A Multi-Purpose Pavement Testing Device for Airfield Pavements: The Rolling Dynamic Deflectometer

> Boo Nam, Assistant Professor Univ. of Central Florida

Kenneth H. Stokoe, II, Professor Texas at Austin

Federal Aviation Administration Airport Pavement Working Group Meeting April 17, 2013

Presentation Outline

RDD Background

RDD Applications

SDD Applications

New Developments on the RDD

Conclusions

Continuous Pavement Testing Devices

- Road Deflection Tester (Sweden)
- Rolling Wheel Deflectometer (USA)
- Traffic Speed Deflectometer (Denmark)
- Rolling Dynamic Deflecotometer (USA)

Comparison of continuous NDT testing devices (after Arora et al. 2006)

Testing Methods	Sensor Type	Testing Speed	Sensor Accuracy	Applied Loading	Averaging Distance Resolution	Manufacturer
Rolling Wheel Deflectometer (RWD)	Laser displacement sensor	55 mph	±2.75 mils	18 kips (fixed)	100 ft	Applied Research Associates
Airfield Rolling Weight Deflectometer (ARWD)	Laser displacement sensor	20 mph	0.8 mil	9 kips	90 ft	Dynatest Consulting and Quest Integrated
Rolling Deflection Tester (RDT)	Laser displacement sensor	36 mph	\pm 10 mils	8 to 14 kips	66 ft	Swedish National Road Administration and VTI
High Speed Deflectograph (HSD)	Laser doppler sensor	45 mph	±4 mils/s	11 kips	33 ft	Greenwood Engineering
Rolling Dynamic Deflectometer (RDD)	Geophone (velocity transducer)	1 mph	0.05 mils	10 kips static + 5 kips dynamic	1.5 to 3 ft	University of Texas at Austin

Overview of RDD

- Mobile platform
 - moves continuously along pavement
 - used to apply dynamic loads to pavement
 rolling sensors measure resulting dynamic
 - rolling sensors measure resulting dynamic deflections
- Dynamic loading system
 - electro-hydraulic shaker
 - two loading rollers
 - four load cells
 - high fidelity, single-frequency sinusoidal loading
- Deflection measurement system
 - multiple rolling sensors that contact pavement
 - 2-Hz geophones on 3-wheel carts
 - measurements at multiple locations

Rolling Dynamic Deflectometer (RDD)

Cross Section of RDD

Arrangement of Rolling Sensors

RDD Forcing Function

Notes:

- 1. Typical Load frequency = 1/T = 30 Hz
- 2. Measuring dynamic pavement deflections due F_d
- 3. 1 kip = 4.45 kN

Original Rolling Sensor Used to Measure Dynamic Deflections

2-Hz Geophone

Original RDD Specifications

Gross Weight ¹	50 kips (222 kN)		
Static Hold-Down Force	10 ± 4 kips (36 ± 18 kN)		
Typical Dynamic Force (p-p)	8 ± 4 kips (26 \pm 13 kN)		
Operating Frequency	30 Hz		
Typical Testing Speed	1 to 2 mph (1.6 to 3.2 km/hr)		
No. of Rolling Sensors	3 to 4		

Note:

1. Used to apply static hold-down force

RDD Applications

Fort Worth Mecham International Airport

Runway 16L/34R:

- 1.4 mile (2.3 km) long
- 150 ft (46 m) wide
- Slab size: 25x25 ft (7.6x7.6 m)

Rehabilitation Plan:

- Original reha. plan was a 9-in. (23-cm) unbondeD JCP overlay
- RDD profiling was used to delineate areas not to be repaired.

