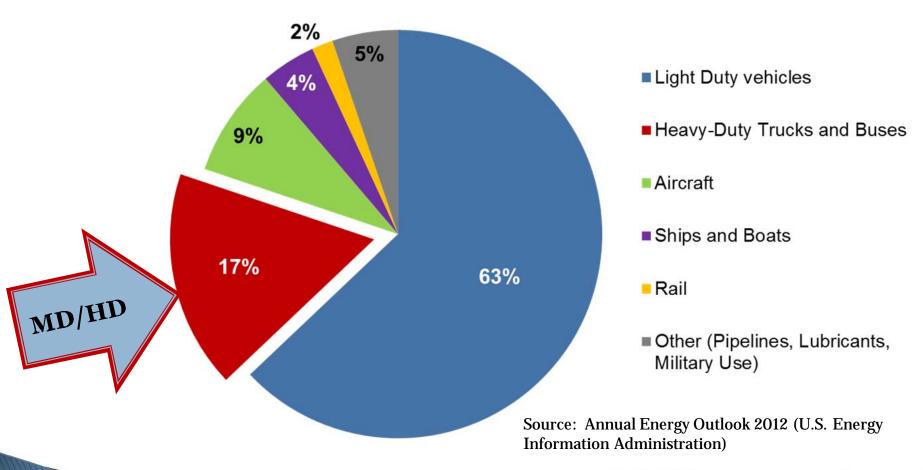
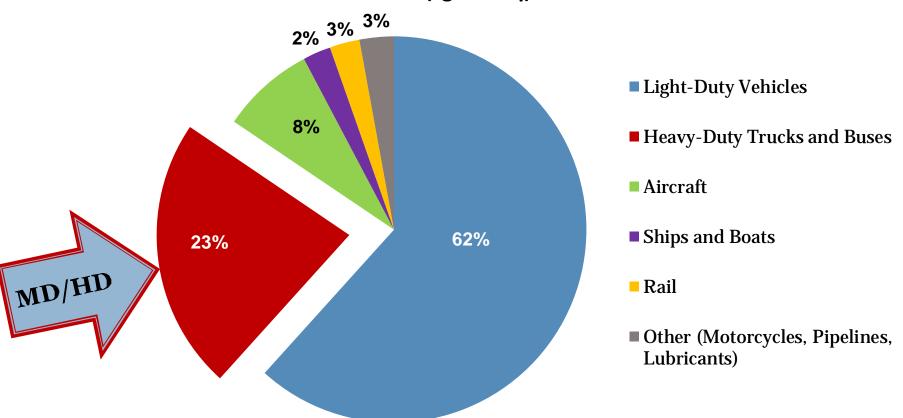
Medium- and Heavy-Duty Vehicle Fuel Efficiency and Greenhouse Gas Emission Phase 2 Rulemaking

SAE Government Industry Meeting

January 23, 2014


National Highway Traffic Safety Administration

Environmental Protection Agency


Medium- and Heavy-Duty Sector Energy Use in 2010

MD/HD Sector Emissions in 2010

Transportation Related Greenhouse Gas Emissions (Tg CO2eq) in 2010

Source: U.S. Greenhouse Gas Emissions and Sinks 1990-2010 (EPA 2012)

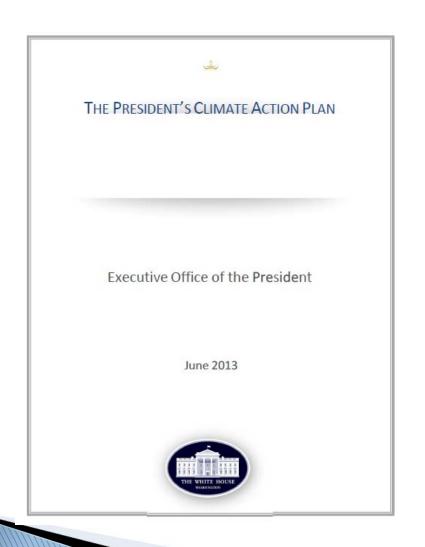
Phase 1 – Divides diverse MD/HD vehicle sector into 4 distinct categories

