Section	CFFC	ISO 11119-2	FRP-1
CFFC-2 <u>Type, size and Service Pressure</u>	Liner: seamless aluminum Max. Water Capacity: 90.7 Liters (200 Lbs.) Max. Service Pressure: $34,474$ kPa (5000 psi) Test Pressure: $P_h = \frac{5}{3} \times P_{service}$ Max. Test Pressure: 575 bars (8333 psi) Min. Safety Factor: 3.4 Overwrap fiber: carbon, glass (Only Type S or E) Overwrap matrix: epoxy Winding pattern: combination of helical and hoop	Liner: seamless metallic Max. Water Capacity: 450 Liters (992 Lbs.) Max. Service Pressure: 43,334 kPa (6285 psi) Test Pressure: $P_h = \frac{3}{2} \times P_{service}$ Max. Test Pressure: 650 bars (9428 psi) Min. Safety Factor: 3.0 Overwrap fiber: carbon, aramid, glass Overwrap matrix: polymer suited to application Winding pattern: longitudinal and hoop	Liner: seamless aluminum Max. Water Capacity: 90.7 Liters (200 Lbs.) Max. Service Pressure: $34,474$ kPa (5000 psi) Test Pressure: $P_h = \frac{5}{3} \times P_{service}$ Max. Test Pressure: $P_h = 1.15 \times p_h = 9583$ psi Min. Safety Factor: 3.0 Overwrap fiber: glass (Only Type S or E) Overwrap matrix: epoxy or modified epoxy Winding pattern: helical, in-plane, hoop
CFFC-3 Service Life	 15 years (from manufacture date) 30 years (Administrator approval required) 	 Varies: 10 to 38 years* 38 years defined as Unlimited Life 38 years if P_h > 60 bars (870 psi) * Requalification recommended if design life > 15 years. 	The service life is clearly defined in all special permits for FRP-1 cylinder designs.
CFFC-4 Inspection By Whom & Where	 Inspection and verification performed by an approved Independent Inspection Agency (IIA) Chemical analysis must be approved for each batch Fiber mechanical properties must be verified and approved by IIA 	 Performed in accordance with regulations established in the country of use Cylinders must be inspected and tested to ensure compliance with the standard; focus areas include Cylinder Materials, Design & Manufacture, Type Approval Procedures and Batch Inspection & Testing Performed by an independent inspector recognized in the country of use 	 Inspection and verification performed by an approved Independent Inspection Agency (IIA) Chemical analysis and tests must be performed in the US unless approved

	- Obtain and retain design type documentation	- Obtain and retain design type documentation	Determine that all materials conform with the standard before releasing for manufacture		
	- Determine if materials/components comply with the standard	 Certify that the design, manufacture and testing were carried out in accordance with the standard 	Defore releasing for manufacture		
CFFC-5 <u>Duties of Inspector</u>	 Verify conformance, consistency and quality of: Chemical composition for each liner heat Fiber materials Resins & other chemicals Completed liners Filament winding & curing procedures Completed cylinders 	 Verify conformance of: Fiber materials Resin matrix materials Completed liners Completed cylinders 	 Verify conformance of: Chemical composition of each liner heat Fiber system Resin system Filament winding process Completed cylinders 		
	 Witness & retain documentation for all tests and pressurizations performed on completed cylinders with acceptable results Complete Inspector's report Verify that design qualification testing has been performed on new designs with acceptable results prior to initial shipment 	 Supervise type approval testing Determine that all materials conform with the standard before releasing for manufacture 	 Witness & retain documentation for all tests and pressurizations; report volumetric capacity, permaner expansion and completed cylinder weight Complete inspector's report Verify that design qualification testing has been performed on new designs with acceptable results prior to initial shipment 		
	Liner: 6061-T6 aluminum Min. Yield Strength: 241,316 kPa (35,000 psi) Min. Tensile Strength: 262,001 kPa (38,000 psi) Min. Elongation for 5.1 cm (2") gage: 14% Min. Elongation for 24t × 6t: 6%	Liner: 6061A aluminum (see ISO 7866) Min. Yield Strength: 241,316 kPa (35,000 psi) Min. Tensile Strength: 262,001 kPa (38,000 psi) Min. Elongation for 5.1 cm (2") gage: 14% Min. Elongation for 24t × 6t: 6%	Liner: 6061-T6 aluminum Min. Yield Strength: By ASTM Standard E8 Min. Tensile Strength: By ASTM Standard E8 Min. Elongation for 5.1 cm (2") gage: 14% Min. Elongation for 24t × 6t: 10%		
CFFC-6 <u>Authorized Materials</u>	Other Authorized Materials: N/A	Other Authorized Materials: 6351A aluminum (see ISO 7866), steel (see ISO 9809-1, 9809-2), stainless steel (see EN 1964-3)	Other Authorized Materials: 6351 aluminum		
(Liner)	 Liner ends must be concave to pressure Liner exterior surface must be protected from galvanic corrosion 	Protective coating applied to liner prior to wrapping to prevent corrosion	 Liner ends must be concave to pressure Protective coating applied to liner prior to wrapping to prevent corrosion 		
	# of Physical Test Specimens: 2 Max. Lot Size: 200	# of Physical Test Specimens: 1 Max. Lot Size: 200	# of Physical test specimens: 2 Max. Lot Size: 200		

