

U. S. Department of Transportation Federal Highway Administration Publication No. FHWA-SA-98-040 August 1998

Life-Cycle Cost Analysis in Pavement Design Participant's Notebook

Demonstration Project No. 115

Foreword

This participant's notebook was developed by FHWA staff to compliment a 2-day workshop on life cycle cost analysis in pavement design. This workshop will be of interest to State highway agency personnel responsible for conducting and/or reviewing pavement design LCCAs.

The FHWA Office of Engineering, Pavement Division, in cooperation with the Office of Technology Applications, offers LCCA technical support through Demonstration Project No. 115 Probabilistic LCCA in Pavement Design (DP-115). DP-115 is a free 2-day workshop that demonstrates best practices in performing life-cycle cost analyses for pavement design. This workshop is available, upon request, to State highway agencies.

Henry H. Rentz, Director Office of Engineering

Disclaimer

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the authors who are responsible for the accuracy of the data presented herein. The contents do not necessarily reflect the official policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein only because they are considered essential to the object of this document.

Life-Cycle Cost Analysis in Pavement Design Participant's Notebook

Demonstration Project No. 115

TABLE OF CONTENTS

Course Evaluation Agenda COURSE MODULES Module · 1: Overview II: Background Module III: LCCA Process Overview Module Module IV: Components and Issues V: Introduction to Project Level User Costs Module VI: Work Zone User Costs: Calculation Steps Module Module **VII: Basic Statistics** VIII: Risk Analysis Approach Module IX: Software Demonstration Module X: Class Exercise Revisited Module **XI: Presentation Techniques** Module Module XII: Benefits and Implementation XIII: Summary Module Class Exercises

Class Exercises - Solutions

Participant Evaluation Form

Course Title: Life Cycle Cost Analysis in Pav't Design

Dates :	

Instructor(s): _____

Location:

. .

Please help us improve the training by evaluating the training course and workshop in which you participated. Your input is appreciated and needed. You may use the back of this form for additional comments.

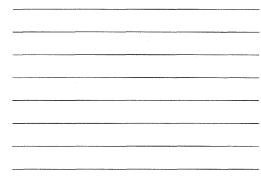
		Very			
Please rate this workshop in the following areas:	Excellent	Good	Good	Fair	Poor
 Adequate coverage of subject matter 	5	4	3	2	1
 Applicable to your current job 	5	4	3	2	1
 Meeting room location 	5	4	3	2	1
 Course materials 	5	4	3	2	1
 Knowledge gained from this workshop 	5	4	3	2	1
 This workshop overall 	5	4	3	2	1
Please rate the instructor(s) in the following areas:					
 Organization 	5	4	3	2	1
 Presentation 	5	4	3	2	1
 Clarity of instruction 	5	4	3	2	1
 Encouraging participation 	5	4	3	2	1
Would you recommend this training to other department employees?		Yes			No

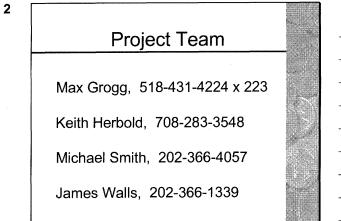
• Comments: (Please note exceptional points and/or clarify fair or poor ratings below)

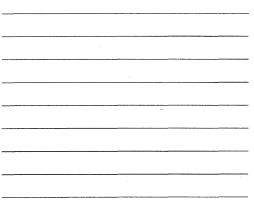
.

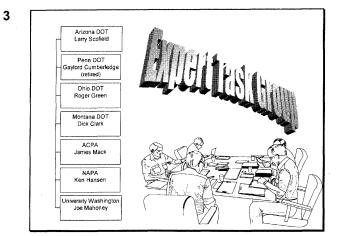
Two Day Agenda		
	Time	Title
Day 1	08:00 am	Welcome
	08:15 am	Workshop Overview
	08:30 am	Background
	09:00 am	LCCA Process Overview
	09:30 am	Break
	09:45 am	Components & Issues
	10:45 am	Break
	11:00 am	Class Exercise No. 1 or 2
	12:00 am	Lunch
	01:00 pm	Introduction to Work Zone User Costs
	01:30 pm	Work Zone User Costs: Calculation Steps
	02:45 pm	Break
	03:00 pm	Class Exercise No. 3
	04:00 pm	Class Exercise No. 4
	05:00 pm	Close for Day
 Day 2	08:00 am	Basic Statistics
	09:00 am	Risk Analysis Approach
	10:00 am	Break
	10:15 am	Software Demonstration
	12:00 pm	Lunch
	01:00 pm	Class Exercise Revisited
	02:00 pm	Presentation Techniques
	02:30 pm	Break
	02:45 pm	Benefits & Implementation
	03:30 pm	Workshop Summary
	04:00 pm	Question & Answers – Workshop Evaluations
	05:00 pm	Closeout

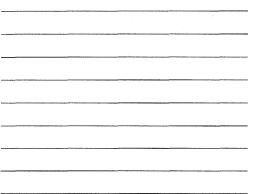
Э


з


	TI	nree Day Agenda
	Time	Title
Day 1	ay 1 01:00 pm <i>Welcome</i>	
	01:15 pm	Workshop Overview
	01:30 pm	Background
	02:00 pm	LCCA Process Overview
	02:30 pm	Break
	02:45 pm	Components & Issues
	03:45 pm	Break
	04:00 pm	Class Exercise No. 1 or 2
	05:00 pm	Close for Day
 Day 2	08:00 am	Introduction to Work Zone User Costs
	08:30 am	Work Zone User Costs: Calculation Steps
	09:45 am	Break
	10:00 am	Class Exercise – No. 3
	11:00 am	Class Exercise – No. 4
	12:00 pm	Lunch
	01:00 pm	Class Exercise - No. 4 Continued
	02:00 pm	Basic Statistics
	03:00 pm	Break
	03:15 pm	Risk Analysis Approach
	04:15 pm	Software Demonstration
	05:00 pm	Close for the Day
 Day 3	08:00 am	Class Exercise Revisited
	09:00 am	Presentation Techniques
	09:30 am	Break
	09:45 am	Benefits & Implementation
	10:30 am	Workshop Summary
	11:00 am	Question & Answers – Workshop Evaluations
	12:00 pm	Closeout


.


.

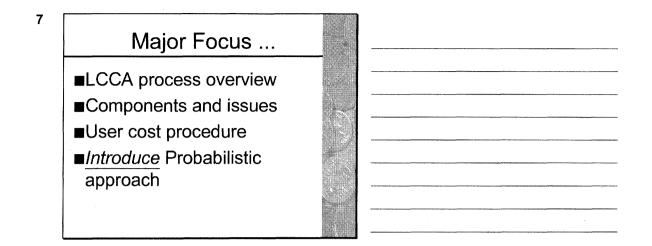


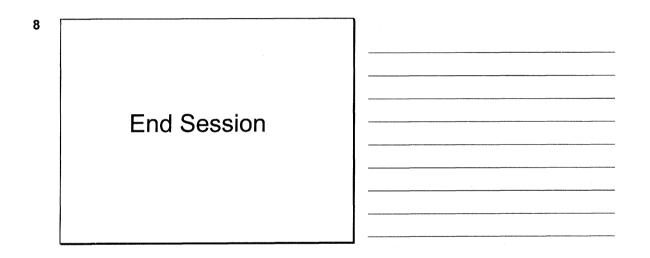
Demonstration Project No. 115

DP-115 Phases

- Traditional approach and <u>Introduce</u> probabilistic concepts
- SHA Case Studies
- Application of Probabilistic Approach

5


6


Phase I Objective Provide training and practice on traditional LCCA Introduce probabilistic concepts

- Process Overview
- Components and Issues
- User Costs
- Class Exercises
- Basic Statistics
- Probabilistic Approach
- LCCA Probabilistic Example
- Benefits and Implementation

Session Overview

- Definitions
- ■Levels of Application
- ■Driving Forces
- ■Implementing Guidance
- ■National Pavement Design Review

Definitions

- ■Life Cycle Cost Analysis
- ■Agency Cost
- ■User Cost
- ■Deterministic Approach
- ■Risk Analysis Approach

LCCA Defined (NHS)

"A process for evaluating the total economic worth of a useable project segment by analyzing initial costs and discounted future costs, such as maintenance, reconstruction, rehabilitation, restoring, and resurfacing costs, over the life of the project segment. "

5

Useable Project Segment

A portion of a highway that when completed could be opened to traffic independent of some larger overall project.

6

TEA 21 (98) LCCA Defined

Life-cycle cost analysis is a process for evaluating the total economic worth of a usable project segment by analyzing initial costs and discounted future costs, such as maintenance user costs reconstruction, rehabilitation, restoration, and resurfacing costs, over the life of the project segment.

Agency Costs

■Design and Engineering

- ■Initial Construction
- ■Maintenance of Traffic
- Maintenance
- Rehabilitation

8

9

7

User Costs

Costs incurred by users of a highway facility including excess costs to those who cannot use the facility because of agency or self-imposed detour requirements.

Deterministic Approach

The application of accepted LCCA procedures and techniques without regard for the variability of input factors.

Demonstration Project No. 115

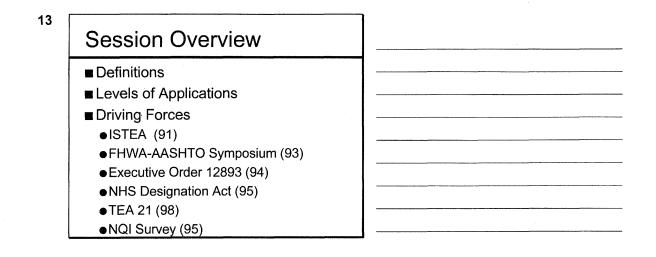
10

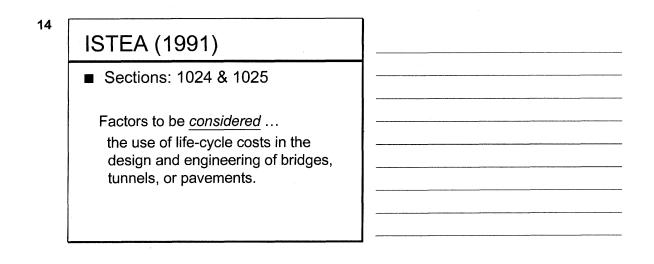
Risk Analysis Approach

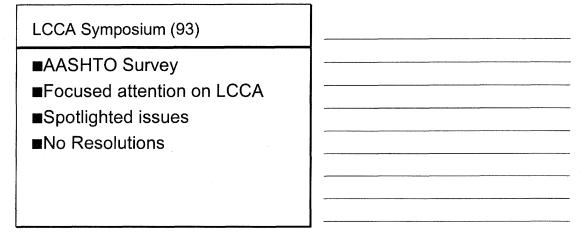
A technique which identifies the variability associated with LCCA input factors and carries this variability through the computation process to generate results in the form of a probability distribution.

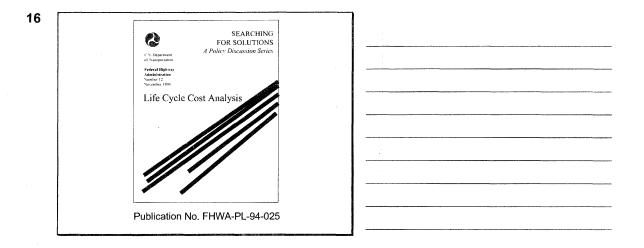
11

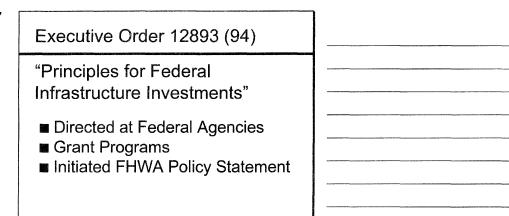
12

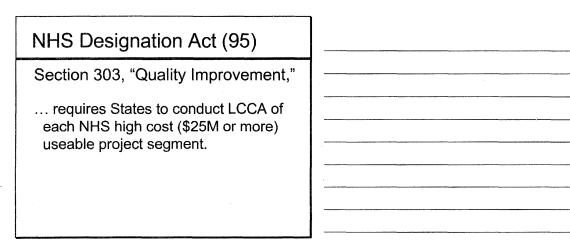

Session Overview

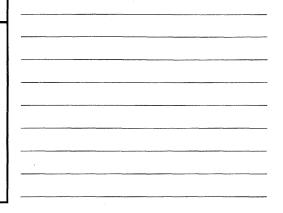

- Definitions
- Levels of Application
- Driving Forces
- Implementing Guidance
- ■National Pavement Design Review

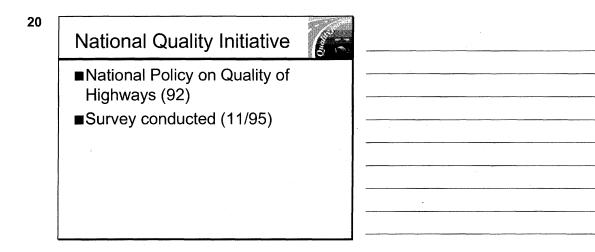

- Funding levels
- Program allocation
- Project selection

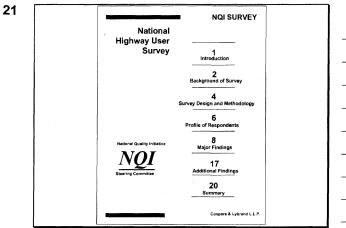

■Design selection <

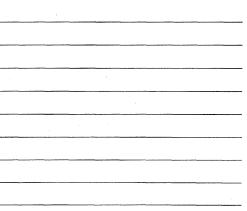




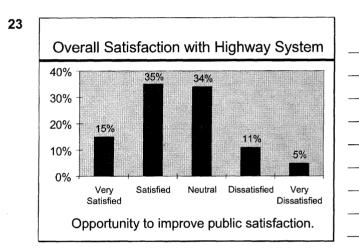


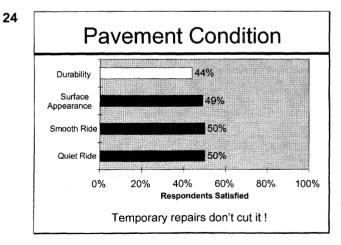

TEA 21 (98)

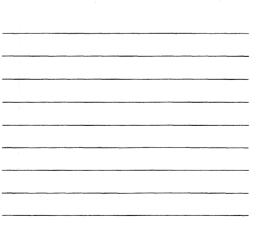

19

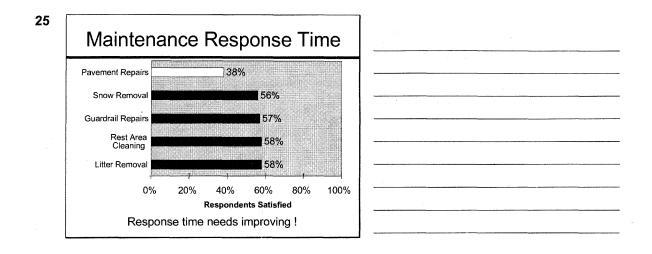

■LCCA no longer mandated

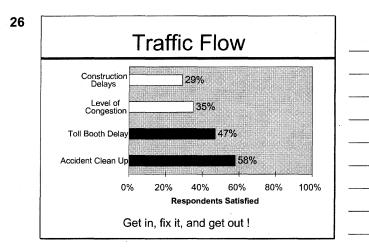
- Adds Users Costs to LCCA def.
- Directs DOT to develop LCCA procedures based on principals contained in Exec. Order 12893
- Transportation Research Program addresses analysis period, discount rates, user costs, ...

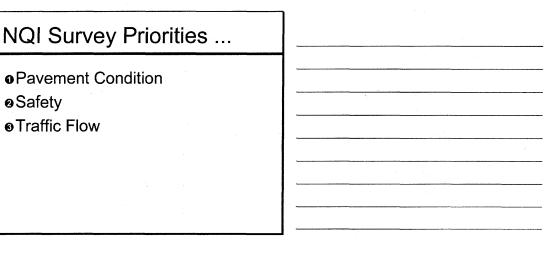






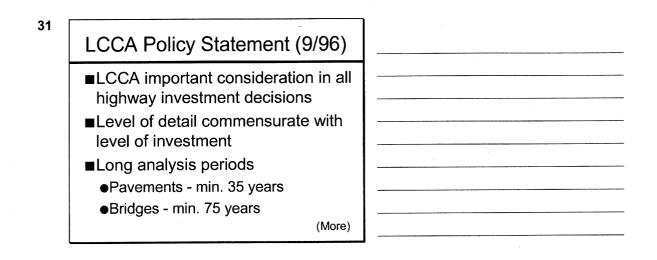






Session Overview	
■Definitions	· · · · · · · · · · · · · · · · · · ·
■Levels of Applications	
■Driving Forces	
■Implementing Guidance	
•NHS - FHWA memo (4/96)	
 LCCA Policy Statement (9/96) 	
 Technical Bulletin (97) 	· · · · · · · · · · · · · · · · · · ·
●DP 115	

30


FHWA Memo (4/19/96)

- Federal-aid eligibility contingent on LCCA for \$25 Million + NHS projects
- Defines useable project segment
- LCCA procedures not prescribed
- Focus on "good" practice

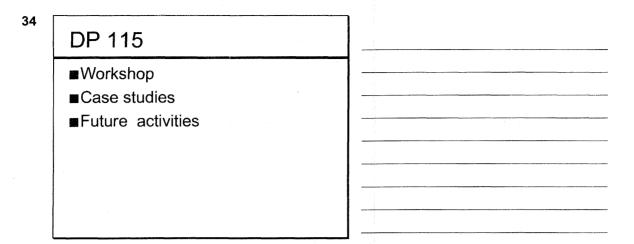
LCCA Policy Statement (9/96)

FHWA Philosophy ...

- Decision support tool
- Results are not decisions
- Use process to improve maintenance and rehabilitation strategies
- Logical evaluation process is as important as results

Policy Statement Con't ...

Agency and user costs should be included


■Future costs should be discounted to their *net present value (NPV)*

33

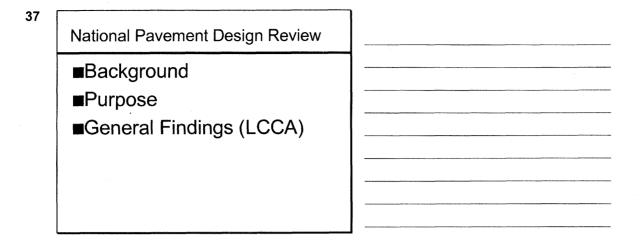
32

Technical Bulletin

- ■State of the practice
 - Traditional approach
- ■User costs (work zone)
 - ●VOC
 - Delay
- Introduce risk analysis (probabilistic approach)

Additional Resources ■NCHRP

- Synthesis reports
- MicroBencost software


AASHTO

- Red Book
- Pavement Design Guide
- Darwin

Session Overview

- Definitions
- Levels of Application
- Driving Forces
- ■Implementing Guidance
- ■National Pavement Design Review

Background

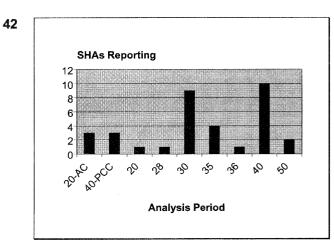
- ■OIG/GAO reviews
- ■FHWA reviews 1995 1997
- ■52 SHAs
- ■Areas addressed:
 - ✓ LCCA
 - ✓ Design procedures
 - ✓ Traffic

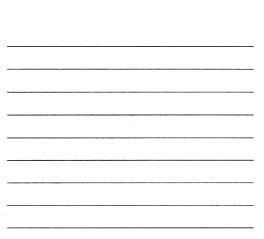
39

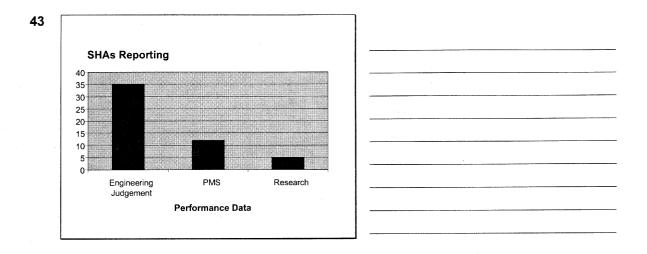
LCCA General Findings

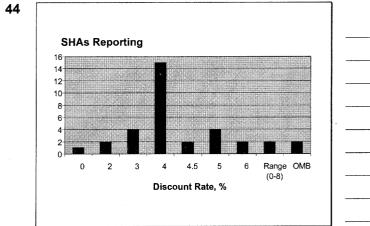
- Procedures
- Analysis Periods
- Performance Periods
- Discount Rates
- User Costs

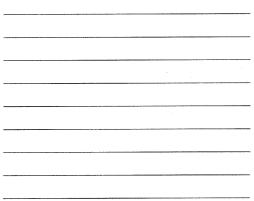
Ę.

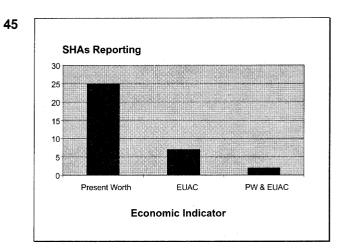

-

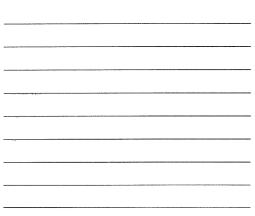

ing the

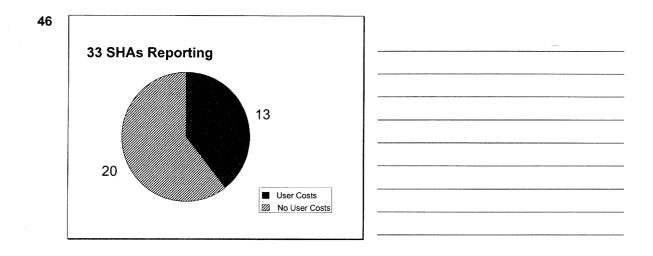

40

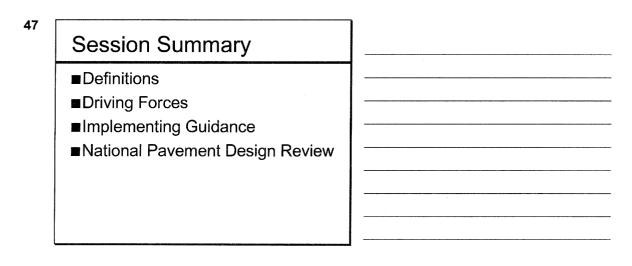

LCCA Procedures
■Number Reporting52
Documented Procedures
•New Location 33
Reconstruction 33
Major Rehabilitation 22


LCCA Procedures Cont.'d
Not Documented19
Informal Procedures11
Plan to Develop Procedure 7
Has no Plan to Develop Procedure 1









Demonstration Project No. 115

L C Process C Overview

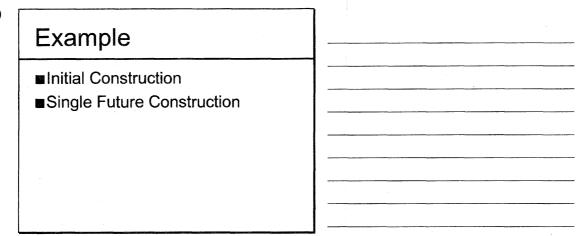
2

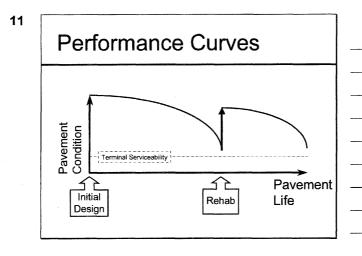
3

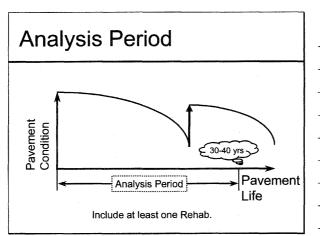
LCCA Process Steps

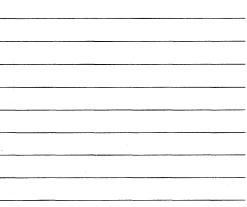
• Establish strategies for analysis period

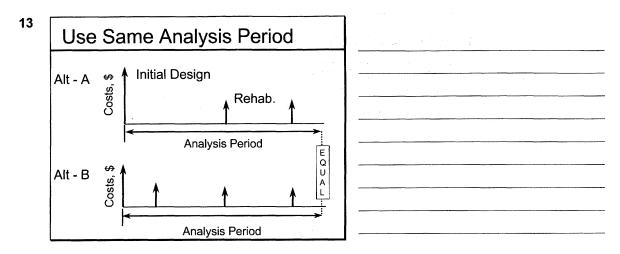
- Establish activity timing
- Estimate agency costs
- Estimate user costs
- Develop expenditure streams
- o Compute NPV
- Analyze results
- Reevaluate strategies

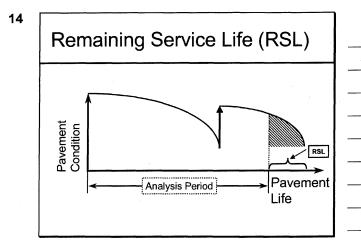

Thou shall not use a strategy that cannot actually occur. . ||e

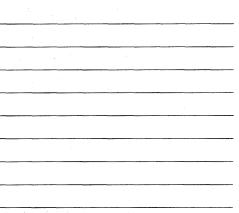


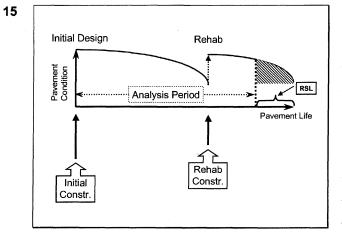


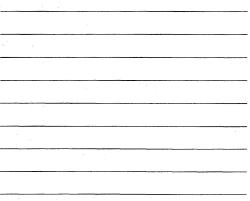

Demonstration Project No. 115











- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs

17

18

3. Estimate Agency Costs

Agency Costs Defined ...

- Costs associated with roadway improvements
- Born by Agency

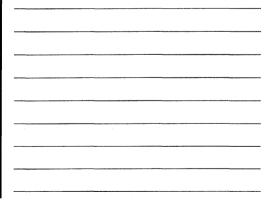
Agency Cost Include ...

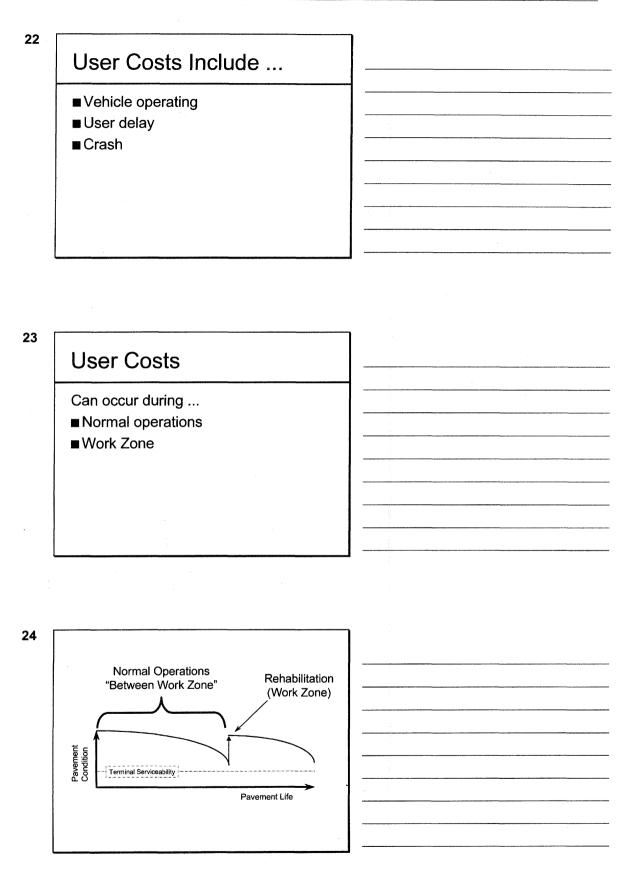
- Initial Construction Cost
- Future Rehab and Preventive Maint.
- Project Overhead ...
 - Preliminary Engineering,
 - Contract Administration,
 - Construction Supervision and Inspection
- Traffic Control

Data Sources ...

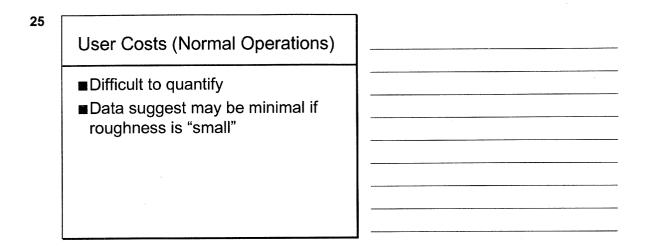
- ■SHA historical bid data
- Bid Analysis Management System (BAMS)

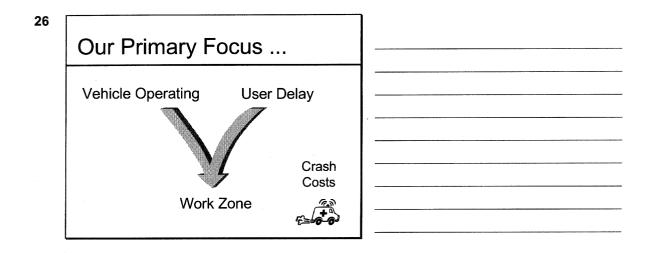
- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs
- Estimate user costs

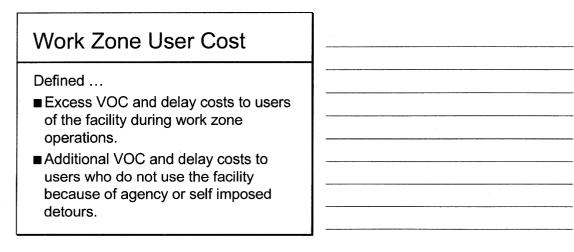



21

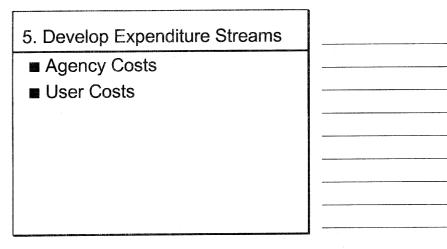
4. Estimate User Costs

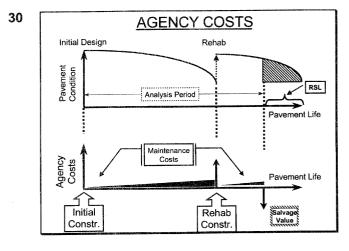

User Costs Defined ...

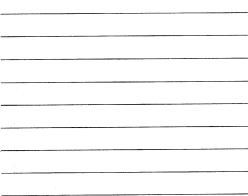

Costs incurred by users of a highway facility including excess costs to those who do not use the facility because of agency or self-imposed detour requirements.



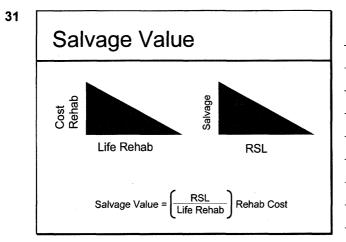
Module III - 8

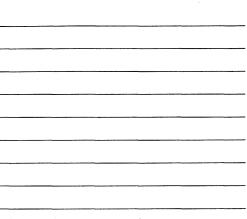


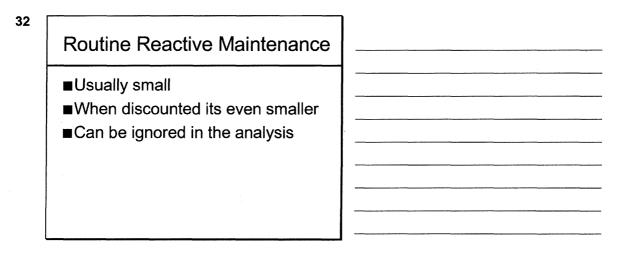


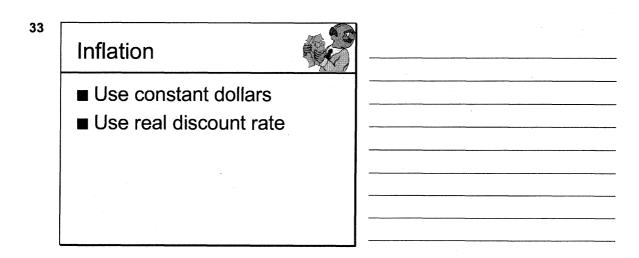

LCCA Process Steps

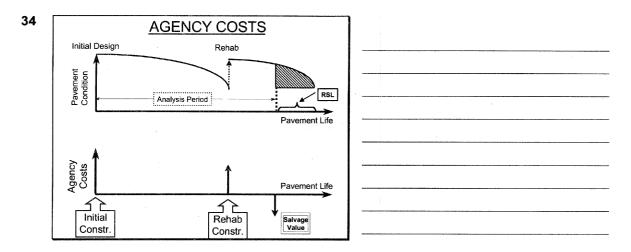
- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs
- Estimate user costs
- Develop expenditure streams

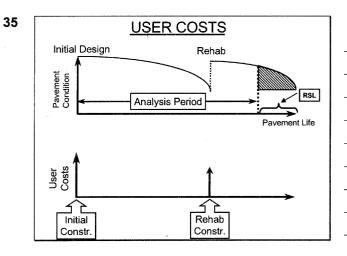


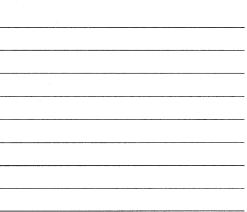


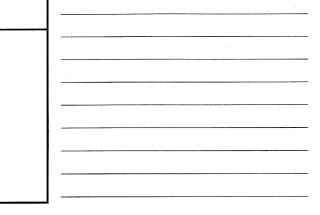


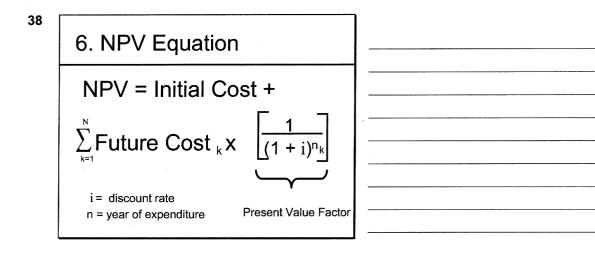


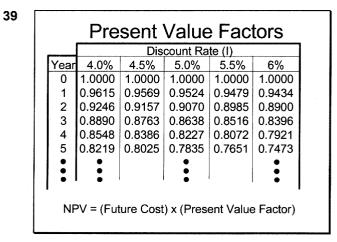

Module III - 10

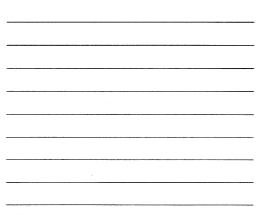


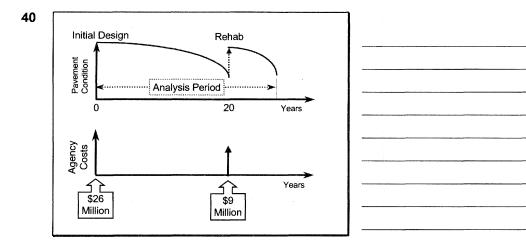


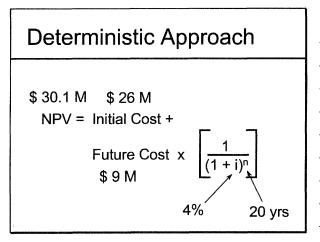


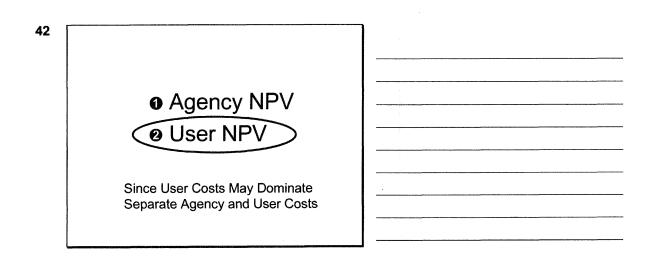

LCCA Process Steps

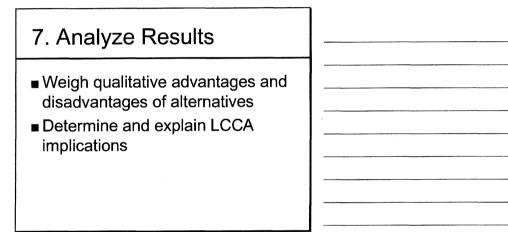

- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs
- Estimate user costs
- Develop expenditure streams
- Compute NPV

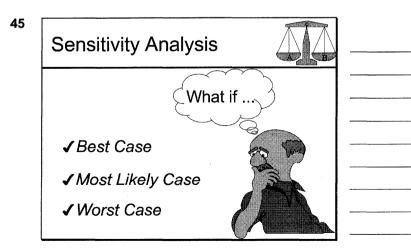


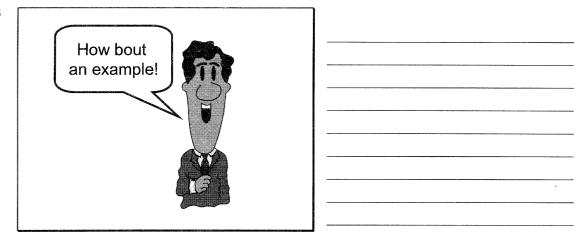

Discounted present value of benefits less discounted present value of costs.