Se

Semi tractors, no trailers

Full-size pickup trucks & work vans

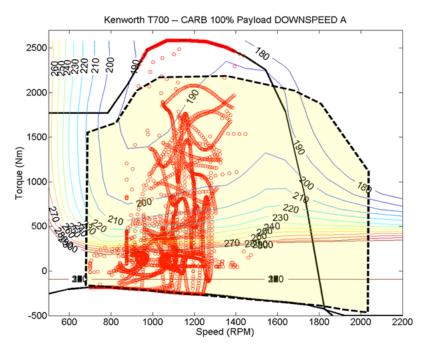
Vocational vehicles, regulated via the chassis



HD Engines

President Obama's 2013 Climate Action Plan: Commitment to a Phase 2 Regulatory Program for Heavy-duty Vehicles

"During the President's second term, the Administration will once again partner with industry leaders and other key stakeholders to develop post-2018 fuel economy standards for heavy-duty vehicles"


Phase 2 – Rulemaking Objectives Discussed in Phase 1 Rule

- Joint NHTSA / EPA rulemaking process consistent with applicable law with notice and opportunity for public review and comment.
- As discussed in the Phase 1 Final Rule:
 - Consider regulating trailers and vocational vehicle second stage manufacturers
 - Consider refining test procedures and the GEM vehicle simulation compliance model
 - Consider new and advanced technologies, along with more stringent standards and timing
 - Update technology, economic and environmental assessments
 - Consider updating flexibilities

NHTSA Technology Research

- MD/HD Technology Study with Southwest Research Institute
 - Study of over 50 powertrain and vehicle technologies for effects on fuel consumption and cost
 - Classes 2b-8, including trailers and vocational vehicles

SAE International

 Potential market research on FE improving technology adoption on current model year 2011 vehicles to augment baseline information

NHTSA Technology Research: Drive Cycles

- Class 2b and 3
 - Phase 1 Drive Cycles
 - EPA FTP-75 City cycle
 - EPA HWFET Highway cycle
 - Additional Drive Cycles
 - EPA US06

300

-200

FPA SC03

60

60

50

40

40

10

10

10

EPA SC03

World Harmonized Vehicle Cycle (WHVC)

1300

1800

800

Cycle Time (s)

- Class 4 − 8
 - Phase 1 Drive Cycles
 - GEM ARB Transient
 - GEM 55 MPH cruise
 - GEM 65 MPH cruise
 - Additional Vocational Drive Cycles
 - Combined International Local and Commuter Cycle (Utility Cycle)
 - Class 6 Parcel Delivery Cycle (Parcel Cycle)
 - World Harmonized Vehicle Cycle (WHVC)
 - Additional Tractor-Trailer Drive Cycles
 - NESCAUM with grade long haul cycle

NHTSA Research: Engine Technologies

- Advanced Bottoming Cycle
- Air Handling Improvement
- Coolant Pump
- Cylinder Deactivation
- Down-sizing & boosted vs. NA
- Electric Turbo-compounding
- Engine Down-sizing
- Engine Down-speeding (reduced cruise RPM, combined with transmission technology)
- Engine Friction Reduction
- Engine Oil Pump Improvement
- ▶ GDI + I EGR

Technology application varies by vehicle class, vocation, and engine fuel type

- Improved Selective Catalytic Reduction (SCR) Conversion, combined with reducing or removing EGR
- Lean Burn GDI w/ SCR
- Lower Friction Engine Oil
- Mechanical Turbo-compounding
- Natural Gas
- Reduced After-treatment Backpressure
- Stoichiometric Gasoline Direct Injection (GDI)
- Stop / Start
- Turbo Efficiency Improvement
- Variable Valve Timing

NHTSA Research: Vehicle & Trailer Technologies

- A/C Reduced Reheat
- Air Compressor Improvements
- Automated Manual Transmission
- Automatic Engine Shutdown
- Automatic Tire Pressure Control
- Battery Auxiliary Power Unit
- Cab Insulation to Reduce A/C
- Chassis Friction Reduction & Improved Lube
- Diesel Auxiliary Power Unit
- Driver Coaching Features
- Driver Management Features
- Dual Clutch Transmission
- Fan Power Demand Reduction

