true. In fact, this environment, in which the satellites that we rely on for 

communication and navigation operate, can vary significantly on short time scales and is governed by complex physical, 
chemical, and electromechanical phenomena. One such phenomenon is wind. Wind in geospace alters satellite trajectories 
and induces ionospheric electric fields. Typical wind speeds are 100 m/s (greater than those of a category 5 hurricane) and 
can reach up to 800 m/s during geomagnetic storms. In this article, we review what we know about wind at the top of the 
atmosphere, and we describe Naval Research Laboratory activities in improved modeling and the development of new 
sensors that are shedding more light on this basic geospace parameter.

act as either a retarding force or a driver of the neutral 
wind. The latter behavior occurs most dramatically at 
high latitudes, where strong electric fields (generated 
by the interaction between the solar wind and Earth’s 
magnetosphere) drive a polar convection pattern of 
ions, which in turn spins up the neutral wind. During 
severe geomagnetic storms, such as the one that oc-
curred in October 2003, shortly after solar maximum, 
thermospheric wind speeds in excess of 800 m/s were 
observed. 

Why Study Geospace Winds?

	 In addition to being a basic environmental pa-
rameter, accurate knowledge of thermospheric winds 
is important for at least two critical civil and military 
applications: radio wave propagation and satellite orbit 
prediction. 
	 Winds induce a complex pattern of electric fields 
and currents in the ionosphere because of the mo-
tion they impart to ions and electrons relative to the 
geomagnetic field. As the “equatorial plasma fountain” 
in Fig. 2 illustrates, these electric fields fundamentally 
shape the total amount and distribution of ionization, 
which in turn affects the propagation of radio waves 
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FIGURE 1
Typical wind patterns in the lower thermosphere (bottom panels) and upper thermosphere (top panels). The left 
panels show winds at mid and low latitudes, and the right panels show winds over the northern polar region (the 
outer ring is 50°N). Blue arrows show patterns under quiet space weather conditions; red arrows show typical 
patterns during fairly strong (Kp index of 7) geospace storms. The winds shown are from NRL’s Horizontal Wind 
Model (HWM07).
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FIGURE 2
The equatorial plasma fountain: an example of how winds influence the distribution of ion-
ization. Wind in the lower thermosphere induces an eastward electric field (E) near the geo-
magnetic equator. This field, combined with the southward geomagnetic field (B), causes 
ions and electrons to drift upward (V) to high altitudes. From there, the plasma diffuses 
downward, under the influence of gravity, along magnetic field lines, creating regions of 
enhanced ionization ~15° away from the equator. The blue shading in the figure represents 
low (dark blue) to high (white) ion densities.
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incident on the ionosphere. For example, the iono-
sphere typically causes a phase delay in GPS signals 
that amounts to a range error of several meters; wind-
induced electric fields cause this range error to vary by 
~50% to 100%. Neutral winds can also create and trig-
ger ionospheric instabilities and irregularities, which 
scatter radio waves and render portions of the radio 
wave spectrum useless for communication.
	 The thermosphere exerts a drag force that is the 
largest source of uncertainty for the prediction of satel-
lite trajectories in low Earth orbit. Since the direction 
of drag is along the relative motion between the satellite 
and atmosphere, winds are a key variable for predicting 
orbital paths and reentry times and locations, particu-
larly for satellites with large surface areas such as those 
with deployable solar panels. Typical wind speeds of 
~100 m/s are a non-negligible 1.3% of orbital speed, 
increasing to 10% during severe geomagnetic storms.
 	 Despite the importance of geospace winds, there 
are currently no routine operational observations of 
this parameter. To compensate for this deficiency, the 
Naval Research Laboratory’s Space Science Division 
(SSD) is pursuing a two-pronged research and develop-
ment effort.

