

Adopting and Fusing Administrative Records with Traditional Survey Based Data to Increase Accuracy and Timeliness Datapalooza: Policy Development in the Era of Big Data June 17, 2015

Its Not only Data that is Getting Bigger!

With advanced computing power it is possible to do many things that were only theoretical statistical exercises before.

100 Years of Survey Statistics

- 1. Avoid bias in your estimate
- 2. Seek to minimize the variance in your sample estimates
 - Increase your sample size
 - Improve your sample design (e.g., stratification)
- 3. It is generally impossible to sample the universe
- 4. Do the best you can to minimize undercoverage, frame miss-coverage, etc.

Use post-stratification weighting techniques

The Golden Rule of Statistical Estimation:

Minimize Mean Squared Error

Mean Square Error (or uncertainty) of the survey estimate, which is the Expected value of the squared difference between the estimate and its true value:

$$= \frac{E[(\theta - \hat{\theta})^{2}]}{E[(\theta - E(\theta))^{2}] + (E(\theta - \hat{\theta}))^{2}}$$
or

= Variance + Bias²

So, what has this led to?

- Large, national surveys with sample sizes in the tens of thousands
 - Complex sample designs using multi-stage sampling
 - Extensive post-stratification and weighting methods

$$Variance(\bar{y}) = \frac{S^2}{n}(1 - \frac{n}{N})$$

Now, a quick story.

Who's a better shot?

Me

Not that Accurate, but pretty Precise

My Son Not that Precise, but relatively Accurate

Where is this going?

• Remember what we want in our estimates:

• How can we get there in the two previous outcomes?

Try to squeeze out more of the variation

- Larger sample sizes
- Stratification

Recalibrate to reduce or eliminate bias

- Find a reference point
- Use better math

So how does this relate to fusing administrative data with survey?

Survey Data

- Unbiased
- Representative
- Not necessarily precise
- Take time/resources to obtain

Administrative Data

- Biased
- Not necessarily representative
- Usually much more precise
- Usually obtainable in much less time/resources

So how does this relate to fusing administrative data with survey

- Collect a <u>large</u> amount of <u>highly-precise</u> travel occurrence data from cellphone usage or other administrative, "nonprobability" records
- Collect a <u>smaller</u> amount of <u>unbiased</u>, accurate, but <u>not as precise</u> travel data via probabilistic survey

Other non-probabilistic data ripe for the plucking

- "Opt-in" panels
- Online surveys open to anyone
- Convenience or judgmental samples
- Network sampling
- Cell phone O/D data

"Cheap" "Quick" Fairly Precise But Biased

Will incorporating non-probabilistic data work?

- A test of the methodology using the 1995 American Travel Survey data*
 - Long distance trips (>75 miles one-way) over a 12-month period
- Used computer simulation to sample person-records repeatedly from this dataset
 - Obtain a probabilistic core sample
 - Obtain a opt-in sample under various degrees of sampling bias
 - Simple random sampling
 - Higher proportion of young (<35 years) frequent travelers
 - Higher proportion of young earners and young educated persons
 - Different sample sizes (1,000; 7,000; 15,000 persons)
 - * Research sponsored by FHWA Office of Policy

Methods

- Examined two simple methods for statistical estimation
 - Combined approach (Disogra et al., 2009): Iterative post-stratification and reweighting of combined probabilistic/non-probabilistic data
 - Composite approach (Ghosh-Dastidar et al., 2009): Combine mean estimates from both data sources
- Trip parameters of interest:
 - Average # trips, average trip distance, proportion of LD travelers
- Calculate bias and mean squared error (MSE) of the mean estimates
 - Probabilistic core sample estimate used as the reference in defining bias (thus, it has bias 0)

Summary of Research or Data Experience

Average Trip Distance

Probabilistic-based sample size = 1,000 Opt-in sample size = 15,000

Equal or slightly less variability, with an acceptable level of bias

Summary of Research or Data Experience

IN

MSE

Average Trip Distance Size: 15000 400 300 2001000 20 40 60 0 Bias

Battelle The Business of Innovation

Composite estimation approach

- Reduces MSE (always)
- Introduces vary little bias even when 15 to 1 ratio

Legend:

- = Probabilistic core sample
 - Composite estimation approach
- Combined estimation approach

The Bottom Line The Good

- Can be a very powerful way to combine
 data from different sources to improve survey estimates
 - Leverage data to improve estimates
 - Good for non-sensitive estimates
- Potential for a much more robust database, without an exponential increase in resources needed
- Will continue growth of efficiency and applicability as technology growth continues

The Bad

- The statistical methods can get complicated quickly
 - Processor intense = more resources and time for analysis
 - More challenging to interpret to a layperson
- Auxiliary data usually has a lower level of detail
 - Lacking trip purpose, driver, etc.
- Bias can still be an issue for sensitive estimates

What Does this Mean for Policy Decisions?

The use of non-probabilistic records/convenience samples can be used to enhance traditional survey results

- Extend the "life" of the data
- Enable "rapid" investigation and support of emerging policy questions
- May not provide a "perfect" answer but it may well be "good enough"

FHWA Cell Phone Data and Travel Behavior Research Symposium - 2/12/14

Contact Information/Publications

- Ben Pierce (614-424-3905; PierceB@battelle.org)
- **Bob Lordo** (614-424-4516; LordoR@battelle.org)

DiSogra, C, Cobb, C, Chan, E, and Dennis, JM. (2011) Calibrating non-probability internet samples with probability samples using early adopter characteristics. In: *Section on Survey Research Methods, JSM Proceedings.* Alexandria, VA: American Statistical Association.

Ghosh-Dastidar, B, Elliott, MN, Haviland, AM, and Karoly, LA. (2009) Composite estimates from incomplete and complete frames for minimum-MSE estimation in a rare population: an application to families with young children. *Public Opinion Quarterly.* 73(4):761-784.

<u>Project Report</u>: "Design of a Completely New Approach for a Household-Based Long Distance Travel Survey Instrument" <u>http://www.fhwa.dot.gov/advancedresearch/pubs/13081/</u>