- Fuel Fired Heater
- Full EV
- Hybrid Technologies
- Improved Aerodynamics
- Improved Transmissions (more gears, higher ratio spread, shift points)
- Low Rolling Resistance Tires
- Manual Transmission
- Shore Power
- Single Wide Tires
- Tractor Axle 6X2 or Clutched 6X4
- Speed limiters
- Weight Reduction

Technology application will vary by vehicle class, vocation, and engine fuel type

EPA Research

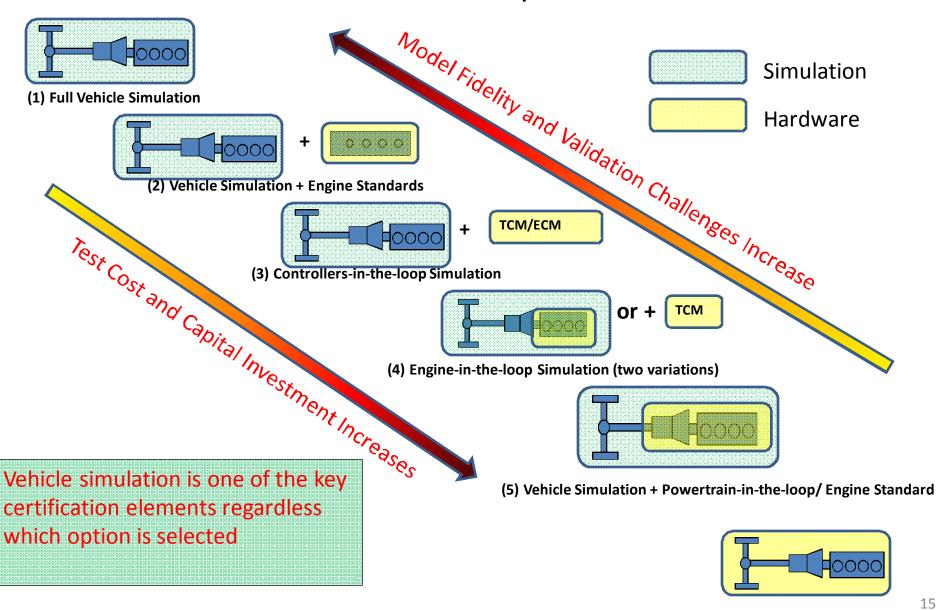
- Test procedure development
 - Refine and evaluate aerodynamic and powertrain test procedure approaches
 - Attempt to refine GEM to simulate actual powertrain
 - Compare test procedure and GEM results
 - Validate GEM over 120+ vehicle variant tests
 - Assess different Phase 2 combinations of certification testing and simulation
 - EPA developing GEM refinements in-house and with contractor support
 - Main testing contractor: Southwest Research Institute (SwRI)

Vehicle and Powertrain Tests in Supporting GEM

- Vehicle chassis and powertrain testing at Southwest Research Institute
 - One Class 6 box delivery truck chassis dyno tests with 7x6 test matrix
 - One Class 6 flat bed vocational truck chassis dyno tests with 7x6 test matrix
 - Kenworth T700 Class 8 tractor-trailer chassis dyno tests with 7x6 test matrix
 - Daimler Cascadia Class 8 truck-trailer chassis dyno tests
 - One transit city bus chassis dyno tests
 - One garbage truck chassis dyno tests
 - MD powertrain test with 7x6 test matrix
- HD powertrain test at Oak Ridge National Lab is being planned with DOE-EPA interagency agreement
- Driving cycle refinement with National Renewable Energy Lab is being planed with DOE-EPA interagency agreement
- Vehicle testing at Environment Canada
 - Class 6 open box truck testing underway
 - Coordinating additional testing opportunities
- GEM Validations will be done against over 160 vehicle variants