Historical Wind Measurements and 
Empirical Models

	 The first component of SSD’s effort is to compile 
historical measurements of geospace winds starting in 
the 1970s and encapsulate them into a single empirical, 
climatological model. This global model, known as the 
Horizontal Wind Model (HWM),1 extends from the 
ground to 600 km altitude. HWM incorporates observa-
tions made with a wide range of techniques, including in 
situ satellite data, optical remote sensing data, and data 
from active techniques such as ground-based lidar (light 
detection and ranging). Figure 3 summarizes the height 
coverage afforded by the various methods of measuring 
geospace winds. HWM uses a vector spherical har-
monic expansion to represent the winds as a function 
of altitude, latitude, local time, longitude, solar activity, 
and geomagnetic activity. It provides a condensed view 
of over a million wind observations spanning more than 
four decades. The most important thermospheric data 
set in the model is from the Wind Imaging Interferom-
eter (WINDII), a Michelson interferometer on board 
the Upper Atmosphere Research Satellite (UARS) that 

FIGURE 3
Altitudinal coverage of thermospheric wind measurement techniques. Hashed regions indicate 
limitations of the technique. For in situ techniques, the region below 200 km is difficult to access 
routinely, due to strong atmospheric drag on orbiting probes in this region. Inference of winds from 
incoherent scatter radars (ISRs, which probe ionospheric composition and plasma drift), requires 
significant physical assumptions; additionally, only the north-south component is derivable in the 
upper thermosphere. Meteor radars and other medium frequency (MF) radars measure winds in 
the lower thermosphere by tracking ionized meteor trails or ionospheric irregularities, respectively 
(below ~100 km, the plasma moves with the neutral wind). Passive optical techniques rely on 
naturally occurring airglow emissions, which are very weak at night between 100 and 200 km; 
consequently, little is known about nighttime winds in this region. The plot in the right panel shows 
typical airglow brightness profiles (from NASA’s UARS/WINDII instrument) for two important emis-
sions: 557.7 nm (green line) and 630.0 nm (red line), both of which are from atomic oxygen. The 
left panel shows typical electron density and neutral temperature profiles.
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measured winds between 90 and 275 km altitude from 
1991 to 1997.2 WINDII is the only significant source 
of wind data in the critical ionospheric dynamo region 
between 110 and 200 km, and SSD’s analysis and mod-
eling of this data have greatly improved the accuracy of 
empirical wind predictions in this region. 
	 SSD’s analyses of wind data have also greatly 
advanced understanding of how geospace storms affect 
global wind patterns. Geomagnetic activity, caused 
by the interaction of the solar wind with the upper 
atmosphere, modifies quiet-time wind patterns in two 
ways. First, as mentioned above, enhanced convection 
of high-latitude ions spins up the neutral wind. Second, 
heating at high latitudes by dissipation of electrical cur-
rents creates pressure gradients that drive equatorward 
winds. At lower latitudes, the equatorward perturba-
tions are steered westward by the Coriolis effect (and 
in the process generate an electric field known as the 
disturbance dynamo). These effects are quantified in 
HWM07, which provides the best available empirical 
representation of winds during geomagnetic storms. 
Figure 1 illustrates how the wind patterns are influ-
enced by geomagnetic storms.
	 HWM07 is widely used in the upper atmospheric 
research community for several critical purposes: (1) 
as a benchmark for validating new observations and 
measurement techniques against past data; (2) as an 
initial or boundary condition for physics-based models 
of the atmosphere; and (3) as an a priori specification 
of neutral winds in ionospheric models (such as NRL’s 
SAMI3 model of the ionosphere3) and of background 
winds in simulations of small-scale atmospheric waves. 
	 Although HWM07 is an indispensible tool and 
probably the best available predictor of winds for speci-
fied geophysical conditions, it is not an ideal model of 
thermospheric weather. At a given epoch, measured 
winds typically deviate from climatological averages by 
~30 m/s. These day-to-day and hour-to-hour fluc-
tuations are due in part to lower atmospheric waves 
percolating up into the thermosphere, which can, for 
example, produce rapid global-scale transport of lower 
thermospheric constituents.4 To specify and forecast 
such fluctuations requires an assimilative model of the 
whole atmosphere, including the thermosphere. NRL’s 
SSD, along with the NRL Remote Sensing Division and 
the NRL Marine Meteorology Division, have pioneered 
the development of high altitude assimilative models 
(e.g., Ref. 5). However, due to lack of data, these are 
limited to below the base of the thermosphere (~90 
km). A dense network of timely observations will be 
needed to achieve accurate thermospheric wind fore-
casts, and so SSD’s second component of geospace wind 
research has focused on the development of innovative 
instruments to measure winds both in situ and remote-
ly.