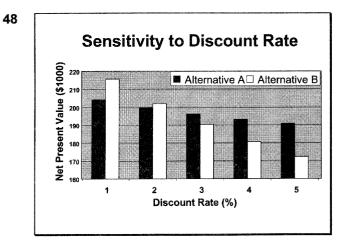







LCCA Process Steps

- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs
- o Estimate user costs
- Develop expenditure streams
- Compute NPV
- Analyze results

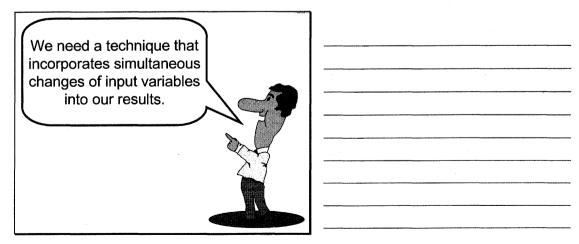

44

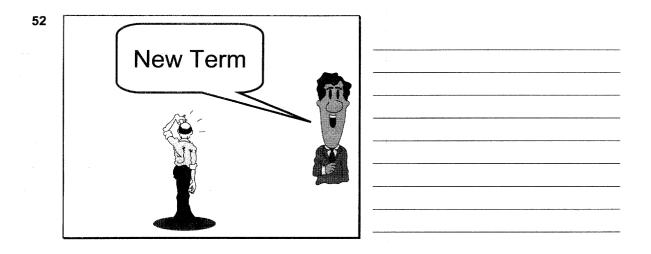
xample							
Alternative - A Discounted Cost							
Activity	Year	Cost	1%	2%	3%	4%	5%
Constr.	0	\$177.0	\$177.0	\$177.0	\$177.0	\$177.0	\$177.0
Rehab.	10	\$ 10.0	\$ 9.1	\$ 8.2	\$ 7.4	\$ 6.8	\$ 6.1
Rehab.	20	\$ 15.0	\$ 12.3	\$ 10.1	\$ 8.3	\$ 6.8	\$ 5.7
Rehab.	30	\$ 15.0	\$ 11.1	\$ 8.3	\$ 6.2	\$ 4.6	\$ 3.5
Salvage	35	\$(7.5)	\$(5.29)	\$(3.75)	\$(2.67)	\$(1.90)	\$(1.36
		NPV	\$204.2	\$199.8	\$196.3	# 400 0	6400 0
			ψε.04.ε.	\$133.0	\$190.3	\$193.3	\$190.5
A 11				\$133.0	\$190.3	\$193.3	\$190.5
Alterr	nativ				s 196.3		\$190.5
					• • • • • • •		5%
/		ve - B		Disc	counted (Cost	
Activity	Year	ve - B _{Cost}	1%	Disc 2%	counted (3% \$125.0	Cost 4%	5%
Activity Constr.	Year 0	ve - B <u>cost</u> \$125.0	<u>1%</u> \$125.0	Diso 2% \$125.0	counted (3% \$125.0	<u>Cost</u> 4% \$125.0	<u>5%</u> \$125.0
Activity Constr. Rehab.	Year 0 15	ve - B <u>Cost</u> \$125.0 \$ 80.0	1% \$125.0 \$ 68.9	Diso 2% \$125.0 \$ 59.4	Sounted (3% \$125.0 \$ 51.3 \$ 33.0	Cost 4% \$125.0 \$ 44.4 \$ 24.7	\$125.0 \$38.5

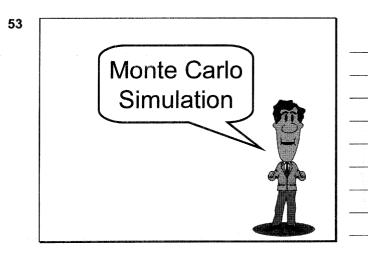
Sensitivity Analysis

Advantages

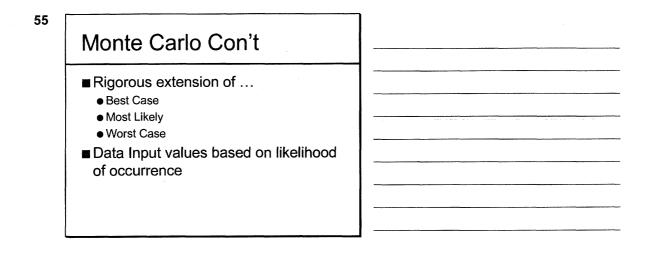
- Shows effect of changing input variable on outcome
- Easy to perform

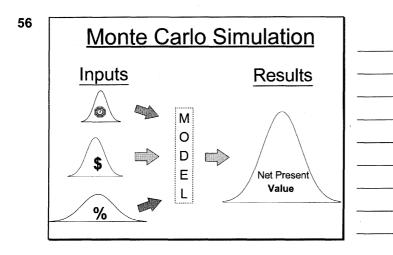

50

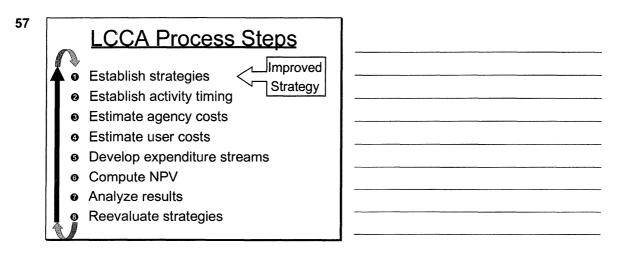

49


Sensitivity Analysis

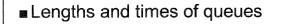
- Disadvantages
 - One input variable changes (others held constant)
 - Limited analysis
 - Does not ...
 - account for simultaneous change of ALL inputs on outcome
 - account for likelihood of input value actually occurring
 - reflect reality





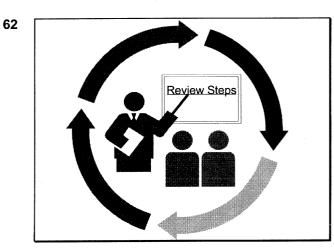

54

Monte Carlo Simulation


- Input variables described using probability distribution
- Samples randomly drawn from input distributions to calculate results
- Hundreds, even thousands, of samples may be drawn to form a distribution of results

- Agency versus user costs
- Reliability of LCCA outcome
- Practical Realities

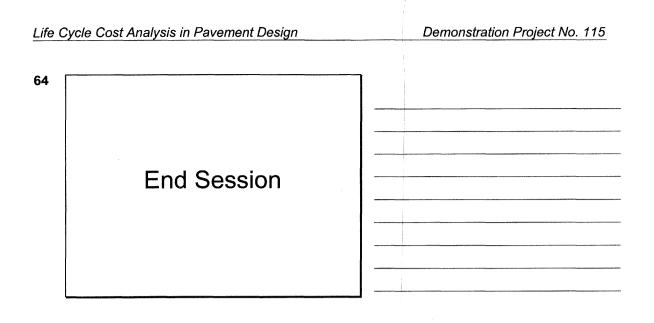
60



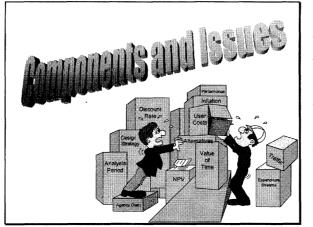
In Closing

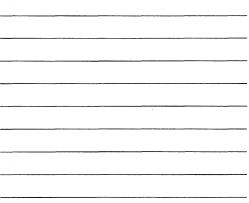
LCCA ...

61


- Decision support tool
- Results are not decisions
- Use process to improve maintenance and rehabilitation strategies
- Logical evaluation process is as important as results

63


LCCA Process Steps


- Establish strategies for analysis period
- Establish activity timing
- Estimate agency costs
- Estimate user costs
- Develop expenditure streams
- Compute NPV
- Analyze results
- Reevaluate strategies

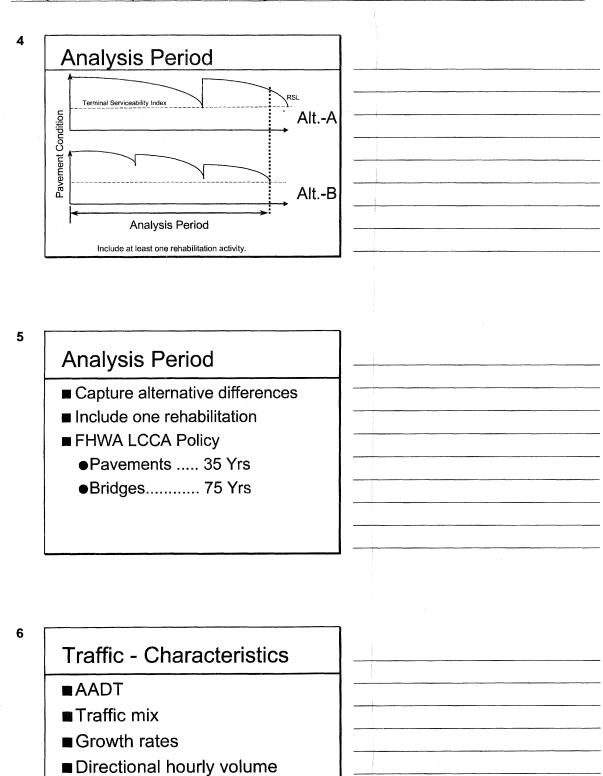
橋

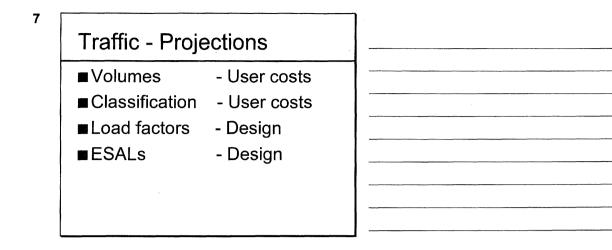
Components and Issues

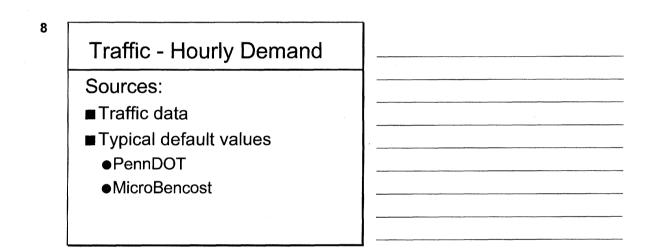
2

3

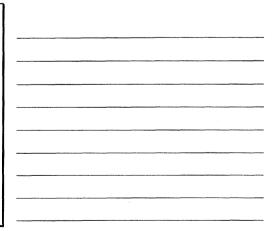
1

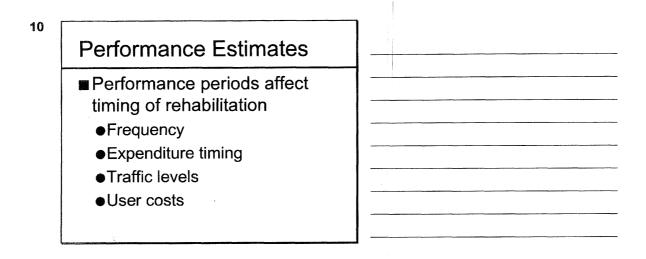

Session Overview


- Analysis periods
- Traffic
- Design strategy
- Performance estimates
- Expenditure streams


Session Overview Cont'd

- Costing
- Discounting
- Economic indicators
- Agency cost
- ∎ User cost





Penn		OT AADT Distribution - Hourly Percentages							
		Traffic Pattern Group							
	Inter	state	Prin. A	rterial	Min. Arterial				
Hour	Urban	Rural	Urban	Rural	Urban	Rura			
0 - 1	1.3	1.7	0.9	0.9	0.8	0.7			
1-2	0.9	1.4	0.5	0.5	0.4	0.4			
2 - 3	0.8	1.3	0.4	0.5	0.3	0.3			
3 - 4	0.8	1.3	0.4	0.5	0.3	0.4			
4 - 5	1.1	1.4	0.6	0.9	0.4	0.8			
5-6	2.1	2.1	1.8	2.3	1.3	2.2			
6 - 7	4.7	3.7	4.4	4.9	4.0	4.5			
7-8	6.4	4.9	6.2	6.2	6.4	5.5			
8-9	5.6	4.9	5.7	5.5	5.7	5.3			
9 - 10	5.1	5.2	5.1	5.3	4.8	5.4			
10 - 11	5.2	5.5	5.2	5.4	4.9	5.8			
11 - 12	5.4	5.8	5.6	5.6	5.5	6.0			
	9					i.			
23 - 24	2.0	2.4	1.7	1.5	1.6	1.4			

11

Desian	Strategy
Design	Ollalogy

- Initial design
- Identify supporting rehabs
- Viable and competitive

12

PCC Design Strategy

	Year							
Activity	5	10	15	20	25	30	35	
Clean and Seal Joints	Х	х	х	х	х	х		
Seal Coat Shoulders	х	х	х	Х	Х		х	
CPR - Patch				Х		Х		
- Spall Repair				Х				
- Slab Stabilization				х				
- Diamond Grinding				Х				
Overlay						Х		
Saw and Seal Joints						Х		
Pave Shoulders						Х		
Adjust Guard Rail and Dra	inag	e Stru	ucture	s		х		

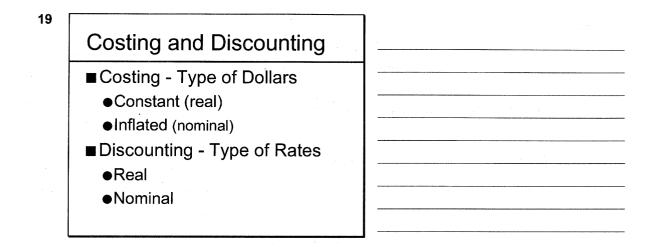
Example

- 6 Lane Facility (3 Lane per dir.)
- Work Zone 1 Lane Open
- 30 Year Analysis Period
- Initial AADT = 110,000 vpd
- 2 Rehabs including maint. plan

14

13

Options

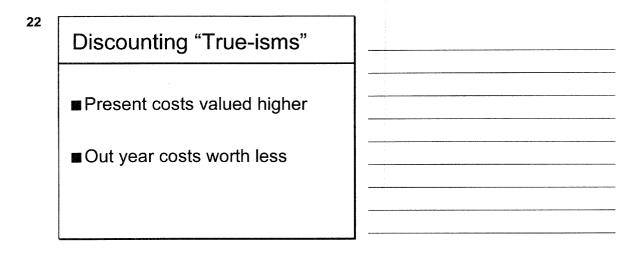

- Plan to add capacity in the outyears
- Strengthen shoulders
- Examine use of alternative routes, modes of transportation

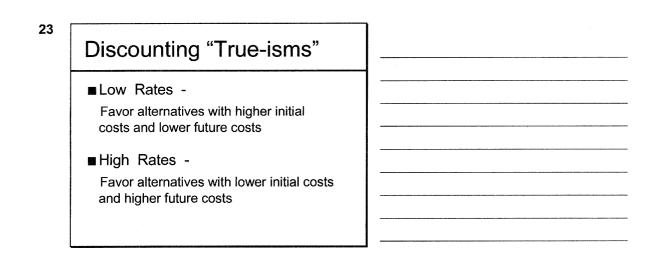
15

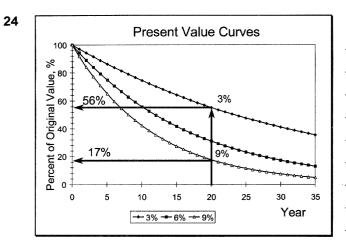
Options Cont'd

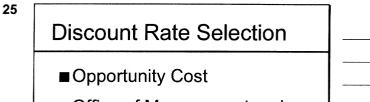
- Use materials with greater performance lives thereby reducing number of rehabs
- Initiate programs, such as preventive maintenance, that preserve pavement life

16 Costing and Discounting Costing - Type of Dollars Constant (real) Inflated (nominal) 17 Can You Assume Inflation? 14 1997 1947 Top-selling car \$18,545 (Ford Taurus) \$8,890 (Chevrolet) Average time to earn that much 4.8 months 5.3 months Gallon of gas \$1.70 / \$1.22 1997 \$Dollars\$ 18 **Example: Deflation Computer Cost:** ∎1989 - \$2,500 **1998 - \$1,200**

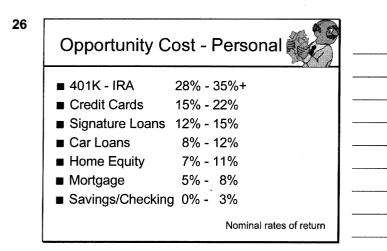


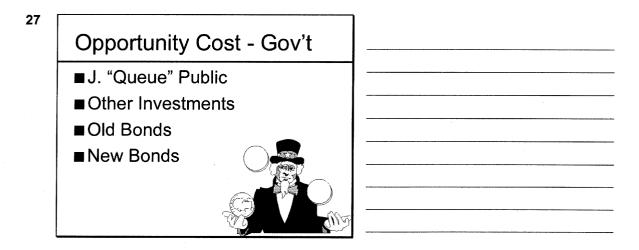

Discounting - Rate Factors • 4.0% - Real

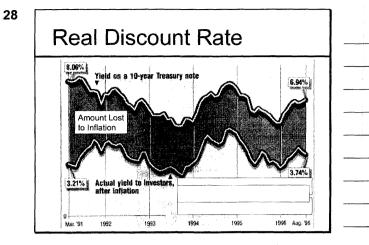

- 3.5% Inflation
- 4.0% Risk premium
- ■11.5% Nominal


²¹ Discounting - Matching Dollars & Rates

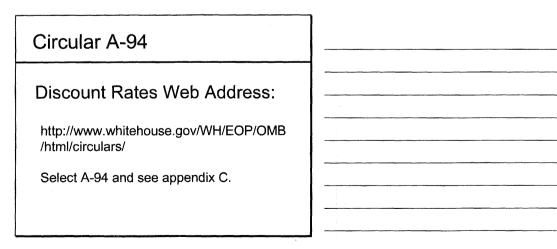
- Real dollars and rates
- Nominal dollars and rates
- Never mix nominal and real

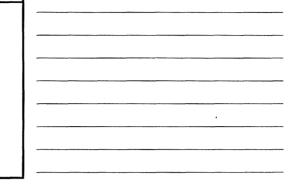


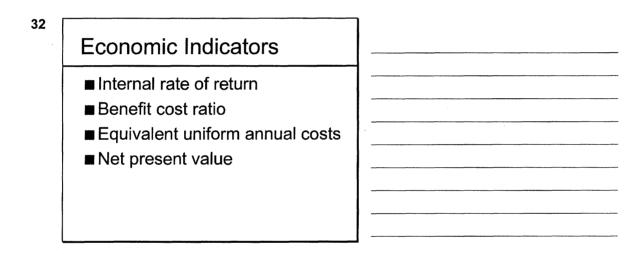


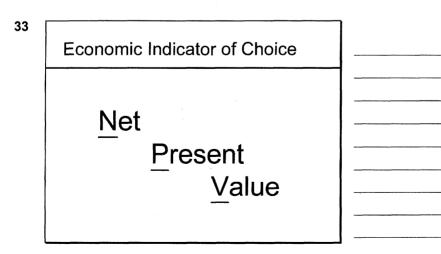


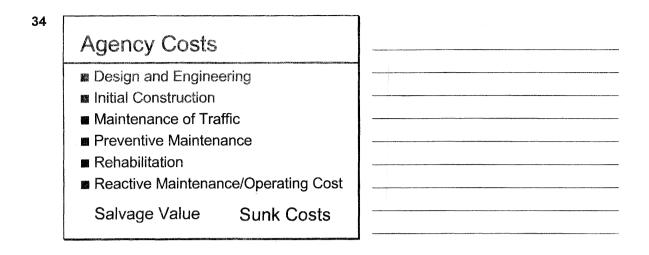
Office of Management and Budget Circular A-94

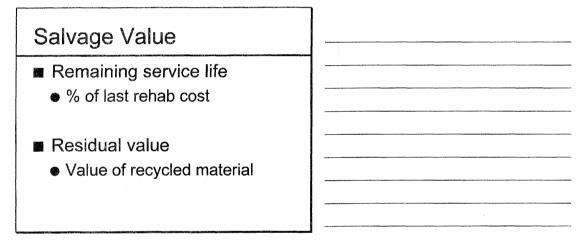


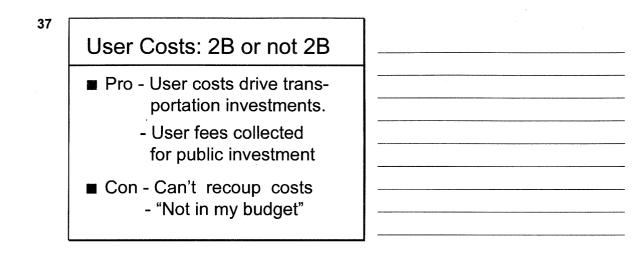

29

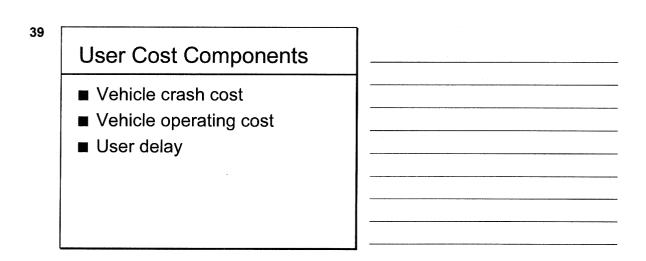

	leal D Irce: C					
	In	vestm	nent M	laturity	1	
YEAR	3	5	7	10	30	
Nov 92	2.7	3.1	3.3	3.6	3.8	
Feb 93	3.1	3.6	4.0	4.3	4.5	
Feb 94	2.1	2.3	2.5	2.7	2.8	
Feb 95	4.2	4.5	4.6	4.8	4.9	
Feb 96	2.7	2.7	2.8	2.8	3.0	
Feb 97	3.2	3.3	3.4	3.5	3.6	
Jan 98	3.4	3.5	3.5	3.6	3.8	
Avg	3.1	3.3	3.4	3.6	3.8	(No Inflatior
Std	0.6	0.7	0.7	0.7	0.7	Premium)

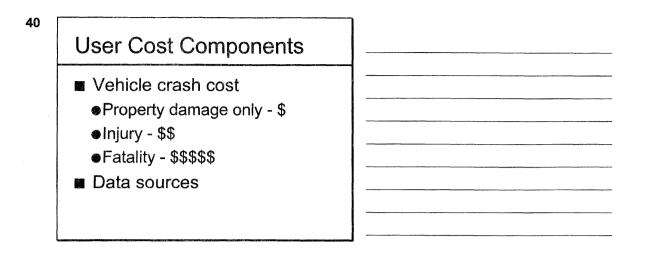



Recommend

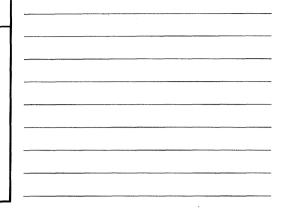

- → 3 to 5 %
- ➡ Real rates with real dollars

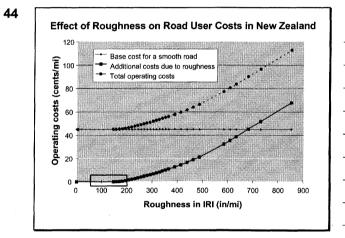


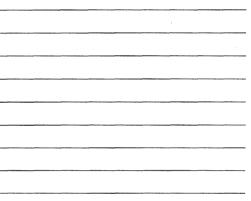

36

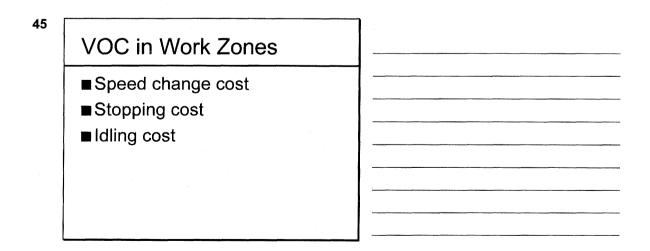

Sunk Costs

... costs that are not relevant to the decision at hand

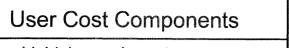

User Cost Components

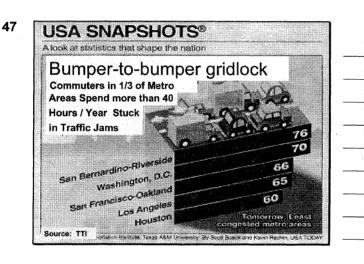

- Vehicle crash cost
- Vehicle operating cost
 - Normal operations
 - Work zone

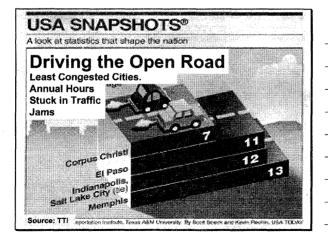

VOC Normal Operations

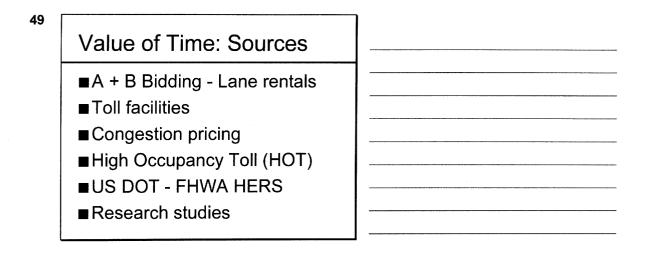

Function of ...

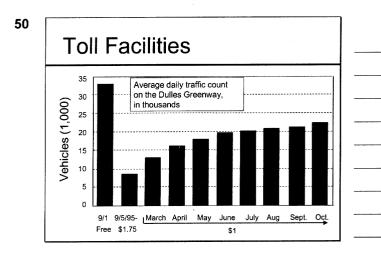
- Pavement performance
- VOC IRI relationship
- May be significant but ...
 ..Not quantifiable at this time

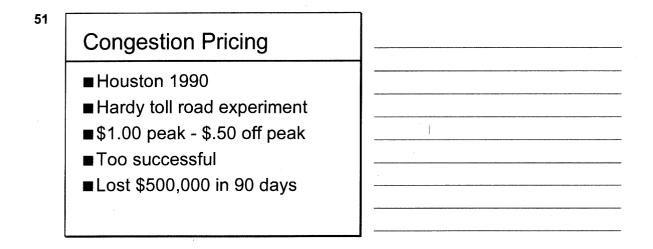


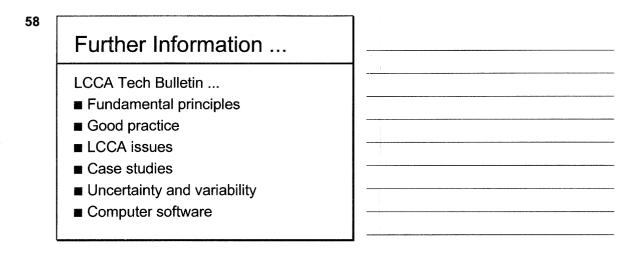


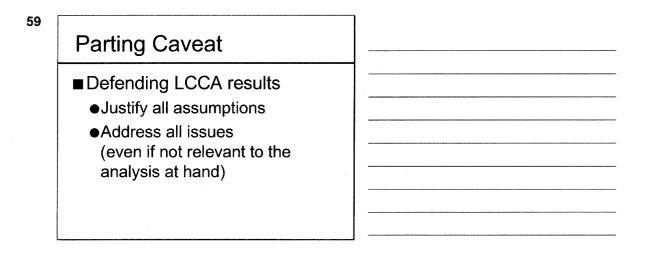


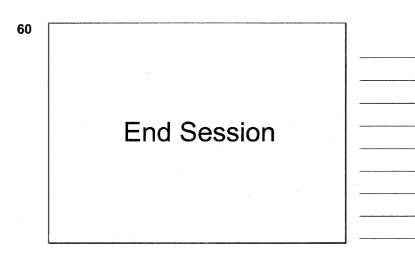

46

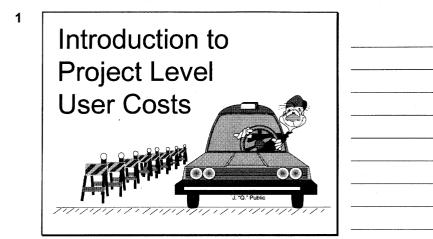


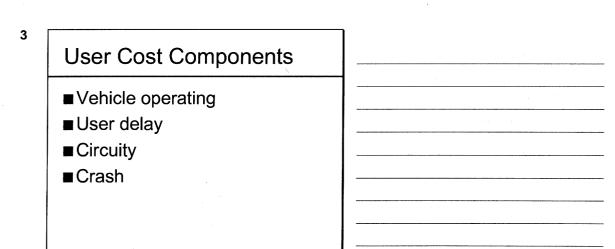

- Vehicle crash cost
- Vehicle operating cost
- User delay
 - •WZ reduced speed delay
 - Congestion delay

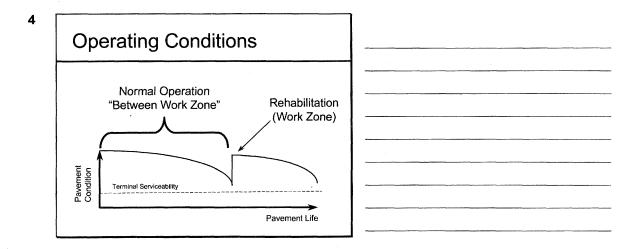


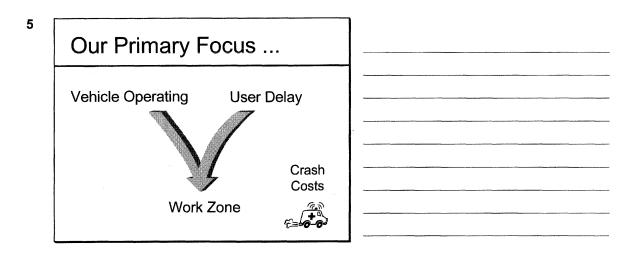






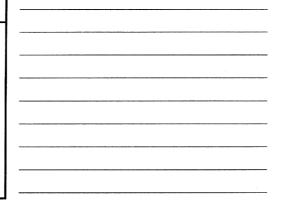



Session Overview

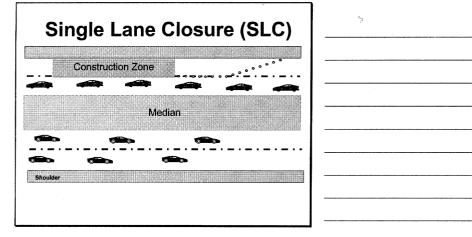

Operating Conditions

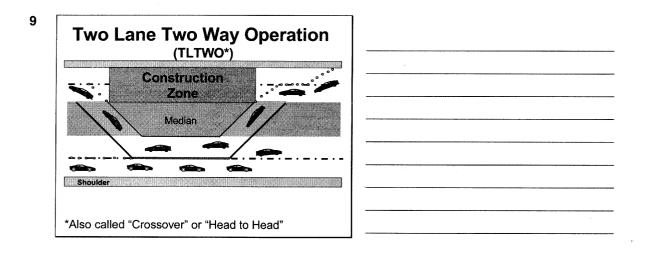
Components

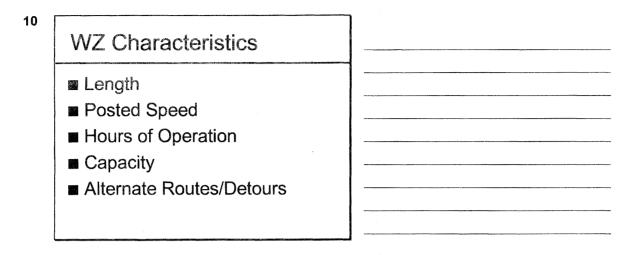
Work zone


6

WZ User Costs Function of ...

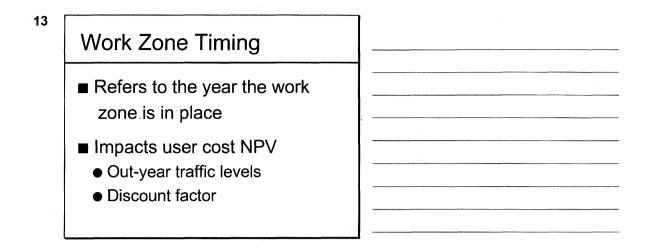

- ∎ Туре
- Characteristics
- Duration
- Frequency
- Timing
- Traffic Operations

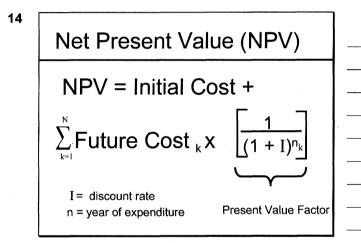

Work Zone Types


- Road closures
- Single lane closure
- Two lane two way operation

11

12

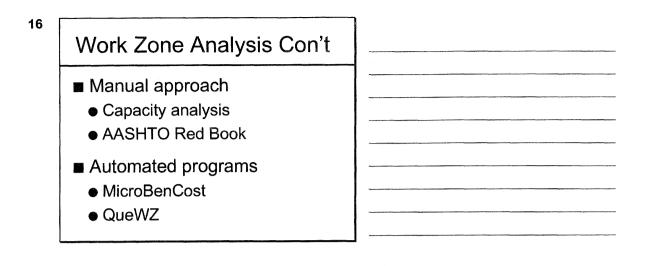

Work Zone Duration


Includes:

- Hours per day
- Number of days

Work Zone Frequency

- Number of times rehab work zones need to be established over the analysis period
- The more rehabilitations the more work zones



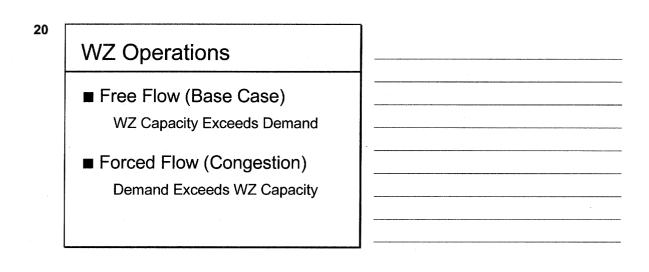
Work Zone Analysis

- Different work zone types must be analyzed separately.
- Work zones with different characteristics, including traffic demand, must also be analyzed separately.

Demonstration Project No. 115

17

McTrans Ph: 1-800-226-1013


- MicroBenCost: ~ \$110
- QueWZ: ~ \$20

Includes: software, documentation, and shipping

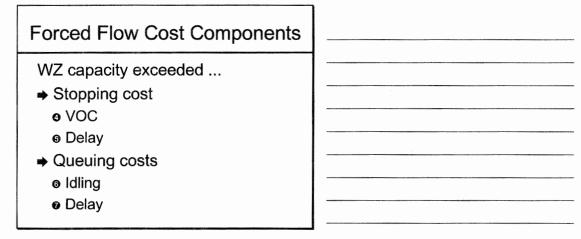
18

Work Zone Traffic Operations

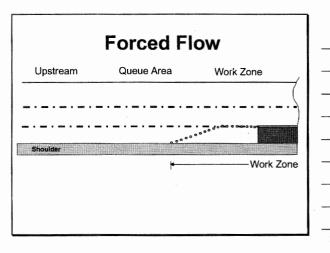
Wo	ork Zon	e Layo	ut		
Upstream	Queue Area	Work Zone)		
Shoulder	• • • • • • • • • • • • • • • • • • •	- Work Zone -	rilori Zone	· · · · · · · · · · · · · · · · · · ·	 <u></u>

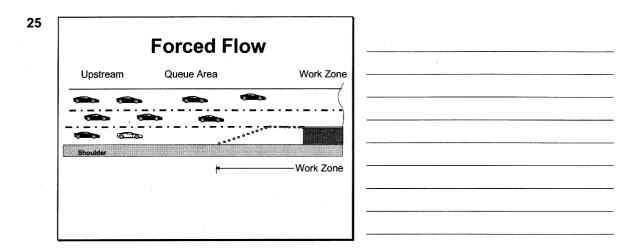
Free Flow Cost Components

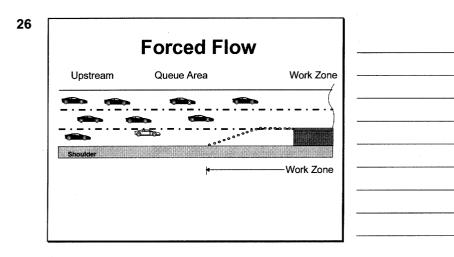
WZ capacity not exceeded ...

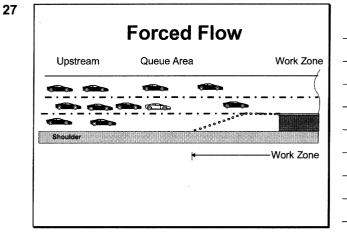

- ➡ Speed change costs
 - o VOC

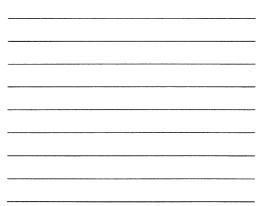
- Oelay
- ➡ Reduced speed costs
 - Delay

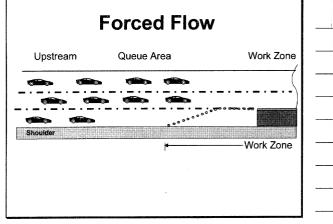

Demonstration Project No. 115

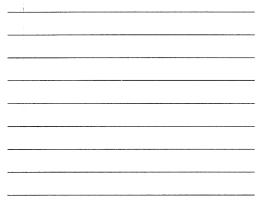

22

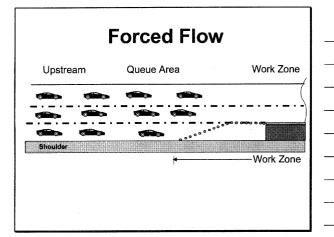

	Free Flow	No. Contraction
	Construction Zone	
	Construction Zone	
Shoulder	Construction Zone	
		Speed Change VOC and Delay



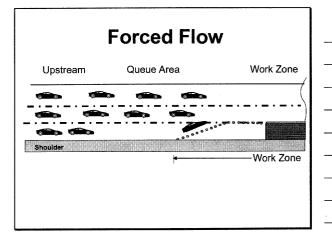


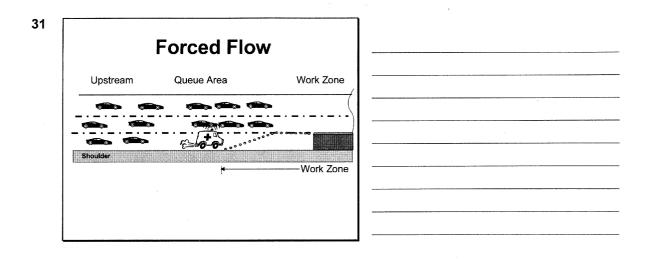


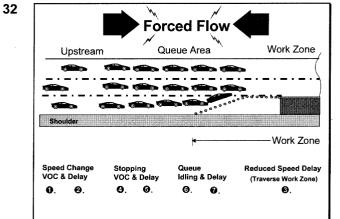


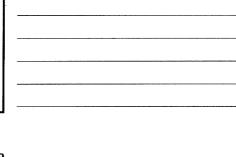

È.