GEM Development and Enhancement

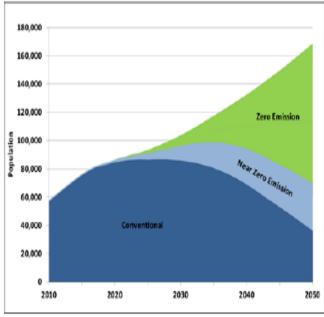
- The Agency formed a strong internal team, working with Southwest Research Institute to develop the next generation of the GEM
- The key technical features of this enhanced GEM include
 - More advanced engine controller
 - Engine fuel cut-off model during braking and deceleration
 - Idle controller
 - Transmission models
 - Automatic transmission
 - Automated manual transmission
 - Enhanced driver model
 - Frictional clutch model
 - GEM Graphic User Interface (GUI)



Current GEM Status

- EPA modeling team is fiercely working with SwRI to conclude modeling development and validations
 - All sub-models have been developed
- The GEM is being validated against three different trucks over a total of 24 vehicle driving cycles
 - Majority of the comparisons between simulations and testing data are under 5% accuracy
- Extensive validations against massive vehicle test data are under way whenever the testing data become available

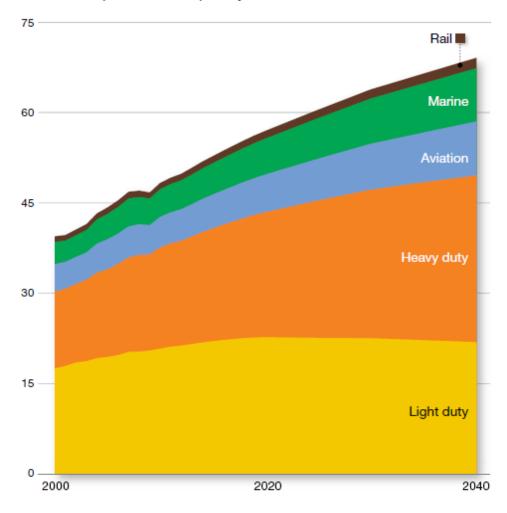
Certification Options



What's Happening in California?

- 2008: ARB adopts mandatory fleet-level requirements for tractors and trailers
 - Based on EPA SmartWay performance
- 2012: ARB Releases 2050 Vision for Clean Air document
 - Calls for significant additional NO_x and CO₂ reductions from heavy-duty sector
- 2013: Adopting EPA GHG Phase 1 Standards
 - Board hearing in December 2013
 - Similar to ARB's adoption of HD criteria emissions standards
 - Also adopting new voluntary Low NOx standards for heavy-duty
 - Signaled intent to move beyond Federal Phase 1
- ARB Participation in Federal Phase 2 Standards Development

South Coast Heavy Duty Truck Population (advanced technology scenario)


Thank you

World-Wide Transportation Energy Use: HD Vehicle Grows Faster than any Other Transportation Sub-sector

Transportation energy demand by sector

Millions of oil-equivalent barrels per day

- ➤ World-wide, HD vehicle energy demand estimated to grow by 65% over next 30 years
- ➤In 2040, HD Vehicles projected to be largest transportation sub-sector use of energy.
- ➤ 40% of all transportation energy

ExxonMobil 2013 Energy Outlook Report

Phase 1 – Pollutants addressed and flexibilities

- EPA regulates CO₂, N₂O, CH₄
 and HFCs.
- NHTSA regulates fuel consumption.
- Both agencies offer manufacturers flexibilities including credit Averaging,
 Banking and Trading (ABT),
 among other provisions

◆ GEM_sim	
Identification— Manufacturer Name: Vehicle	Emissions Model (GEM) le Configuration: Date:
Regulatory Subcategory Class 8 Combination - Sleeper Cab - High Roof Class 8 Combination - Sleeper Cab - Mid Roof Class 8 Combination - Sleeper Cab - Low Roof Class 8 Combination - Day Cab - High Roof Class 8 Combination - Day Cab - Mid Roof Class 8 Combination - Day Cab - Low Roof Class 7 Combination - Day Cab - Low Roof Class 7 Combination - Day Cab - High Roof Class 7 Combination - Day Cab - Mid Roof Class 7 Combination - Day Cab - Low Roof Hoavy Heavy-Duty - Vocational Truck (Class 8) Medium Heavy-Duty - Vocational Truck (Class 6-) Light Heavy-Duty - Vocational Truck (Class 2-5)	Simulation Inputs Coefficient of Aerodynamic Drag: Steer Tire Rolling Resistance [kg/metric ton]: Drive Tire Rolling Resistance [kg/metric ton]: Vehicle Speed Limiter [mph]: Vehicle Weight Reduction [lbs]: Extended Idle Reduction: Simulation Type— Single Configuration Plot Output Multiple Configurations