CFFC-6 <u>Authorized Materials</u> (Filaments)	 Must be polyacrylonitrile based carbon fiber tows Tensile strength: 5,171,068 kPa (750 ksi) Tested in accordance with ASTM D-2343-95 	- Must be carbon, aramid or glass; or any mixture	 Must be Type S or Type E Tensile strength: Type S (400 ksi), Type E (200 ksi) Tested in accordance with ASTM D-2343-79
CFFC-6 <u>Authorized Materials</u> (Resins)	- Must be epoxy or modified epoxy	- A suitable polymer (e.g. epoxy or modified epoxy)	- Must be epoxy or modified epoxy
CFFC-7 <u>Design Criteria</u>	 Reliable model of cylinder required Model must account for non-linear behavior Only cylindrical region must be analyzed Max. stresses in domes < Stresses in cylinder body Model & analysis procedure must be documented In the fibers: σ_{max} < 0.30 σ_{fiber,burst} At service pressure σ_{max} < 0.60σ_{Y,liner} 0.60σ_{Y,liner} < σ_{comp} < 0.95σ_{Y,liner} Net loading sharing capacity of galvanic liner protection < 15% of the total pressure load in cylinder at burst pressure Burst must initiate in cylinder sidewall 	 Calculate stresses using stress analysis software Model must account for non-linear behavior Stress analysis must be documented 	 Stresses must be calculated using the NASA CF-72124 code or other suitable technique At service pressure σ_{max,liner} < 0.60σ_{Y,liner} At service pressure σ_{max,fiber} < 0.30σ_{fiber,burst}
CFFC-8 Openings, Valves & Pressure Relief Devices	 Openings in heads only Centerline of opening must coincide with cylinder centerline Threads designed in compliance with FED-STD-H28, Appendix A5 Tapered threads not permitted Straight threads having at least 6 threads must have a calculated factor of safety in shear of at least 10 at the test pressure; threads must extend completely through neck 	 Cylinders can have a maximum of 2 openings Openings along central axis only Parallel threads shall extend completely through neck or have sufficient threads to allow full engagement of the valve 	 Openings in heads only Centerline of opening must coincide with longitudinal axis of cylinder Tapered threads not permitted Straight threads conforming with NGS thread standard are authorized Straight threads having at least 6 engaged threads are authorized if the calculated shear strength is at least 10 times the test pressure of the cylinder Pressure relief devices conform to 49 CFR 173.34(d) and 173.301(g)