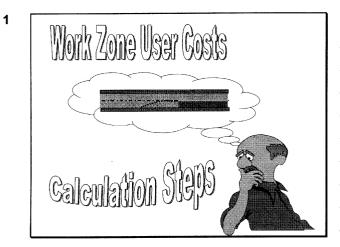
28






29


				_
_	 	 	 	



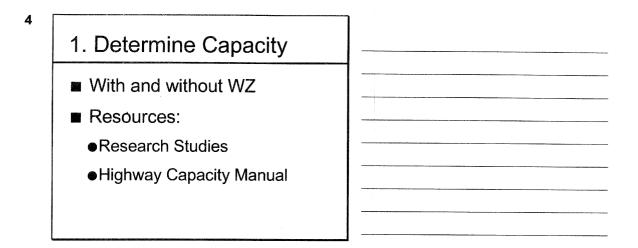
End Session

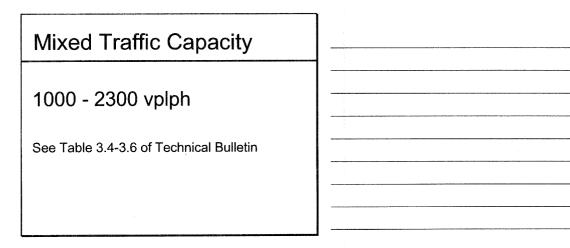
Module V - 11

WZ User Costs Steps

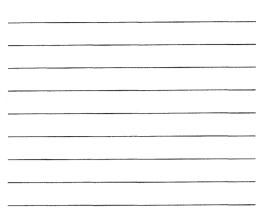
1. Determine Capacity

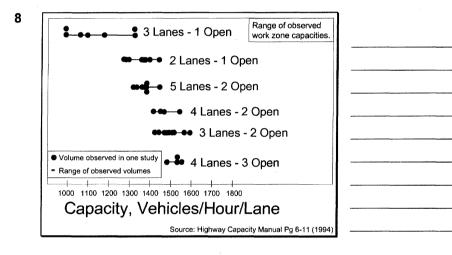
۰.

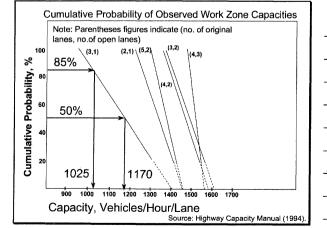

- 2. Calculate Directional Hourly Demand
- 3. Identify User Cost Components
- 4. Quantify Traffic Affected by each Component
- 5. Compute Reduced Speed Delay
- 6. Assign VOC Cost Rates

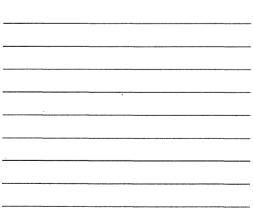

(More)

3

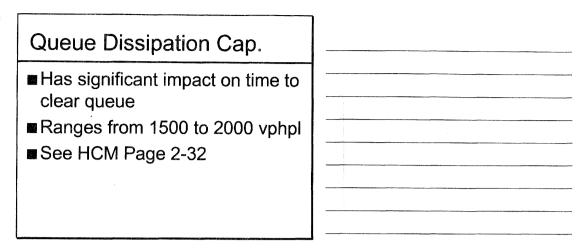

WZ User Costs Steps (Cont'd)


- 7. Assign Delay Cost Rates
- 8. Assign Traffic to Vehicle Classes
- 9. Compute User Costs by Vehicle Class
- 10. Determine Circuity
- 11. Compute Crash Costs
- 12. Sum Total User Costs





Work Zone Capacity									
Directio	nal Lanes								
Normal	WorkZone	No of	C	apacity					
Operations	Operations	Studies	(vph)	(Veh/Ln-l					
3	1 Open	7	1170	1170					
2	1 Open	8	1340	1340					
5	2 Open	8	2740	1370					
4	2 Open	4	2960	1480					
3	2 Open	9	2980	1490					
4	3 Open	4	4560	1520					



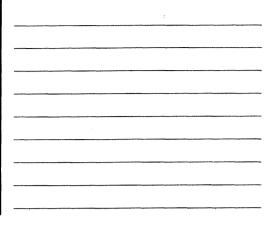
Demonstration Project No. 115

11

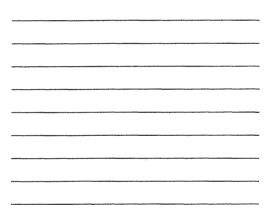
2.	Calculate	Directional	Hrlv	Demand
<u> </u>	oulouluto	Directional	1 m y	Domana

Directional Hourly Demand =

- 🖛 (AADT) x
 - (% Hourly Demand) x
- (Directional Factor)

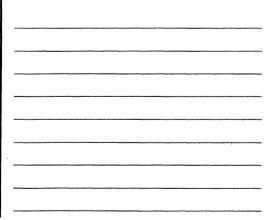

12

Sources


- AADT & directional factor
 - Traffic counts
- Hourly distributions
 - MicroBENCOST
 - Traffic counts

	2	
1	.5	
	-	

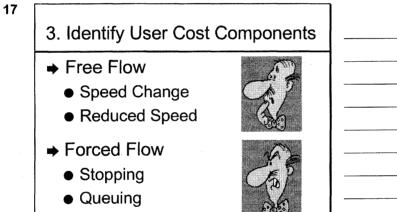
	Interstate		Principal Arterials			Minor Arterials		Major Collectors				
	%		ction			ection			ction			ection
Hour	ADT	In	Out	ADT			ADT	In	Out	ADT	In	Out
0 - 1	1.8	48	52									
1 - 2	1.5	48	52									{
2 - 3	1.3	45	55									
3 - 4	1.3	53	47									1
4 - 5	1.5	53	47									
5-6	1.8	53	47	لـ ا						~~~~~		i
6 - 7	2.5	57	43	5	Sam	e		San	ne		Sam	e
7 - 8	3.5	56	44	5								[
8 - 9	4.2	56	44									
9 - 10	5.0	54	46									
10 - 11	5.4	51	49									i
11 - 12	5.6	51	49									



		Principal Minor			Major							
	Int	ersta	ate	Ē	Arterials		Arterials		Collectors			
	%	Dire	ection	%	Dire	ection	%	Dire	ction	%	Dire	ctior
Hour	ADT	In	Out	ADT	In	Out	ADT	In	Out	ADT	In	Out
12 - 13	5.7	50	50									
13 - 14	6.4	52	48									1
14 - 15	6.8	51	49									
15 - 16	7.3	53	47									i
16 - 17	9.3	49	51									
17 - 18	7.0	43	57						i i			
18 - 19	5.5	47	53	5	Sam	e		San	ne	(Sam	e
19 - 20	4.7	47	53	L								
20 - 21	3.8	46	54									1
21 - 22	3.2	48	52									
22 - 23	2.6	48	52									
23 - 24	2.3	47	53									

1	5

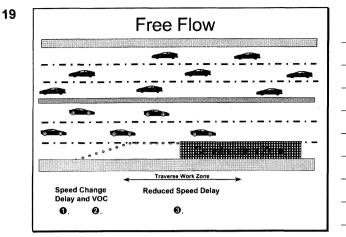
Example	PennE		DT Dist	ribution	- Hourly	Perce	ntages			
			Traffic Pattern Group							
		Inters	state	Prin. A	rterial	Min. /	Arterial			
	Hour	Urban	Rural	Urban	Rural	Urban	Rural			
	0 - 1	1.3	1.7	0.9	0.9	0.8	0.7			
	1 - 2	0.9	1.4	0.5	0.5	0.4	0.4			
	2-3	0.8	1.3	0.4	0.5	0.3	0.3			
	3-4	0.8	1.3	0.4	0.5	0.3	0.4			
	4 - 5	1.1	1.4	0.6	0.9	0.4	0.8			
	5-6	2.1	2.1	1.8	2.3	1.3	2.2			
	6-7	4.7	3.7	4.4	4.9	4.0	4.5			
	7-8	6.4	4.9	6.2	6.2	6.4	5.5			
	8-9	5.6	4.9	5.7	5.5	5.7	5.3			
	9-10	5.1	5.2	5.1	5.3	4.8	5.4			
	10 - 11	5.2	5.5	5.2	5.4	4.9	5.8			
	11 - 12	5.4	5.8	5.6	5.6	5.5	6.0			
	*		*		*		8			
	\$		*		*		8			



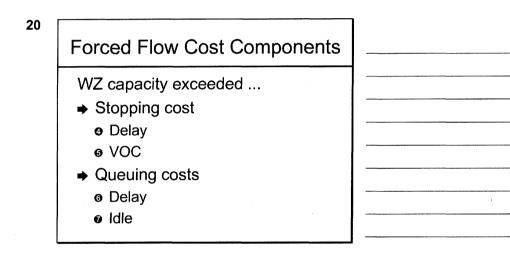
Demonstration Project No. 115

16

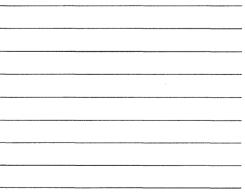
Etample	Penn		DT Dist	ribution	- Hourly	y Percei	ntages			
			Traffic Pattern Group							
		Inters	state	Prin. A	Arterial	Minor /	Arterial			
	Hour	Urban	Rural	Urban	Rural	Urban	Rural			
	12 - 13	5.5	5.7	6.0	5.7	6.0	6.2			
	13 - 14	5.5	5.9	5.9	5.9	5.7	6.4			
	14 - 15	6.1	6.3	6.4	6.6	6.3	7.2			
	15 - 16	7.3	6.9	7.4	7.7	7.6	8.1			
	16 - 17	7.8	7.2	7.8	8.0	8.3	8.0			
	17 - 18	7.2	6.6	7.5	7.4	8.0	7.1			
	18 - 19	5.4	5.3	5.9	5.5	6.2	5.4			
	19 - 20	4.3	4.4	4.8	4.3	5.1	4.4			
	20 - 21	3.7	3.8	4.0	3.6	4.3	3.6			
	21 - 22	3.2	3.4	3.3	3.0	3.4	2.9			
	22 - 23	2.6	2.9	2.4	2.3	2.4	2.1			
	23 - 24	2.0	2.4	1.7	1.5	1.6	1.4			



18


Free Flow Cost Components

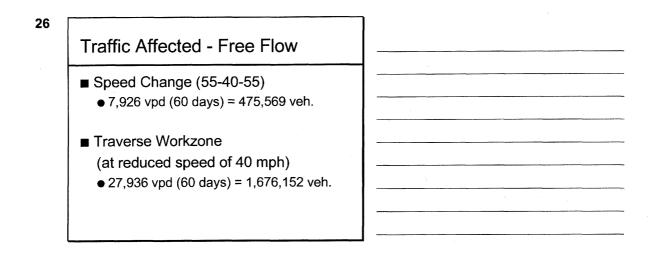
WZ capacity not exceeded ...

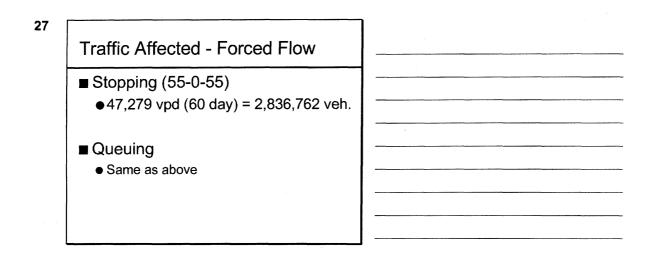

- Speed change costs
 - Delay
 - VOC
- ➡ Reduced speed costs
 - o Delay

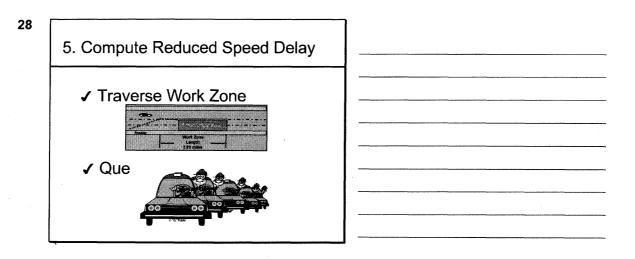
Demonstration Project No. 115

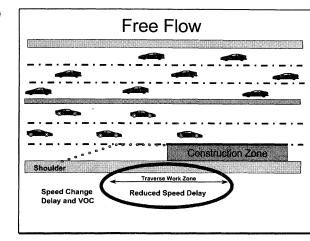
4. Quantify Traffic Affected by Each Component	
■ Lane closure hours	
24 Hours analysis period	

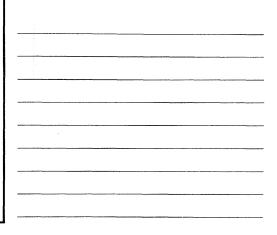
23

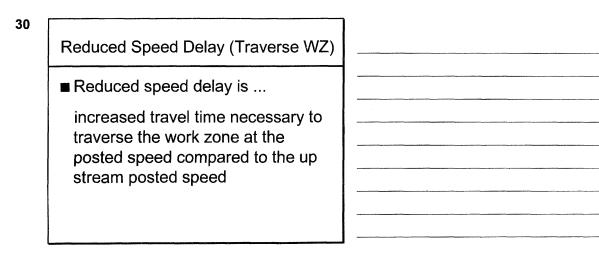


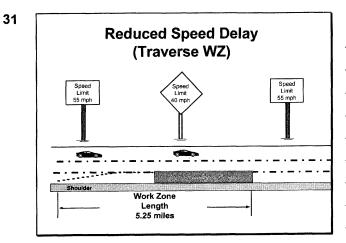

Work Zone In Place 60 Days

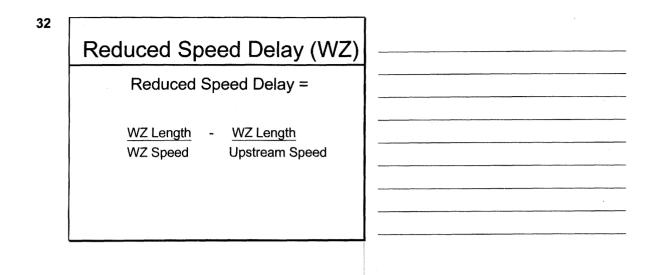

	Hourly			Queue		1	/ehicles that	t
	Distr.	Demand	Cap.	Rate	Queued	Stop	Traverse WZ	1
Hour	(%)	(vph)	(vph)	(vph)	Veh.	55-0-55	@40 mph	55-40-55
		(AADT)(b)		(c-d)	$(e_i + f_{i-1})$	IF f > 0,c,0	See Note**	IF g=0, h,0
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
0 - 1	0.9	607	3,027	(2,420)	0	0	607	607
1 - 2	0.5	337	3,027	(2,690)	0	0	337	337
2 - 3	0.4	270	3,027	(2,757)	0	0	270	270
3 - 4	0.4	270	3,027	(2,757)	0	0	270	270
4 - 5	0.6	404	3,027	(2,623)	0	0	404	404
5 - 6	1.8	1,213	6,285	(5,072)	0	0	0	0
6 - 7	4.4	2,966	6,285	(3,319)	0	0	0	0
7 - 8	6.2	4,179	6,285	(2,106)	0	0	0	0
8 - 9	5.7	3,842	6,285	(2,443)	0	0	0	0
9 - 10	5.1	3,438	3,027	411	411	3,438	3,027	0
10 - 11	5.2	3,505	3,027	478	889	3,505	3,027	0
1 - 12	5.6	3,775	3,027	748	1,637	3,775	3,027	0
000	0	0	000	0 0	0 0	0	0	0 0 0

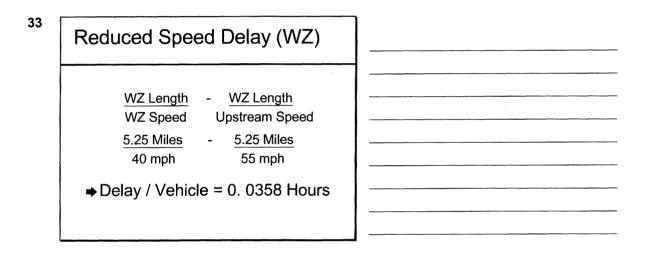

	Hourly			Queue		١	/ehicles tha	t
Hour	Distr. (%)	Demand (vph)	Cap. (vph)	Rate (vph)	Queued Veh.	Stop 55-0-55	Traverse WZ at 40 mph	1
		(AADT)(b)		(c-d)	(e _i +f _{i-1})	IF f > 0,c,0	See Note**	IF g=0, h,
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
12 - 13	6.0	4,044	3,027	1,017	2,654	4,044	3,027	0
13 - 14	5.9	3,977	3,027	950	3,604	3,977	3,027	0
14 - 15	6.4	4,314	3,027	1,287	4,891	4,314	3,027	0
15 - 16	7.4	4,988	5,454	(466)	4,425	4,988	0	0
16 - 17	7.8	5,258	5,454	(196)	4,229	5,258	0	0
17 - 18	7.5	5,055	5,454	(399)	3,830	5,055	0	0
18 - 19	5.9	3,977	5,454	(1,477)	2,353	3,977	0	0
19 - 20	4.9	3,303	5,454	(2,151)	202	3,303	0	0
20 - 21	4.0	2,696	3,027	(331)	0	1,646 *	2,898	1,05
21 - 22	3.3	2,224	3,027	(803)	0	0	2,224	2,224
22 - 23	2.4	1,618	3,027	(1,409)	0	0	1,618	1,618
23 - 24	1.7	1,146	3,027	(,1881)	0	0	1,146	1,146
				То	tal	47,279	27,936	7,926

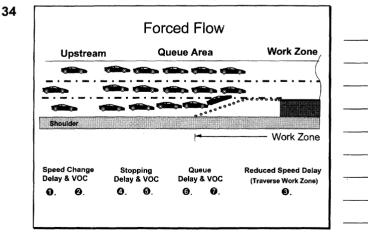

*Prorated based on portion of hour required to clear queue.

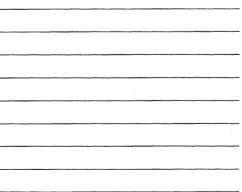


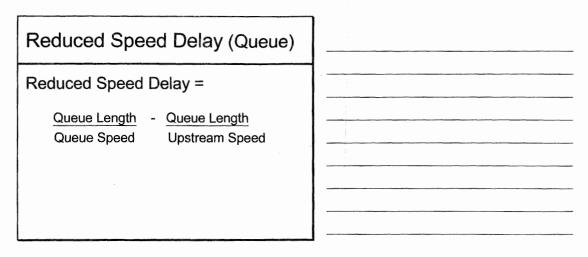


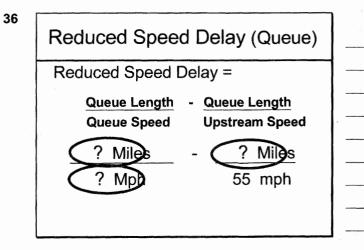




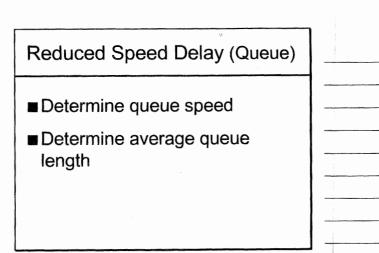


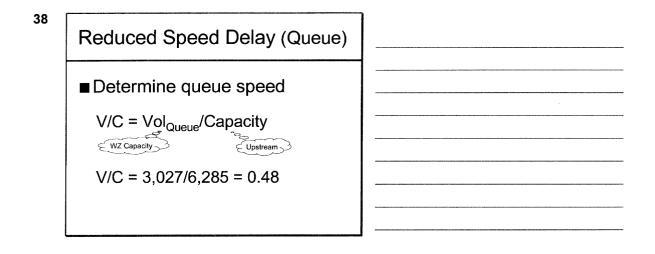


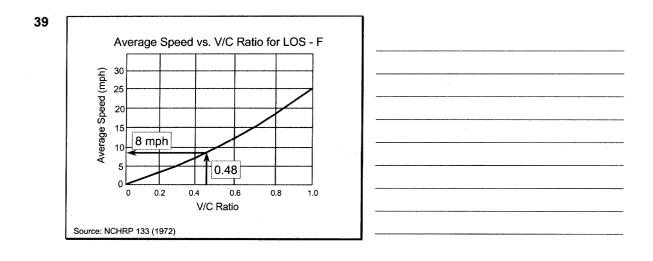


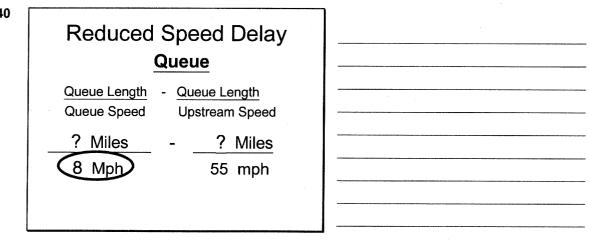


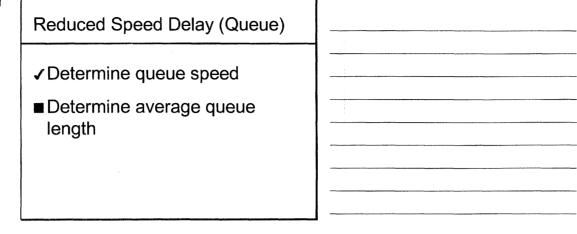
Life Cycle Cost Analysis in Pavement Design

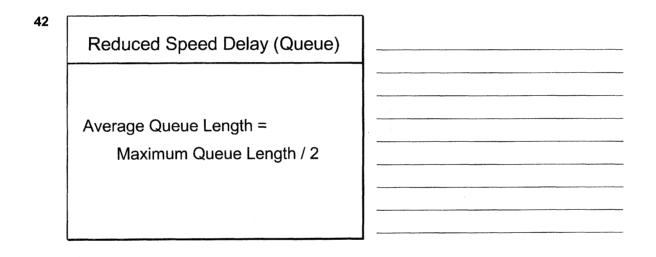

Demonstration Project No. 115

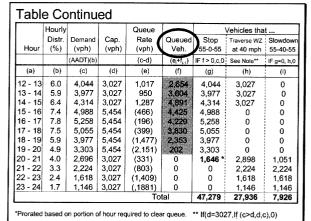


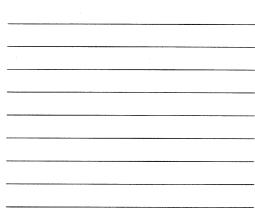


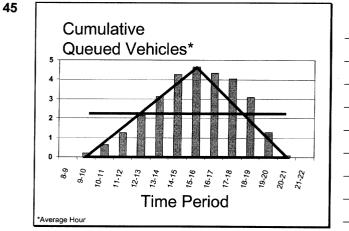




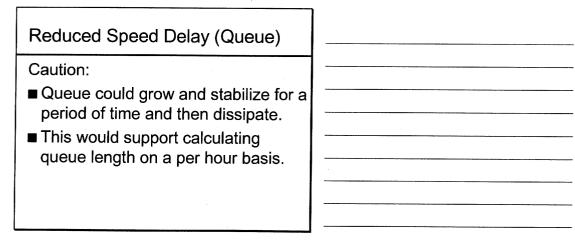


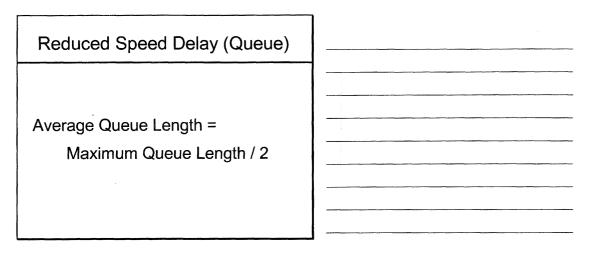


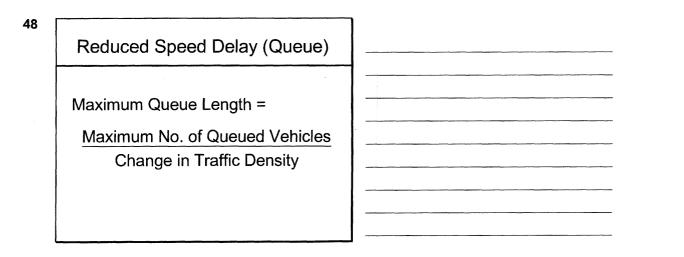


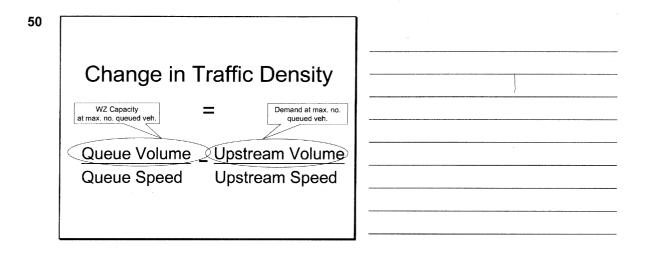


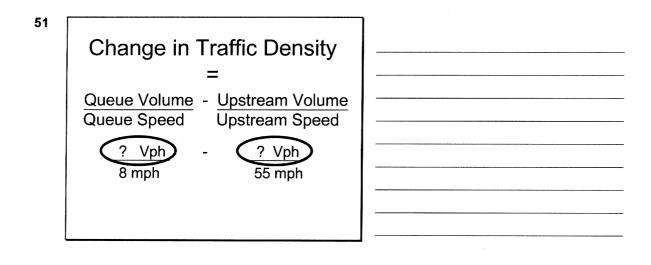
	Hourly			Queue		۱. ۱	ehicles tha	t
Hour	Distr. (%)	Demand (vph)	Cap. (vph)	Rate (vph)	Queued Veh.	Stop 55-0-55	Traverse WZ @40 mph	Slowdo 55-40-
		(AADT)(b)		(c-d)	(e,+1,)	IF f > 0,c,0	See Note**	IF g=0, I
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
0 - 1	0.9	607	3,027	(2,420)	0	0	607	607
1 - 2	0.5	337	3,027	(2,690)	0	0	337	337
2 - 3	0.4	270	3,027	(2,757)	0	0	270	270
3 - 4	0.4	270	3,027	(2,757)	0	0	270	270
4 - 5	0.6	404	3,027	(2,623)	0	0	404	404
5 - 6	1.8	1,213	6,285	(5,072)	0	0	0	0
6 - 7	4.4	2,966	6,285	(3,319)	0	0	0	0
7 - 8	6.2	4,179	6,285	(2,106)	0	0	0	0
8 - 9	5.7	3,842	6,285	(2,443)	0	0	0	0
9 - 10	5.1	3,438	3,027	411	411	3,438	3,027	0
10 - 11	5.2	3,505	3,027	478	889	3,505	3,027	0
11 - 12	5.6	3,775	3,027	748	1.637	3,775	3,027	0
	•	•	•		0			• •

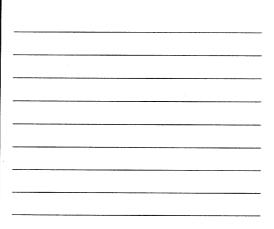




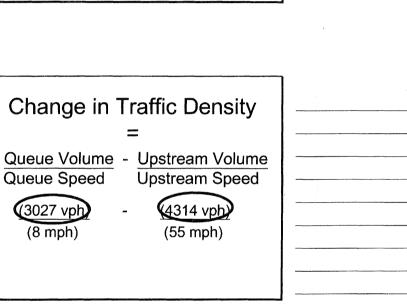


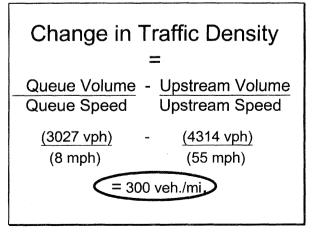


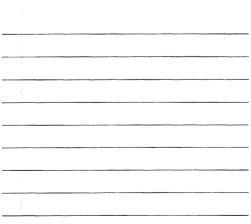


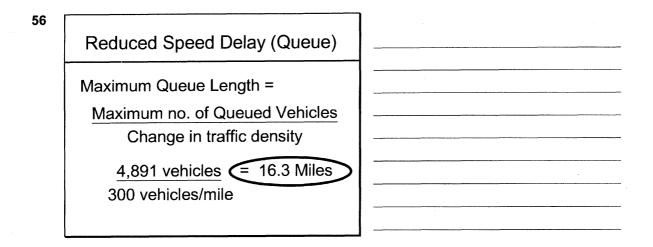

Traffic Density (veh./mi.)

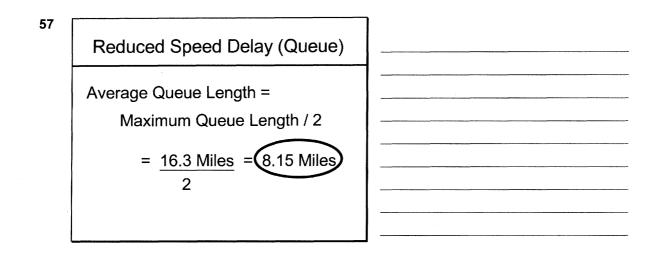
- The number of vehicles on a mile of road.
- Computed by
- Volume / Speed (vph/mph)

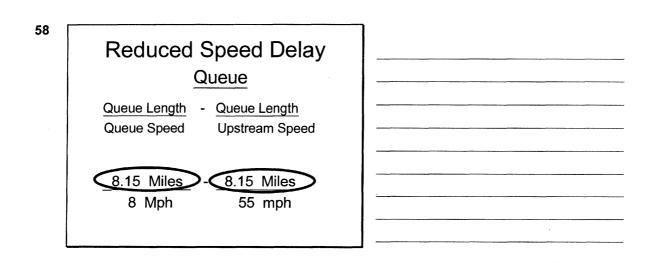


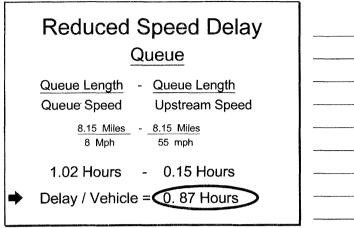

Twen	ty Fo	ur Hou	ur Ana	alysis P	eriod -	- South	Bound	
	Hourly			Queue	-		Vehicles that	t
Hour	Distr. (%)	Demand (vph)	Cap. (vph)	Rate (vph)	Queued Veh.	Stop 55-0-55	Traverse WZ @40 mph	
		(AADT)(b)		(c-d)	(ej+fj.1)	IF f > 0,c,0	IF d=3027,c,0	IF g=0, h,0
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
0 - 1	0.9	607	3,027	(2,420)	0	0	607	607
1 - 2	0.5	337	3,027	(2,690)	0	0	337	337
2 - 3	0.4	270	3,027	(2,757)	0	0	270	270
3 - 4	0.4	270	3,027	(2,757)	0	0	270	270
4 - 5	0.6	404	3,027	(2,623)	0	0	404	404
5 - 6	1.8	1,213	6,285	(5,072)	0	0	0	0
6 - 7	4.4	2,966	6,285	(3,319)	0	0	0	0
7 - 8	6.2	4,179	6,285	(2,106)	0	0	0	0
8 - 9	5.7	3,842	6,285	(2,443)	0	0	0	0
9 - 10	5.1	3,438	3,027	411	411	3,438	3,027	0
10 - 11	5.2	3,505	3,027	478	889	3,505	3,027	οĺ
11 - 12	5.6	3,775	3,027	748	1.637	3,775	3,027	0
0 0	000	0 0	0 0	с с о	0 0 0	0	0	0
							'	•

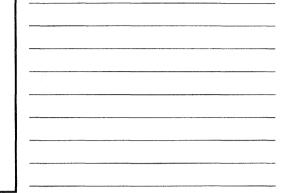


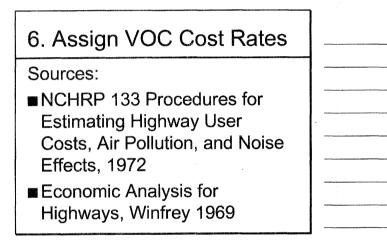

6	2
	J .

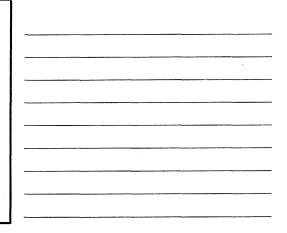

	Hourly			Queue		1	ehicles that	i
Hour	Distr. (%)	Demand (vph)	Cap. (vph)	Rate (vph)	Queued Veh.	Stop 55-0-55	Traverse WZ at 40 mph	
		(AADT)(b)		(c-d)	(e,+f,_)	IF f > 0.c,0	IF d=3027.c,0	IF g=0, h,0
(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)
12 - 13	6.0	4,044	3.027	1,017	2,654	4,044	3,027	0
13 - 14	5.9	3.977	3.027	950	3 613-41	3,977	3,027	0
14 - 15	6.4	4,314	3,027	1,287	4,891	4,314	3,027	0
15 - 16	7.4	4,908	5,454	(466)	4,42,5	4,988	0	0
16 - 17	7.8	5,258	5,454	(196)	4,229	5,258	0	0
17 - 18	7.5	5,055	5,454	(399)	3,830	5,055	0	0
18 - 19	5.9	3,977	5,454	(1,477)	2,353	3,977	0	0
19 - 20	4.9	3,303	5,454	(2,151)	202	3,303	0	0
20 - 21	4.0	2,696	3,027	(331)	0	1,646 *	2,898	1,051
21 - 22	3.3	2,224	3,027	(803)	0	0	2,224	2,224
22 - 23	2.4	1,618	3,027	(1,409)	0	0	1,618	1,618
23 - 24	1.7	1,146	3,027	(,1881)	0	0	1,146	1,146
				To	tal	47,279	27,936	7,926



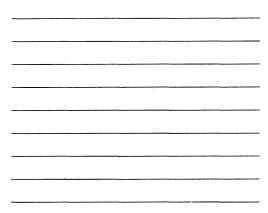








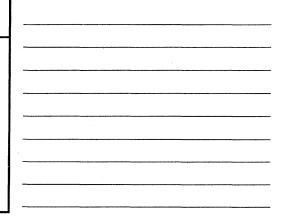
		Time (Hr/10			d Cost (\$/100	
Initial	(Exclu	<u>des Idling Ti</u>			cludes Idling	
Speed	Pass	Single	Comb.	Pass	Single	Comb
(mph)	Cars	Unit Trk	Truck	Cars	Unit Trk	Truck
5	1.02	0.73	1.10	2.70	9.25	33.62
10	1.51	1.47	2.27	8.83	20.72	77.49
15	2.00	2.20	3.48	15.16	33.89	129.97
20	2.49	2.93	4.76	21.74	48.40	190.06
25	2.98	3.67	6.10	28.67	63.97	256.54
30	3.46	4.40	7.56	36.10	80.23	328.21
35	3.94	5.13	9.19	44.06	96.88	403.84
40	4.42	5.87	11.09	52.70	113.97	482.2
45	4.90	6.60	13.39	62.07	130.08	562.14
50	5.37	7.33	16.37	72.31	145.96	642.4
55	5.84	8.07	20.72	83.47	160.89	721.7
60	6.31	8.80	27.94	95.70	178.98	798.99
65	6.78	9.53	NA	109.02	195.84	NA
70	7.25	NA	NA	123.61	NA	NA
75	7.71	NA	NA	139.53	NA	NA
80	8.17	NA	NA	156.85	NA	NA
	a Cost (\$			0.6927	0.7681	0.824


ndle	55 mph		40 mph		▶ 55 m	bh
		Time (Hr/10			d Cost (\$/10	
Initia		<u>ides Idling Ti</u>			cludes Idling	
Spee		Single	Comb.	Pass	Single	Comb.
(mph		Unit Trk	Truck	Cars	Unit Trk	Truck
5	1.02	0.73	1.10	2.70	9.25	33.62
10	1.51	1.47	2.27	8.83	20.72	77.49
15	2.00	2.20	3.48	15.16	33.89	129.97
20	2.49	2.93	4.76	21.74	48.40	190,06
25	2.98	3.67	6.10	28.67	63.97	256.54
30	3.46	4.40	7.56	36.10	80.23	328.21
35	3.94	5.13	9.19	44.06	96.88	403.84
40	4.42	8.87	11.00	52.70	113.97	482.21
45	4.90	6.60	13.39	62.07	130.08	562.14
50	5.37	7.33	16.37	72.31	145.96	642.41
66	5.84	8.07	20.72	03.47	163.89	
60	6.31	8.80	27.94	95.70	178.98	798,99
65	6.78	9.53	NA	109.02	195.84	NA
70	7.25	NA	NA	123.61	NA	NA
75	7.71	NA	NA	139.53	NA	NA
80	8.17	NA	NA	156.85	NA	NA
	ling Cost (\$			0.6927	0.7681	0.8248

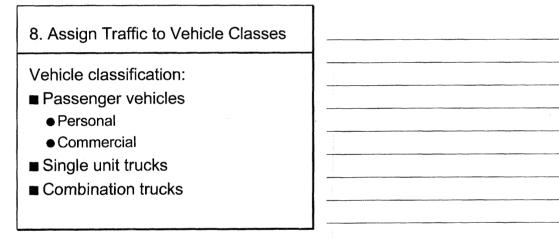
Example

Added Time & Veh. Running Cost / 1000 Stops and Idling Costs (Aug. 1996 values)

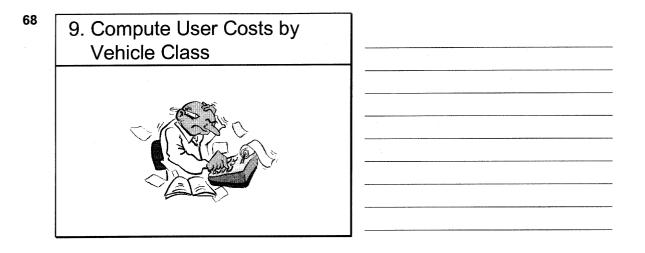
Initial		Time (Hr/100 ludes Idlina			Added Cost (\$/1000 Stops) (Excludes Idling Cost)			
Speed	Pass	Single	Comb.	Pass	Single	Comb.		
(mph)	Cars	Unit Trk	Truck	Cars	Unit Trk	Truck		
55	5.84	8.07	20.72	83.47	160.89	721.77		
40	4.42	5.87	11.09	52.70	113.97	482.21		
55-40-55	1.42	2.20	9.63	30.77	46.92	239.56		
	111 II. II. II. II. II. II. II. II. II.		•					



64

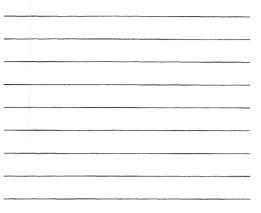

-8

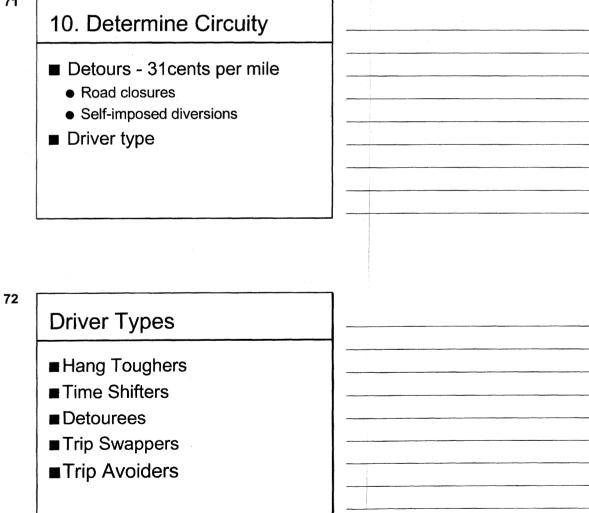
Note:


- Update tables to current year
- Value of time
 - Overall current CPI to base year overall CPI
- VOC
 - Current year transportation component CPI to base year transportation component

		X		
Value of Time	•			
	\$ / Vehicle Hour			
Vehicle Class	Value Range			
Passenger Vehicles	11.58 10 - 13		:	
Single Unit Trucks	18.54 17 - 19			
	22.31 21 - 24			

			Vehicle	No.
	-	Cost Component	Class	Vehicles
	(0.	WZ Speed Change Delay	Pass	428,012
		(55-40-55)	SU	25,681
Free J		(475,569)(%Class)=	Comb	21,786
	0.	WZ Speed Change VOC	Pass	428,012
≺		(55-40-55)	SU	25,681
Flow)		(475,569)(%Class)=	Comb	21,786
1104	€.	WZ Reduced Speed Delay	Pass	1,508,537
		(Traverse WZ at 40 mph)	SU	90,512
		(1,676,152)(%Class)=	Comb	77,103
	10.	Queue Stopping Delay	Pass	2,553,086
1	1	(55-0-55)	SU	153,185
		(2,836,762)(%Class)=	Comb	130,491
	Θ.	Queue Stopping VOC	Pass	2,553,086
Forced J		(55-0-55)	SU	153,185
		(2,836,762)(%Class)≃	Comb	130,491
Flow)	G.	Queue Added Travel Delay	Pass	2,553,086
FIOW \		(Traverse Queue at 8 mph)	SU	153,185
		(2,836,762)(%Class)	Comb	130,491
	0.	Queue Idle VOC	Pass	2,553,086
1			SU	153,185
	~	(2,836,762)(%Class)	Comb	130,491

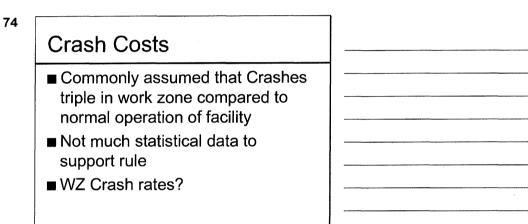

	Vehicle	No.	Added Time	Cost	Cost	%of
Cost Component	Class	Vehicles	(hpv)	Factor	(\$)	Total
OWZ Speed Change Delay	Pass	428,012	0.00142	11.58	7,038	0.02
55 → .40 → .55 mph	SU	25,681	0.00220	18.54	1,047	0.00
	Comb	21,876	0.00963	22.31	4,700	0.01
9 WZ Speed Change VOC	Pass	428,012		0.03077	13,170	0.04
55 ⇒. 40 ⇒. 55 mph	S∪	25,681		0.04692	1,205	0.00
	Comb	21,876		0.23956	5,241	0.02
OWZ Reduced Speed Delay	Pass	1,508,537	0.0358	11.58	625,385	1.85
40 vs 55 mph	SU	90,512	0.0358	18.54	60,076	0.18
•	Comb	77,103	0.0358	22.31	61,582	0.18
Queue Stopping Delay	Pass	2,553,086	0.00584	11.58	172,658	0.51
55 → .0 → .55 mph	SU	153,185	0.00807	18.54	22,919	0.07
	Comb	130,491	0.02072	22.31	60,321	0.18
Queue Stopping VOC	Pass	2,553,086		0.08347	213,106	0.63
55 → .0 → .55 mph	SU	153,185		0.16089	24,646	0.07
•	Comb	130,491		0.72177	94,185	0.28
OQueue Added Travel Delay	Pass	2,553.086	0.87	11.58	25,721,320	76.04
	SU	153.185	0.87	18.54	2,470,846	7.30
and a subject of the state of the	Comb	130,491	0.87	22.31	2.532,792	7.49
Queue Idle VOC	Pass	2,553,086	0.87	0.6927	1,538,615	4.55
	SU	153,185	0.87	0.7681	102,366	0.30
	Comb	130,491	0.87	0.8248	93,637	0.28


Total WZ User Cost = \$33,826,855

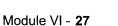
Life Cycle Cost Analysis in Pavement Design

70

0 0	s 55 mp	Added			
Vehicle	No.	Time	Cost		% of
Class	Vehicles	(hpv)	Factor	Cost	Total
Pass	2,553,086	0.87	11.58	25,721,320	76.04
SU	153,185	0.87	18.54	2,470,846	7.30
Combo	130,491	0.87	22.31	2,532,792	7.49


11. Compute Crash Cost

73


Crash Cost = (Crash Rate) (Exposure) (Crash Cost) [units] [crash/100 M VMT] [VMT] [\$/crash]

Crash rate: Studies, MicroBENCOST Exposure: Traffic data Crash cost: MicroBENCOST defaults, Insurance, SHA

Note: Crash rate and cost is determined by type of crash.