NRL is Developing New Techniques to 
Measure Winds

	 The NRL Space Science Division is developing two 
complementary, innovative types of thermospheric 
wind sensors for future space missions. One is an opti-
cal, remote sensing technique called DASH (Doppler 
Asymmetric Spatial Heterodyne) spectroscopy, which 
features advantages of state-of-the-art remote sensing 
techniques, relaxed fabrication tolerances, and reduced 
instrument complexity. DASH can measure winds 
and temperatures between ~90 and 350 km, using the 
Doppler shift and broadening of airglow emissions. 
The other sensor is an in situ instrument consisting of 
an extremely compact suite of instruments to measure 
density, temperature, neutral wind, plasma drift, and 
the composition of neutrals and ions. The Winds-Ions-
Neutral Composition Suite (WINCS) instrument was 
designed and developed jointly by NRL and NASA/
Goddard Space Flight Center for ionosphere-thermo-
sphere investigations in orbit between 120 and 750 km 
altitude.
	 The DASH concept is based on the spatial hetero-
dyne spectroscopy (SHS) technique and is optimized 
for the measurement of thermospheric winds.6 The 
advantages of remotely measuring winds include the 
capability of measuring at low altitudes (90 to 250 km) 
where short satellite orbit lifetimes hamper the use of in 
situ instrumentation. In addition, wind vector profiles 
can be measured over extended altitude ranges and 
with an altitude resolution of several kilometers. 
	 Following the conception of the DASH technique 
in 2005 (U.S. Patent 7,773,229), NRL SSD led an effort 
that resulted in the first monolithic DASH interferom-
eter, shown in Fig. 4(a), and the first DASH ground-
based measurements of thermospheric winds.7,8 In 
2011, NASA selected a DASH satellite instrument 
design (shown in Fig. 4(b)) as part of the Ionospheric 
Connection Explorer (ICON) mission proposal led by 
the University of California, Berkeley, for a detailed 
mission study and potential 2013 selection for flight as 
a NASA Explorer mission. 
	 The WINCS design (U.S. Patent Application 
13/247,168) is shown in Fig. 5 and features extremely 
small size (7.6 × 7.6 × 7.1 cm), low weight (0.75 kg total 
mass), and low power (about 2.0 W). The true benefit 
of WINCS is the ability to measure space weather pa-
rameters with an extremely small and low-cost instru-
ment that could be flown on almost any spacecraft, 
e.g., as the primary instrument on a nanosatellite or as 
a secondary instrument on a much larger spacecraft. 
Utilizing WINCS in this way will allow multipoint 
measurements of the ionosphere-thermosphere (IT) 
system, resulting in more complete data sets. The most 
effective employment of WINCS would be on an IT 
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constellation mission, which would revolutionize our 
understanding of the IT system dynamics. Such a con-
stellation would test our ability to simulate the dynam-
ics of the ionosphere and thermosphere on a global 
scale. The WINCS instrument is manifested on four 
upcoming flights over the next two years: the U.S. Air 
Force’s Space Environment Nano-Satellite Experiment 
(SENSE, a CubeSat), two Department of Defense Space 
Test Program (STP) missions supported by the Office 

of Naval Research (STPSat-3, a small free-flyer satellite, 
and STP-H4 on the International Space Station), and the 
CubeSat investigating Atmospheric Density Response to 
Extreme driving (CADRE), a National Science Founda-
tion CubeSat to be flown by the University of Michigan.
	 [Sponsored by ONR]
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FIGURE 4
(a) The first monolithic DASH interferometer. This interferometer was successfully used for ground-
based thermospheric wind observations in preparation for future satellite applications. (b) Instrument 
concept for a space-based, remote-sensing instrument using the DASH technique to measure altitude 
profiles of thermospheric wind and temperature.

FIGURE 5
The WINCS payload (7.6 cm × 7.6 cm × 7.1 cm) for the 
SENSE program (top cover removed).
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