2010 FAA Worldwide Airport Technology Transfer Conference
 Risk Assessment of RSA Alternatives at San Francisco International Airport

Manuel Ayres
Regis Carvalho
Michael Lawrence
Hamid Shirazi
Richard Speir

San Francisco International Airport

Outline

- Objective
- RSA Alternatives
- ACRP Methodology
- Analysis with EMAS
- SFO Scenarios
- Results
- Conclusions

Objective

■ Present Case-Study for probability assessment of aircraft overruns and undershoots in support of costbenefit studies to select infrastructure alternatives for existing SFO RSAs, including the use of Engineered Materials Arrestor Systems (EMAS).

Alternatives to Improve RSAs

- Extend existing RSA
- Modify or relocate the runway
- Implemente declared distances

■ Use arresting systems (e.g. EMAS)

ACRP Methodology

- ACRP Report 3 - Analysis of Aircraft Overruns and Undershoots for Runway Safety Areas
- Methodology for quantitative assessment of Runway Safety Areas

http://onlinepubs.trb.org/onlinepubs/acrp/acrp_rpt_003.pdf

Model Structure

ACRP Report 3

- Approach to quantitatively estimate the probability that an aircraft will exit the runway and stop beyond a given distance from the runway end

$$
P\{\text { Location }>x\}=e^{-a x^{n}}
$$

Frequency Models

- Probability $=\mathrm{N}_{\mathrm{i} / \mathrm{a}} / \mathrm{N}_{\mathrm{n}}$ (under certain operation conditions)

$$
P\{\text { Event }\}=\frac{1}{1+e^{b_{0}+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+\ldots}}
$$

- P\{Event\} is the probability ($0-100 \%$) of an accident type occur given certain operational conditions.
■ $X_{i}=f($ ceiling, visibility, crosswind, gusts, rain, type of aircraft, etc.)

A Simple Example

Location Models

Location Model - Example

Analysis with EMAS - Basic Concept

SFO
a)

b)

Analysis with EMAS

$$
v=3.0057-6.8329 \log (W)+31.1482 \log (S)
$$

$$
S_{R S A}=\frac{a_{E M A S}}{a_{R S A}} S_{E M A S}=R L F \cdot S_{E M A S}
$$

Aircraft Movements

Arrival End/RSA	LDOR	LDUS	TOOR	Total \# of Movements Challenging the RSA
19R	17	3,864	75,728	79,609
19L	101	17,660	138,738	156,499
$01 R$	17,660	101	294	18,055
01L	3,864	17	1,355	5,236
$28 R$	433	189,570	12,160	202,163
28 L	251	131,294	11,809	143,354
$10 R$	131,294	251	51,806	183,351
10 L	189,570	433	49,322	239,325
Total	343,190	343,190	341,212	$1,027,592$

Existing Conditions - Rwys 01/19

SFO RSA Alternatives

- Refinement A
- Bay fill to install standard EMAS on 19s
- Shift 1R/19L north
- Refinement B
- Create standard RSAs for 28s

Refinement A

Summary of Results

Average Probability for all Movements (Existing)	$1.41 \mathrm{E}-07$			
Total Airport Probability if Complying w/ Standard	7.48E-08			
	Refinement A			
RSA	01 R	01L	19R	19L
Total Airport Probability				
RSA Contribution to Airport Probability Decrease	-0.5\%	0.1\%	9.3\%	14.7\%
\% Protection Relative to FAA Standard	23.6\%			
	Refinement B			
RSA	10R	10L	28R	28L
Total Airport Probability			07	
RSA Contribution to Airport Probability Decrease	0.0\%	0.0\%	13.8\%	6.4\%
Total \% Decrease (all RSAs combined)				
Level of Protection for Refinement A + Refinement B				

Impact of Runway Shift on Total Airport Probability

Impact of Rwy 01R/19L Shift

Thank You!