	Cylinder IS a new design if: - Change in diameter > 10%; or, - Change in service pressure > 10%; or, - Change in water capacity > 30%; or, - Significant change material properties; or, - Significant change in manufacturing process, quality	 Cylinder IS a new design if: Change in diameter or > 50%; or, Change in test pressure > 60%; or, Change in water capacity > 30%; or, Significant change in overwrap materials; or, Significant change in manufacturing process; or, 	 Cylinder IS a new design if: Change in diameter ≥ 10%; or, Change in service pressure ≥ 10%; or, Any change in material
CFFC-9 Design Type and Authorization	assurance, or winding pattern	 Significant change in liner manufacture or design Cylinder is a design VARIANT if: Change in length; or, Change in diameter < 50%; or, Change in autofrettage pressure by 5% or 10 bars, whichever is greater; or, Change in base profile and/or base thickness of liner 	
CFFC-10 <u>Design Qualification Tests</u> (Resin System)	 Test coupon of composite overwrap Test in accordance with ASTM D-2344-89 Min. sheer strength: 34,474 kPa (5000 psi) 	relative to cylinder diameter and min. wall thickness N/A	 Test coupon of composite overwrap Test in accordance with ASTM D-2344-67 Min. sheer strength: 34,474 kPa (5000 psi)
CFFC-10 <u>Design Qualification Tests</u> (Burst test)	Min. Safety Factor: 3.4 Min. # of Cylinders: 3 Min. Hold Time: 60 sec. Max. Pressurization Rate: 1379 kPa/sec (200 psi/sec) - Failure must occur in cylinder sidewall	Min. Safety Factor: 3.0 Min. # of Cylinders: 3 Min. Hold time: 60 sec. Max. Pressurization rate: 5 bars/sec (72.5 psi/sec)	Min. Safety Factor: 3.0 Min. # of Cylinders: 1 Min. Hold Time: 60 sec. Max. Pressurization Rate: 1379 kPa/sec (200 psi/sec) - Failure must occur in cylinder sidewall - Cylinder must remain in one piece

CFFC-10 Design Qualification Tests (Drop test)	Min. # of cylinders: 1 Contents: empty (but valve is attached) Drop Height: 3 meters (10 feet) # of Drops: 1 per cylinder Impact Surfaces: concrete, angle iron Drop Positions: vertical, horizontal, angled If 1 Cylinder is Drop Tested: Post-drop cycle to 1000 pressure cycles Pressure Range: 0.10 P _{service} ≥ P ≥ P _{service} Max. pressurization rate: 10 cycles/min Min. dwell between 90-100% of P _{service} : 1.2 sec No observable leakage or damage growth Burst tested after cycling Residual strength ≥ 90% of required min. burst	For Water Capacity ≤ 50 Liters: Min. # of Cylinders: 2 Contents: 50% filled with water (opening plugged) Drop Height: 1.2 meters (4 feet) # of Drops: 2 per cylinder Impact Surface: steel plate Drop Positions: 5 positions (vertical, horizontal, angled) - Burst test 1 st cylinder - Residual strength ≥ 100% of min. required burst - Cycle 2 nd cylinder using ambient cycle test For Water Capacity > 50 Liters: Min. # of Cylinders: 1 Contents: empty (opening plugged) Drop Height: 1.8 meters (6 feet) # of Drops: 5 Impact Surface: concrete Drop Positions: 5 positions (vertical, horizontal, angled) - Cycle to 12,000 cycles using ambient cycle test - Pressure Range: 0.067 Ph ≥ P ≥ 0.67Ph - Cylinder must withstand at least 12,000 cycles without leakage or burst	N/A
	 If 2 Cylinders are Drop Tested: Post-drop cycle 1st cylinder to 1000 cycles then burst Burst test 2nd cylinder in accordance with CFFC-10 Residual strength ≥ 90% of required min. burst 		

