

SOUTH CAROLINA PAVEMENT STRENGTH RATING STUDY

FAA Airport Pavement Working Group Meeting April 17, 2013

OBJECTIVES/DEFINITIONS

- Update published pavement strength ratings in Master Record (Form 5010)
 - Pavement Classification Number (PCN)
 - Maximum gross aircraft weights by gear type
- Mainly interested in operational considerations for heavy aircraft (> 25,000 lbs.)
- PCN expresses the load-carrying capacity of a pavement for unrestricted operations
- ACN expresses the relative loading an aircraft will have on a pavement

GENERAL AVIATION AIRPORT PERSPECTIVE

- Airports evolve
 - Transitioning from small airports
 - Larger weight aircraft
- Airport Managers wear many hats
 - Present results for a broader audience, accessible
- FAQ Can my pavement support this aircraft?
 - Determine acceptable operations of heavy aircraft
- Runways + taxiways + aprons

STANDARDIZATION OF REPORTING PAVEMENT STRENGTH

- In 1977 International Civil Aviation Organization (ICAO) develops & adopts first version of ACN/PCN methodology
 - Mostly used by military and large commercial service airports
- In 2009 draft version of FAA AC 150/5335-5B released (major overhaul)
 - FAA "turns on" PCN field on Form 5010 for GA airports
- In 2011 FAA AC 150/5335-5B becomes final
 - Challenge applying for low traffic operation scenarios

DATA COLLECTION - RECORDS REVIEW

- Records review & mapping
- Data sources:
 - 2001 pavement management database
 - Construction records since 2001
 - Traffic history (aircraft > 25,000 lbs.)
 - State had 4 years of traffic data for each airport

DATA COLLECTION - DEFLECTION TESTING

 Used falling weight deflectometer (FWD) to measure the structural characteristics of the pavement layers

DATA COLLECTION – FWD TESTING

Test	Main Objectives	Output Used to Determine
Method		
FWD	1 – estimate subgrade support 2 – determine moduli (stiffness) of each layer	 PCN subgrade classification A, B, C, D (California Bearing Ratio [CBR] & k values) Define layer properties in PCN analysis

DATA COLLECTION – GPR TESTING

Test Method	Main Objectives	Output Used to Determine
GPR	1 – locate/quantify subsurface anomalies 2 – layer thickness determination	Location and extent of voids, structures, moisture issues Layer characteristics

DATA COLLECTION - OTHERS

Test Method	Main Objectives	Output Used to Determine
Coring	 1 – calibration for FWD & GPR 2 – layer thickness determination 3 – access to base layer for sampling 	 Layer thickness for FWD & GPR analysis Adjust/confirm construction history data Base layer identification
Distress	1 – qualify major distress types/severities 2 – evidence of subsurface voids, frost action, swelling soils	 Cause of pavement deterioration (load-related, climate-related, or material-related) Adjust FWD, GPR, and core testing patterns as warranted
Drainage	1 – evidence of poor drainage	Flag sections that may also need drainage improvements during the next pavement repair

PCN ANALYSIS

- FAA AC 150/5335-5B become final at start of this project (revisions expected)
 - A pavement's PCN is compared to an aircraft's ACN
 - Gross aircraft weight capacity by gear type (single wheel, dual wheel, dual tandem wheel)
- If ACN ≤ PCN, then that aircraft can operate on that pavement without restrictions
- Not a pavement design or evaluation procedure

PCN RESULTS

Aircraft maximum weight ratings and PCN values.						
Pavement Section	SW*	DW*	PCN			
A01GS-10	34.5	52	11/F/B/X/T			
A01GS-20	34.5	52	11/F/B/X/T			
A01GS-30	39.5	59	13/F/B/X/T			
RW05GS-10	76	112	29/F/B/X/T			
TW23GS-10	36	54	12/F/B/X/T			
TWAGS-10	50.5	74	17/F/B/X/T			
TWAGS-20	36	54	12/F/B/X/T			
TWAGS-30	43	64	14/F/B/X/T			
TWAGS-40	36	54	12/F/B/X/T			
TWBGS-10	43	64	14/F/B/X/T			
TWCGS-10	45	67	15/F/B/X/T			
TWDGS-10	43	64	14/F/B/X/T			
TWTGS-10	44.5	66	15/F/B/X/T			
*Weights in thousands of pounds						

REPORTING

- Individual airport reports
 - 3 copies (airport, SCAC, FAA)
 - Overload guidance
 - Source for future design considerations:
 - Identifies "weak links"
 - Modulus (E) data
 - Thickness (GPR coverage)
 - Subsurface anomalies (voids, moisture, utilities, settlement)

GIS - DATA AND RESULTS

- GIS shape files were incorporated with South Carolina's Facilities GIS system
 - FWD, GPR, and coring locations all geo-referenced
 - PCN, max aircraft gross weights by gear type
 - ACN/PCN scenarios for 21 common aircraft
 - Airport operators can evaluate acceptable operations of aircraft
 - Pavement ratings should be viewed as estimates of a representative value, not in absolute terms

AIRCRAFT USED FOR ACN/PCN

- Specific aircraft
 - Falcon 50, Falcon 900, Gulfstream II, III, IV, V
- Generic aircraft
 - Single Wheel (5, 10, 12.5, 15, 20, 25, 30, 35, 40)
 - Dual Wheel (15, 20, 25, 30, 35, 40)

(Aircraft weights ranged from 5,000 lbs to 91,000 lbs)

THANK YOU!!!

- South Carolina Aeronautics Commission
 - Mr. Jamey Kempson
 - Mr. Paul Werts
 - Mr. Matt Baker

ARA Point of Contacts

Bill Weiss

wweiss@ara.com

217-356-4500

Brian Aho

baho@ara.com

608-274-6409

PAVEMENT OVERLOAD GUIDANCE

- At the discretion of the Airport Manager:
 - Okay if ACN/PCN ≤ 1.10
 - Overloads should not be permitted on pavements already exhibiting load-related distresses
 - Limit overloads during weakest time of year (wet subgrade)
 - Locations where overloads are permitted should be monitored for increased deterioration and FOD
 - Let the PCN remain, but apply local knowledge

TEAM MEMBERS AND ROLES

- ARA
 - Prime contractor, deflection testing, analysis, reporting
- Prime Engineering, Inc. PRI
 - Records review

PRIME ENGINEERING

- Infrasense, Inc.
 - Ground penetrating radar (GPR)
- On-Spec Engineering
- 8

ON - SPEC ENGINEERING, PC

INFRASENSE, inc

Pavement coring

DATA COLLECTION – GPR TESTING

PCN CODE FORMAT – XX/1/2/3/4

XX = Pavement Classification Number

1 = Pavement Type Code

2 = Subgrade Strength Code

3 = Tire Pressure Code

4 = Evaluation Method Code

Pavement Type Code					
F- flexible (asphalt)					
R – rigid (PCC)					
Subgrade Strength Code					
Code	Category	Flexible Pavement CBR, %	Rigid Pavement k, pci		
Α	High	Over 13	Over 400		
В	Medium	9 – 13	200 – 400		
С	Low	4 – 8	100 – 200		
D	Ultra low	< 4	< 100		
Tire Pressure Code					
Code	Category	Allowable Tire Pressure, psi			
W	High	No limit			
Х	Medium	146 – 217			
Υ	Low	74 – 145			
Z	Ultra low	0 – 73			
Evaluation Method Code					
T – Technical Evaluation					
U – Using Aircraft					