Typical Continuous Deflection Profile along a JCP

Distance Along Runway 16L/34R, m

Typical Continuous Deflection Profile along a JCP

Distance Along Runway 16L/34R, m

Expanded Profile of Region A

typical joint spacing around 6 m

Continuously Reinforced Concrete Pavement (CRCP)

SH87, Bridge City, Texas: Dowel-Bar Retrofit Project

BU287, Tarrant County, Texas: Full-Depth Repair and Reconstruction

AC Overlay over JCP (W1-W3)

Woodlands Pkwy, Woodlands, Texas: Pavement Forensic Investigation

Taxiway R, Little Rock National Airport: Slab-Support Condition Assessment

Multi-Channel Analysis of Surface Wave (MASW)

MASW Data

RDD Data

ACRP Graduate Research Grant: Continuous RDD Deflection Bowls Distance (ft) 2 3 4 5 6 7 Distance (ft) 2 3 4 5 Distance (ft) 2 3 4 5 6 0 1 0 1 67 0 1 7 0.0 0.0 0.0 1.0 Deflection (mils) 1.0 Deflection (mils) Slab 4 Slab 9 Slab 21 - fwd-cs4 → fwd-cs9 4.0 4.0 5.0 —⊟— rdd-cs4 -B-rdd-cs9 -B-rdd-cs21 5.0 6.0 5.0 Distance (ft) Distance (ft) Distance (ft) 0 1 2 3 4 5 6 - 7 5 2 3 4 5 6 7 0 1 2 3 4 6 7 0 1 0.0 0.0 0.0 1.0 1.0 1.0 Deflection (mils) Deflection (mils) 0.0 0.0 Deflection (mils) Slab 28 Slab 33 Slab 34 - fwd-cs34 4.0 4.0 fwd-cs33 5.0 - rdd-cs34 - rdd-cs28 -B-rdd-cs33 5.0 5.0 6.0 Distance (ft) 1 2 3 4 Distance (ft) Distance (ft) 0 5 6 7 5 6 0 2 3 4 5 6 7 0 1 23 4 - 7 1 0.0 0.0 0.0 1.0 1.0 1.0 Deflection (mils) Deflection (mils) 0.6 Deflection (mils) Slab 35 Slab 36 Slab 37 - fwd-cs37 4.0 - fwd-cs35 -**←** fwd-cs36 4.0 4.0 -B-rdd-cs37

- rdd-cs36

5.0

5.0

- rdd-cs35

5.0

SDD Applications

Sequence of Load Repetitions and Characterization Measurements

Note: * Characterization Measurements

Representation of Pavement Performance During SAP Testing

Number of Load Repetitions (Log Scale)

US 281, Jacksboro, Texas: SDD SAP Testing of an Flexible Pavement

Load Assembly with 3 Pads

Rutting from SDD and MLS Accelerated Testing Southbound Lane, US 281

SDD Testing on a Concrete Overlay over Flexible Pavement

SDD SAP Testing Plan

SDD SAP Testing on a Concrete Overlay over Flexible Pavement

DAT

Panel #1

- Static-load failure
- Failure load = 38 kips

- SDD SAP testing
- Stress level = 90 %
- First visible crack at N_f = 19,000

Recoiling Point.

- SDD SAP testing
- Stress level = 80 %
- First visible crack at N_f = 53,000

SDD SAP Testing Results

S-N Curves

New Developments on the RDD

Next-Generation Pavement Testing System: Currently Under Development

- Total Pavement Acceptance Device (TPAD)
 - Project-level studies
 - Continuous testing at 5 to 10 mph
 - Multi-function device
- Testing Functions
 - RDD measurements
 - Ground penetrating radar (GPR)
 - DMI and high-precision differential GPS
 - Surface temperature
 - Digital video imaging of pavement

Total Pavement Acceptance Device (TPAD)

Concept Testing – July, 2009

Total Weight = 20 kips (89 kN) Static hold-down force = 8 ± 4 kips (36 \pm 18 kN) Peak dynamic force = 6 ± 3 kips (26 \pm 13 kN)

Concept Testing – July, 2009

New Sensor Hold-Down System

Concluding Remarks

- The Rolling Dynamic Deflectometer is a multipurpose pavement testing device. It can function as an RDD and an SDD.
- The RDD performs well; continuous deflection profiles are a powerful screening and evaluation tool.
- The SDD can apply a range of load forms; SAP testing has significant future applications.
- New development on the RDD (TPAD) is underway.

Acknowledgement

- Support from Prof. Kenneth H. Stokoe, II
- Funding support from the Texas Department of Transportation
- Many TxDOT personnel and UT crew

Thank you!

Question?