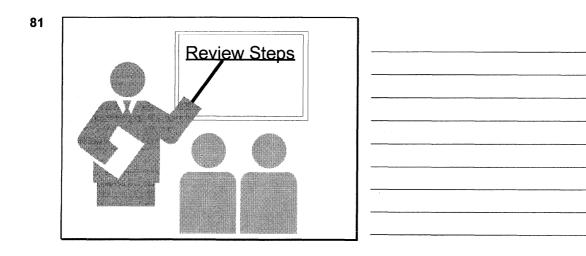
-rom 1998				lillion VM	
	Rural			Urban	
		Non-Fatal		Non-Fatal	
Functional Class	Fatalities	Injury	Fatalities	Injury	
Interstate	1.0	25.0	0.6	74.3	
Other Freeways	-	-	0.9	57.2	
Other Principal Arter	2.1	55.8	1.6	208.8	
Minor Arterial	2.8	108.6	1.3	175.8	
Major Collector	2.7	100.8	-	-	
Minor Collector	3.1	120.4	-	-	
Collectors	-	-	2.0	172.4	
ocal	3.7	224.8	2.2	292.1	

76 Construction Costs and Safety Impacts of Vork Zone Traffic Control Strategies Volume II Informational Guide Providention (PPWARD 49-210: Chr. 1987) Publication No. FHWA-RD-89-210 (Dec. 1989) Providention (PPWARD 49-210: Chr. 1987) Publication No. FHWA-RD-89-210 (Dec. 1989)

77

78


Constraints of Study


- Single lane closure (SLC) versus two-lane two-way operation (TLTWO) Rural, 4-lane divided highways
- ADT: 10,000 to 30,000
- ■51 projects in 11 states
- 3 had traffic delays

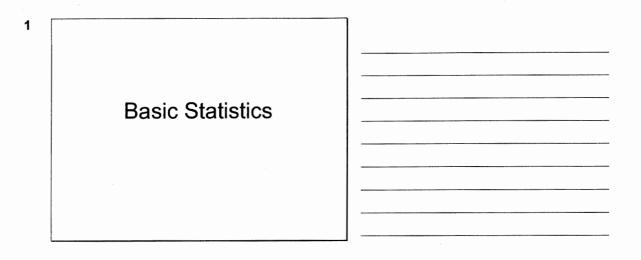
Primary Findings

- Many variables influence WZ cost control strategy
- No statistical difference in Crash rates for SLC vs. TLTWO
- Fatal + injury Crashes had a signif. increase for both SLC and TLTWO
- No significant accidents to construction workers

	Sinc	gle Lane C	losure				
	Before	During	Change				
Average	2.256	3.414	1.159				
StdDev	1.525	2.372					
Based on da	ita from 26 pr	ojects.					
	Two La	ne Two Wa	ay Oper.		· · · · · · · · · · · · · · · · · · ·	······································	
	Before	During	Change	<u></u>			
Average	3.241	3.057	-0.184		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
StdDev	2.191	1.384					
Based on da	ita from 22 pr	ojects.					

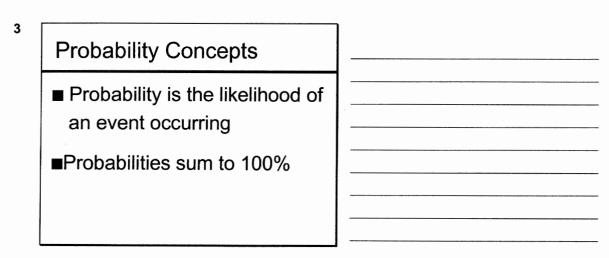
WZ User Costs Steps

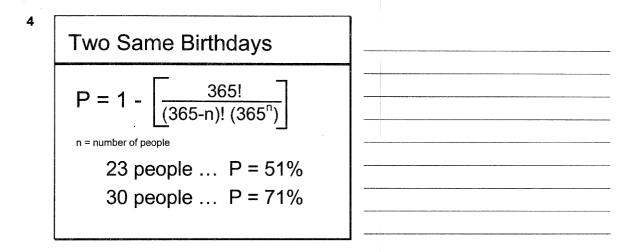
- 1. Determine Capacity
- 2. Calculate Directional Hourly Demand
- 3. Identify User Cost Components
- 4. Quantify Traffic Affected by Each Component
- 5. Compute Reduced Speed Delay Times
- 6. Assign VOC Cost Rates

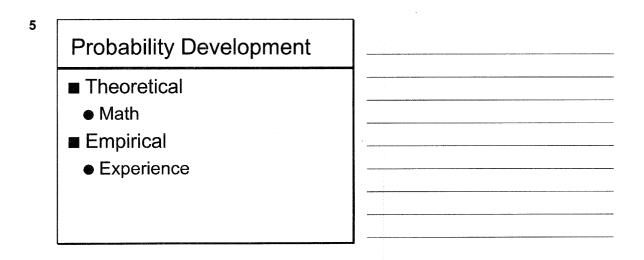

83

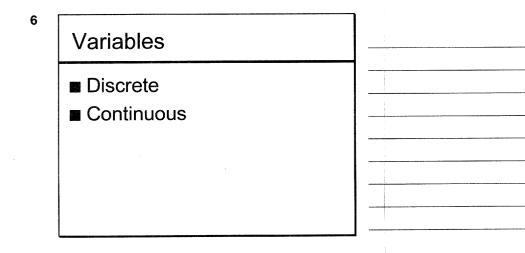
WZ User Costs Steps (Con't)

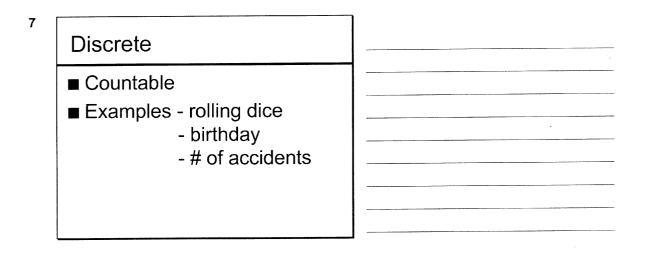
- 7. Assign Delay Cost Rates
- 8. Assign Traffic to Vehicle Classes
- 9. Compute User Costs by Vehicle Class
- 10. Circuity
- 11. Crash Costs
- 12. Sum Total User Costs

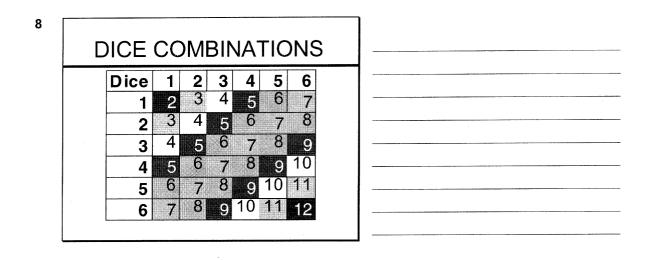

84

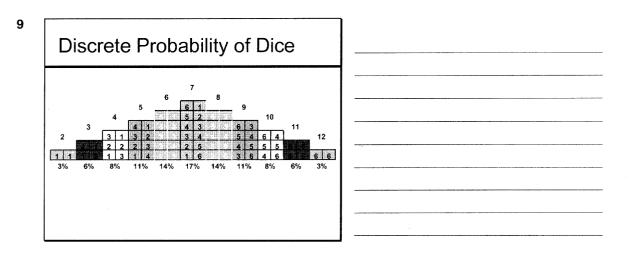

End Session

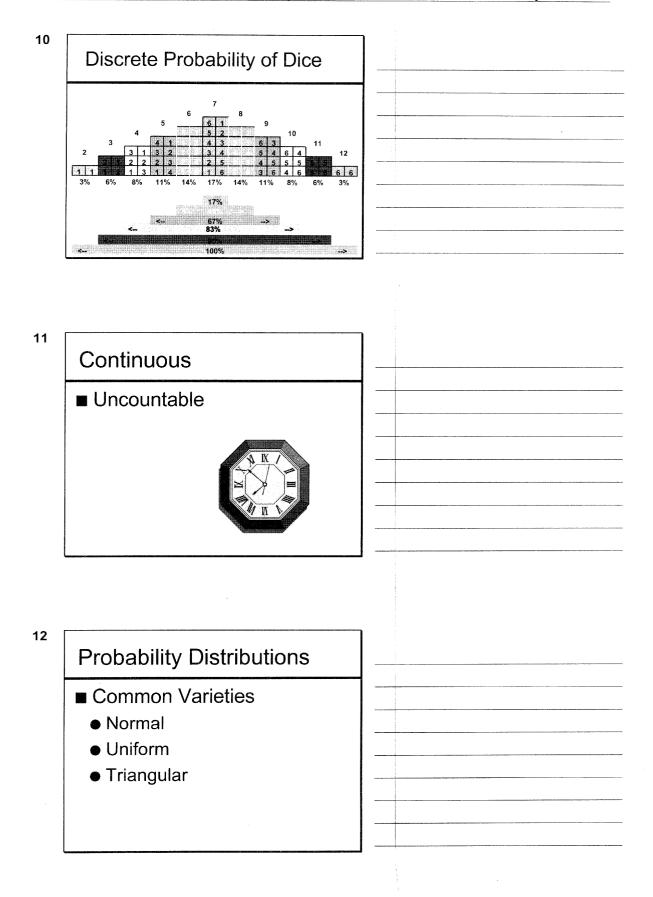


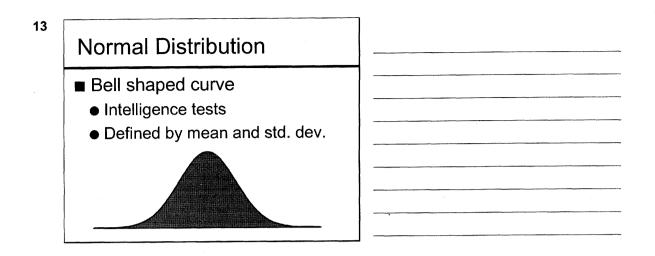

Session Overview

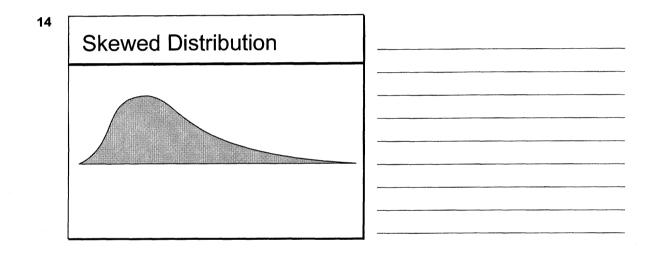

- Probability Concepts
- Probability Distributions
- Measures of Central Tendency
- Measures of Variability
- Interpreting Results

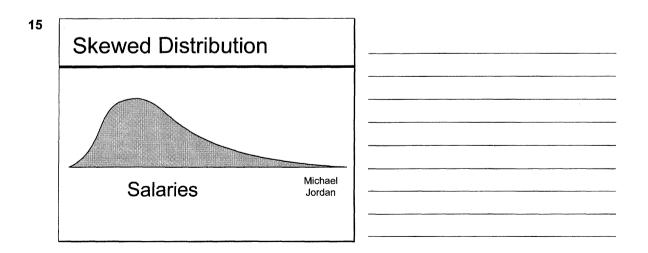


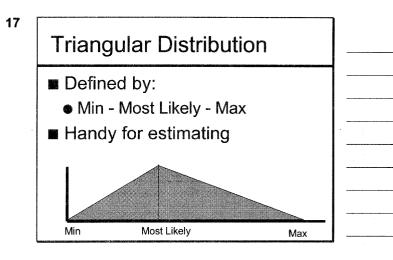


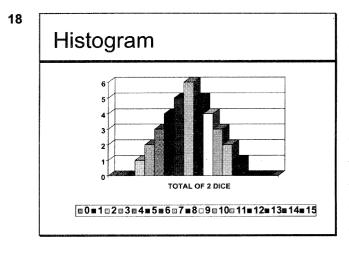


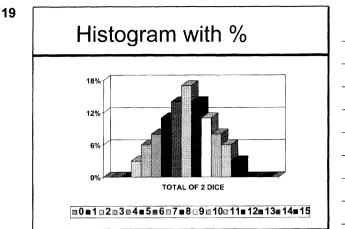


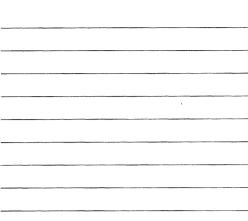


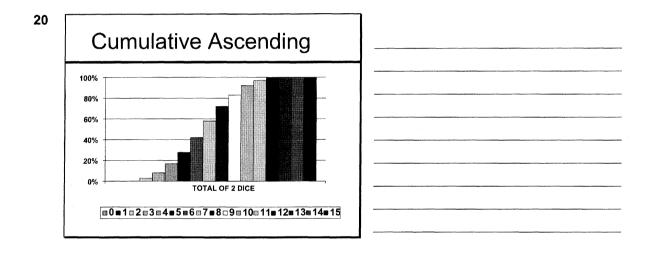


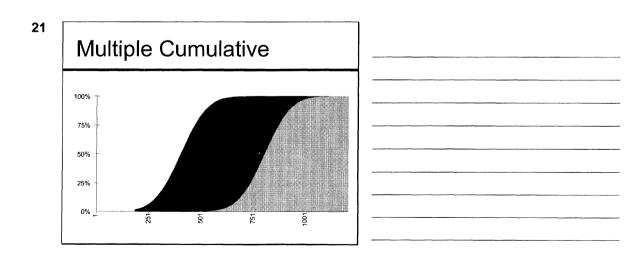


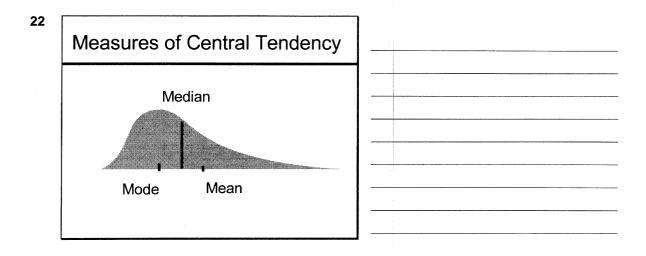


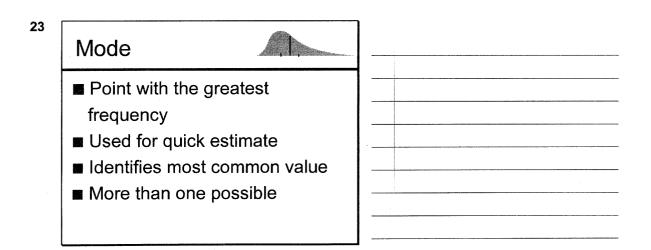


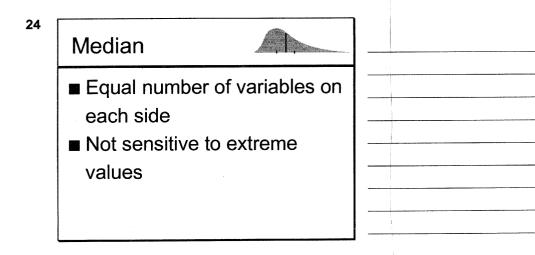


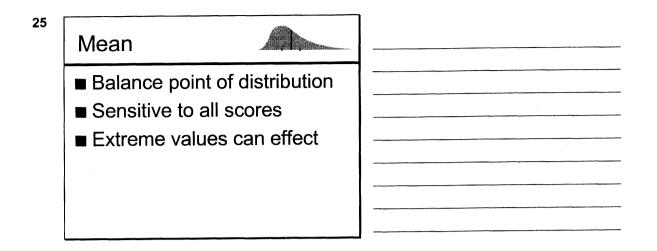

16 Uniform Distribution Equal Chance • Lottery Numbers PROB NUMBER

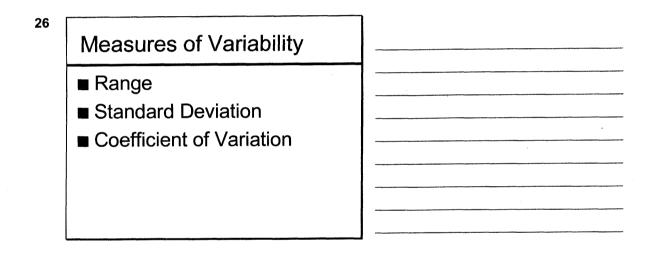


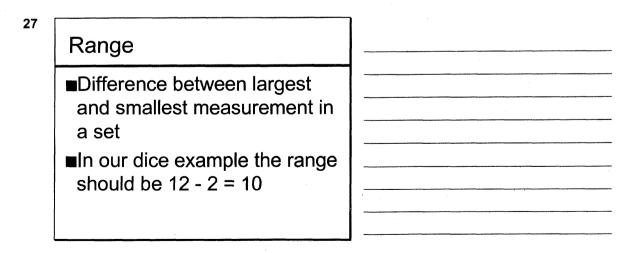


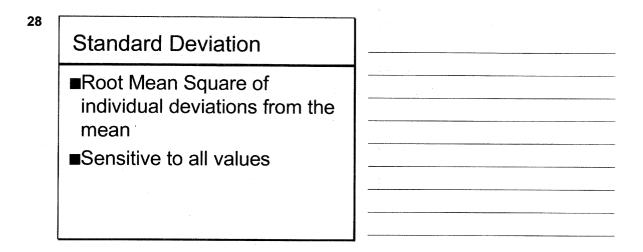


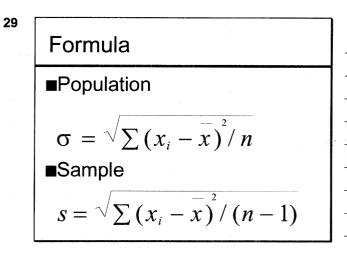


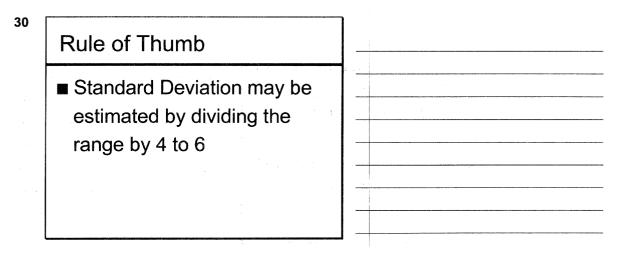


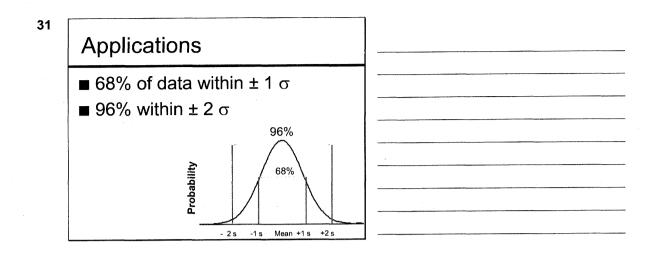


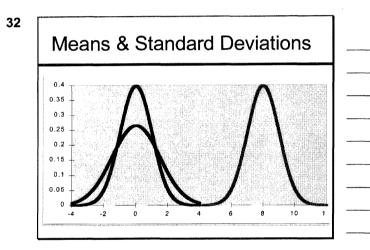


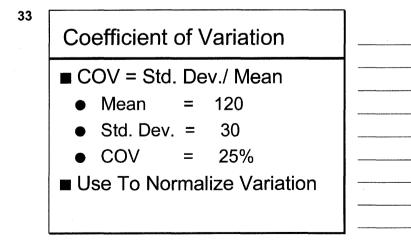








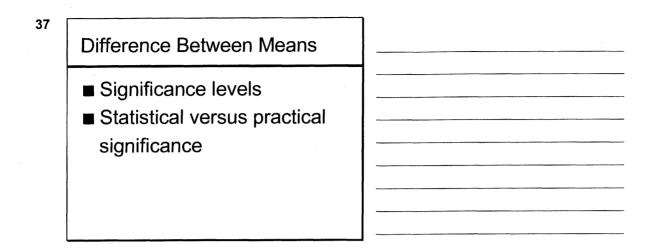


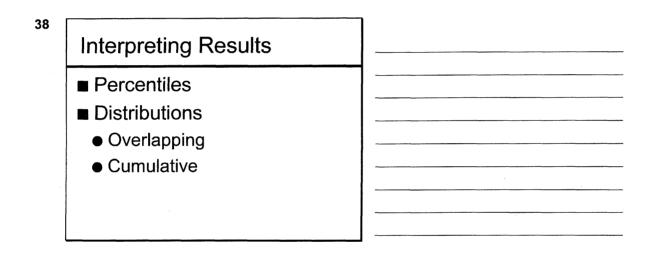


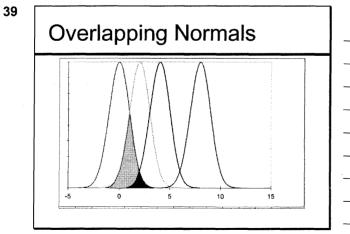
35

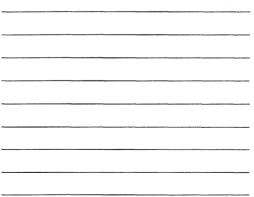
Population - Set of all measurements of interest

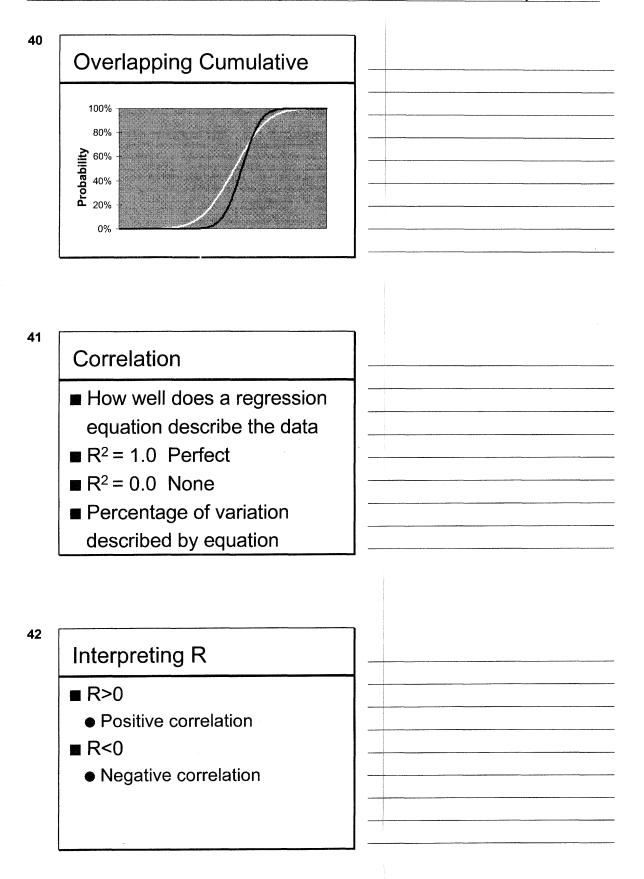
Sample - Subset of measurements selected from the population

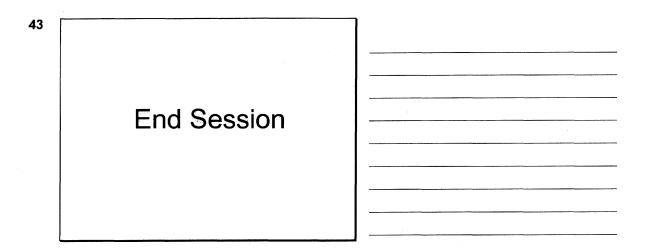

Random Sample

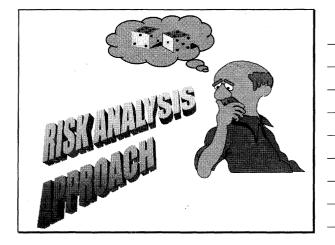

Each part of the population has an equal chance of being included in the sample

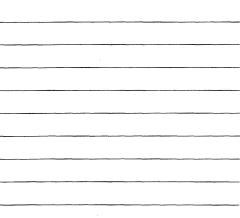

36


Confidence Intervals


There is a 95% probability that the mean height of class members is between 63 and 73 inches

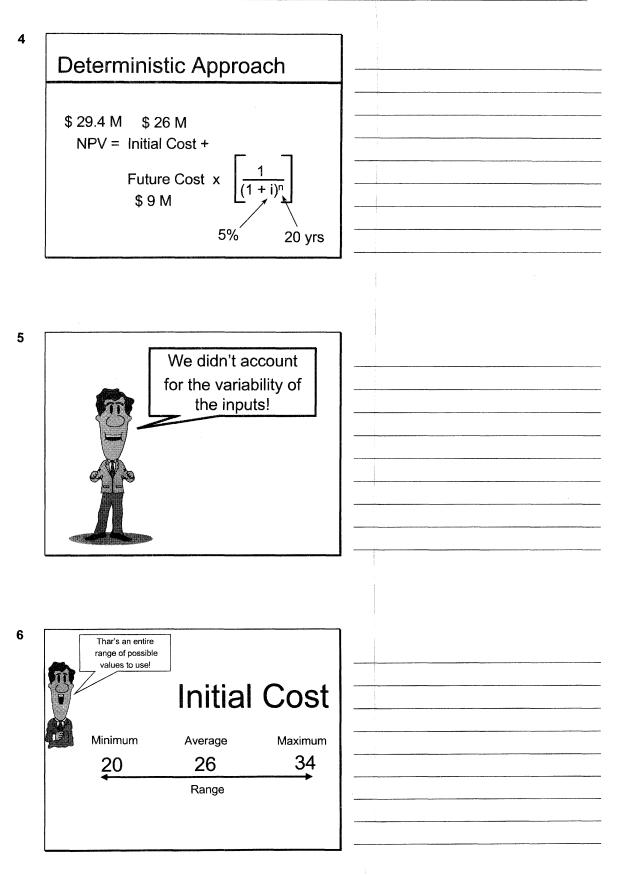


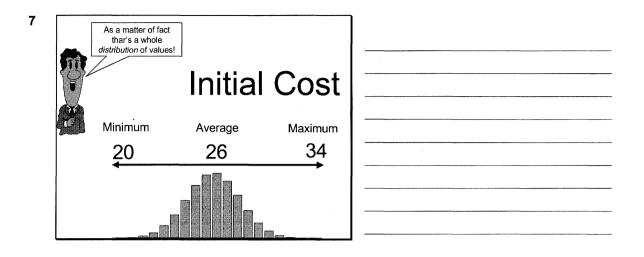




3

1


Session Overview

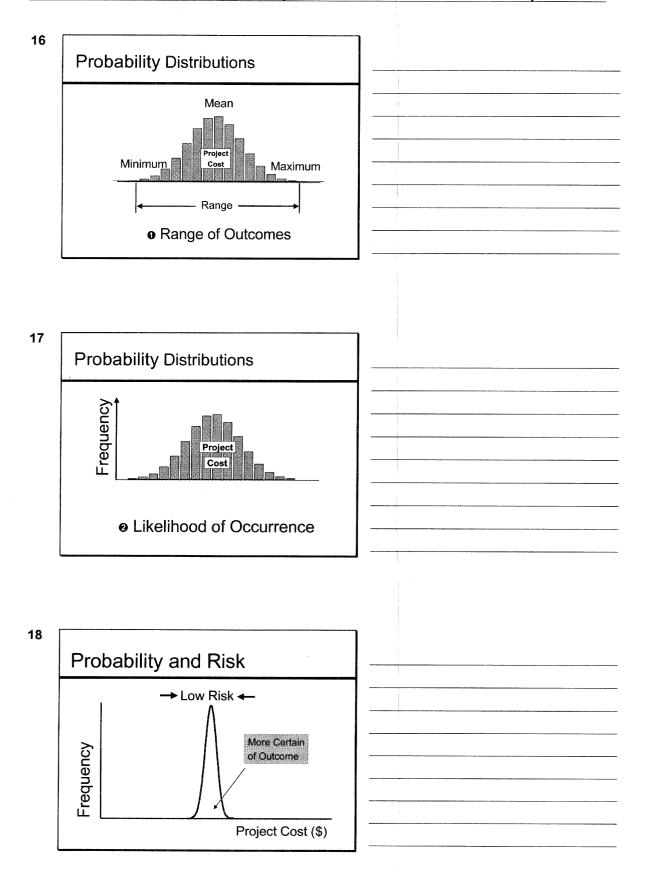

- Deterministic Approach
- Sources of Variability
- Risk Analysis Approach
- Applications
- Advantages/Disadvantages

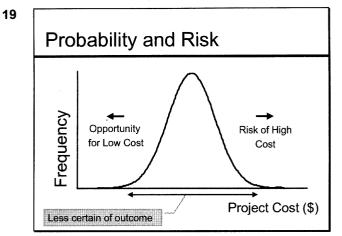
Deterministic Approach

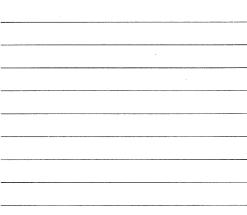
- Select discrete point values
 - Initial cost
 - Future cost
 - Timing of future cost
 - Value of time
 - Discount rate
- Compute discrete alternative NPV

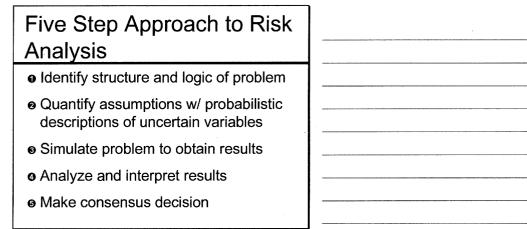
Demonstration Project No. 115

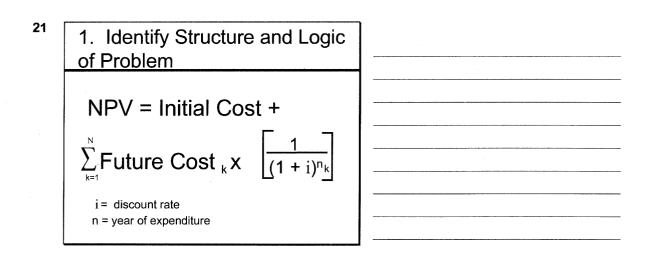
Sources of Variability Assumptions and estimates in ... Agency Costs • initial, rehab. construction, and maintenance activities --->materials, labor, overhead • User Costs • Daily delay (traffic --> initial & growth rate, daily distribution), construction work days, value of time, ...


9

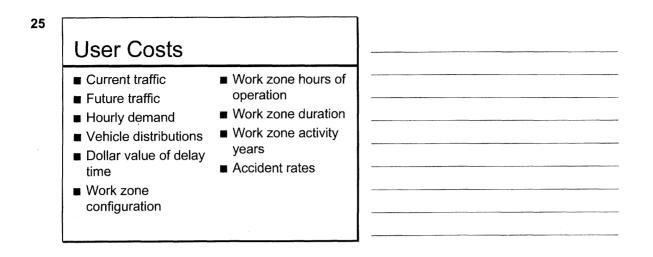

8

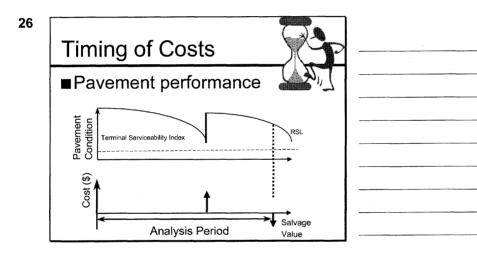

Sources of Variability Con't

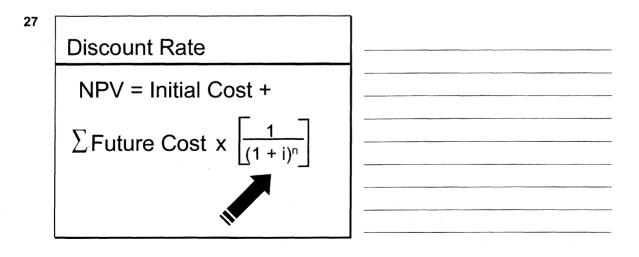

- ➡Discount Rate
- ♦Performance
 - •Environment, traffic loading, subgrade properties, materials design and construction ...


Demonstration Project No. 115

2. Quantify Assumptions Using Probability	
 Identify variables to include Describe uncertainty 	

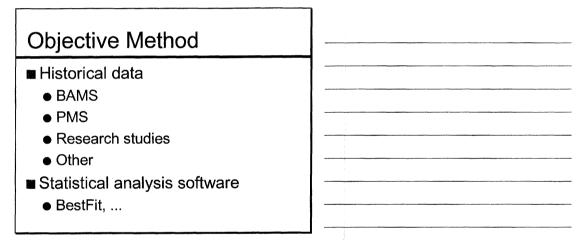

24

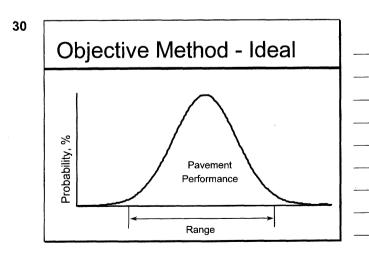

Variables to Include ...

