4-Point Thoracic Injury Criteria Development for THOR

Gerald Poplin, Jason Forman, Timothy McMurry, Joseph Ash, Greg Shaw, Jeff Crandall

> University of Virginia Center for Applied Biomechanics

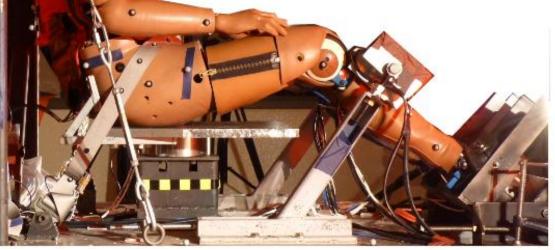
SAE 2014 Government & Industry Meeting January 23, 2014

FRIENDLY REMINDER

All material and information presented are the current opinions of the authors only, and **DO NOT** reflect the viewpoints of NHTSA.

Outline

- Evolution and description of the THOR
- Research aims and objectives
- Overview of methodological approaches in describing risk factors associated with thoracic rib injury
 - Finite Element (FE) Modeling
 - THOR sled test configurations
 - Matched cadaveric tests
 - Statistical analyses
- Summary and current status

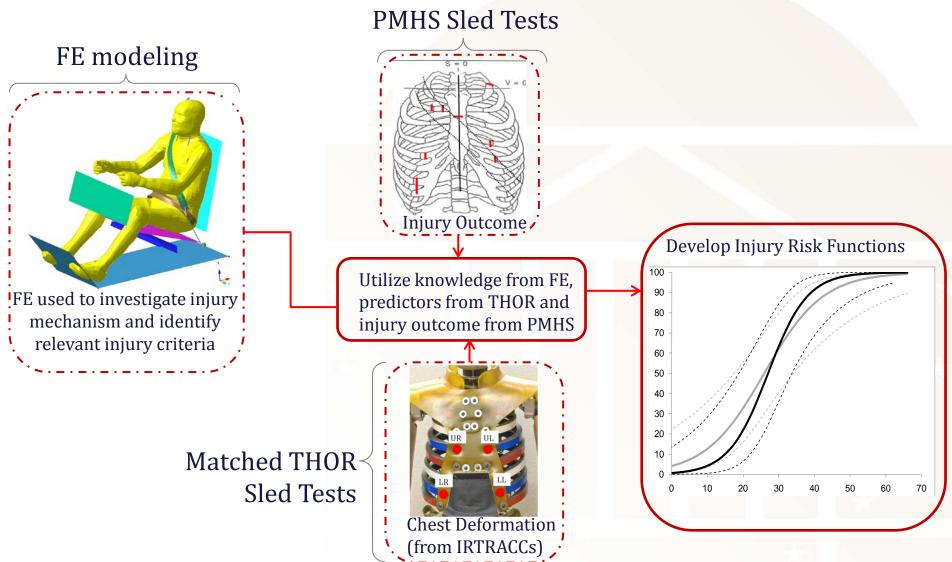

THOR <u>Test Device for Human Occupant Restraint</u>

UVA THOR Task-work 1992 2001 2005 2009-2012 2013 **THOR Alpha TAD-50M THOR-NT Mod Kit THOR Evaluation** Va