CFFC-10 Design Qualification Tests	Min. # of cylinders: 2 Pressure Range: $0.10 \ P_{service} \ge P \ge P_{service}$ Max. Pressurization Rate: 10 cycles/min Min. Dwell between 90-100% of P_s : 1.2 sec Min. # of Service Pressure Cycles: 10,000 Min. Dwell between 90-100% of P_h : 1.2 sec Min. # of Test Pressure Cycles: 30 - No observable leakage or damage growth - Burst test second cylinder in accordance with CFFC-10	Min. # of cylinders: 2 Pressure Range: $0.10 \ P_h \ge P \ge P_h$ Max. Pressurization Rate: 15 cycles/min Min. Dwell between 90-100% of P_s : N/A Min. # of Service Pressure Cycles: N_d (if $P_h > 60$ bars) Min. Dwell between 90-100% of P_h : N/A Min. # of Test Pressure Cycles: N_d (if $P_h > 60$ bars), or 12,000 otherwise If $P_h > 60$ bars: - Cylinders must withstand N cycles to P_h where:	Min. # of cylinders: 1 Pressure Range: $0 \ge P \ge P_{service}$ (with 30 bar max.) Max. Pressurization Rate: 4 cycles/min Min. Dwell between 90-100% of P_s : N/A Min. # of Service Pressure Cycles: 10,000 Min. Dwell between 90-100% of P_h : N/A Min. # of Test Pressure Cycles: 30 - No evidence of distortion, deterioration or failure - Burst test cylinder in accordance with 178.AA-18(e)(1)	
(Ambient Temperature Cycling)	- Min. Residual Strength: 90% of $P_{b,min}$	 N = y × 250 cycles per year Or, N_d cycles to P_{max}, where: N_d = y × 500 cycles per year No failure by leakage or burst Cylinders must then pass an additional N or N_d cycles without burst If P_h < 60 bars: Cylinders must withstand 12,000 cycles to P_h 	- Min Residual Strength: 100% of $P_{b,min}$	
CFFC-10 <u>Design Qualification Tests</u> (Environmental Cycling)	 Min. # of Cylinders: 2 Max. Cycling rate: 10 cycles/min Max. Dwell between 90-100% of P_s: 1.2 sec Step 1: 0 psi, 60 °C (140 °F), 95 % rel. hum for 48 hrs Step 2: Apply 5000 cycles from 0 to P_s for at 60 °C and 95% relative humidity Step 3: Stabilize cylinder and apply 5000 cycles from 0 to P_s at -60 °F. Step 4: Stabilize and apply 30 cycles from 0 to P_s Step 5: Burst cylinder No evidence of damage, distortion or leakage Min. Residual Strength: 90% of P_{b,min} 	 Min. # of Cylinders: 1 Max. Cycling rate: 5 cycles/min Max. Dwell between 90-100% of P_s: 1.2 sec Step 1: 0 psi, 60 °C (140 °F), 95 % rel. hum for 48 hrs Step 2: Apply 5000 cycles from 0 to P_s for at 60 °C and 95% relative humidity Step 3: Stabilize cylinder and apply 5000 cycles from 0 to P_s at -60 °F Step 4: Stabilize and apply 30 cycles from 0 to P_s Step 5: Burst cylinder Min. Residual Strength: 70% of P_{b,min} 	Min. # of Cylinders: 1 Max. Cycling rate: N/A Max. Dwell between 90-100% of P _s : N/A - Step 1: 0 psi, 60 °C (140 °F), 95 % rel. hum for 48 hrs - Step 2: Apply 5000 cycles from 0 to P _s for at 60 °C and 95% relative humidity - Step 3: Stabilize cylinder and apply 5000 cycles from 0 to P _s at -60 °F. - Step 4: Stabilize and apply 30 cycles from 0 to P _s - No evidence of corrosion, deterioration or failure	