Phase 1 – Standards Implementation

NHTSA Fuel Consumption standards are mandatory beginning in MY 2016

- Fuel Consumption based on CO2 only
- Voluntary early compliance
 MY 2014 & 2015

EPA Greenhouse Gas
Emission standards are
mandatory beginning in MY
2014

 CO2, N2O, CH4 and HFCs

	MY 2014	MY 2015	MY 2016	MY 2017	MY 2018	MY 2019
EPA	M	M	M	M	M	M
NHTSA	V	V	M	M	M	M

Phase 1 - Compliance

MY 2013 Deadlines:

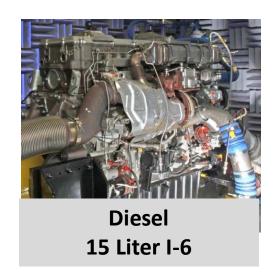
- March 31, 2014 Year end report for ABT manufacturers due
- October 1, 2014 Final report for ABT manufacturers due
- Reporting template will be provided to manufactures on the EPA website

MY 2013 Early Compliance:

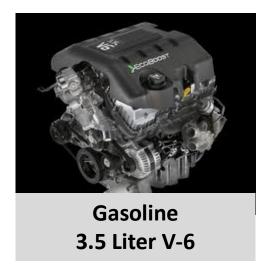
- 3 vocational and tractor manufacturers
- 2 engine manufacturers
- 2 heavy duty pick up truck and van manufacturers
- All manufacturers in EPA program opted into NHTSA program

MY 2014 Compliance (partial estimates):

- Mandatory EPA compliance and optional NHTSA
- 16 vocational and tractor manufacturers
 - 9 have opted into NHTSA program
- 7 engine manufacturers
 - 3 have opted into NHTSA program
- 7 heavy duty pick up truck and van manufactures
 - 6 have opted in NHTSA program


NHTSA Technology Research Engines

• HD diesel: DD15 14.8L I-6


• LD / MD diesel: ISB 6.7L I-6

Port injected gasoline: 6.2L V-8

Turbo GDI gasoline: Ecoboost 3.5L V-6

Phase 2 – NHTSA FE Technology Research

Current MD/HD Fleet Baseline Powertrains:

 Build GT model for two gasoline and two diesel engine models to span classes 2b-8 vehicles and validate with engine operating data

Gasoline Classes 2b-7

- Engine: Ford EcoBoost 3.5L V6
- Transmissions: Chrysler 6-spd 68RFE (2b-3), Allison 2000 (4-7)

Diesel Class 2b-8a

- Engine: Cummins ISB 6.7 L I6
- Transmission: Chrysler 6-spd 68RFE (2b-3), Allison 2000 (4-8a)

• Gasoline Classes 2b-7

- Engine: Nat. aspirated V8
- Transmission: Chrysler 6-spd 68RFE (2b-3), Allison 2000 (4-7)

Diesel Class 8b

- Engine: Detroit Diesel DD15 14.8 L I6
- Transmission: Eaton 10-speed AMT

Phase 2 – NHTSA FE Technology Research

• Phase 2 MD/HD Fleet Baseline Powertrains:

- Modify the two gasoline and two diesel engine models (spanning classes 2b-8 vehicles) to represent potential Phase 2 improvements
- Gasoline Class 2b 7
- Engine: Ford EcoBoost 3.5L V6
- Transmission: ZF 8-spd (2b-3), improved Allison (4-7)
- Diesel Class 2b-7
- Engine: Cummins ISB 6.7 L I6
- Transmission: ZF 8-spd (2b-3), improved Allison (4-7)

- Gasoline Classes 2b-7
- Engine: Nat. aspirated V8
- Transmission: ZF 8-spd (2b-3), improved Allison (4-7)
- Diesel Class 8
- Engine: Detroit Diesel 14.8 L I6
- Transmission: Manual, Dual Clutch