Federal Aviation Administration Airfield Pavement Working Group

Airport Authority Pavement Perspective Seattle-Tacoma International Airport Ralph L. Wessels, PE

Airline's Definition of FOD

#1 Runway Pavement Pop-Outs

- STIA has added one runway and replaced another.
- Aggregate loss occurred on new RW 16R/34L completed in 2008.
- No noticeable aggregate loss on replaced RW 16L/34R completed in 2010.
- Pavement with saw-cut, grooved finish has more pop-outs than pavement with broom finish (outer 10' and around lights)

Potential Research on Runway Pop-Outs

- What is the scope of the issue?
- What is the risk of FOD created by pop-outs?
- What is the acceptable limit of pop-outs?
- Can pop-outs be managed by a prescriptive specification?
- Can a performance-based specification be developed?
- What should be the definition of a pop-out and how to measure and quantify?
- What modification to AC 150/5370-10F may be warranted?

Evaluation of RW 16R/34L

- Forensic evaluation of records.
- Literature and case study review.
- Limitations on availability of project personnel.
- Two visual surveys.
- Samples taken for petrographic examination, scanning electron microscope, and chemical

analysis.

Testing Results

- Elevated level of sulfur and iron in dark, soft aggregate.
- Mostly granitic and siliceous metamorphic rock.
- Some coal throughout slab with higher concentration near the surface.
- No alkali-silica reaction.
- Visit to fly ash plant revealed that there was no opportunity for coal to be introduced there.

Mix Design Locations

Visual Surveys

	Aggregates used for construction			Pop-outs		Rust Stain without		Black Stain without	
Mix Design #	Fine (3/8" minus)	3/4"-#4	1&1/2"-3/4"	Survey conducted in Nov.08	Survey conducted in Sep.11	Pop Survey conducted in Nov.08	-out Survey conducted in Sep.11	Pop Survey conducted in Nov.08	-out Survey conducted in Sep.11
Mix #1	Icon	lcon	Glacier	0.72	36.31	2.23	1.03	4.10	0.71
Mix #2	lcon	lcon	Washington	0.46	22.42	1.54	0.85	2.97	0.47
Mix #3	Washington	Washington	Washington	0.28		0.34		0.47	

Mix Design Test Results

Mix Design #	Deleterious Materials (lbs)	Fine Aggregates	Coarse Aggregates	Total (lbs)	
Mix #1	Clay lumps & Friable particles (lbs)	301.63	24.56	326.19	
	Lightweight pieces (lbs)	Nil	Nil		
Mix #2	Clay lumps & Friable particles (lbs)	301.63	62.34	262.07	
	Lightweight pieces (lbs)	Nil	Nil	303.97	
Mix #3	Clay lumps & Friable particles (lbs)	Nil	132.23	132.23	
	Lightweight pieces (lbs)	Nil	3.78		

Determine Causation

- Loss specific to pavement that used mix design #1 or #2
- Minimal loss where mix design #3 used.
- The source of aggregate is different for the three mixes.
- Other concrete components not changed between mixes.
- Logic and examination of concrete indicate that aggregate is the issue!
- Confirmation glaciation resulted in some coal being distributed in the pit.

What Are We Talking About?

Pavement View #2

Typical Size

Black Indicates Coal

Clay Dislodged in Small Pieces

Pop-out Size ≠ FOD Size

Small Rust Stain

Recent Pop-out

Rust Remnant

Larger Area Affected

Definite FOD

FOD Waiting to Happen

Location of Pop-outs

A More Restrictive Specification?

lbs		
lbs		
lbs		
bs		
0.7 lbs		

Pop-outs at Other Runways

- In the 1960's, several military airports experienced severe pop-outs.
- Related to type of aggregate specified.
- Estimated 800,000 pop-outs up to 3" in size.
- Congressional hearings.
- Determination
 - Inadequate specifications
 - Poor material testing standards
 - Severe lack of engineering judgment

Findings and Conclusions

- 1. The amount and size of pop-outs on RW 16R/34L is relatively low compared to previous documented instances elsewhere and is not a structural issue.
- 2. Pop-outs limited to areas where mix design 1 or 2 used.
- 3. The size is generally 1" or less.
- 4. Pop-outs are likely due to coal and deleterious material within the course aggregate from the pit.
- 5. Other concrete components do not appear to be factors.
- 6. Some test records missing from contract records, not all tests performed or performed at correct frequency.

Findings and Conclusions

- It appears that test info not conveyed from QC/QA to inspectors. Records do not show systematic communication between contractor, testing lab, and CM team.
- Specifications unclear as to weather severity that establishes the allowable amount of coal and deleterious materials. Criteria used for density testing unclear.
- 9. There is no evidence that the Contractor failed to comply with specifications and documentation which supports the contractor not being contractually responsible for pop-outs.

Findings and Conclusions

- 10. More pop-outs occurred between 2008 and 2011. A trend cannot be established with only two data points.
- 11. In the 1960s, the DoD revised their specs due to severe pop-outs at military airports.
- In April 2011, the FAA NW Mtn. Region issued a memo to reduce the amount of coal and deleterious material matching DoD.
- AC 150/5370-10F effective September 2011 does not tighten the requirements regarding coal and deleterious material.

#2 Automated Data Collection

- Seamless collection that feeds into pavement management system.
- Ongoing, monthly evaluation of pavements.
- Ability to use for pavement imperfections resulting from construction.
- Concise, accurate, repeatable.

#3 Pavement Friction Factors

- What were requirements based on?
- Has requirements kept pace with current materials and aircraft?
- Additives and aggregates effect upon friction?
- Tire interaction with pavement?

Questions and Discussion