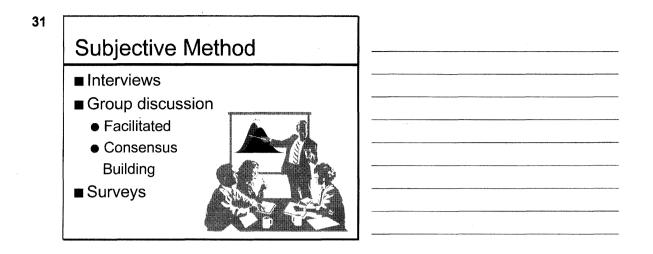

- Agency costs
- User costs
- Timing of costs
- Discount rate

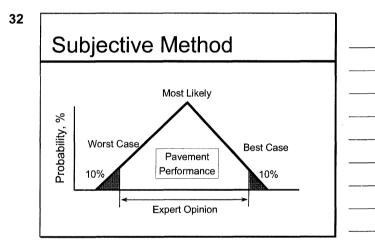
Agency Costs

- Preliminary engineering
- Construction management
- Construction costs
- Maintenance costs

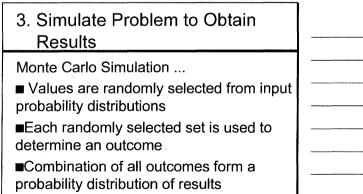


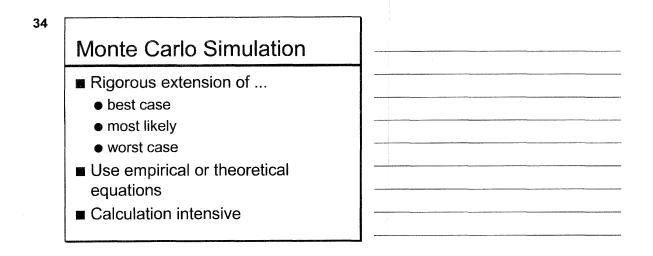


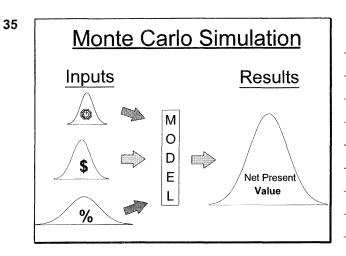


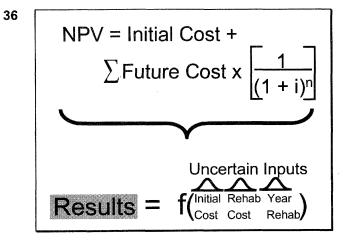


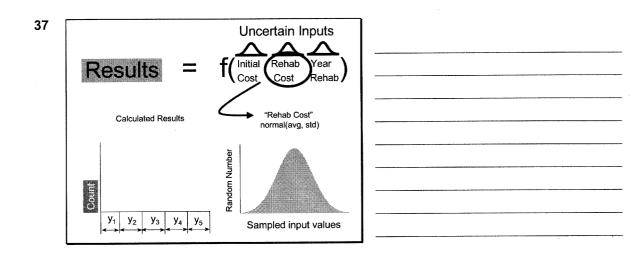
Describe Uncertainty	
 Objective Method Subjective Method 	

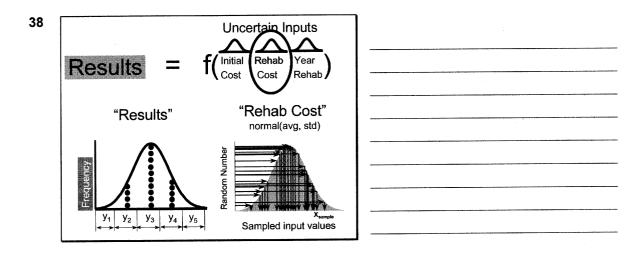


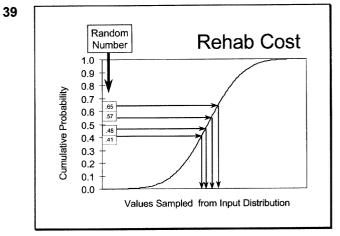


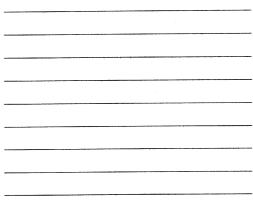


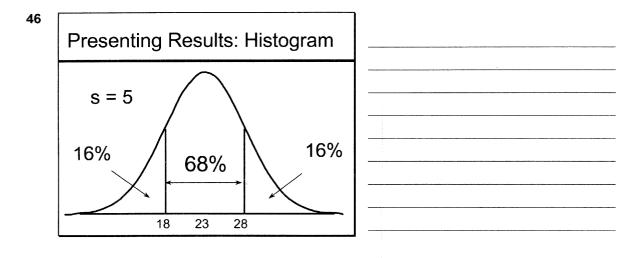


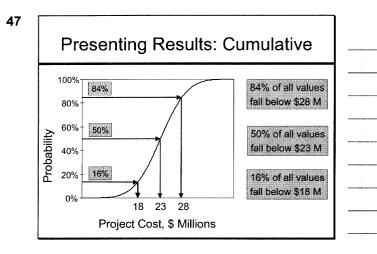


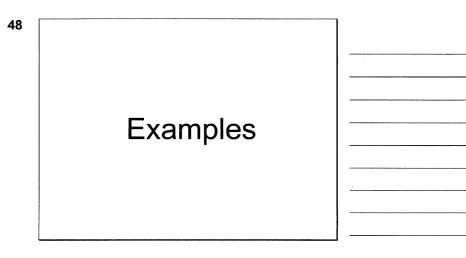


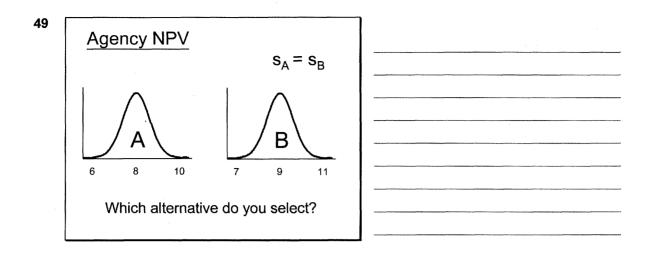


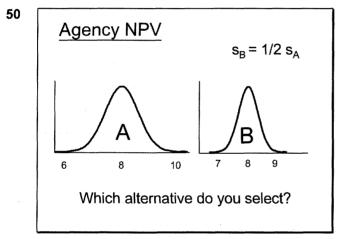


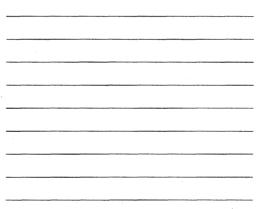


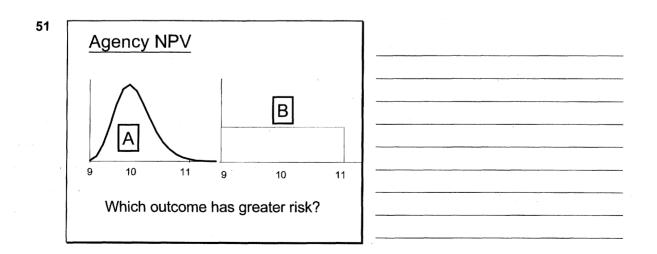


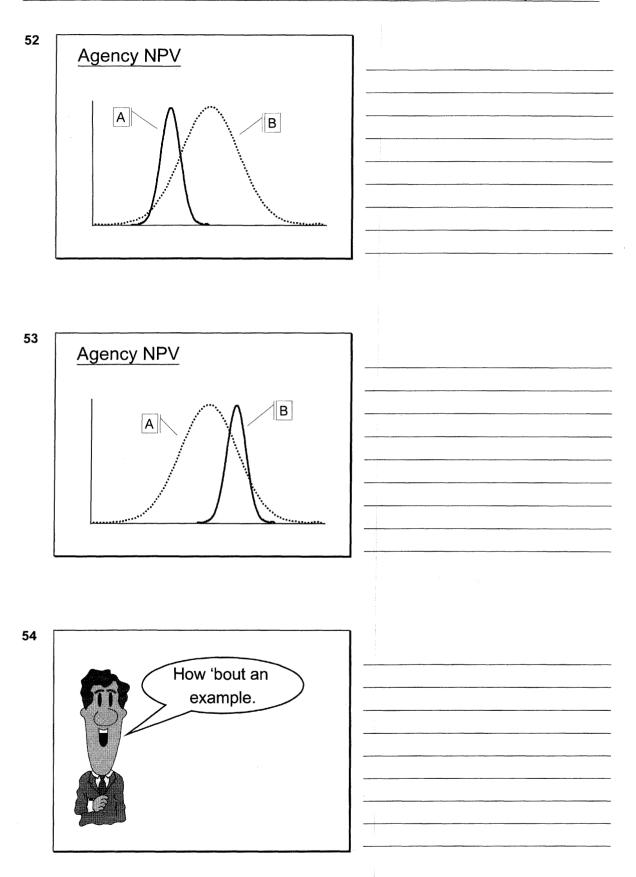


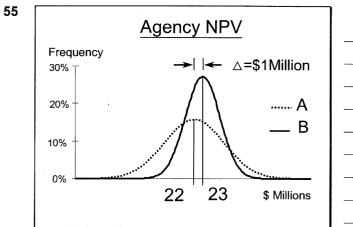


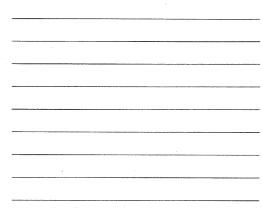


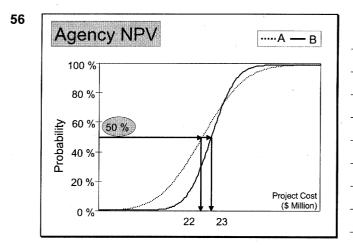


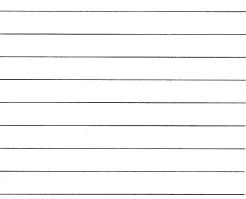


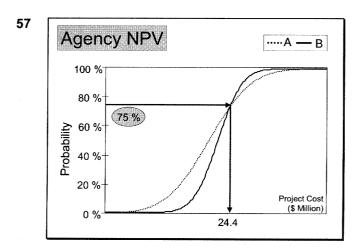


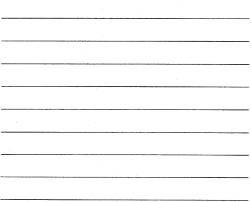


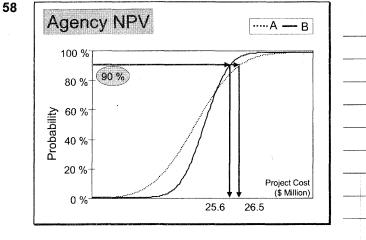


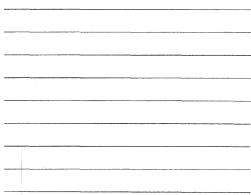

ΞŇ,

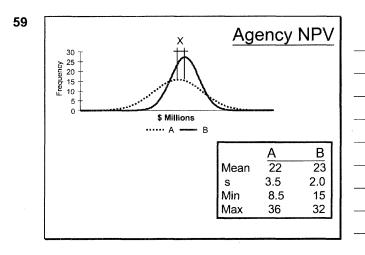

Demonstration Project No. 115

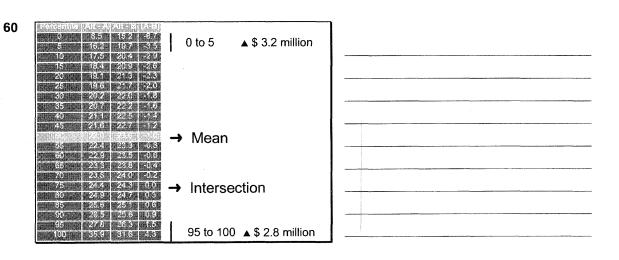


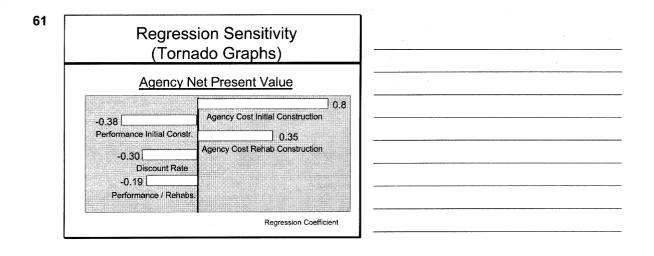


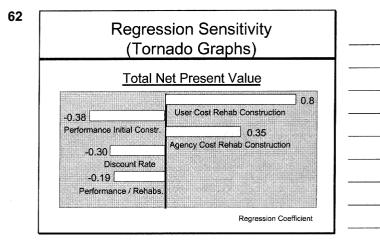


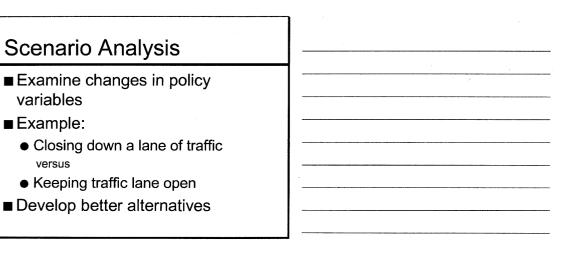


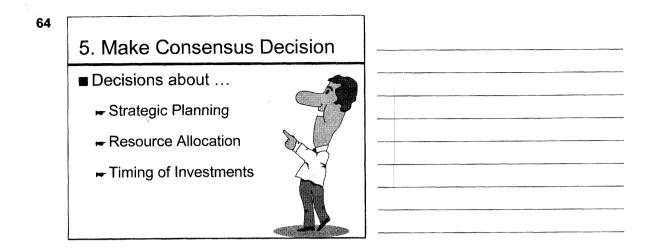


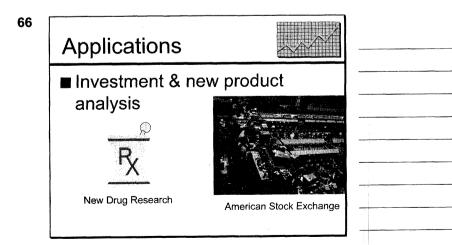

4

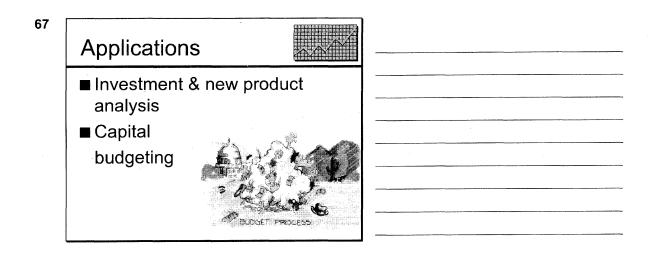

Demonstration Project No. 115

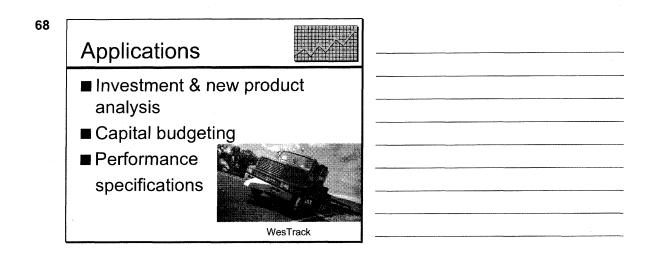


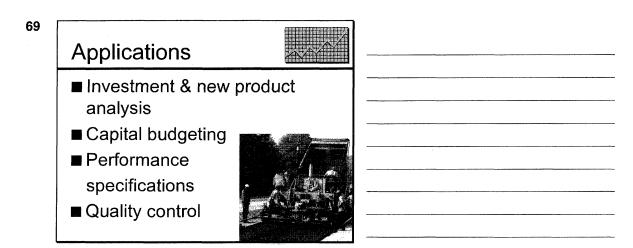


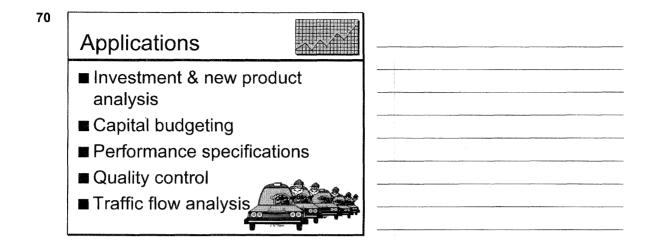


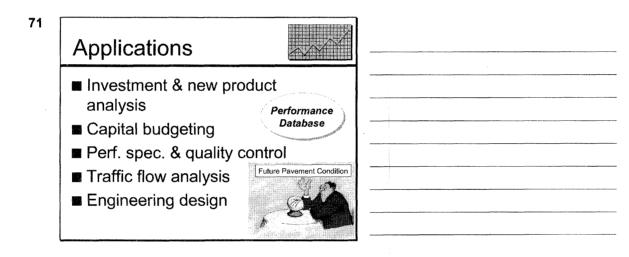

Demonstration Project No. 115

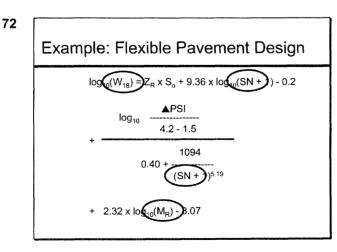


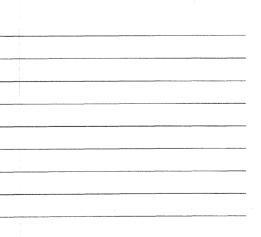

65

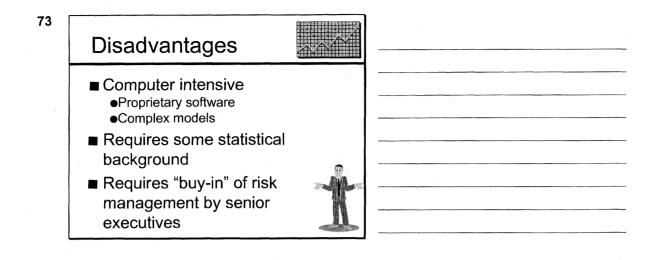

Risk Analysis Approach (Review) • Identify structure and logic of problem

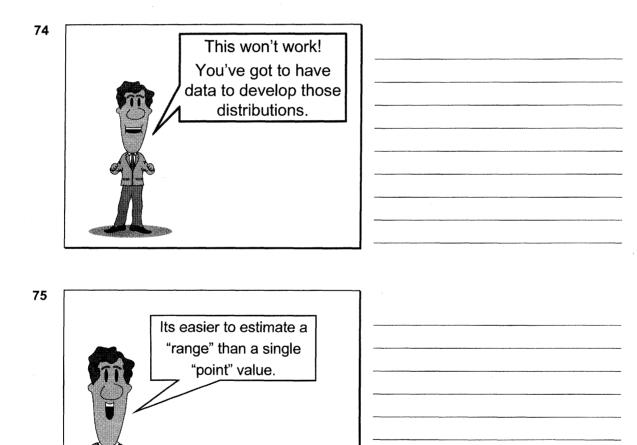

- Quantify assumptions w/ probabilistic descriptions of uncertain variables
- Simulate problem to obtain results
- Analyze and interpret results
- Make consensus decision

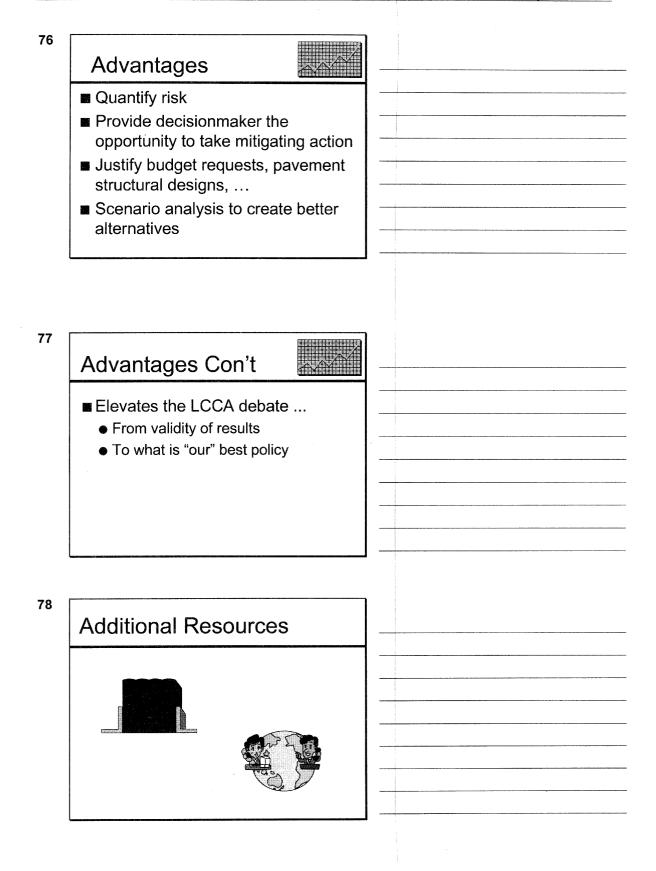


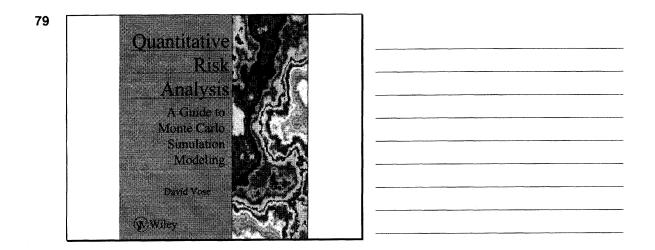


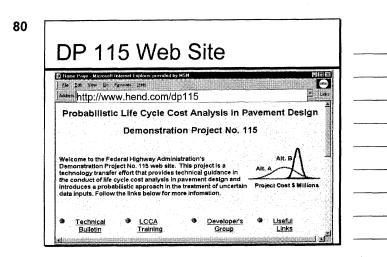


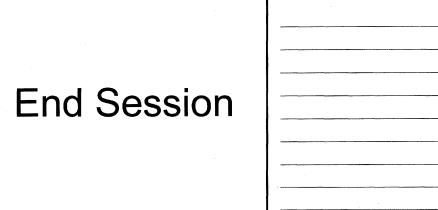


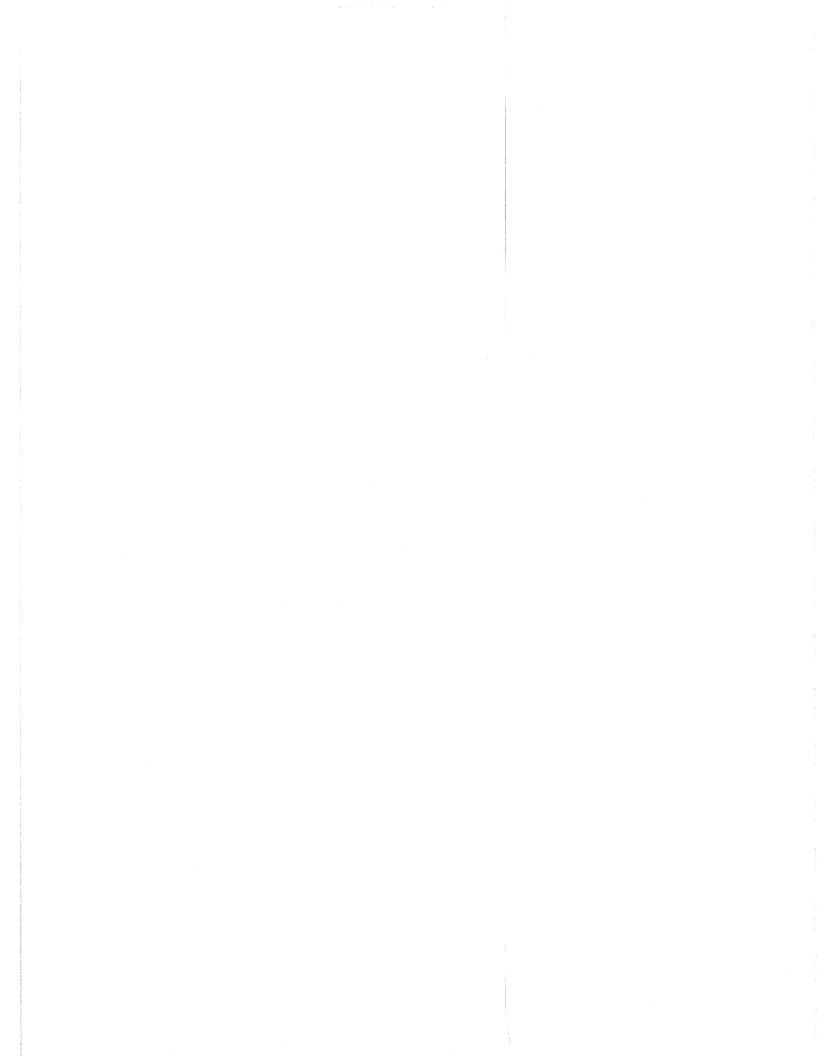


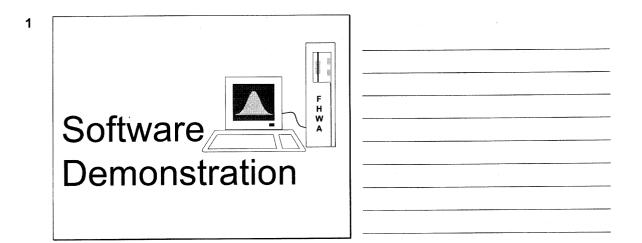


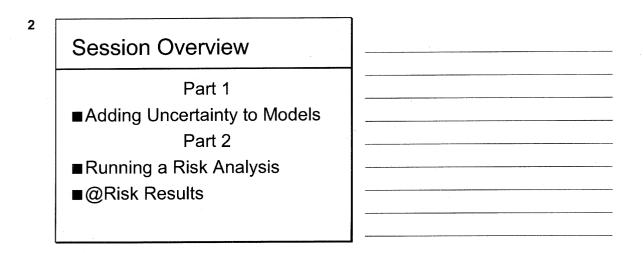


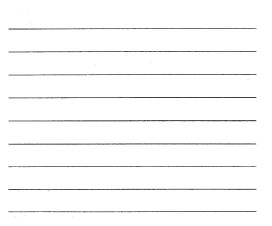


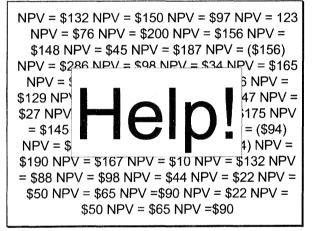












A	B	С		D
Net Preset Value				
2			Dis	scounted
3 ITEM	Year	Cost		Cost
4 Initial Construction	n 0	\$ 120.0	\$	120.0
5 Rehab	30	\$ 30.0	\$	12.4
Salvage	35	\$ (15.0)	\$	(5.3)
/	Vet Pres	ent Value	\$	127.0
3				
Assumptions:				
0 Discount Rate	3%			
1 Initial Life	30	Years		
2 Rehab Life	10	Years		

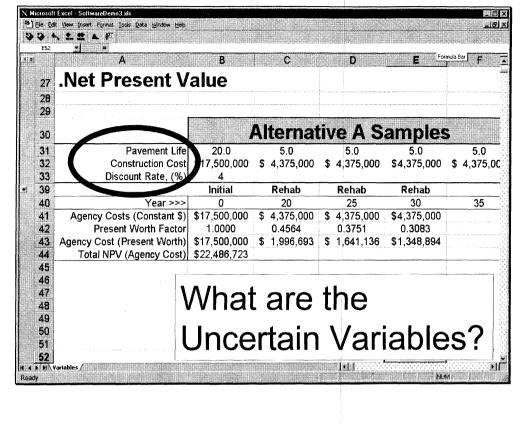
5

6

Solution: Modeling Uncertainty with Probability

@Risk works with Excel or Lotus

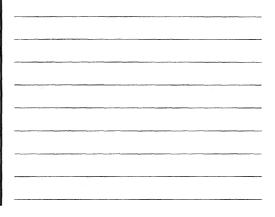
- How to add risk analysis to spreadsheet models
- How to use built-in @Risk functions


1	A	В	C	D	E For	nula Bar 📕
27	.Net Present V	alue				
28			······································			
29						
			A 14			
30			Alternat	ive A S	amples	;
31	Pavement Life	20.0	5.0	5.0	5.0	5.0
32	Construction Cost	\$17,500,000	\$ 4,375,000	\$ 4,375,000	\$4,375,000	\$ 4,375,0
33	Discount Rate, (%)	4				
39		Initial	Rehab	Rehab	Rehab	
40	Year >>>	0	20	25	30	35
41	Agency Costs (Constant \$)		\$ 4,375,000		\$4,375,000	
42	Present Worth Factor	1.0000	0.4564	0.3751	0.3083	
43	Agency Cost (Present Worth)		\$ 1,996,693	\$ 1,641,136	\$1,348,894	
44	Total NPV (Agency Cost)	\$22,486,723				
45						
46						
47			······			
48 49	· · · · · · · · · · · · · · · · · · ·					

8

Adding Variability to Spreadsheet Models

Identify uncertain variables



Adding Variability to Spreadsheet Models

Identify uncertain variables

 Describe uncertain variables as probability distributions

- Adding Variability to Spreadsheet Models
 - Identify uncertain variables
 - Describe uncertain variables as probability distributions
 - @Risk provides over 30 built-in probability functions

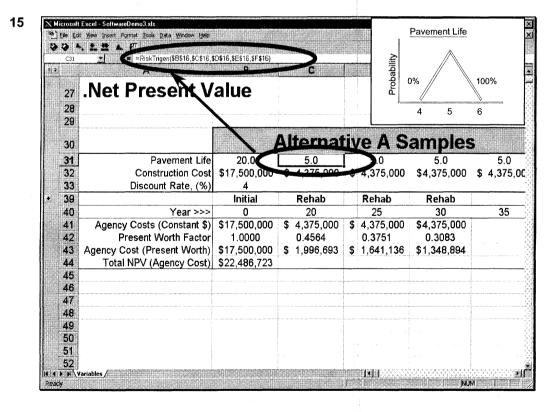
11

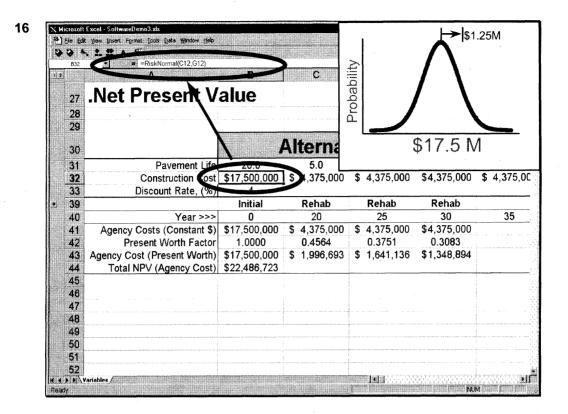
@Risk Probability Functions

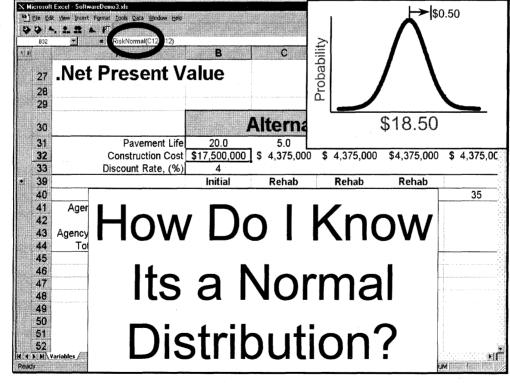
Beta Gamma Binomial Geometric Chi-Square General Cumulative Histogram Dependent Discrete Discrete Uniform Logistic Error Function Lognormal Erlang Lognormal2 Exponential

GammaNormalGeometricParetoGeneralPoissonHistogramTruncated ExponentialHypergeometricTruncated LognormalIndependentTruncated NormalLogisticTriangleLognormal2UniformNegative BinomialWeibull

 I3
 Functions are Similar to Excel

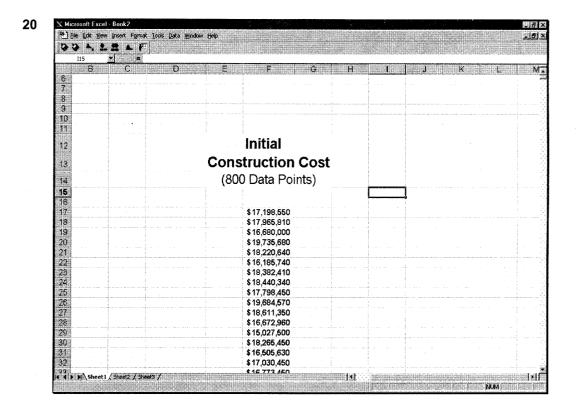

 =RiskNormal(A1,A2)


 =RiskNormal(3500*B7,C12/3000)

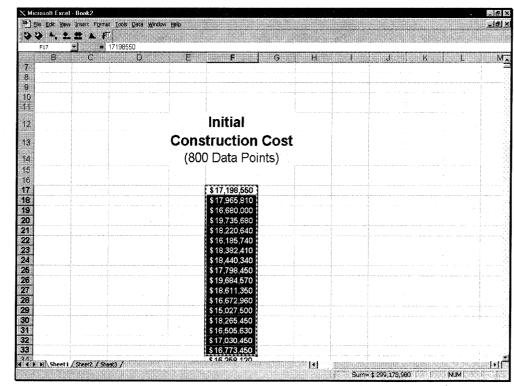

 =RiskNormal(RiskLognormal(A1,A2),RiskUniform(1,5))

 =If (G7>0,RiskNormal(3500,300),RiskNormal(3500,300*G8))

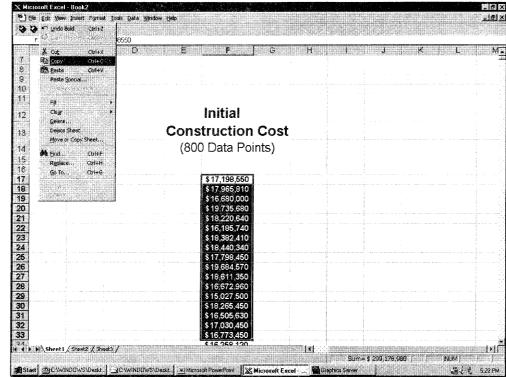
1	@Risk	Innu	t Para	D D D D D D D D D D D D D D D D D D D	e	F	Ģ	
2 3 4 5	Analysis Period		years		13			
6 7			Risk	Analysis Inp	ut Paramet	ers		1
8 9	Variable	Lower Estimate	Mean	Upper Estimate	Lower Percentile	Upper Percentile	Standard Deviation	Distibi Type
10	Discount Rate (%)	3	4	5	0	100		Trigen
11	Construction Costs							
12	Initial	\$ 15,000,000	\$ 17,500,000	\$ 20,000,000			\$ 1,250,000	Norma
13	Rehab	\$ 3,750,000	\$ 4,375,000	\$ 5,000,000			\$ 312,500	Norma
14	Performance (yrs)				<u>.</u>]
15	Initial	16	20	24	0	100		Trigen
•••••••	Rehab	4	5	6	0	100		Trigen
17								
18 19						:		
20		•					-	
21								
22					:	1		
23								
24					······			
25 26	· · · · · · · · · · · · · · · · · · ·							
	Variables /				I•1			harren er

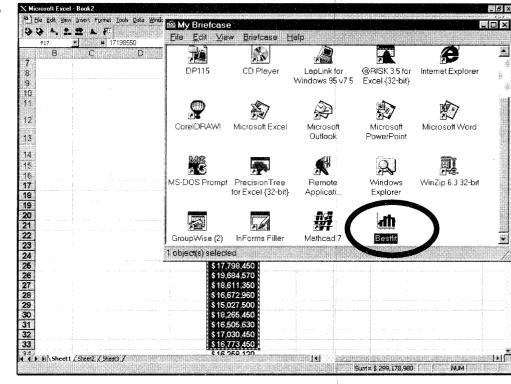


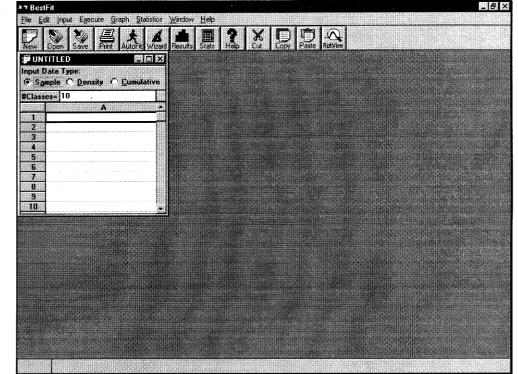
18 @Risk Probability Functions Normal Beta Gamma Binomial Geometric Pareto Chi-Squa /hich One xponential Cumulati Depende ognormal Use? Discrete ormal Should Discrete Error Function Lognormal Trigen Erlang Lognormal2 Uniform Exponential Negative Binomial Weibull

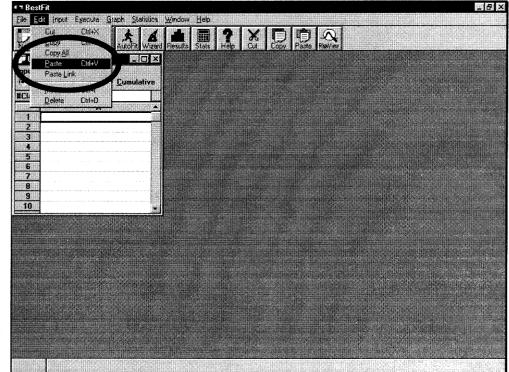


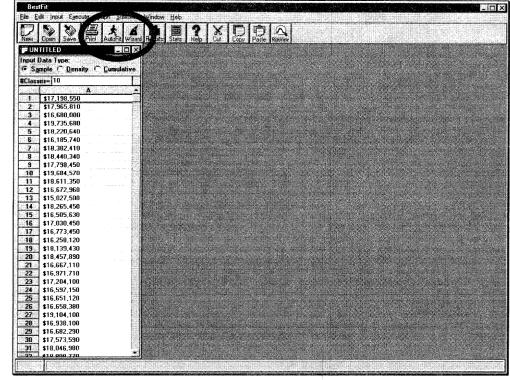
@Risk & BestFit

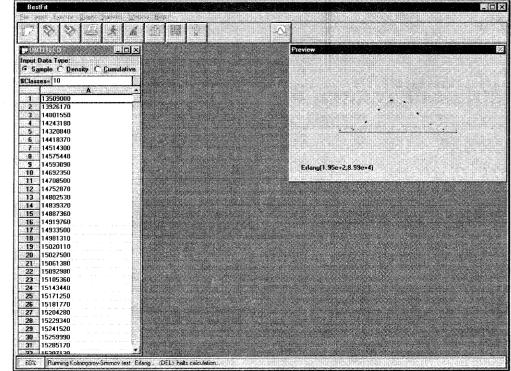

- Based on historical data input distribution models are developed using BestFit
- BestFit automatically determines the "bestfit" probability distribution
- Distribution model is "copied" directly into @Risk/Excel spreadsheet