CFFC-10 Design Qualification Tests (Thermal cycling)	 Min. # of Cylinders: 2 Max. Cycling Rate: 10 cycles/min Max. Dwell between 90-100% of Ph: 1.2 sec Min. Temperature Dwell Time: 10 min Step 1: 10,000 cycles between 0 and Ps Step 2: Pressurize to Ps and apply 20 thermal cycles between 200 °F and -60 °F Step 3: Burst cylinder No evidence of damage, distortion or leakage Min. Residual Strength: 90% of Pb,min 	N/A	 Min. # of Cylinders: 1 Max. Cycling Rate: N/A Max. Dwell between 90-100% of Ph: 1.2 sec Min. Temperature Dwell Time: 10 min Step 1: Apply 10,000 cycles between 0 and Ps Step 2: Apply 30 cycles between 0 and Ph Step 3: Pressurize to Ps and apply 20 thermal cycles between 200 °F and -60 °F Step 4: Burst test cylinder No evidence of damage, distortion or leakage Failure must occur in cylinder sidewall If Ps < 2200 psi, cylinder must remain in one piece Min. Residual Strength: 100% of Pb,min 		
CFFC-10 Design Qualification Tests (Gunfire test)	Min. # of Cylinders: 1 Cylinder Charge Pressure: Ps Projectile caliber: 0.30 (armor piercing) Projectile velocity: 853.4 m/sec (2800 ft/sec) Impact angle: 45° Distance to impact point: 45.7 m (150 ft) - Cylinder must be charged with nitrogen or air - Cylinder must not fragment - Impact and exit penetration sizes must be recorded	Min. # of Cylinders: 1 Cylinder Charge Pressure: P _s Projectile caliber: 7.62 mm (0.30 AP), if D > 120 mm 5.56 mm AP, if D ≤ 120 mm Projectile velocity: 853.4 m/sec (2800 ft/sec) Impact angle: 45° Distance to impact point: 45 m (147.6 ft) - Cylinder must be charged with nitrogen or air - Bullet must penetrate at least one wall of cylinder - Cylinder must not fragment - Impact and exit penetration sizes must be recorded AP — armor piercing	Min. # of Cylinders: 1 Cylinder Charge Pressure: Ps Projectile caliber: 0.30 (armor piercing) Projectile velocity: 2800 ft/sec (853.4 m/sec) Impact angle: 45° Distance to impact point: 50 yds (150 ft) - Cylinder must be charged with nitrogen or air - Cylinder must not fragment - Impact and exit penetration sizes must be recorded		