THOR Mod-Kit with SD3 Shoulder

Evaluation *June 2012*

Funded by NHTSA Project No: DTNH22-09-H-00247


Aims & Objective

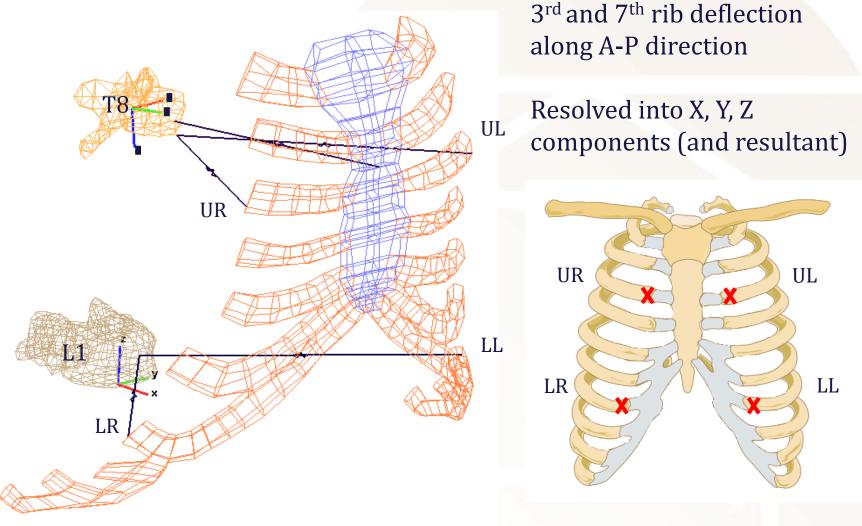
Overall Goal

- To develop a thoracic injury criterion for THOR that takes advantage of THOR's multi-point, 3D chest instrumentation
- To develop a chest injury risk function *methodology* for belt and airbag loading in frontal collisions for THOR