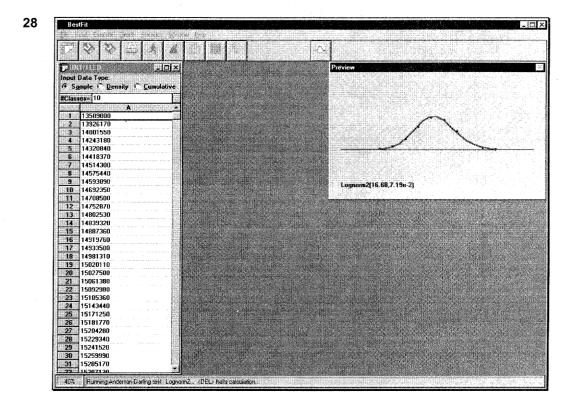


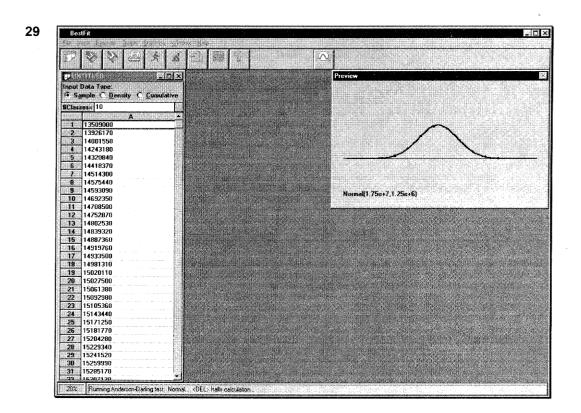


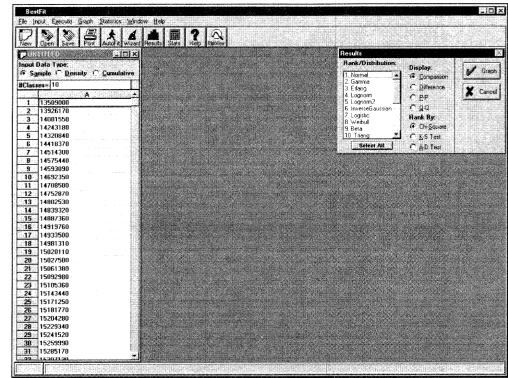


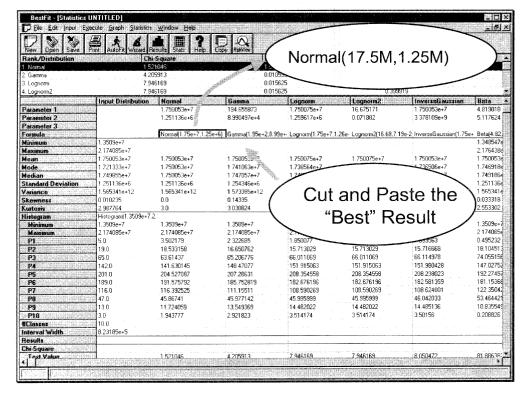




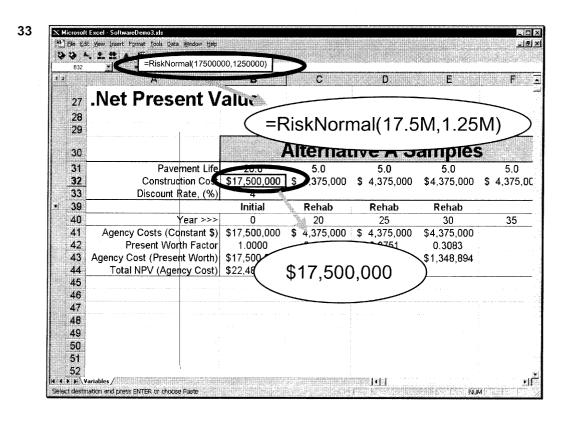




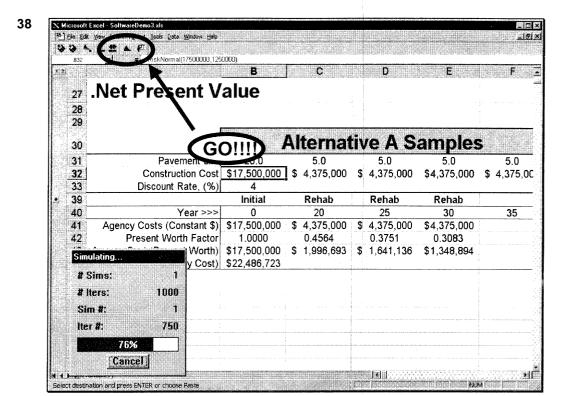




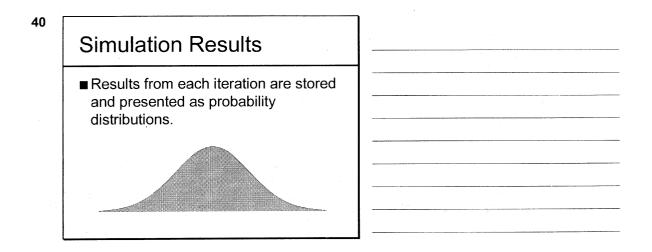
Module IX - 13



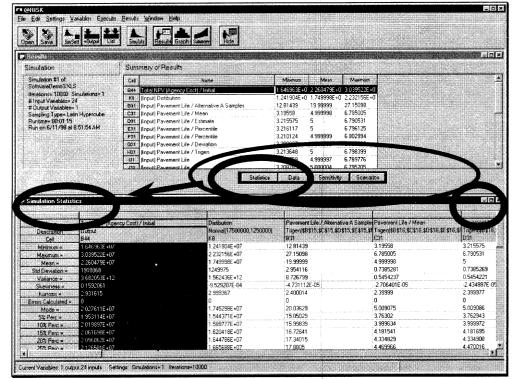
	A	В		С		D	F	F
27	.Net Present V	alue			/	Past	e Resu	Its
28								/
29							Here.	\checkmark
30		ļ	λ β	tornal	:i\	re A S	amples	;
31	Pavement Life	20.0		5.0		5.0	5.0	5.0
32	Construction Cost	\$17,500,000	\$	4,375,000	\$	4,375,000	\$4,375,000	\$ 4,375
33	Discount Rate, (%)	4						
39		Initial		Rehab		Rehab	Rehab	
40	Year >>>	0		20		25	30	35
41	Agency Costs (Constant \$)	\$17,500,000	\$	4,375,000	\$	4,375,000	\$4,375,000	
42	Present Worth Factor	1.0000		0.4564		0.3751	0.3083	
43	Agency Cost (Present Worth)	\$17,500,000	\$	1,996,693	\$	1,641,136	\$1,348,894	
44	Total NPV (Agency Cost)	\$22,486,723						
45								
46								
47								
48								
49								
50	·····	-						
51								


Running a Risk Analysis

	AND	B C	D	E	F
27	.Net Present V	alue			
28				ontrol Pa	anel
29					
30		Alterna	ative A Sa	amples	
31	Pavement Lif	Simulation Settings			×ō
32	Construction Co:	Iterations Sampling Cor	vergence Macro	External	5
33 39	Discount Rate, (%	instantin 1 contempt on	ioidouro 1 iutore	1 - 11 - 11 - 11	1-
40	Year >>	HU 1 150	4.6 2 1.7	a	5
41	Agency Costs (Constant \$	# Iterations = 150	# <u>S</u> imulations =	Ľ	
42	Present Worth Facto	Each Iteration			
43 44	Agency Cost (Present Worth				
44 45	Total NPV (Agency Cos	Allow Multitasking			
46		Pause on Error			
47		💌 Update Display			
(11) (11) (11) (11) (11) (11) (11) (11)					
and the second					
48 49 50 51			<u> </u>	Cance	

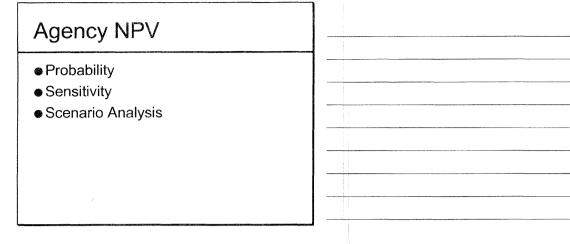

B32		25000) Based C F
	.Net Present \	
30	Devenuenti	Simulation Settings
31 32 33	Pavement Li Construction Cc Discount Rate, (^c	Iterations Sampling Convergence Macro External
39 40 41	Year >: Agency Costs (Constant	IX Egecute Macro? Macro name: The Do It All Macro
42 43 44 45 46 47 48	Present Worth Fact Agency Cost (Present Wort Total NPV (Agency Cos	Macro Executes When? O Before simulation O Before sampling/ worksheet recalc After sampling/ worksheet recalc O After simulation
49 50 51 52	ariables (DK Cancel

*	Elle En Co B32		Define C Referen		D		F
	27	.Net Present V	alue	U	Ľ	-	
	28 29						
	30	и талантана) славнания назвиния на зтаки вин так на	1	Alterna	ative A Sa	amples	;
	31	Pavement Life		5.0	5.0	5.0	5.0
	32	Construction Cost	\$17,500,000	\$ 4,375,00	0 \$ 4,375,000	\$4,375,000	\$ 4,375
1	33	Discount Rate, (%)					
•	39		Initial	Rehab	Rehab	Rehab	
	40	Year >>>	0	20	25	30	3 5
	41	Agency Costs (Constant \$)		\$ 4,375,00		e4 275 000	
	42	Present Worth Factor	1.0000	0.4564	Define	Total	
	43	Agency Cost (Present Worth)	,000,000	\$ 1,90 69	13	4	
	44	Total NPV (Agency C 4)	\$22,486,723		NPV	as 🗋	:
	45					sut l	
	46				Outp	Jui	
	47						
	48						
	49						
	50						
	51 52						
	······································	'ariables /			[+] [
Sele		ation and press ENTER or choose Paste			babat.	NŰ	M

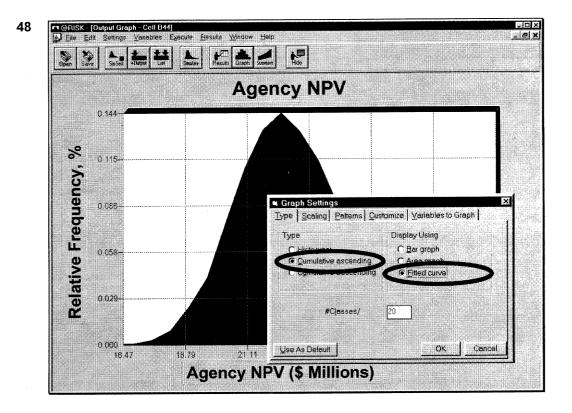

Simulation Processing

- Latin Hypercube
- 24 Input Variables
- 1 Output Variables
- 10,000 Iterations
- Run Time = 1 minute 15 seconds

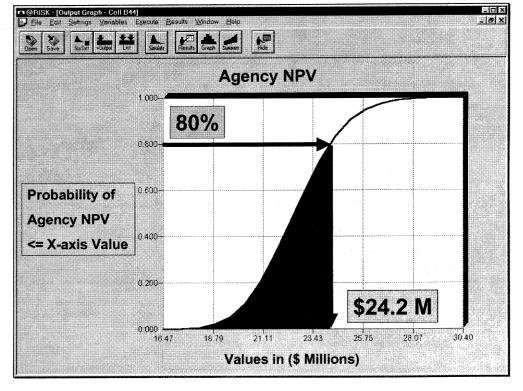
Open Seve Sa	Seti +Output List	Sesiate Results Gr	ath Samer	Inputs and	Caipa
):					
Simulation		Summary of Results			
Simulation #1 of: SoftworeDemo33 Iterations=10000 # Input Variables # Output Variables Sampling Type= Puntime=00.011 Bun on \$12,200	Simulations= 1 - 24 s= 1 Latin Hypercube	C31 (Input) Pavemen D31 (Input) Pavemen 531 (Input) Pavemen	n 1 1 Life / Alternative A Samples 1 1 Life / Mean 3 1 Life / Etimate 3 1 Life / Percentile 3	Meanum Meanum Maximum 646963E+0 2.260479E+0 3.039522E 2.41904E+0 7.49999E+0 2.232156E 2.81439 1999999 2715998 1.19550 4.999998 6.7865005 2.215575 5 6.790531 2.210124 4.999998 6.380294	+0
Det	ails	F31 (Input) Pavemen G31 (Input) Pavemen		209837 4.999998 6.795606 Sensitivity Scenarios	
Simulation Stati	stics	G31 (Input) Pavemen	tLife / Deviation 3 Statistics Dete	2209837 4.999998 6.795606	
Simulation Stati	stics		LLfe / Deviation 3 Statistics Deta	209837 4.99998 6.795606 Sensitivity Scenarios	
Simulation Stati Name Description	Stics Total NPV (Age Output	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta	209837 4.99998 6.795606 Sensitivity Scenarics Pavement Life / Alternative A San Trigen(48515 \$C\$15,\$D\$15,\$E\$15	Trigen(\$B\$16
Simulation Stati Name Description Cell	stics Total NPV (Age Output B44	G31 (Input) Pavemen	LLIE / Deviation 3 Statistics Deta	209837 4.999398 6.795606 Sensitivity Scenerics Pavement Life / Alternative A Sam Tragen (\$B\$15.\$C\$15.\$D\$15.\$C\$15 B31	
Name Description Ceil Minimum +	stics Total NFV (Age Output B44 1 646963E + 07	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Distibution Norma((75500000,1250000) X8 1 241904E+07	209837 4.99998 6.795606 Sensitivity Scenarios Pavement Life / Alternative A Sam Tragen(38815.50515,\$0515,\$0515 831 12.81439	1 Tngen(\$8\$16 C31 3 19558
Name Description Cell Minimum = Meximum =	Stics Total NPV (Age Dutput B44 1 6.45965E + 07 3.039522E + 07	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Deta Detabution Normal(17500000;1250000) Kä 1 241946E+07	209837 4.999398 6.795606 Sensitivity Scenerics Pavement Life / Alternative A Sam Tragen (\$B\$15.\$C\$15.\$D\$15.\$C\$15 B31	Trigen(\$B\$16 C31
Name Description Ceil Minimum - Maximum - Mean -	Stics Total NPV (Age Dutput B44 1 646963E+07 1 039522E+07 2 260479E+07	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Distibution Norma((75500000,1250000) X8 1 241904E+07	209837 4.999398 6.795606 Sensitivity Scenarios Pavement Life / Alternative A San Tragen(\$B\$15.5C\$15.\$D\$15.\$E\$15 B31 12.81439 27.15098 13.99993	Tngen(\$B\$16 C31 3.19558 6.785005
Simulation Stati Name Description Cell Minimum - Meximum - Mean - Sid Devietion -	Stics Total NPV (Age Dutput B44 1 6.45965E + 07 3.039522E + 07	G31 (Input) Pavemen	LLfe / Deviation 3 Statistics Deta Distibution Normel(17500000,1250000) Kal 1 241904E-07 2 232156E-07 1 743936E-07	209837 4.99998 6.795606 Sensitivity Scenerics Pavement Life / Alternative A. San Tingen (\$B\$15.\$C\$15.\$D\$15.\$E\$15 B31 12.81439 27.15098	 Trigen(\$B\$16 C31 3.19558 6.785005 4.999998
Name Description Cell Minimum = Meximum = Meximum = Std Develop + Variance =	Stics Totel NPV (Age Dutput B44 1 646963E+07 3 039522E+07 2 260472E+07 1918866	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Distibution Norma(1/7500000,1250000) K8 1 241904E+07 2 232156E+07 1 749996E+07 1 249975	209837 4.99998 6.795605 Sensitivity Scenarios Pavement Life / Alternative A San Tragen (\$8315.30215,300215,3	 Trigen(\$B\$16 C31 3.19558 6.785005 4.999998 0.7385281
Name Description Cell Minimum - Mean - Std Deviation + Yanance - Skewness -	stics Total NEV (Age Output Ex4 1 646963E • 107 1) 03952CE • 107 2 260479E • 107 3 882055E • 12	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Dishbution Normal(17500000,1250000) K8 1 241904E+07 2 232156E+07 1 749995E+07 1 562436E+12	209837 4.99998 6.795605 Sensitivity Scenerics Pavement Life / Alternative A San Trigen(\$B\$15.\$C\$15.\$D\$15.\$E\$15 B31 12.81439 27.15098 19.99993 2.954116 6.726799	Trigen(\$8\$16 C31 3.19558 6.785005 4.999938 0.7385201 0.5454237
Name Description Cell Minimum = Meximum = Meximum = Std Develop + Variance =	stics Totel NPV (Age Output B44 1 64665E+07 1 039522E+07 2 2604720 2 2604720 3 662053E+12 0 1592061 2 931615	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Distibution Norma(17500000,1250000) Ka 1 241904E-07 2 232156E-07 1 74939E-07 1 74939E-07 1 74939E-07 1 74939E-12 - 552207E-04	209837 4.99998 6.795606 Sensitivity Scenerics Pavement Life / Alternative A. San Trigen(\$B\$15.\$C\$15.\$D\$15.\$E\$15 B31 12.81439 27.1508 19.99999 2.554116 9.726799 4.731112E-05	5. Trigen(\$B\$16 C31 3.19558 6.785005 4.999998 0.7385281 0.5454237 -2.706401E-05
Name Description Ceil Minimum - Meximum - Meximum - Std Deviation + Variance + Skewness - Kurtoas -	stics Totel NPV (Age Output B44 1 64665E+07 1 039522E+07 2 2604720 2 2604720 3 662053E+12 0 1592061 2 931615	G31 (Input) Pavemen	Life / Deviation 3 Statistics Deta Distibution Norma(17500000,1250000) Ka 1 241904E-07 2 232156E-07 1 74939E-07 1 74939E-07 1 74939E-07 1 74939E-12 - 552207E-04	209837 4.99998 6.795606 Sensitivity Scenarios Pavement Life / Alternative A Sam Tragen(\$B\$15.5c15.5c215.5c215 B\$1 12.81439 27.15098 19.99999 2.954116 8.726799 4.731112E-05 2.400014	 Tngen(\$B\$16 C31 3 19558 6.785005 4 999998 0.7385201 0.5454237 -2.706401E-0! 2.39999

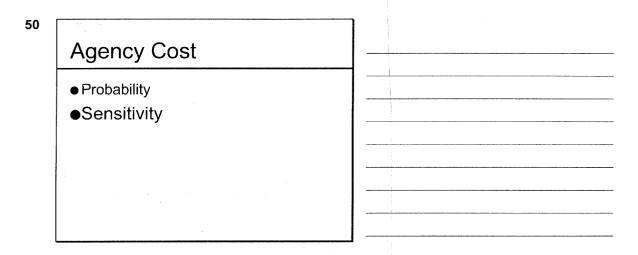


Descharbin Descharbin Nermet 7500201 250001 Tugent 55 15 55 15 50 31-56 25 15 50 31-56 31 50 31-5 45 15 61 50 31-5 50 50 50 50 50 50 50 50 50 50 50 50 50						
Cat D44 Hamman Fa D31 D31 D31 Mrianan 1.44/95/5-61/7 12.214/35 3.19598 3.2155 Mamman 1.05/95/2-11/2 2.232156-67 12.914/35 6.79005 6.79005 Mamman 1.05/95/2-11/2 1.749998-407 19.9999 4.99998 5 Marking and State 12 1.749998-107 12.9179 2.954116 0.7385281 0.7385281 Marking and State 12 1.5524362+12 1.752798 0.5545237 0.544 Skewtrosis - 1.05001 4.9299077 2.4001/4 2.39999 2.3999 Jost 1416-40 0 0 0 0 0 Middin A 2.0275112-07 1.5624362+07 12.05629 3.75002 3.75002 JOST Park 14-07 1.545382 3.999534 3.999634 3.99963 3.999634 3.99963 JOS Park 12 1.565172+07 1.56529 3.75002 3.75002 3.75002 3.75002 3.75002 3.75002 3.75002 3.75002 3.75002	Name		Distibution	Pavement Life / Alternative A Sampl	e Pavement Life / Mean	Pavement Lik
Minimum 148/56/2 = 07 1.24190/6 = 07 1.24190/6 = 07 1.24193/6 = 07 1.245286 + 07 1.2523/6 = 07 1.2523/6 = 07 1.2523/6 = 07 1.2523/6 = 07 1.2523/6 = 07 1.2523/6 = 07 1.2525/6 = 07 1.2525/6 = 07	Description					
Maxmun 21059525 ± 07 221565 ± 07 271599 E 785005 6 7900 Maxmun 21059525 ± 07 1939996 ± 07 1939996 ± 07 1939996 ± 07 1939996 ± 07 5 Maxmun 21059525 ± 07 1939996 ± 07 1939996 ± 07 1939996 ± 07 024557 Maxmun 210515 ± 07 195925 ± 01 05542621 05542621 05454237 0544 Skewiese ± 01582001 259315 ± 07 24344 5522070 44 239999 23999 23999 Fort defaladed ± 0 0	Cel					
Mean 2 20047/2 + 07 1 7499386 + 07 1 9 9999 4 999990 5 Site Development 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Minimum +					3.215575
Std Davketsrim 1193-80 1249975 2.954116 0.7365281 0.7365281 0.7365281 Variance at: 31630507=12 1.5624367-12 8.727739 0.5454237 0.5454 Skewnesse: 0.1550001 9.52230704 4.7311126.05 2.7064016-05 2.4344 Kontosin: 2.939367 2.400014 2.39999 2.3999 2.399 Carci Cadchabed 40 0 </td <td>Maximum =</td> <td></td> <td></td> <td></td> <td></td> <td>6.790531</td>	Maximum =					6.790531
Main State State State			and the book of the first taken and the data of the second s			
Skewinest 0159.0bi 3.52207E.04 4.731112E.05 2.706401E.05 2.444 Kreinest 2.939367 2.40004 2.39939 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 2.3993 3.9505 5.000 0 <td>Std Deviation *</td> <td></td> <td></td> <td></td> <td></td> <td>0.7385269</td>	Std Deviation *					0.7385269
Kurdar 2 931615 2 99367 2 400014 2 39999 2 3999 2 3999 2 3999 2 3999 2 3999 2 3999 2 3999 2 3999 0						0 5454221
D D D D D D Medra # 2027611 ± 07 1745286 ± 07 20.03623 5.009075 5.0090 Medra # 2027611 ± 07 1543716 ± 07 15.05029 3.75302 3.7532 102 Paics 20.03937 ± 07 15.93937 3.939634 3.93993 3.939634 3.9399 152 Paics 20.019827 ± 07 15.93939 3.939634 3.9399 3.939634 3.9399 152 Paics 20.019827 ± 07 15.447065 ± 07 17.9805 4.434429 4.344 252 Paics 2.0159825 ± 07 1.9805 4.58095 4.59095 4.59095 4.59095 4.59095 4.59095 4.59095 4.59095 4.59095 4.59095 4.59095 4.5909 5.52694 4.59095 4.59095 4.59095 4.5999 5.52694 4.59992 4.59995 4.59992 4.59992 4.59992 4.59992 4.59992 5.52699 5.52693 5.52693 5.52693 5.52693 5.52693 5.52693 5.52693 5.52693 5.52693<						-2 434887E-0
Intractional Constraints Description 1 745298E+07 20 02529 5 009075 5 0090 (b) Media - 1 95314E+07 1 544371E+07 15 05029 3 76302 3 76202 (b) Media - 1 019587-107 1 59833 3 396534 3 3985 3 398534 3 3985 1 02 Perce - 2 019587-107 1 59833 3 398534 4 3985 3 3985 3 398534 3 3985 1 02 Perce - 2 015582E+07 1 6264985-07 1 7 24015 4 30429 4 304 202 Perce - 2 048382E+07 1 665698E+07 1 7 24015 4 334629 4 304 203 Perce - 2 154709E+07 1 5647985 4 69305 4 4693065 4 470302 4 7043 203 Perce - 2 154709E+07 1 56488E+07 1 8 8095 4 592055 4 59202 4 59302 4 7043 4 704302 4 7043 4 704302 4 7043 4 704302 4 7043 4 704302 4 7043 4 99975 5 0566 5 562866 5 562866 5 562866 5 562866 4 59992 5 99257 5 05666						
Siz Perci 1983114E+97 1544371E+07 1505029 37502 3752 102 Perci 2019307-07 159837 1598777E-07 159839 399634 39993 152 Perci 2019307-07 1598777E-07 159839 399634 39993 152 Perci 2015957E-07 1572441 4181541 4181541 202 Perci 2135977E-07 179805 439429 4334 2352 Perci 2135977E-07 179805 4459966 44700 2352 Perci 2135977E-07 189896 4552065 45920 2352 Perci 215575E-07 178837E-07 192532 489914 4899 4552 Perci 225575E-07 174835E-07 192532 489914 4899 4552 Perci 225575E-07 1748056-07 192532 489992 493992 4552 Perci 225575E-07 1749575E-07 156568-07 207115 505299 502592 493992 493992 493992 493992 493992 5035 5197 207112	Errors Calculated =		······································	a la successione and a spectrum of the second s		
102/Parc 2.01303/2 + 07 15.997/78 + 07 15.998/34 3.99937 4.99944 4.99932 4.9993						5.009086
TSX Pare 2 0151582E +07 1 6204198 -07 1 672641 4 181541 4 1815 20x1 98 -07 1 672641 4 181541 4 181541 4 1815 20x1 98 -07 1 7 24015 4 33493 4 33493 4 33493 20x1 98 -07 1 7 24015 4 33493 4 33493 4 33493 20x2 98-02 2 1 35011 + 107 1 666686 + 07 1 7 8605 4 552055 4 5520 30x 98-02 2 1 350157 + 07 1 86856 4 552055 4 5520 4 69914 30x 98-02 2 105012 + 07 1 86859 4 997123 4 9971 3 66859 4 997123 4 9971 30x 98-02 2 2 5502 + 67 1 7 84395 + 07 19 86859 4 997123 4 9971 30x 98-02 2 2 5502 + 67 1 7 84395 + 07 19 86859 4 99723 4 9971 50x 98-02 2 2 5502 + 67 1 7 8568 + 07 20 37111 5 052699 5 0125 50x 98-02 2 3051 44 = 07 1 7 8568 + 07 21 18179 5 258005 5 28937 70x Pare 2 3051 44 = 07 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>3.762943</td></td<>						3.762943
15.5 16.44705E +07 17.24015 4.34423 4.344 202 (Perc. 2.15.5011 +07 1.664705E +07 17.24015 4.459365 4.459365 302 (Perc. 2.15.5011 +07 1.666688 +07 17.8405 4.459365 4.4700 302 (Perc. 2.15.5011 +07 1.666688 +07 18.8685 4.4700 4.643305 4.4703 302 (Perc. 2.15.571 +07 1.70826 +07 18.8685 4.703302 4.7043 400, Perc. 2.05.972 +07 1.7183 ±07 19.25532 4.608914 4.8099 403, Perc. 2.25.572 +07 1.7342655 +07 19.52559 4.907123 4.9071 502 Perc. 2.23574 +07 1.749375 +07 19.999372 4.999922 4.99992 502 Perc. 2.23674 +07 1.761558 +07 20.07567 5.19044 5.1907 502 Perc. 2.30514 + 07 1.761558 + 07 20.7511 5.052693 5.02563 502 Perc. 2.3014 + 2.07 1.78152 + 07 20.7511 5.052693 5.2953 702 Perc. <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
BSX Parc. 21.5501E+07 1.665688:07 17.8905 4.493966 4.4703 335: Perc. 21.3501E+07 1.86469 4.53205 4.5320 335: Perc. 21.5501E+07 1.86469 4.53205 4.5320 355: Perc. 21.5557E+07 1.701312±+07 19.86469 4.53205 4.5320 400: Perc. 2.5578E+07 1.718312±+07 19.25352 4.00914 4.003 403: Perc. 2.2.378E+07 1.74397E+07 19.55352 4.00914 4.003 555: Perc. 2.2537E+07 1.74997E+07 19.99372 4.99972 4.99973 555: Perc. 2.2537E+07 1.76568±+07 20.7542 4.9971 1.75668±+07 20.7542 4.9971 502: Perc. 2.205142±+07 1.76568±+07 20.75457 5.19044 5.1907 635: Perc. 2.305142±+07 1.76569±+07 21.18179 5.25505 5.6475 502: Perc. 2.305142±+07 1.78569±+07 21.18179 5.25904 5.5278 702: Perc. 2.305135±+07						4.181695
3052 Perc 2 154709E + 07 1 584449E + 07 1 8 3895 4 532055 4 532 3052 Perc 2 115475E + 07 1 70182E + 07 1 8 381751 4 704302 4 7043 3052 Perc 2 201577E + 07 1 70182E + 07 1 8 381751 4 704302 4 2005 3052 Perc 2 201577E + 07 1 734205E + 07 1 9 25532 4 806314 4 8063 3052 Perc 2 205372E + 07 1 734205E + 07 1 9 5655 4 99992 4 99992 5032 Perc 2 205372E + 07 1 74397E + 07 1 76565E + 07 20 7111 5 092599 5 0925 5025 Perc + 2 30012E + 07 1 76565E + 07 20 7111 5 092599 5 0925 5025 Perc + 2 30012E + 07 1 78142E + 07 21 18179 5 255050 5 2933 7025 Perc + 2 30012E + 07 1 88277 e 07 21 18179 5 255050 5 2937 7025 Perc + 2 30012E + 07 1 88277 e 07 21 18179 5 255050 5 2937 7025 Perc + 2 30012E + 07 1 88277 e 07 21 18179 5 255050						
353 Free 1 17182E + 07 1 81751 4 704302 4 7043 400 Free 2 2015702 + 07 1 71833 £ 407 19 22332 4 608314 4 6093 400 Free 2 2015702 + 07 1 71833 £ 407 19 22332 4 608314 4 6093 400 Free 2 2015702 + 07 1 743977 + 07 19 52859 4 907123 4 9071 502 Free 2 203512 + 07 1 743977 + 07 19 93972 4 939932 4 9399 502 Free 2 205142 + 07 1 749977 + 07 19 93972 4 939922 4 9399 502 Free 2 30542 + 07 1 781652 + 07 20 73677 5 190944 5 1907 602 Free 2 30542 + 07 1 781652 + 07 21 18179 5 258005 5 2537 702 Free 2 300542 + 07 1 881776 + 07 21 18179 5 259004 5 5279 702 Free 2 300542 + 07 1 895198 + 07 22 18137 5 529004 5 5279 805 Free 2 400274 + 07 1 895198 + 07 23 39984 5 98655 5 64655 905 Free 2 400274 + 07 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Soft Parts 2005/025-07 1.71831 35-07 19.25322 4.80914 4.809 401; Parts 2.205/025-07 1.71831 35-07 19.25322 4.80914 4.907 455; Parts 2.205/025-07 1.743056-07 19.25322 4.80914 4.907 603; Parts 2.25372 1.734256-07 19.93922 4.999922 4.99992 503; Parts 2.25372 1.75666-07 2.037111 5.052693 5.092 503; Parts 2.305142-07 1.76566-07 20.7111 5.052693 5.9394 504; Parts 2.305142-07 1.76568-07 20.7167 5.19094 5.1907 855; Parts 2.305142-07 1.7981425-07 21.1817 5.253005 5.2937 702; Parts 2.303142-07 1.815557-07 21.1817 5.524004 5.5237 702; Parts 2.4032142-07 1.85595-07 22.393142 5.253004 5.5237 705; Parts 2.4032142-07 1.85595-07 22.393142 5.81817 5.98142 805; Parts 2.403214-07						
BST_Rec 2.0302E+07 1734298-07 19.62859 4.907123 4.9071 602_Prec 2.0302E+07 1.734298-07 19.93972 4.999922 4.99992 602_Prec 2.278417E+07 1.734977E+07 19.93972 4.999922 4.9999 602_Prec 2.278417E+07 1.76656E+07 20.37111 5.032699 5.09269 602_Prec 2.205142E+07 1.76655E+07 20.7657 5.10944 5.1907 652_Prec 2.205142E+07 1.781655E+07 20.7657 5.10944 5.1907 702_Prec 2.205142E+07 1.781655E+07 21.5112 5.407616 5.4077 703_Prec 2.2030E+07 1.81555E+07 21.5112 5.407616 5.4077 703_Prec 2.2030E+07 1.83277E+07 22.51305 5.664555 5.66455 805_Prec 2.40022E+07 1.955199E+07 22.37184 5.918172 5.9180 2051_Prec 2.40032E+07 1.955578E+07 23.9989 5.999554 5.9997 905_Prec 2.505167E+07 <						
Bit Rev 2 253/37E +07 1 749977E +07 19 39372 4 999922 4 9999 55% Peior 2 2754712 +07 1 75668E +07 20 7111 5 032699 5 032599 50% Peior 2 305148E +07 1 75668E +07 20 7111 5 032699 5 19094 60% Peior 2 305148E +07 1 78568E +07 20 76567 5 190944 5 1907 65% Peior 2 305148E +07 1 799142E +07 21 61179 5 255005 5 2893 70% Peior 2 30914E +07 1 834277E +07 21 61179 5 5 29004 5 5 29004 75% Peior 2 309136E +07 1 834277E +07 22 11337 5 5 529004 5 52930 80% Peior 2 40032E +07 1 895199E +07 22 399395 5 664655 5 664655 95% Peior 2 40032F +07 1 955195E +07 23 27184 5 818172 5 8180 90% Peior 2 50557E +07 1 955578E +07 23 39989 5 936554 5 9397 90% Peior 2 508167E +07 1 955578E +07 2 4 94631 6 23684 6 23689						
552 Pairs 2.276417E + 07 1.76566 + 07 20.77111 5.052693 5.0526 563 Pairs 2.276417E + 07 1.781653E + 07 20.7317 5.09044 5.1907 563 Pairs 2.307542E + 07 1.781653E + 07 20.7367 5.190944 5.1907 563 Pairs 2.307542E + 07 1.781653E + 07 21.6179 5.29530 5.2953 702 Pairs 2.301542E + 07 1.815555E + 07 21.61179 5.29500 5.2953 705 Pairs 2.301542E + 07 1.815555E + 07 22.11337 5.525004 5.5257 905 Pairs 2.40072E + 07 1.895195E + 07 22.81585 5.664555 5.664 635 Pairs 2.40032E + 07 1.955195E + 07 23.27184 5.918172 5.9180 905 Pairs 2.40032E + 07 1.955578E + 07 23.99893 5.939554 5.9397 905 Pairs 2.505072 + 07 1.955578E + 07 23.99893 5.939554 5.9397 935 Pairs 2.505072 + 07 1.955578E + 07 24.94631 6.23694 6.23694						
Bits Bits Description 1 781635 + 07 20 76367 5 190944 5 1907 Bits Pero J 2 3051425 + 07 1 781635 + 07 20 76367 5 190944 5 1907 Bits Pero J 2 3005425 + 07 1 7816355 + 07 21 18179 5 285055 5 28505 7035 Pero J 2 3005425 + 07 1 815056 + 07 22 11337 5 529004 5 5297 7055 Pero J 2 4007216 + 07 1 891595 + 07 22 58985 5 664655 5 6646 6057 Pero J 2 309861 + 07 23 27184 5 819172 5 8190 9057 Pero J 1 9055976 + 07 23 29989 5 996554 5 9997 9057 Pero J 1 901775 + 07 23 99989 5 996554 5 9997 9057 Pero J 1 9055795 + 07 2 4 94631 6 236944 6 2369 FRort Maximum Frort Maximum Frort Maximum Frort Maximum 6 24 94631 6 236944 6 2369						
BSX Parc 2 330724E+07 1 799142E+07 2 1 1979 5 29505 5 2933 702 Parc 2 33042E+07 1 85556+07 21 63102 5 407616 5.4076 755 Parc 2 33152E+07 1 84277E+07 22 11337 5 525604 5 5297 805 Parc 2 43152E+07 1 895199E+07 22 6885 5 664655 5 664 805 Parc 2 40032E+07 1 895199E+07 22 5885 5 664655 5 664 805 Parc 2 40032E+07 1 895199E+07 23 27164 5 51817 5 81817 905 Parc 2 40032E+07 1 995197E+07 23 39989 5 999554 5 9997 905 Parc 2 588167E+07 1 995579E+07 24 94631 6 28984 6 2989 FBrot Microson 1 1 995579E+07 24 94631 6 28984 6 2989 FBrot Microson 1 1 995579E+07 24 94631 6 28984 6 2989						
Display Display <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
75% Pero 1.834277E+07 22.11937 5.5290.04 5.529 80% Pero 1.955195E+07 22.6885 5.64655 5.64655 80% Pero 1.955195E+07 23.27184 5.019172 5.9180 90% Pero 1.955195E+07 23.27184 5.019172 5.9180 90% Pero 1.9555195E+07 23.99989 5.996554 5.9997 90% Pero 1.910177E+07 23.99989 5.996554 5.9997 95% Pero 1.955579E+07 24.94631 6.236944 6.2369 Effect Minimum Fero 1.95577E+07 24.94631 6.236944 6.2369						
B0% Pero 24-00727E+07 1.995199E+07 22.65885 5.664655 5.6646 1805 Pero 2.400327E+07 1.895195E+07 23.27184 5.818172 5.8180 2010 Pero 2.503507E+07 1.395579E+07 23.99189 5.999554 5.9995 2010 Pero 2.503167E+07 1.995579E+07 24.94631 6.236944 6.23684 FBer Madman - - 7.995579E+07 24.94631 6.236944 6.23684						
Open Figure 2 4005342 - 07 1.879551E +07 23.27184 5.818172 5.9180 30% Figure 2 5005072 - 07 1.910177E +07 23.9989 5.99654 5.9997 30% Figure 2 5085762 - 07 1.905576E +07 2.4 94631 6.236944 6.23694 Fifter Minimum - - - 7.97576E +07 2.4 94631 6.236944 6.23694 Fifter Minimum -						
Op/End/ E 5005072 + 07 1 910177E +07 23 99969 5 999654 5 999654 S6% Petrols 2 508167E +07 1 955579E +07 24 94531 6 236944 6 2369 Effect Minimum - Frider Maximum - Typet B or 21 =						
Optimization 25031576 - 07 1.9955796 - 07 24.94631 6.236944 6.2368 Effect Mitoriane Filter Mitoriane <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
I File Michannan File Maximum - Toget Droze						
FRed Maximum = Type (1 or 2) =		2.5881672+07	1.355573E+U/	24.94631	0.230344	0.230633
Type (1 or 2) 4						
						0
			U	U	U	V
Scenarjo #1 *						