	Min. # of Cylinders: 2	Min. # of Cylinders: 1	Min. # of Cylinders: 3 (LPG service), 2 (non-LPG service)				
	Cylinder Charge Pressure: P_s	Cylinder Charge Pressure: P_s	Cylinder Charge Pressure: P_s				
	Test Positions: vertical	Test Positions: horizontal, vertical	Test Positions: vertical, horizontal				
	Heat Source: Kerosene soaked wood	Heat Source: Wood, Gas, Hydrocarbon fuel	Heat Source: Kerosene soaked wood, Gasoline, JP-4				
	Min. Temperature: N/A	Min. Temperature: 590 °C (1094 °F)	Min. Temperature: N/A				
CFFC-10	Distance from Source to Cylinder: N/A	Distance from Source to Cylinder: 0.1 m (4 inches)	Distance from Source to Cylinder: 4 inches				
<u>Design Qualification Tests</u> (Bonfire test)	- Expose to fire until contents are completely vented	- Expose to fire until contents are completely vented	- Expose to fire until contents are completely vented				
(22	- Venting must occur predominately thru PRD	- Cylinder may vent thru PRD or other surfaces	- Venting must occur ONLY thru PRD				
	- Cylinder must be intact upon test completion	- Cylinder and valve must be fully exposed to fire	- Flame impingement on PRD is prohibited				
		- PRD must be shielded from flame	- PRD shielding is allowed				
		Cylinder must not burst during 2 min period from start of test	 Cylinder must be intact upon test completion Burst test after passing fire test 				
	- Alternate test method: Chimney Test Method		6				
CFFC-11							
Qualification Requirements for Design Change	See Appendix 1 & 2	See Appendix 1 & 2	N/A				
Change	Adv. Cod on a	Mar fort and a					
	Manufacturer must:	Manufacturer must:					
	- Be responsible for total compliance with the standard	- Be responsible for total compliance with the standard					
	 Ensure that all aspects of manufacture conform to processes used for the manufacture of design qualification cylinders 	- Ensure that all aspects of manufacture conform to those used for the manufacture of design qualification cylinders					
	- Retain production data and test results	- Retain production data and test results					
	- Maintain a quality assurance system for each design	- Maintain a quality assurance system for each design					
	- Establish compliance procedures for all design control features	- Establish compliance procedures for all design control features					
CFFC-12	Max. Lot Size: 200	Max. Lot Size: 200	Max. Lot Size: 200				
Manufacturing, Quality Assurance and Lot Qualification Tests	Lot Qualification Tests	Lot Qualification Tests	Lot Qualification Tests				
	- Burst (1 cylinder per lot)	- Burst	- Burst				
	- Ambient Temperature Cycling (1 cylinder per lot)	- Pressure Cycling	- Pressure Cycling				
	Lot Acceptance Criteria:	Lot Acceptance Criteria:	Lot Acceptance Criteria:				
	- Cylinders that fail the Lot Qualification Tests must be rejected	- Cylinders that fail the Lot Qualification may be retested if there is evidence of an error; an additional	- Cylinders that fail the Lot Qualification may be retested if there is evidence of an error; an additional cylinder				
	- If a cylinder fails, 5 randomly chosen cylinders may be	cylinder may be tested if the cause of the error is	may be tested if the cause of the error is indeterminate				
	selected for testing; if more than one of these fails	indeterminate	- If a cylinder fails either of the Lot Qualification Tests				
	then the lot must be rejected	 If a cylinder fails, 5 randomly chosen cylinders may be selected for testing; if more than one of these fails then the lot must be rejected 	the lot must be rejected				

	Hydrostatic Test Min. Hold Time: 60 sec Gauge Accuracy: ±%1 in 80-120% of - Test using water jacket method - Pressurize to test pressure - Reject if evidence of leakage or distortion	Hydraulic Proof Pressure Test Min. Hold Time: 30 sec Gauge Accuracy: N/A - Pressurize to test pressure - Reject if there are leaks, failure to hold pressure or visible permanent deformation	Hydrostatic Test Min. Hold Time: 60 sec Gauge Accuracy: ±%1 - Test using water jacket method - Pressurize to test pressure - Reject if evidence of leakage or distortion			
CFFC-13 Production Tests	Visual Inspection & Marking - All cylinders must be visually inspected for quality and for conformance to marking requirements Output Description:	 Volumetric Expansion Test Min. Hold Time: 30 sec Gauge Accuracy: N/A Pressurize to test pressure Reject if there are leaks, failure to hold pressure or if permanent expansion at 0 pressure exceeds 5% of total expansion 	Visual Inspection & Marking All cylinders must be visually inspected for quality and for conformance to marking requirements			
CFFC-14 Marking	_	_	_			
CFFC-15 Inspector's Reports	_	_	_			
CFFC-16 <u>Retention of Reports</u>	_	_	_			