Development of Injury Risk Function

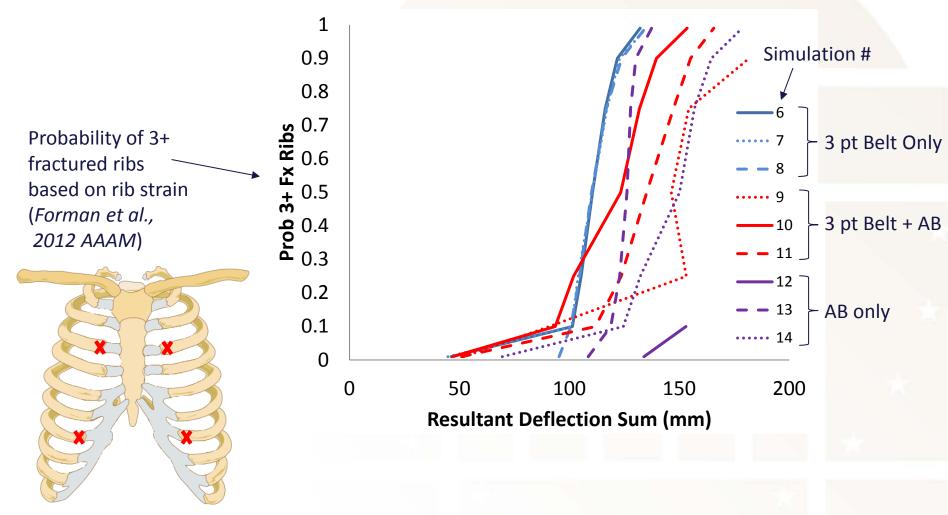
FE Modeling

FE Modeling

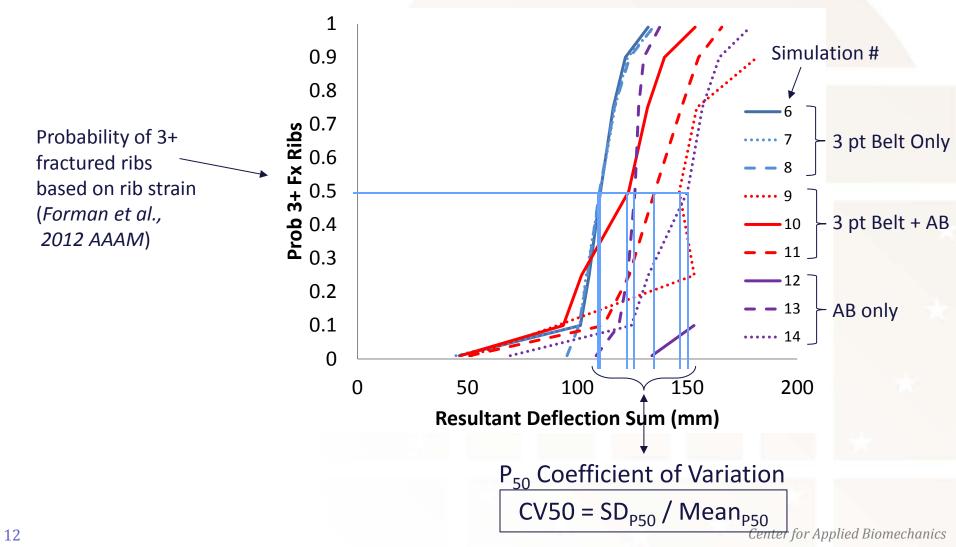

- Goal: Study relation between multi-point chest deflection measurement and rib fracture risk
- Human body model (HUMOS)
- Sled test simulations (Song et al. 2009, Bose et al. 2010)

	Test Condition			
		Sled 40 km/h		
	Sled (Belt only)	Sled 45 km/h		
		Sled 50 km/h		
	Sled (Belt + AB)	Sled 40 km/h	Зр	
		Sled 50 km/h	Зр	
		Sled 60 km/h	Зр	
	Sled (AB only)	Sled 40 km/h		
		Sled 45 km/h		
		Sled 60 km/h		

Test Condition			Sim #
	Sled 40 km/h	3pt Belt, 6 kN FL	6
Sled (Belt only)	Sled 45 km/h	3pt Belt, 6 kN FL	7
	Sled 50 km/h	3pt Belt, 6 kN FL	8
Sled (Belt + AB)	Sled 40 km/h	3pt Belt + AB, 4kN FL	9
	Sled 50 km/h	3pt Belt + AB, 4kN FL	10
	Sled 60 km/h	3pt Belt + AB, 4kN FL	11
Sled (AB only)	Sled 40 km/h	AB only	12
	Sled 45 km/h	AB only	13
	Sled 60 km/h	AB only	14


FE Modeling

Chest deflection measures


FE Modeling

Analysis of whole ribcage

FE Modeling

Analysis of whole ribcage

FE Modeling

Analysis of whole ribcage

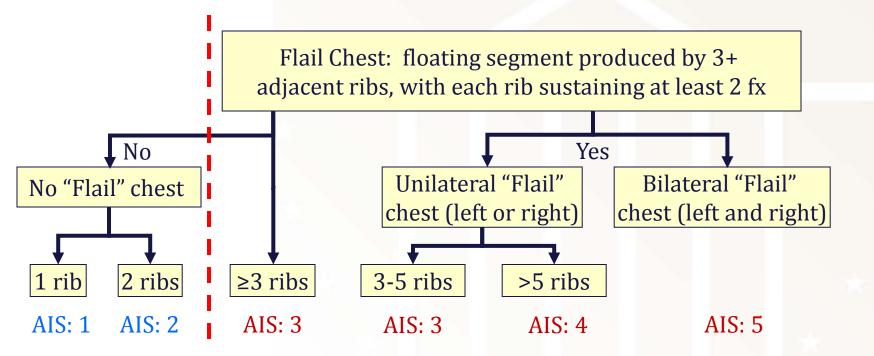
Independent Variable	CV50
X-Deflections	-
Deflection sum	0.356
Max deflection	0.190
Combined X Deflection	0.178
Resultant Deflections	
Deflection sum	0.127
Max deflection	0.144
Combined Res. Deflection	0.110

- Resultant generally produces more consistent risk prediction
- Most consistent multi-point predictor:
 - Combined Resultant Deflection (11% P₅₀ coefficient of variation)

THOR Sled Tests

Testing Conditions

- Tests with THOR dummy matched to 38 *frontal impact* cadaver sled tests performed at UVA
 - Variations on position, restraint type, Delta-V, and buck