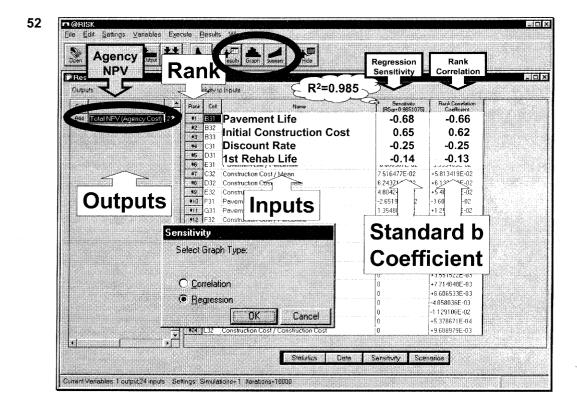

Δ	Δ
-	-

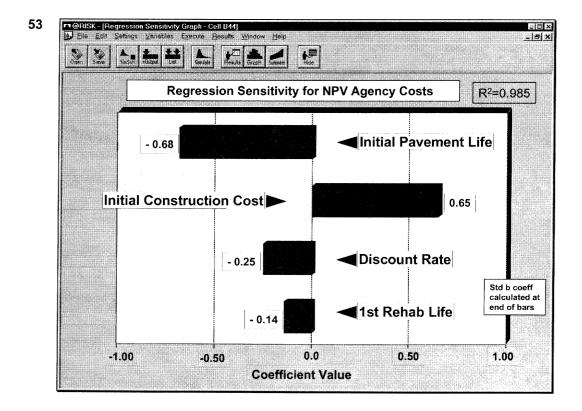
ipen Save SaSet	+Output List	Sesula	Results Graph S						
				Sector States					
Simulation	1	Summ	tery of Results						
Simulation #1 of Softwardbeno 3MLS Urtaicress 1000 Sin # Ingu Yeinabless 24 # Disput Verabless 1 Sampling Typer Lath Huntimer 00 01 15 Run on 6/11/98 at 8.3	Нурексирн	K6 B31 C31 C31 E31 F31 G31 H01	Intel NEW Agency Cos Input) Distitution (input) Pavement Life / / (input) Pavement Life / / (input) Pavement Life / (input) Pavement Life / (input) Pavement Life / (input) Pavement Life /	Alternative A Samples Jéan Stimate Percentile Percentile Deviation	1.241904E +0 12.81439 3.19558 3.215575 3.216117 3.210124 3.209837 3.213648	Nean 2260479E +0 1.749998E +0 19.99999 4.999998 5 5 5 4.999999 4.999999 4.9999998 5			
Simulation Statistic			Input) Pavement Life		Data	4 999997 Senst	6.789776 6.795205 Scenar		
Description	and Antonio Parameters Output B44		Innal Pauement Lie	Destrution Normal // 50000.1250000, K0	Data Data	Seristi	6.789776 6.795205 Scenar Scenar Ve A Sampler \$15.\$E\$15.\$F	Pavement Life / Mean Tiger(\$8\$16,\$C\$16,\$D\$1)	Gate stip at the state of the s
Description Cell Managers	Output B44 15459585407		Innal Pauement Lie	Distibution Normal (7500000, 1250000) K0 1.241904E +07	Data Data Pavemen Tiger(SB B31 12 81439	Sensiti Life / Akemati 115.3C \$15.3D	6.789776 6.795205 Scenar Scenar ve A Sample \$15.\$E \$15.\$F	Pavement Life / Mean Triger(18\$16.\$C\$16.\$D\$11 C31 31.9558	6 \$E \$16 \$ 105.000 D31 3.215575
Description Cell Minimum = Maximum =	Corper Output B44		Innal Pauement Lie	Distibution Normal 1750000, 1250000 K8	Data Data Pavement Tiger (\$B 831 12 81439 27.15098	Sensiti Life / Alternati \$15.\$C\$15.\$D	6.789776 6.795205 Scenar Scenar ve A Sample \$15.15 \$15.55	Pavement Life / Migan Triger (\$8 \$16, \$C \$16, \$C \$11 G31 3 19558 6, 725005	6 \$E \$16 \$ 031 3.215575 6.790531
Description Cell Minimum = Maxmum = Mean = Std Deviation =	00104 844 1.645953E407 3.039522E407 2.260479E407 1918968		Innal Pauement Lie	0istbution Normell 77500000, 1250000 K0 1.241904E-407 2.232155E-407 1.249395E 1249375	Data Data Pavement Tiger(3B P31 12 81439 27.15098 19.99999 2.954116	Senut Life / Alternal \$15.\$C\$15.\$D	6.789776 .6.795205 Scenar Scenar ve A Sanple 115.125.15	Pavement Life / Mean Triger(18\$16.\$C\$16.\$D\$11 C31 31.9558	6 \$E \$16 \$ 105.000 D31 3.215575
Description Cell Minimum = Maamum = Maam = Std Deviation = Variance =	Octpua 944 1.6459592407 2.30395222.407 2.2604795.407 1918368 3.682053E.+12		Innal Pauement Lie	Distribution Normal 17500000 1250000 Ke 1 241904 - 407 2 223 195 - 407 1 243995 - 407 1 243975 1 552/354 - 12	Data Data Pavement Tiger(SB P31 12 81439 27.15098 19.99999 2.954116 8.726799	Sense Life / Alternat	6 789776 6.75525 Spanar 2007 2007 2007 2007 2007 2007 2007 200	Pavement Lie / Mea- Tuger (\$8516, \$2516, \$2516, 201 3 19558 6, 758005 4 939398 0, 7385281 0, 6454237	6,45,516,51 D31 3,215575 6,790531 5 0,7385263 0,5454221
Desciptori Cel Minimun s Masma - Masn = Std Deviation = Variance = Skewness =	04404 04404 04545 04545 04545 04545 0455 0475 047		Innal Pauement Lie	0istbution Normel 17500000,1250000 K9 1.241904E-07 2.23156E-07 1.749936E-407 1.249975 1.562/36E-12 9.552007E-04	Data Data Pavement Tiger(SB B31 1281439 27.15098 19.99999 2.554116 8.726799 4.731112	Sense Life / Alternat	6 789776 6 795205 Scientar Scientar Ve A Sample \$153E \$15,35	Pavement Life / Mean Troper(\$815(5216,3051) C21 319558 6.785005 4.939398 0.73852810000	6 \$E \$18,41 The sector (0.3) 0.31 3.215575 6.790531 5 0.7385269 0.5454221 -2.434887E-05
Description Cell Miningum + Maan = Maan = Std Devision = Variance + Steveness = Kurness =	Control Delips 844 1 545953224-07 2 2504795-407 2 2504795-407 1918588 3 6820535-12 2 931615		Innal Pauement Lie	Distribution Normal 17500000 1250000 Ke 1 241904 - 407 2 223 195 - 407 1 243995 - 407 1 243975 1 552/354 - 12	Data Pavement Tiger(3B 32 1281439 27.15098 19.9999 2.954116 8.726799 4.731112 2.400014	Sense Life / Alternat	6 789776 6 795205 Scenar Scenar Ve A Sangle \$15,\$15,\$1	Pavement Life / Mean Trager(58316.10516.50511 C21 3 19568 6.785005 4 939398 0 5454237 2 7064011-05 2 39339 3 23939	6.82 \$18.31 https://doi.org/ D31 3.215575 6.730531 5 0.7385263 0.5454221 -2.434887E-05 2.399977
Descripton Del Minimum » Maxmum » Maxmum » Std Deviation » Variance » Steovinese » Kurrotis » Errors Calculated »	04404 04404 04545 04545 04545 04545 0455 0475 047		Innal Pauement Lie	Distribution Normal (*7500000, 125000) K8 1 2419045 +07 2 232155 +07 1 749398 +07 1 249375 1 5624355 +12 3 552075 +04 2 939367	Data Data Pevernerr Tiger(SB 831 12.81439 27.1508 13.99999 2.954116 8.726799 4.731112 2.400014 0	Sense Life / Alternat	6 789776 6 795205 Scenar Scenar Ve A Sangle 15 35 5 35	Pavement Life / Mean Trager(18:15:45:16;30:511 C21 31:9558 6:785005 4:939398 0:7385281 0:5454237 2:7054015-05 2:39399 0:	6.82.916.31 0.0 0.31 3.2155.75 6.790531 5 0.7385269 0.5454221 -2.4348875-05 2.399977 0
Description Cell Mininaun « Maamum « Maamum « Maamum » Std Deviation » Variance « Stervinges » Kurnoss » Enrors Calculated « Mode «	Cotput 844 1545595407 30395224-07 25604792-07 25604792-07 1918968 3582053E-12 01592061 2931615 0		Innal Pauement Lie	Distribution Kormal 17500000, 1250000 K0 1.241904 - 07 2.231956 - 07 1.249975 1.5624356 - 10 3.523076 - 04 2.939367 0	Data Pavement Tiger(3B 32 1281439 27.15098 19.9999 2.954116 8.726799 4.731112 2.400014	Sense Life / Alternat	6 789776 6 745205 Scenar Ve A Sander	Pavement Life / Mean Troper(05115, 515, 516, 515, 51 23) 3 1956 6 - 728005 4 993938 0 - 7285, 281 0 - 5454, 237 2 7054015 - 05 2 39393 0 5 000075	6 42 316 50 031 3 215575 6 730531 5 0 7365263 0 5454221 -2 4348872-05 2 399377 0 5 0 00906
Description Cell Minimum s. Maximum e: Makim Std Deviation = Variance = Sterverses = Kurroist = Errors Calculated = Node = Node =	List HPV (Agence Output 844 30395222-07 2.260479E+07 1918968 362053E+12 0.1592061 2.331615 0 2.027611E+07		Innal Pauement Lie	Distibution i Normell 7500000, 1250000 K9 1 241904 +07 2 232156 +07 1 249358 +07 1 249355 1 5524365 +07 1 249355 1 5524365 +12 2 593367 0 1 7452386 +07	Data Paveneer Tisper(5B 12.814.39 2.954116 8.726799 4.731112 2.40014 0 20.05629	Sense Life / Alternat	6 799776 6 795705 Scenar Scenar We A Sangle \$15.34 \$15.34	Pavement Life / Mean Trager(18:15:45:16;30:511 C21 31:9558 6:785005 4:939398 0:7385281 0:5454237 2:7054015-05 2:39399 0:	6.82.516.54 0.031 3.215575 6.790531 5 0.7365263 0.5454221 2.339377 0 5.003086 3.76243
Desciption Cell Memore - Mamore - Mamore - Sted Deviation - Variance - Stermss - Kunosis - Erros Calculated - Mode - Siz Parci - 102 Perci - 112 Perci -	Corporation (Corporation) Corporation (Corporat		Innal Pauement Lie	Destitution Hermal (17500000, 1250000) K0 1 241904E+07 2 223195E+07 1 249975 1 55243E+12 9 552207E-04 2 59357 0 1 745236E+07 1 544371E+07	Data Povement Tiger(SB 871 1281439 259416 8726799 4.731112 2.40014 0 0.00529 15.00529	Sense Life / Alternat	6 789776 6 745205 Scenar Ve A Saaque 115,345 115,34	Pavement Life / Mean Troen(1816) (C316) (ASD 511) C21 319558 6.785005 6.493938 D.7385281 0.6454237 2.706401E-05 2.23339 0 5.006075 5.006075	6 42 316 50 031 3 215575 6 730531 5 0 7365263 0 5454221 -2 4348872-05 2 399377 0 5 0 00906
Description Cel Minimum = Maanum = Maanum = Sto Deviation = Variance = Stormess = Kunness = Kunness = Kunness = Mode = Stormes = Mode = Storme = 102 Perc =	0.000000000000000000000000000000000000		Innal Pauement Lie	0ietbukon Namel 17500000, 1250000 80 2 213064-07 2 2321564-07 1 2439384-07 1 243935 1 5562/356-12 9 529207-04 2 939367 0 1 7452386-07 1 5443716-07 1 5493776-07	Data Pavement Tisper58 931 12 81439 2.954116 8.726799 4.731112 2.400014 0 20.00629 15.95629 15.95629	Sense Life / Alternat	6 789776 6 755775 Scenar Ve A Sanote 15 4 515, 45	Pavement Life / Mean Troper(16:11;6:x516;4:0;511 (23) 3) 19558 6:785005 4:393986 0:7385;281 0:6454;237 2:7054015:65 2:39399 0 5:009075 3:76302 3:996034	6,82,916,8110,91,910,910,910,910,910,910,910,910,9


\$ \$ A		L P A /	1. Ale		
pen Save SeS	ell +Didged List S	milate Flexults Graph Summary	lite		
Name	Total NPV (Adancy C	Dist.		-	L
Description	Output	Normal(17500000,1250000)	Pavement Life / Alternative A Sam		Pevement Life ,
Iteration# / Cell	- B44	K8	B31	Trigen(\$B\$16.\$C\$16.\$D\$16.\$E\$16. C31	
1	2 126415E+07	1 797999E+07	20.96728	4.677584	D31 3 887964
2	2.317721E+07	1.681989E+07	18.46149	4.435757	4 841287
3	2.306772E+07	1.862183E+07	22.25286	4 396759	4.708482
4	2 434059E+07	1.711903E+07	18.5422	-5.144017	5 116165
Ę	2 2856E+07	2.002709E+07	18 96022	5 045822	4.022956
6	2.192406E+07	1.693866E+07	23.63166	5.517721	6.158058
7	2.439176E+07	1.650325E+07	14,93987	3.529779	6.07284
8	2.152317E+07	1.705151E+07	20.68883	5 760303	6 510606
9	2 231088E+07	1.677901E+07	21.37864		5.289359
10	1 844606E+07	1.877138E+07	25 40576	5.118252	6.678833
11	2.212229E+07	1.911357E+07	19 95281	4.61.4734	4 926433
12	2.411793E+07	1 442257E+07	17.61503	5.122742	6 287986
13	2.362151E+07	1.812831E+07	22.03385	5.133126	3 883309
14	2.330158E+07	1.86124E+07	18.47469	3.79127	5.31108
15	2.497353E+07	1.819874E+07	18.26941	4.185094	4.363712
16	2.217433E+07	1.988075E+07	21.81091	5 583984	5.204998
17	2.386051E+07	1.893097E+07	17.67594	6.592777	5.4975
18	2.117212E+07	1.924483E+07	23.35806	5.700949	5.315555
19	2.365437E+07	1.607503E+07	16.59205	5.777596	4.365477
20	2.353938E+07	1.650041E+07	19 12016	5.629378	4.69423
21	2.446654E+07	1.675703E+07	19.33757	5.048025	4.97445
22	2.358705E+07	1.507345E+07	21.84931	5.141917	3.411816
23	2.291301E+07	1.862431E+07	20.56302	4.301559	4.168668
24	2.438033E+07	1.675239E+07	20.13086	4.686388	6.11964
25	2.21439E+07	1 845887E+07	20.63653	5.049651	5.386622
26	2.446014E+07	1 890542E+07	21.38361	6.455077	4.100144
27	2.122457E+07	1.640737E+07	21.03812	4 780933	5 763663
28	2.052929E+07	1.629656E+07	23.80799	5.4264	5.424806

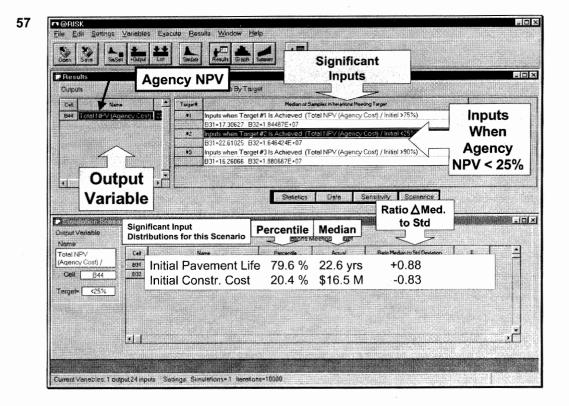


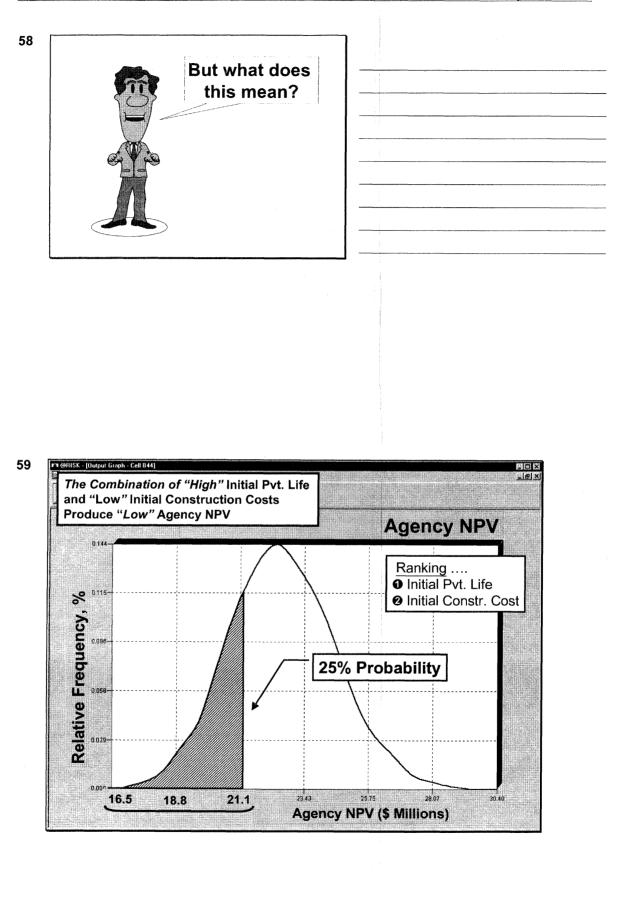
en Save Suise	+Output List	Similate Ceruits Gri			
	11				_
		Summary of Results			
Simulation #1 of SoftworeDemo3XLS hteratons = 16000 Simulations = 1 # input Variables = 24 # Output Vanables = 1 Sampling Type = Lotin Hypercube Runtime = 0001:15 Run on 6/11/98 et 8:51.54 AM		Cef New B44 Edit LEPV (Argency Cost) / Initial 11 L88 (Input) Distibution 11 E31 (Input) Distribution 12 C31 (Input) Pavement Life / Alternative A Samples 12 C31 (Input) Pavement Life / Mean 3 D33 (Input) Pavement Life / Estimate 3 E31 (Input) Pavement Life / Percentile 3 E31 (Input) Pavement Life / Percentile 3		3.215575 5 3.216117 5 3.210124 4.999999	2.232156E+0 27.15098 6.795005 6.796531 6.796125 6.802394 6.795666
Simulation Statisti	cs				
Simulation Statisti Nama	CS	ncy Cost) / Initial	Distibution	Povement Life / Alterna	uive A Sam Pavament Life / Mee
Name Description	Totel NEV (Age Output	ncy Cost) / Initial	Normal(17500000,1250000)	Trigen(\$B\$15.\$C\$15.\$E	\$15,\$E\$15. Trigen(\$8\$16,\$C\$16
Name Description Cell	Totel NPV (Age Output B44	ncy Cost) / Initial	Normal(17500000,1250000) K8	Trigen(\$B\$15.\$C\$15.\$E B31	\$15,\$E\$15, Trigen(\$B\$16,\$C\$16 C31
Name Description Cell Minimum =	Totel NEV (Age Output B44 1 645963E+07	ncy Cast) / Initial	Normal(17500000,1250000) K8 1.241304E+07	Trigen(\$B\$15,\$C\$15,\$C B31 12,81439	\$15,\$E\$15. C31 3 19558
Name Description Cell Minimum = Maximum =	Totel NPV (Age) Output 844 1.646963E+07 3:039522E+07	ncy Cost) / Initel	Normal(17500000,1250000) K8 1.241904E+07 2.232156E+07	Trigen(\$B\$15.\$C\$15.\$E B31 12.81439 27.15098)\$15,\$E\$15, Trigen(\$B\$16,\$C\$16 C31 3 19558 6.785005
Name Description Cell Minimum + Maximum + Maximum +	Totel NEV (Age Oulput 544 1.646963E+07 3.039522E+07 2.260479E+07	nsy Cost) / Initel	Normal(17500000.1250000) K8 1.241904E+07 2.232156E+07 1.749998E+07	Trigen(\$B\$15.\$C\$15.\$C B31 12.81439 27.15098 19.99999	0\$15,\$E\$15,\$C\$16 C31 3 19558 6 785005 4 999998
Name Description Cell Minimum + Meximum s Mexan + Std Deviation +	Entel NEV (Age Output 844 1.646963E+07 3.039522E+07 2.260479E+07 1918868	ncy Cost) / Initial	Normal(17500000.1250000) K8 1.241904E+07 2.232156E+07 1.749939E+07 1249975	Trigen(\$B\$15.\$C\$15.\$C B31 12.81439 27.15098 19.99999 2.954116	1515,515,515 C31 3.19558 6.785005 4.99998 0.7385281
Namii Description Cell Minimum = Mean = Std Devision = Variance =	Entel NEV (Age Output 1646963E+07 3039622E+07 2:260479E+07 1918668 3.682053E+12	ncy Cost) / Initial	Norma(17500300.1250000) K8 1 241904E-07 2 232156E+07 1 749998E-07 1 249975 1 562436E+12	 Trigen(989154C\$153C B31 1281439 27.15098 19.9999 2954116 8.726799 	1915 \$E\$15 C31 3.19558 6.785005 4.99998 0.7385281 0.5454237
Namia Description Cell Minimum = Mean = Mean = Btd Devision = Vationce = Stewness =	Totel NEY (Age) Output 1.646953E+07 3.039522E+07 2.260479E+07 1918668 3.682053E+12 0.1592061	ncy Cost) / Inita)	Normal(17500900.1250000) K8 1.241904E+07 2.232156E+07 1.749998E+07 1.542436E+12 -9.529207E-04	Trigen(993154C\$15 \$C B11 12 81439 27 15098 19 99999 2 954116 8 726799 -4.731112E-05	31555515. C31 319558 6785005 4999980 0.735281 0.5454237 -2.706401E-05
Noma Description Cell Minimum = Meximum = Meximum = Meximum = Meximum = Meximum = Meximum = Meximum = Meximum = Skewness = Kurtoets =	Entel NEV (Age Output 1646963E+07 3039622E+07 2:260479E+07 1918668 3.682053E+12	ncy Cost) / Initial	Norma(17500300.1250000) K8 1 241904E-07 2 232156E+07 1 749998E-07 1 249975 1 562436E+12	Trgen(983154C3154C 831 1281439 2715098 19.99999 2954116 8726799 4731112E-05 2.400014	1815.51515 19558 C31 319558 6785005 499990 07385281 05454237 -2706401E-05 23999
Namia Description Cell Minimum = Mean = Mean = Btd Devision = Vationce = Stewness =	Totel NEY (Age) Output 1.646953E+07 3.039522E+07 2.260479E+07 1918668 3.682053E+12 0.1592061	ncy Cost) / Initial	Normal(17500900.1250000) K8 1.241904E+07 2.232156E+07 1.749998E+07 1.542436E+12 -9.529207E-04	Trigen(993154C\$15 \$C B11 12 81439 27 15098 19 99999 2 954116 8 726799 -4.731112E-05	31555515. C31 319558 6785005 4999980 0.735281 0.5454237 -2.706401E-05



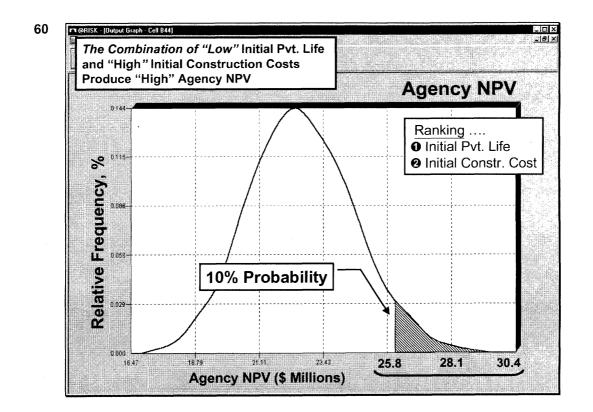


aen Save Susset	i +Output List	Seculate Fesult: Gra	Din Summery Flide				
							120
Simulation		Summary of Results					
Simulation #1 of		Cell	Name	Minmum Mean	Maximum		
SoftwareDemo3XLS Iterations=10000 Sir		B44 Total NEV Departs	yCost[/Initial	1.646963E+012.260479E+(0 3.039522E+I	0	1.1.1.201.0.00
Input Visibles 24 # Output Variables 1 Sampling Type Latin Hypercole Runtime=00.01.15 Hun on 6/11/39 et 651.54 AM		Kit (Input) Distribution		1.241904E+0 1.749998E+0			
				12.81439 19.99999		27.15098	
		C31 (Input) Pavement I		3.19558 4.999998	6 785005		
		D31 (Input) Pavement I		3.215575 5	6.790531		
nun un o/11/30 el 0	01.04.499	Eat (Input) Pavement I		3.216117 5	6,796125		
		F31 (Input) Pavement I G31 (Input) Pavement I		3.210124 4.999999 3.209837 4.999998	6.802994 6.795606		
		HQ1 [Input] Pavement I		3.203837 4.333338	6 798399		
		101 [Input] Pavement I		3.207759	0.730333		
Simulation Statistic		Litti Ilinnut Pauement I	lie Statistics	ata Sensiwa	A Zer		
	1		Statistics	dia Sensitivit	y Scer		
Name	Total NPV (Age	ncy Cost / Intel	Statistica Disbbution	ala Sensitivit	y Scer Constant River & Sample		Pavement L
Name	Total NPV (Age Dulput		Statistics Distribution Normal17500000,12500001	sta Senativit Pavenant Lile / Altaine Tinger (\$9\$15,\$2515,\$2	y Scer	Trigent\$8\$15.\$C\$15.\$D\$16.\$E\$16	Pevement L SF Trigen(38\$1
Name Description Cell	Total NPV (Age Dulput B44		Statution 0 atibution Nomal 75/0000,1250000 8 8	sta Sensibit Pavenent Lie / Alteine Tinger(\$8\$15,36.315,37 831	y Scen Scen River A. Sample 3\$15.\$E\$15.\$F		Pavement L
Name Description Cell Minimum =	Total NPV (Age Output 844 11005068407		Statistics Distribution Normal17500000,12500001	sta Senativit Pavenant Lile / Altaine Tinger (\$9\$15,\$2515,\$2	y Scen Scenes alive A Sample 0\$15;3E\$15;\$P	Trigen(\$8\$18.\$C\$16.\$D\$16.\$E\$16 C31	Payament L St Trigen(\$8\$1 D31
Name Description Cell	Total NPV (Age Dulput B44		0 mbulien 0 mbulien Normati 7500000,1250000 K6 1,241504E-07	ata Sensitivit Pavement Life / Alterne Filoer \$9\$15,343,15,32 831 12,81439	y Seen alve A Sample D\$153E\$153F	Tingent\$8 \$16 \$C\$16 \$D\$16 \$E\$16 C31 3 19558	Peyament L SI Trigen (\$8\$1 D31 3.215575
Name Description Cell Minimum = Masimum =	Total NPV (Age Dutput 844 1.6469588+07 90665928+07		Statutics 0 enbloation Normell 7 500000,1250000) K8 1 241304E +07 2 23215E +07	ata Sénativit Pavement Life / Akame Tinger(39315,50315,51 931 12,81433 27,15039	v Scen alive A Sample 0\$15,\$E\$15,\$P	Tiger(\$8\$16,\$C\$16,\$D\$16,\$E\$16 C31 3.19558 6.785005 4.999998 0.7385281	Peyament L Trigen(\$8\$1 D31 3.215575 6.790531 5 0.7385269
Name Description Cell Minimum = Maximum = Mean =	Totel NPV (Age Dubut 844 1.6469638 +07 3.0395226 +07 2.2604796 +07 1918868 3.6820536 +12		0 arbbalian 0 arbbalian Normal 7 2500000,1250000 1 241304E +07 2 232156E +07 1 7 43936E +07 1 7 43936E +07 1 552436E +12	21a Sensibilit Pavement Life / Alterne Fingen (35) (15, 52) (5, 51) 8 31 12 614 39 22 71 5099 19 99999 2 954116 8 (726799)	v Scen alive A Sample 0\$15;\$E\$15;\$P	Trigent\$8\$16,\$C\$16,3D\$16,\$E\$16 C31 319558 6,785005 4,999998 0,7385281 0,5454237	Peysmerk L 5 Trigen(\$8\$1 D31 3.215575 6.790531 5 0.7385269 0.5454221
Name Description Cell Minimum + Maent = Std Deviation + Metance + Std Deviation + Stdevices =	Total NPV (Age Dubut 844 1.6469538+07 3.0395226+07 2.2604796+07 1918968 3.620536+12 0.1592061::		0(#b0.60 Nome17500000.125000) K8 1.241904-407 2.232156E-407 1.74999E-407 1.249975 1.552436E-412 4.952502E-04	216 Sensitivit Revenent Life / Alterne Tingen(56515,52515,52 831 12.81439 27.5098 19.99999 2.954116 8.726799 4.7311126.05	y Scen alive A Sample \$15,35,\$15,\$2	Trigent\$8516.5C\$16.5D\$16.5E\$16 (23) 3.19558 6.765005 4.999998 0.7385281 0.5454237 -2.706401E.05	Persmerk L Trigen(1841 D31 3.215575 6.790531 5 0.7385269 0.5454221 -2.434887E
Name Descolon Cell Maintan H Maerium a Moerium Sid Deviation # Verlance H Sitewness # Kuttosi #	Total NPV (Age Output) 844 116469638+07 3 0355228+07 2 2604798-07 1918968 3 6820558+12 0 1592061 2 931615		Statutics Drebbulier Normal 750000012500001 K8 1 241304E+07 2 232156E+07 1 743909E+07 1 2493075 1 562436E+12 9 552307E-04 2 995067	21a Sensitivit Revension Life / Alterne Tingen (9515.5/2315.3/2 831 1281439 27.15099 19.99939 2.954116 8.726799 4.731112 05 2.400014	v Scer Bive A Sample 3915 3E 315 4F	Togen \$8516.3C\$16.5D\$16.5E\$16 C31 319558 6.785005 4.999980 0.7385281 0.5454237 2.706401E.055 2.39999	Pavament I. SI Trigeri 5351 Dati 3.215575 6.790531 5 0.7385269 0.5454221 2.434867E 2.399977
Name Destrotion Cell Minimum + Masmum + Masmum + Sto Demators + Stopwarss + Verlance + Stopwarss + Errors Calculated +	Octal NPV (Age Output 844 1 6459585-007 2 050796-07 2 050796-07 1 918968 9 6820556-12 0 15920610 2 931615 0		Disbution Disbution Normal 75000001250000 K6 2.41904E-07 2.32156E-07 7.49996E-07 1.249975 1.565436E-12 9.55200E-04 2.99967 0.5500E-04 2.99967	21a Sensitiv Asvender Life / Altern Triger (363/15, 42-315, 42 831 12.814.39 27.150.99 19.99993 2.954.116 8.726.799 2.726.799 4.7311.122.05 2.400014 0	V See	Trigent (\$15, 50, 516, 50, 516, 50, 516, 50, 516, 50, 516, 52, 516, 53, 53, 53, 53, 55, 55, 55, 55, 55, 55	Peysmerk L 51 1031 3.215575 6.790531 5 0.7385269 0.5454221 2.434087E 2.399977 0
Name Destrobion Cell Ministrum = Mastrum = Mastrum = Stot Deviation = Mediance = Stowners = Kuttoris = Enror Calculated = Mode =	Total NPM (Age Dubpat B44 1 646958-407 2 3035225-407 2 36820526-407 1918868 3 68205526-412 0 15932061 2 391515 0 2 0276115+07		0 (wbb.lice) 0 (wbb.lice) Normal 750000.01,250000) 1,86 1,24190.6-07 2,232156E+07 1,24390.6-107 1,24390.6-107 1,552436E+12 4,95270E+04 2,959367 0 1,745238E+07	21a Sensitivit Pavement Life / Alterne Trigen 5815 & 515 & 515 & 5 831 12 814 39 27 15098 13 99999 2 954116 8 726799 2 4731112 05 2 400014 0 20 05629	V Scen	TrigentS9516,3C316,3D516,3E516 (C3) 315559 6,785005 4,993998 0,07362201 0,0545237 2,736201 0,0545237 2,39399 0 5,006075 5,006075	Pevemerk L Trigent 8 1 D31 3.215575 6.730531 5 0.7385269 0.5454221 -2.4348672- 2.399977 0 5.009086
Name Description Cell Minimum + Mean - Std Deviation + Melance + Stepheness + Eutoris + Entrois + Entrois + Entrois +	Total NPV (Age Dubpt 844 3 030526-07 2 2604795-07 191868 3 6820555-12 2 931615 0 0 1553051-12 0 2076115-07 1,9531145-07		0 etibulion 0 etibulion Normal 1 7500000.1250000 K6 1 2 41904E +07 2 232156E +07 1 7 45998E +07 1 55245E +12 -9 552007E 04 2 593067 0 1 745298E +07 1 54237E +07 1 54237E +07	21a Sensitiv Pavement Life / Altern Inger (383) 15, 32, 315, 32 831 12, 61439 27, 15038 13, 93939 2, 954116 8, 726, 793 4, 7311122, 05 2, 400014 0 20, 03629 15, 05029	KI Seen	Troper 1991 5 42 51 6 20 51 6 25 16 20 51 6 25 16 20 51 6 25 16 20 51 6 25 51 6 20 51 6 20 51 6 20 51 6 20 51 6 20 51 6 20 51 7 51 7 51 7 51 7 51 7 51 7 51 7 51	D31 3.215575 6.790531 5 0.7305269 0.5454221 -2.434087E 2.399977 0
Name Description Cell Mentrum = Mean = Still Denston = Still Annote = Still Annote = Still Annote = Kuttoris = Emers Calculated = Mode = 52 Perc = 105: Perc =	Detai NPV (Age Dotpat B44 15 645:062+07 3 0355:20:+07 2 250479E-07 3 682:053E+12 0 153:2061 2 931:015 0 2 027611E+07 2 931:11E+07 2 019897E+07		Diskbuller Diskbuller Normal 7500000 1250000 K8 1.241904E-07 2.32156E-07 1.43905 1.552436E-12 9552007E-04 2.999367 0 7.45238E-07 1.5437E-07 1.5437E-07	21a Sensitivit Pavement Life / Alterne Trigen 5815 & 515 & 515 & 5 831 12 814 39 27 15098 13 99999 2 954116 8 726799 2 4731112 05 2 400014 0 20 05629	4 See	TrigentS9516,3C316,3D516,3E516 (C3) 315559 6,785005 4,993998 0,07362201 0,0545237 2,736201 0,0545237 2,39399 0 5,006075 5,006075	Persenter k L Trigeri (1931) 0.31 3.215575 6.790531 5 0.7385269 0.454221 -2.434867E- 2.399977 0 5.009065 3.762943
Destruction Cell Minimum + Masimum + Masimum + Stid Denation + Stid Denation + Stid Denation + Kuttosi + Errors Calculated + Mode - St Perc +	Total NPV (Age Dubpt 844 3 030526-07 2 2604795-07 191868 3 6820555-12 2 931615 0 0 1553051-12 0 2076115-07 1,9531145-07		0 etibulion 0 etibulion Normal 1 7500000.1250000 K6 1 2 41904E +07 2 232156E +07 1 7 45998E +07 1 55245E +12 -9 552007E 04 2 593067 0 1 745298E +07 1 54237E +07 1 54237E +07	21a Sensitivi Pavement Life / Akame Tingen(59315,52-515,52 831 12.81439 27.15039 13.93939 2.954116 8.725739 4.7311122.05 2.400014 0 20.03629 15.56029 15.56029 15.56029	V Scép Rive A Sample 9515 45315 48	Troperts9516 3C 316 3D516 3E 516 (C3) 319556 6.725005 4.939998 0.7385281 0.5454237 2.33999 0. 5.05075 3.75302 3.95624 3.95624 3.95624	Payamerk L Trigent831 D31 3.215575 6.790531 5 0.7385269 0.5454221 2.399977 0 5.009086 3.762943 3.393972


Sensitivity Analysis Observations	
Initial Pavement Life and Initial Construction Cost have the greatest influence on Agency NPV	
Discount Rate and 1st Rehab life have minor influence on Agency NPV	