APPENDIX 1

									Design	Changes															
Type of Test or	New Design	Length (ΔL)					Diameter (ΔD)				Pressu	ıre (ΔP)		Water Capacity (ΔV)											
Requirement	_	19	50	CF	FC	15	50	CF	FC	IS	50	CF	FC	IS	50	CFFC									
		≤ 50%	> 50%	N/A	N/A	≤ 20%	> 20%	10–20%	> 20%	≤ 20%	> 20%	10-20%	> 20%	N/A	N/A	30-50%	> 50%								
Resin shear	ISO																								
Liner material	ISO																								
Composite material	ISO																								
Hudraulia Drassura	ISO	ISO	ISO			ISO	ISO	CFFC	CFFC	ISO	ISO	CFFC	CFFC			CFFC	CFFC								
Hydraulic Pressure	CFFC	150	150			150	150	CFFC	CFFC	150	150	CFFC	CFFC			CFFC	CFFC								
Liner burst	ISO		ISO			ISO	ISO				ISO ^B														
Cylinder burst	ISO	ISO	ISO			ISO	ISO			ISO	ISO														
	ISO	160	15.0			15.0	150	0550	0550	16.0	15.0	0550	0550			0550	0550								
Cycling – Ambient temp	CFFC	CFFC	ISO	130	130	150	130	130	130	130	150			ISO	ISO	CFFC	CFFC	ISO	ISO	CFFC	CFFC			CFFC	CFFC
Calling Forting and I	ISO								CEEC				CEEC				CEEC								
Cycling - Environmental	CFFC								CFFC				CFFC				CFFC								
Cycling - Thermal	CFFC								CFFC				CFFC				CFFC								
Flaw	ISO						ISO																		
Duran	ISO						150	CEEC	CEEC		150	CEEC	CEEC			CEEC	CEEC								
Drop	CFFC						ISO	CFFC	CFFC		ISO	CFFC	CFFC			CFFC	CFFC								
0(ISO						150	CEEC	CEEC		150	CEEC	CEEC			CEEC	CEEC								
Gunfire	CFFC						ISO	CFFC	CFFC		ISO	CFFC	CFFC			CFFC	CFFC								
5: (5 6:)	ISO		160				us o D	0550	0550		150	0550	0550			0550	0550								
Fire resistance (Bonfire)	CFFC		ISO				ISO ^D	CFFC	CFFC		ISO	CFFC	CFFC			CFFC	CFFC								
Salt water	ISO																								
Torque	ISO																								
High temperature creep	ISO						ISO ^B				ISO ^B														
Stress Analysis	CFFC							CFFC	CFFC			CFFC	CFFC				CFFC								

A – Also applies for changes in autofrettage pressure B – Where burst pressure to test pressure ratio of design

C – Conducted with a liner thickness decrease only

D – Test to be conducted for reduction in diameter only

APPENDIX 2

		Design Changes									
Type of Test or	New Design	Mat	erial	Liner Thick	ness Change	Manufac	turing Facility	Neck T	hread	Composite Thick Char	
Requirement		ISO	CFFC	ISO CFFC		ISO	ISO CFFC		CFFC	ISO	CFFC
		Any Change	Any Change	Any Change	Any Change	N/A	Any Change	Any Change	N/A	Any Change	N/A
Resin shear	ISO		CFFC								
Liner material	ISO	ISO ¹		ISO							
Composite material	ISO	ISO ^{2,3}								ISO	
Hydraulic (Hydrostatic) Pressure	ISO CFFC	ISO ^{1,2}	CFFC	ISO	CFFC		CFFC			ISO	
Liner burst	ISO	ISO ¹		ISO						ISO ^B	
Cylinder burst	ISO	ISO ^{1,2}		ISO						ISO	
Cycling – Ambient temp	ISO CFFC	ISO ^{1,2}	CFFC	ISO	CFFC		CFFC			ISO	
Cycling - Environmental	ISO CFFC		CFFC				CFFC				
Cycling - Thermal	CFFC		CFFC				CFFC				
Flaw	ISO										
Drop	ISO CFFC	ISO ²	CFFC	ISO ^c	CFFC		CFFC				
Gunfire	ISO CFFC		CFFC	ISO ^c			CFFC				
Fire resistance (Bonfire)	ISO CFFC		CFFC	ISO ^c			CFFC				
Salt water	ISO										
Torque	ISO							ISO			
High temperature creep	ISO									ISO ^B	
Stress Analysis	CFFC		CFFC		CFFC						

A – Also applies for changes in autofrettage pressure B – Where burst pressure to test pressure ratio of design

^{1 –} Equivalent liner

^{2 –} Equivalent fiber

- C Conducted with a liner thickness decrease only
- D Test to be conducted for reduction in diameter only

3 – Equivalent matrix