					PMHS Info		
Occupant Position	Buck	Restraint	FL nominal	Delta V	Average Age	Age Range	N
Front	Gold Standard			10	62.7	59-69	3
Driver	Driver	3 point standard belt		40	62.7	59-69	3
Front Passenger 97 Ford Taurus 97 Ford Taurus 3 point standard b Gold Standard 1 3 point standard b	97 Ford Taurus	3 point belt with FL + AB	4000	48	63.8	57-72	4
		Lap belt with AB		48	52.0	40-70	2
		3 point standard belt with AB		48	61.0	55-69	3
		3 point standard belt		29	44.0	39-49	3
				38	44.0	44	1
	3 point standard belt		40	54.0	37-76	8	
	Gold Standard 2	3 point belt with custom FL	3000	30	62.5	59-66	2
Rear Passenger	04 Ford Taurus	3 point standard belt		48	55.0	51-57	3
		3 point belt with FL + PT	3000/4400	<u>48</u>	69.3	67-72	3
		3 point belt with FL + PT + belt bag	2500	48	60.3	40-72	3

THOR Injury Risk Function Development

Outcome of Interest – Rib Fracture

Dependent variable: – Thoracic rib fx, AIS 3+ severity

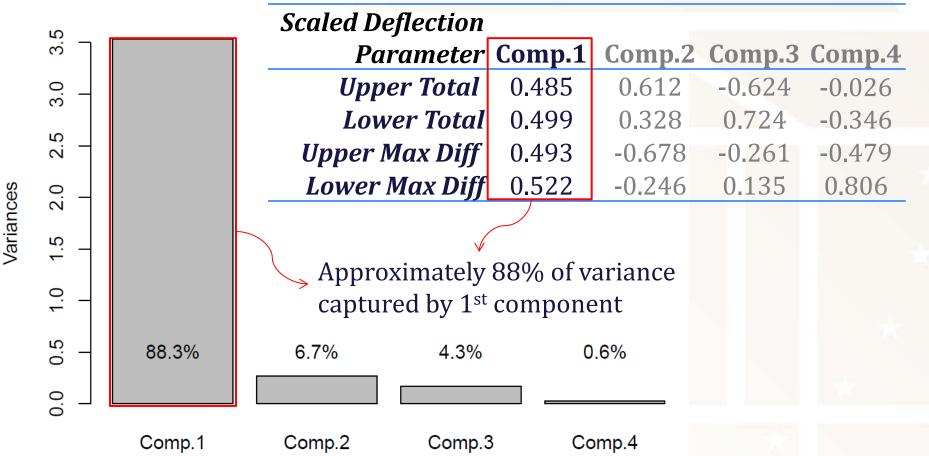

- Dichotomous term, using AIS 2005 ('08 update) coding definitions
- Includes costal cartilage



Primary Independent Variables

- Chest deflection (X, d, and resultant deflections)
 - Total upper max deflection Upper max L/R difference
 - Total lower max deflection Lower max L/R difference
 - Total max deflection
 - EU's THORAX dc metric

- Max peak deflection
- UVA deflection score (via principal components)



Principal Component Analysis (PCA)

- A variable reduction procedure
 - Reduce the dimensionality of the observed deflection patterns
 - Develop a smaller number of derived variables (called principal components) that will account for most of the variation in the observed deflections
 - Linear combination of weighted input variables
 - Prevents issues of collinearity
- Resulting score can be used as a predictor variable in subsequent analyses

PCA Weighting Results

Results suggest a relatively equallyweighted combination of the components

Center for Applied Biomechanics

Statistical Modeling

- Outcome
 - AIS 3+ (AIS 2005)
- Chest deflection measures (X, d, and resultant)
 - Total upper deflection
 - Total lower deflection
 - Total max deflection
 - EU's THORAX dc metric
- Modeling Strategies
 - Logistic regression
 - Parametric survival analysis
 - Accelerated failure time with Weibull distribution that accounts for repeated measures
 - Univariate and age-adjusted

- Upper max difference
- Lower max difference
- Max peak deflection
- UVA deflection score

Outcomes

- Methodological approach for:
 - Better understanding and describing rib strain and patterns of deflection within THOR dummy
 - Statistical analyses for maximizing the utility of PMHS and dummy data
- Injury risk function that can be applied to frontal crash testing conditions
 - With appropriate restraint configurations
- Risk curve generation and interpretation
- Comparisons to previously published risk functions
- Research report
 - Findings are currently under review by NHTSA

Questions?