55

Agency Cost


- Probability
- Sensitivity
- •Scenario Analysis

(incluse							<u></u>
Simulation	Summary of Results	a contraction of the	,				
Simulation #1 of. SoftwareDemo3NLS	Cet	Name	Minimum	Mean	Manmum		
Iterations= 10000 Simulations= 1	Event Total NEV (Agency Cost) / Inital Ka (Input) Distribution Bats (Input) Pavement Life / Alternative A Samples Cast (Input) Pavement Life / Mean			2 260479E+0			
# Input Variables= 24 # Output Variables= 1			3.19558 4.999998 6.7850		27.15098		
Sampling Types Latin Hypercube					6.785005		
Runtime= 00:01 15	D31 (Input) Pavement Life /				6.790531		
Run on 6/11/98 at 8 51:54 AM	E31 (Input) Pavement Life / F31 (Input) Pavement Life /				6.796125 6.802994		
	GG11 (Input) Pavement Life /				6.795606		
	HQ1 (Input) Pavement Life /	Trigen 3	213648	5	6.798399	and the second se	
Contraction of the local sectors.	131 (Input) Pavement Life			4.999997	6 795205		
 Simulation Statistics 		Statistics	Data	Skiway	Scenare		-
				-			
Name Total NPV (Age	incy Cost / Initial	Disibution	Pavement	Life / Alternativ	re A Sampler	Pavement Life / Mean	Pavament
Name Total NPV (Age Description Output	ncy Cost / Initiat		Pavement	Life / Alternativ	re A Sampler 15.\$E\$15.\$F		Pavament
Neme. Total NPV (Age Description Output Cal 944 Minimum • 16459538 +07	oncy Cost / Initiat	Distibution Norma(17500000.1250600) K8 1.241904E+07	Pavement Triger(\$B\$ 831 12.81439	Life / Alternativ	e A Sampler 15.3E\$15.SF	Pavement Life / Mean Triger (1931)6, \$1316, \$1516, \$15 C31 31 9558	E SP Togen(SB) D31 3 215575
Name Total NPV (Age Description Dutput Cal 944 Minimuth = 1.945958207 Maximuth = 3.039525.017	vrcy Cost / Initial	Distution Norma(17500000.1250600) K6 1.241504E+07 2.232156E+07	Pavement Tiger(\$B\$ 831 12.81439 27.15098	Life / Alternativ	re A Sampler 15,\$E\$15,\$F	Pavement Life / Mean Triger(85 \$16,\$0\$16,\$0\$16,\$15 \$1 C01 3 19558 6,785005	E.S Togen(381 D31 3 215575 6.790531
Name Total NPV (Age Description Gutput Call Sk4 Minimuto = 1.645588 ±07. Meanuto = 3.035582 ±07. Meanuto = 2.604742 ±07.	Xov Cort / India	Disibution Norma(17/00000.1250600) K8 1.241904E-07 2.232156E-07 1.743936E-07	Pavement Tiger(\$B\$ 931 12.81439 27.15098 19.99999	Life / Alternativ	re A Sampler 15,\$E\$15,\$F	Pavement Life / Mean Tinger (#316 & 1516 & 50516 & 51 5 COI 1 19558 6 785005 4 99508	E.S Togen(381 D31 3 215575 6 790531 5
Neme Total NPV (bgr Description Output Catil Output Catil Output Minimum 16439638=07 Mean min 20504756=07 Skd Devidsion = 1910803		Distution Norma(17500000.1250600) K6 1.241504E+07 2.232156E+07	Pavement Tiger(\$B\$ 831 12.81439 27.15098	Life / Alternativ	e A Sampler 15,55515,55	Pavement Life / Mean Triger(85 \$16,\$0\$16,\$0\$16,\$15 \$1 C01 3 19558 6,785005	E.S Togen(381 D31 3 215575 6.790531
Nome Total NPV (dgr Description Output Cabi Output Cabi Output Minimum 16439638-107 Maximum 2009522-07 Mesmum 2009522-07 Mesmum 2009522-07 Skd Devidsion # 1918283		Distbution Normal17500000.1250600) K0 1.241904E-07 2.232156E-07 1.749998E-07 1.749998E-07 1.562436E-12 9.552300E-04	Pavement Tiger(\$85 931 12.81439 27.15098 19.99999 2.954116 8.726799 -4.7311125	Life / Attemativ 15 \$C\$15 \$D\$	e A 5ample 15,\$E\$15,\$F	Pavement Life / Mean Triger (85 116 42316 50 516 56 51 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Pavement 16,51 Togen(381 D31 3 215575 6 790531 5 0 7385269 0.5454221 -2.4348871
Name Folds NPV (doc Description 644 Call 644 Minimum II 6445958 - 07 Meanum II 93039524 - 07 Meanum II 93039524 - 07 Meanum II 93039524 - 07 Meanum III 93039524 - 07 Meanum III 93039524 - 07 Meanum IIII 93039524 - 07 Meanum IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		Distution Normal (7500000.1250600) K8 1.241904E-07 2.232156E-07 1.749998E-07 1.249975 1.552436E-12 3.52307E-04 2.993967	Pavement Tiger(\$85 831 12.81439 27.15098 19.99999 2.954116 8.726799 4.7311128 2.400014	Life / Attemativ 15 \$C\$15 \$D\$	e A Sampler 15.35 \$15.35	Pavement Life / Mean Triger (19:51); 42:516, 50:516, 55:51 2319556 7.785005 4.999986 0.7485281 0.5454237 2.705401E-05 2.29999	Pavement 8.5 7 agen(881 031 3 215575 6.790531 5 0.7385269 0.5454221 2.4348871 2.399977
Nome Total NPV (dop Description Output Data 644 Minimum 64458654-07 Monrum 2009/024-07 Monrum 22002/25-07 Monrum 22002/25-07 Monrum 19886 Valinova 1980/05 Sk texnesis 0 199/05 Kranc Calculated A 0		Distaution Normal 17500000.1250000 K8 1.241904E-07 2.232156E-07 1.749996E-07 1.249975 1.562436E-12 9.552302E-04 2.999367 0	Pavement Tiger(\$5 831 12.81439 27.15098 19.99989 2.954116 8.726799 -4.731112E 2.400014 0	Life / Attemativ 15 \$C\$15 \$D\$	re A Sampled 15.5£\$15.5	Pavsment Life / Mean Tinger (35 %) 6, 40 % 16, 50 % 16, 65 % 1 C01 31 9556 6 785005 6 4 99998 0 7385281 0 5454237 2 706401E-05 2 39999 0	Pavement 6.\$1 Tagen(801 0.31 3.215575 6.790531 5 0.7395269 0.5454221 2.4348871 2.399977 0
Total Total NPV for Ostrojstim Gatavit Cell 644 Minimum II 64585.2 Maximum II 50.9592.4 Maximum II 50.9592.4 Maximum II 50.9592.4 Std Davidson II 1918383 Valinde II 195395.4 Std Davidson II 1918383 Valinde II 195395.4 Katoon II 195395.4 Katoon II 195395.4 Katoon II 195395.4 Maximum III 195205.1 Katoon III 2.931515 Kriss Cabulated III 0 Mode III 2.93151		Distution Normal (7500000.1250600) K8 1.241904E-07 2.232156E-07 1.749998E-07 1.249975 1.552436E-12 3.52307E-04 2.993967	Pavement Tiger(\$85 831 12.81439 27.15098 19.99999 2.954116 8.726799 4.7311128 2.400014	Life / Attemativ 15 \$C\$15 \$D\$	re A. Sampler 15.52515.55	Pavement Life / Mean Triger (19:51); 42:516, 50:516, 55:51 2319556 7.785005 4.999986 0.7485281 0.5454237 2.705401E-05 2.29999	Pavement 8.5 7 agen(881 031 3 215575 6.790531 5 0.7385269 0.5454221 2.4348871 2.399977
Name Folds NPV (solid) Outopition Output (solid) Call 644 Minimum 5435656107 Meanum 5435656107 Meanum 5435656107 Meanum 5435656107 Meanum 580075611 Std Developm 198888 Valindum 250075611 Katoonia 2931015 Katoonia 20511510 Motoria 205116107 Motoria 2053116107 Motoria 2053116107 Motoria 2053116107 Motoria 2053116107 Motoria 2053116107 Motoria 2053116107 Motoria 2053116107		Distibution Normal17500000.1250000 K8 1.241904E-07 2.232156E+07 1.743938E+07 1.552436E+12 9.523200E-04 2.939367 0 1.745298E+07 1.54371E+07 1.56977E+07	Pavement Triger(SBS 931 12, 91439 27, 15090 19, 99959 2, 954116 8, 726799 -4, 7311125 2, 400014 0 20, 03629 15, 06029 15, 596029	Life / Attemativ 15 \$C\$15 \$D\$	re A Samples 15.5£\$15.5	Pavement Lie / Mean Triger (2011; 8/2516, 50516, 50516, 50516 6 785005 6 785005 6 785005 0 785025 1 95952 2 99999 0 0 5 005075 3 76502 3 76502 9 99504	Pavement 6,\$ Togen(369 D31 3 215575 6 790531 5 0 7385269 0.5454221 2 4348871 2 339377 0 5.009086 3 7662943 3 399972
Neme Total NPV (apc Outcription Output Call 944 Minimum 1645968 cm Mesmum 3039582 cm Mesmum 22504795 cm Valence 9319582 cm Valence 932052 cm Skitowness 932052 cm Skitowness 952052 cm Skitowness 931515 Encordization 931515 Encordization 931515 Encordization 931515 Encordization 1931114 cm		Disibution Normal (750000) 1250200) K8 1.241904E-07 2.232156E-07 1.749998E+07 1.562436E+12 9.523207E-04 2.999367 0 1.745298E+07 1.542371E-07	Pavement Tiger(\$55 831 12.91439 2.715098 2.954116 8.726799 4.731127 2.400014 0 20.03629 15.05029	Life / Attemativ 15 \$C\$15 \$D\$	re A. Sambler 15.55 15.55	Pavement Life / Mean Truger (1251) 6, 2051 6, 5051 6, 55 51 CO1 319556 6, 785005 4, 99998 0, 7385281 0, 7485281 0, 9545237 2, 706401E-05 2, 9999 0, 005775 3, 76802	Pevenent 6.\$ Togen389 0.31 3.215575 6.790531 5 0.7385269 0.5454221 2.4348871 2.399977 0 5.009086 3.762943

Module IX - 28

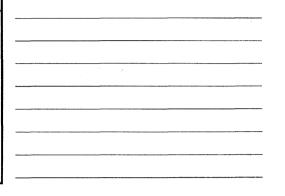
Scenario Analysis Observations

The Combination of

■ *"High"* Initial Pvt. Life and *"Low"* Initial Construction Costs Produce *"Low"* [< 25%] Agency NPV

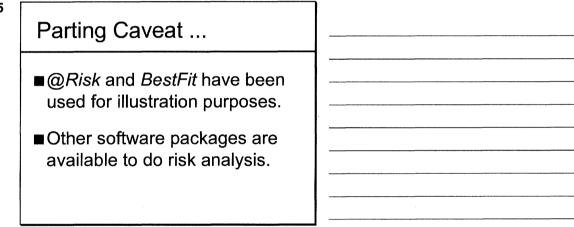
■ *"Low"* Initial Pvt. Life and *"High"* Initial Construction Costs Produce *"High"* [>90%] Agency NPV

Simulation		Summery of Resul	Is					
Sinutation B1 of Software/Form33US Ibstations 3US Binutations 3US Disput Vanibules 24 Biopicy Vanibules 1 Samping Types Left Hypertube Funitmen 000.01.15 Rivn on 5/11/38 at 851:54.6M		R6 [Input] Distibution B31 (Input] Pavemen C31 (Input] Pavemen C31 (Input] Pavemen E31 (Input] Pavemen	ExtSLNEV Ingersy (Coll / Initial Encycl) Distbution Encycl Distbution Encycl 2 Distbution		Here 2 (204795+0) 1 7499986+0 1 99999 4 999998 5 5 4 999999 4 999999 5 5 4 999999 5 5 4 999999 5 5 4 999999	Maenvan. 2 2321565 + 27.15098 6 795005 6 790531 6 796125 6 802994 6 795606 6 795606 6 798399 6 799776		
		Lant Illoud Pavemen	Siatistics	3.208789 Dela	5.000004 Sensitivity	6 795205 Scenar	•	
Simulation Statistic								-
Name	S Total NPV (Agen Output 844			Deta Pavement	Sensitivity	Scenar A Sampler 15,\$E\$15,\$F	Pavement Life / Mean Triger (\$15) \$2\$16, \$2\$16, \$2\$16, \$2\$16, C1	Pavemen
Name Description Cell Mannan = Meanan = Mean = Sid Deviation =	Total NPV (Ager Dubput 844 1.646963E+07 3.039522E+07 2.260479E+07 1918868		Disbutton Disbutton Normali 750000, 1250001, 150001, 150000, 1250001, 1200000, 1200000, 1200000, 1200000, 12000000, 120000000, 12000000000, 120000000000	Deta Pavement Titger (\$93 831 12,81439 27,15098 19,39393 2,954116	Sensitivity	Scenar Scenar A Samples 15,\$E\$15,\$F	Pavemant Life / Mean Triger (\$5 \$16,\$2516,\$2516,\$2 \$16, 21 9558 6.785005 4.995998 0.7365281	Pavemen \$1 Trigen(\$8
Name Description Ceit Marmun = Magnus = Stif Deviation = Variance = Skrewsas #	Total NPV (Ager Dutput 844 1.646963E+07 3.039522E+07 2.260479E+07		Distrution Distrution Hermal(1750000)(125030) Kai 1,241904E-07 2,232156E-07 1,74399E-07	Data Pavement Triger (181 931 12,81439 27,15098 19,99999	Semitivity Life / Aitempti 515 \$C\$15 \$D1	50priar Pre A. Sample 15,4E \$15,55	Pavement Life / Mean Timeret Stills Stills Stills Stills Stills 31 9588 6 785005 4 399399	Pavener Fagen(\$8 D 31 3,215575 6,790531 5
Name Description Cell Mierrum = Meenun = Sid Devision = Variance = Skronce = Kungsis.e. Error Celculated = Mode = SiX Part =	Total NPV (Ager Oxtour 844 1 646963E+07 3 039522E+07 2 260479E+07 1916868 3 680053E+12 0 1592061		Statistics Bistbutton Normali 7500000,1250030, Ké 1,241 904E +07 2,231 56E +07 2,231 56E +07 1,749996E +07 1,7499975 1,65243975 1,65243975 1,65243975 1,65243975 2,959367	Data Pavament Tinjeri \$83 031 12,81439 27,15098 19,39393 2,354116 8,726739 4,7311121 2,400014	Semitivity Life / Aitempti 515 \$C\$15 \$D1	Soerar	Pavement L fe / Mean Trone (18 115) 515 (6.5) 516 (5 12 16) 21 9566 6 786005 4 999998 0 7965281 0 964237 2 7064011 6 05 2 29999	Pavement 1 ruger(\$8 031 3,215575 6,790531 5 0,738526 0,545422 -2,434880 2,399977

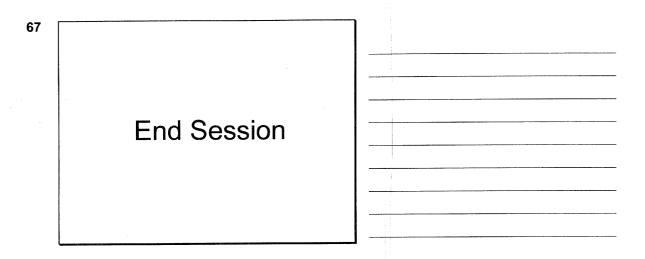


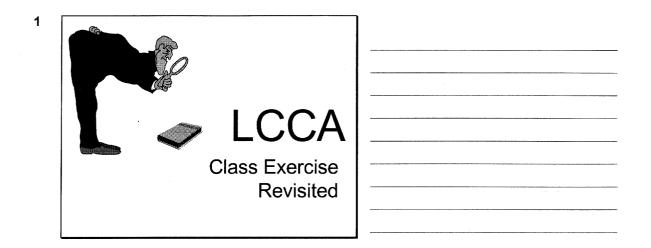
4	A		В	Γ	С		D	E	
	.Net Present V	-	10	1.000.000s					
27	.Net Flesent v	ait							
28		ļ							:
29									
30			Δ	lt.	ornativ	10	A Sa	mples	
	Pavement Life		where we are all the second	1.5					
31	Construction Cost	No. of Concession, Name	20.0	•	5.0	*	5.0	5.0	• •
33	Discount Rate, (%)	and a survey	17,500,000 4) »	4,375,000	.⊅	4,375,000	\$4,375,000	\$ 4
39	Discoulit Nate, (78)	L	4 Initial		Rehab		Rehab	Rehab	
40	Year >>>		0		20	-	25	30	
41	Agency Costs (Constant \$)	\$	17,500,000	\$	4,375,000	\$	4,375,000		
42	Present Worth Factor		1.0000	Ť	0.4564		0.3751	0.3083	
43	Agency Cost (Present Worth)		17,500,000	\$	1,996,693	\$	1.641.136	\$1,348,894	
44	Total NPV (Agency Cost)		22,486,723			··· T ço			
45			· · · · · · · · · · · · · · · · · · ·						
46									
47									
48									
49									
50									
51 52									

Risk Modeling Review

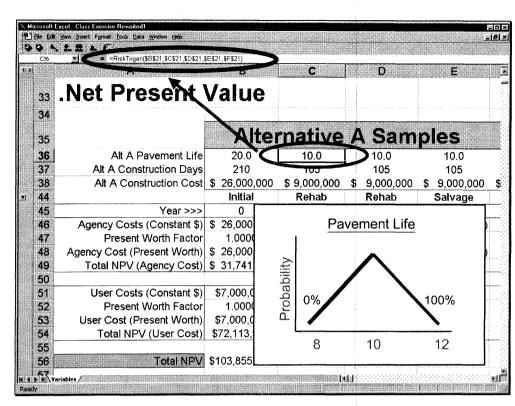

■Build the traditional NPV model

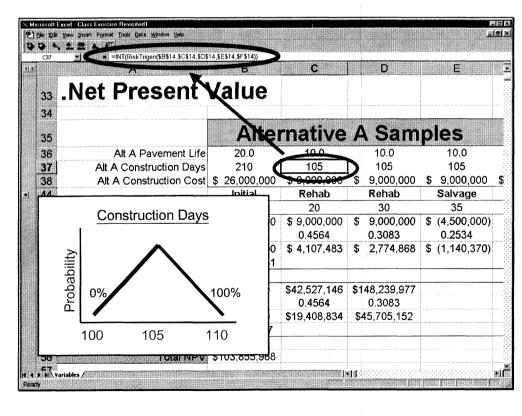
- Identify and describe uncertain variables using risk functions
- Define simulation parameters and output variables
- ■Run the simulation
- ■Analyze Results

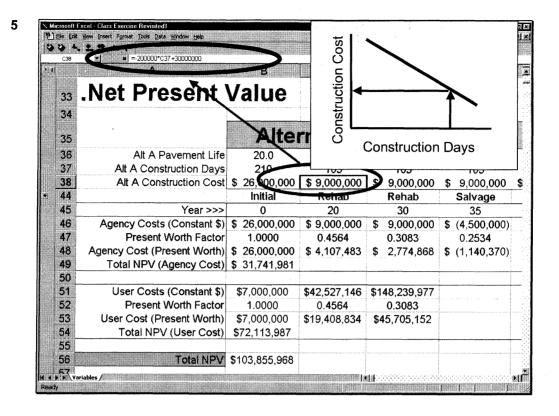


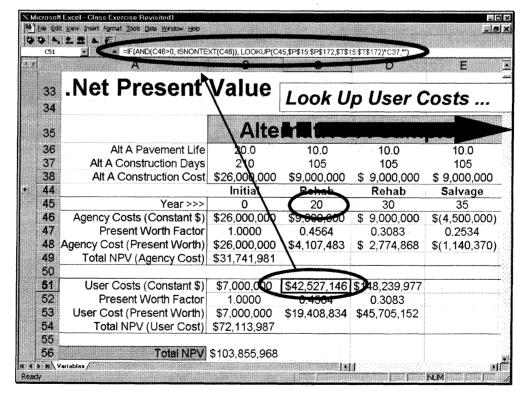

65

64

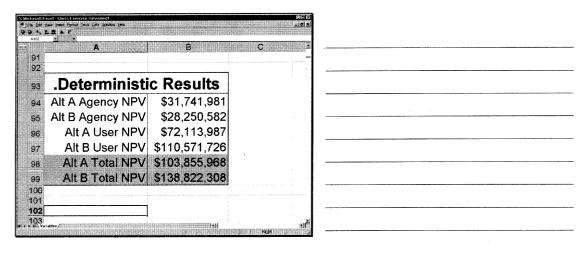



2	
2	
_	

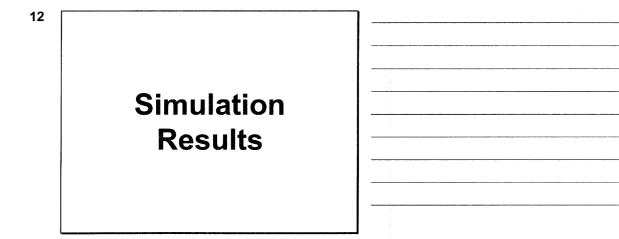

	A	B	C	D	E	F	G
1	Class Exercis	e Rev	visited				
2							
3							
4	Analysis Period Discount Rate	35 4.0%	years				
6	Discount Rate	4.070				I .	
7							
8	T		Risk Anal	vsis Input	Parameters		1
9		Lower	Most	Upper	Lower	Upper	Distibutio
10	Variable	Estimate	Likely	Estimate	Percentile	Percentile	Туре
11	Construction Days						1 .
12	Alternative A						
	Initial	200	210	220	0	100	Trigen
	Rehab	100	105	110	0	100	Trigen
	Alternative B						
	Initial	150	165	180	0	100	Trigen
12000	Rehab	70	85	100	0	100	Trigen
18	Performance Estimates						
	Alternative A						
	Initial	16	20	24	0.00	100.00	Trigen
	Rehab	8	10	12	0.00	100.00	Trigen
22	Alternative B	. 10	13	16	0.00	100.00	Trigen
23	Initial						

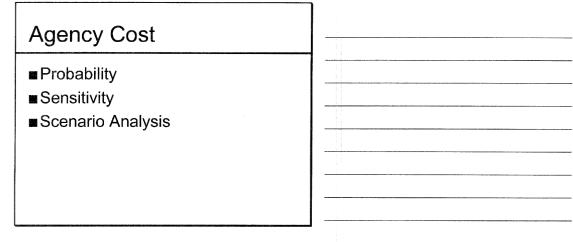


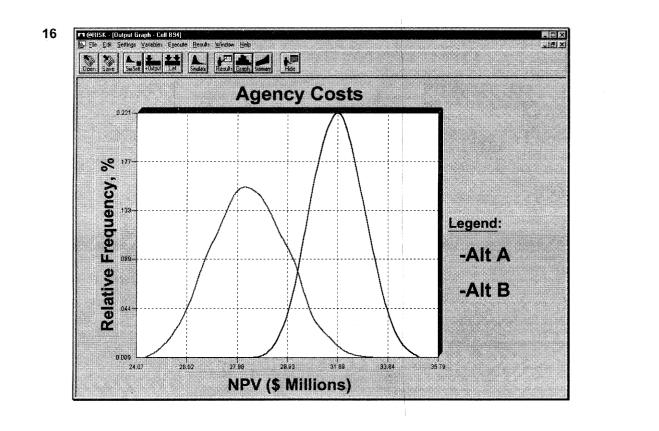
99 4 2 2	⊾ F				
714 -	Cost	R	S	T [II V
8	Value 1		(Missance services and		-
9	Directional AADT (ini				
10	Traffic Growth F				
11	Delay per veh. Growth F		percent		
12			Daily		
13		Delay/Veh.	Delay	Daily	
14	Year AAD		hrs	Cost	
15	0 400	000 5.0	3333	\$ 33,333	
16	1 41:	200 5.5	3777	\$ 37,767	
17	2 424	I 36 6.1	4279	\$ 42,790	
18	3 43	709 6.7	4848	\$ 48,481	
19	4 450	020 7.3	5493	\$ 54,929	
20	5 463	871 8.1	6223	\$ 62,234	
21	6 47	62 8.9	7051	\$ 70,511	
22	7 491		7989	\$ 79,889	
23	8 506		9051	\$ 90,514	
24	9 52		10255	\$ 102,553	
25	10 537		11619	\$ 116,192	
26	11 553		13165	\$ 131,646	
27	12 570		14915	\$ 149,155	
28	13 587	ni ri méner name maner intrinue	16899	\$ 168,993	\sim
29	14 605		19147	\$ 191,469	Daily Cast
30	15 623		21693	\$ 216,934	Daily Cost
31	16 641	The second	24579	\$ 245,786	of Delay
32	17 661		27848	\$ 278,476	in Year 20
33	18 680		31551	\$ 315,513	
34	the second s	40 30.6			XX
35		4	45889	\$ 405,020	

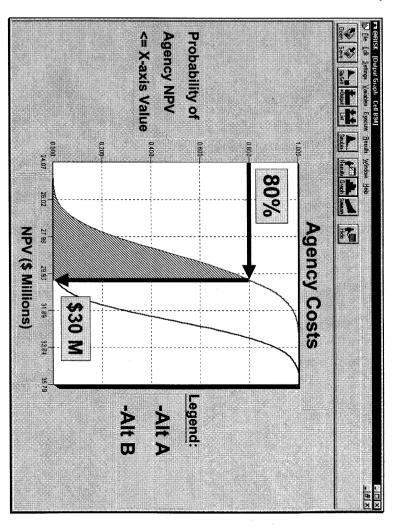

8

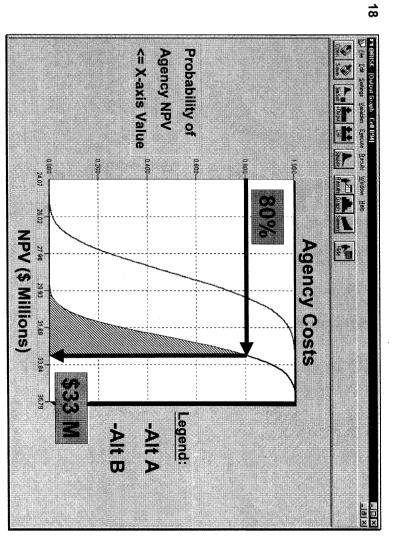
	A	B	С	J D	E
	.Net Present	Valua			
33	Met Liegent	value	· · · · · · · · · · · · · · · · · · ·		
34					
35		Alte	rnative	A Sam	ples
36	Alt A Pavement Life	20.0	10.0	10.0	10.0
37	Alt A Construction Days	210	105	105	105
38	Alt A Construction Cost	\$26,000,000	\$9,000,000	\$ 9,000,000	\$ 9,000,000
44		Initial	Rehab	Rehab	Salvage
45	Year >>>	0	20	30	35
46	Agency Costs (Constant \$)	\$26,000,000	\$9,000,000	\$ 9,000,000	\$(4,500,000
47	Present Worth Factor	1.0000	0.4564	0.3083	0.2534
48	Agency Cost (Present Worth)	\$26,000,000	\$4,107,483	\$ 2,774,868	\$(1,140,370
49	Total NPV (Agency Cost)	\$31,741,981			
50					
51	User Costs (Constant \$)	\$7,000,000	\$42,527,146	\$1,8,239,977	
52	Present Worth Factor	1.0000	0.4504	0.3083	
53	User Cost (Present Worth)	\$7,000,000	¢10 108 831		
54	Total NPV (User Cost)	\$72,113,987	(Daily Cost	s)(Construc	ction Days)
104					


G73	A	\$4-0.5),IF(G71="Sa B	С	Ď	E	F	G
59							
60							
61	-						
62		Alte	rnative	B Sam	oles	>	
63	Alt B Pavement Life	13.0	7.0	7.0	7.0	7.0	7.0
64	Alt B Construction Days	165	85	85	85	85	85
65	Alt B Construction Cost	\$ 21,000,000	\$ 5,000,000	\$ 5,000,000	\$ 5,000,000	\$ 5,000,000	\$ 5,000,000
71		Initial	Rehab	Rehab	Rehab	Rehab	Salvage
72	Year >>>	0	13	20	27	34	35
73	Agency Costs (Constant \$)	\$ 21,000,000	\$ 5,000,000	\$ 5,000,000	\$ 5,000,000	\$ 5,000,000	\$(4,285,714
74	Present Worth Factor	1.0000	0.6006	0.4564	0.3468	0.2636	0.2534
75	Agency Cost (Present Worth)	\$ 21,000,000	\$ 3,002,870	\$ 2,281,935	\$ 1,734,083	\$ 1,317,760	\$(1,086,066
76	Total NPV (Agency Cost)	\$ 28,250,582					
77							
78	User Costs (Constant \$)	\$5,500,000	\$14,364,367	\$34,426,738	\$82,509,744	\$197,749,141	
79	Present Worth Factor	1.0000	0.6006	0.4564	0.3468	0.2636	
80	User Cost (Present Worth)	\$5,500,000	\$8,626,867	\$15,711,914	\$28,615,746	\$52,117,199	
81	Total NPV (User Cost)	\$110,571,726					
82							
83	Total NPV	\$138,822,308					
84							
85							
86							
87						1	
88							

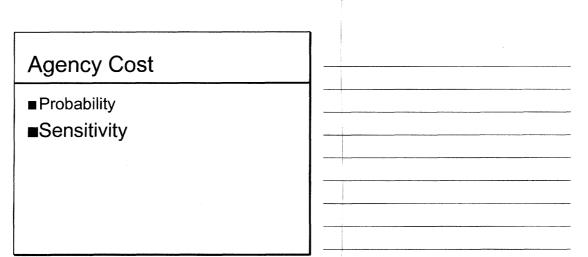

Simulation Processing

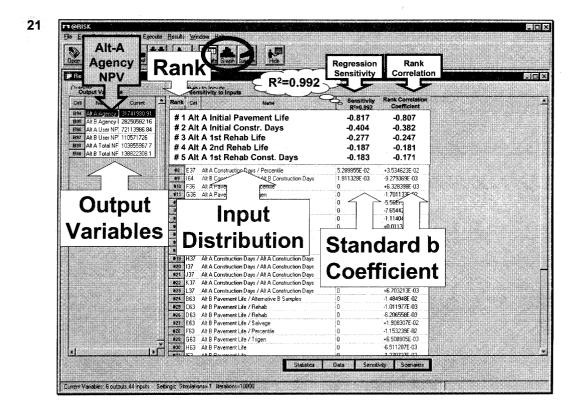

- Latin Hypercube
- 44 Input Variables
- 6 Output Variables
- 10,000 Iterations
- Run Time = 3 min 51 sec

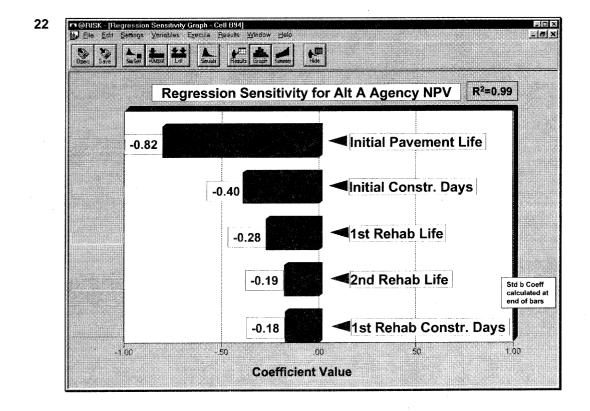


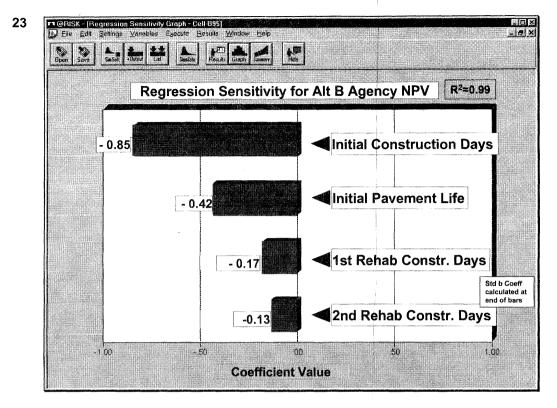

1 2 102	A	В	C	D	Ë	F	G
103							
104			Risk An	alvsis Su	ummarv	Results	
108		Net Present Value					
107		Age	ncy	ປະ	ser	Тс	otal
106		Alt A	Alt B	Alt A	Alt B	Alt A	Alt E
109	Minimum	\$28.9	\$24.1	\$30.9	\$51.5	\$61.0	\$78.5
110	Maximum	\$35.8	\$33.2	\$119.2	\$128.5	\$153.5	\$155.3
111	Mean	\$31.9	\$28.4	\$72.4	\$88.8	\$104.3	\$117.3
112	Std Deviation	\$1.0	\$1.4	\$10.0	\$20.0	\$9.2	\$20.3
113	Mode	\$29.1	\$27.0	\$71.5	\$61.8	\$63.6	\$88.7
114	Percentile - 10	\$30.6	\$26.5	\$60.2	\$61.5	\$93.3	\$89.3
115	25	\$31.2	\$27.4	\$65.4	\$66.4	\$98.0	\$94.0
116	50	\$31.8	\$28.4	\$71.8	\$95.9	\$103.6	\$125.0
117	75	\$32.6	\$29.4	\$78.8	\$105.9	\$110.0	\$134.
118	90	\$33.2	\$30.3	\$85.8	\$111.7	\$116.6	\$140.0
119							
120							

Agency Costs

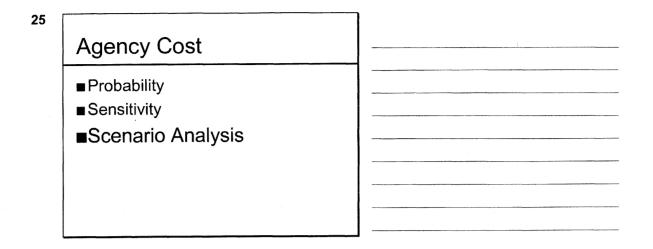


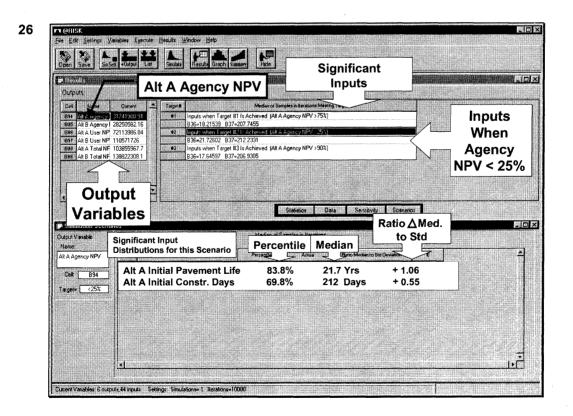


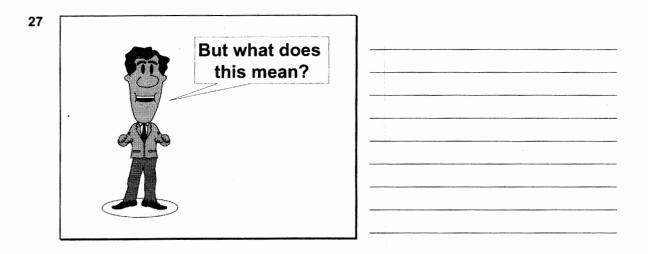

Probability Observations

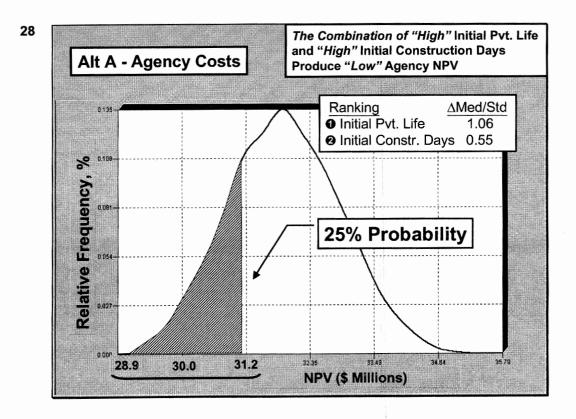

Agency Costs ...

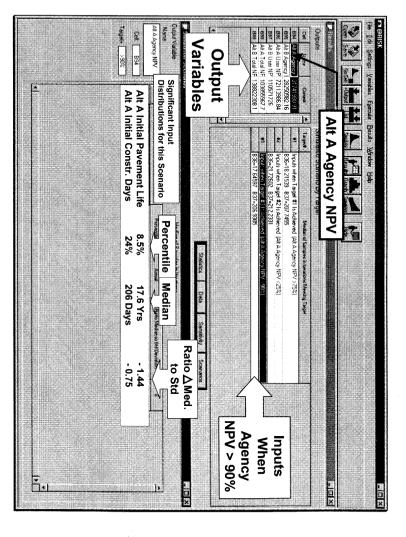
- ■Alt-B is 42% *more* variable than Alt-A
- At *any* given level of reliability Alt-B is *less* expensive than Alt-A.

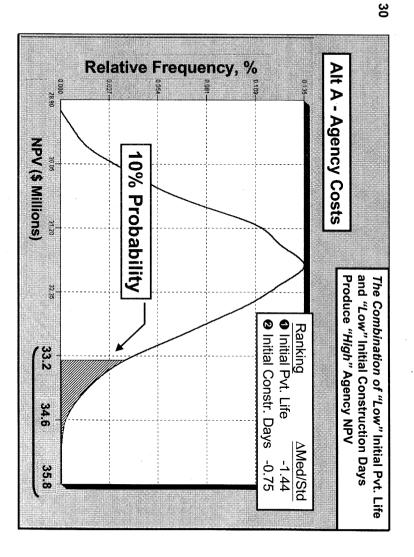


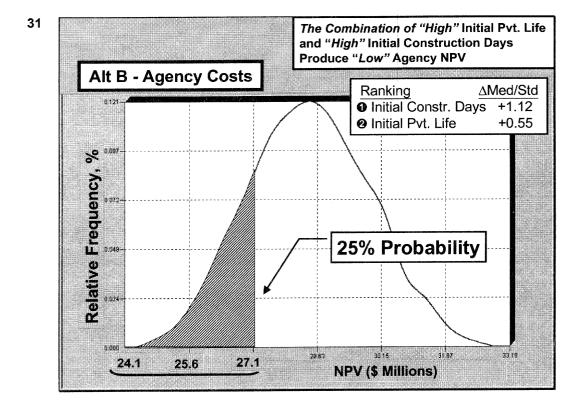

Sensitivity Observations

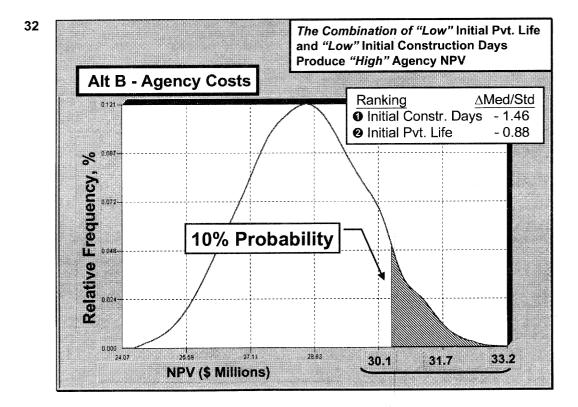

Agency Costs ...


Alternative A


- Initial Pavement Life has the greatest influence on Agency NPV
- Alternative B
 Initial Construction Days has the greatest influence on Agency NPV







³³ Scenario Analysis Observations

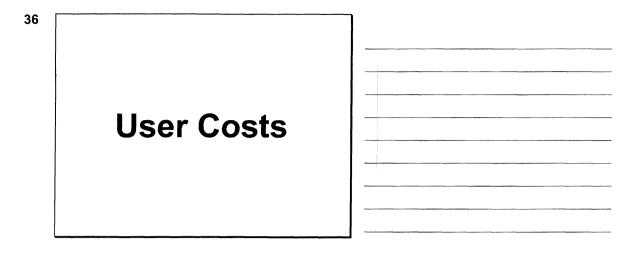
34

For Alt A & B The Combination of

■ *"High"* Initial Pvt. Life and "High" Initial Construction Days Produce "Low"

[< 25%] Agency Costs

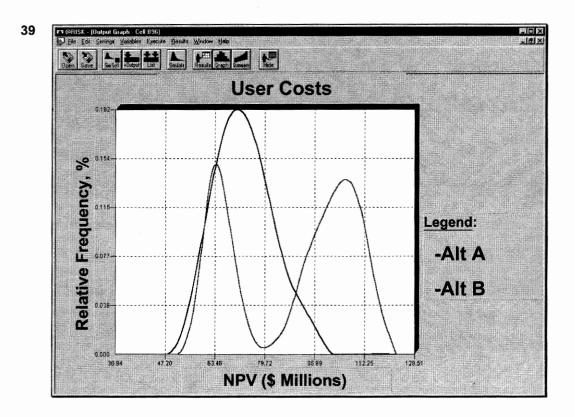
■ *"Low"* Initial Pvt. Life and "Low" Initial Construction Costs Produce "High" [>90%] Agency Costs



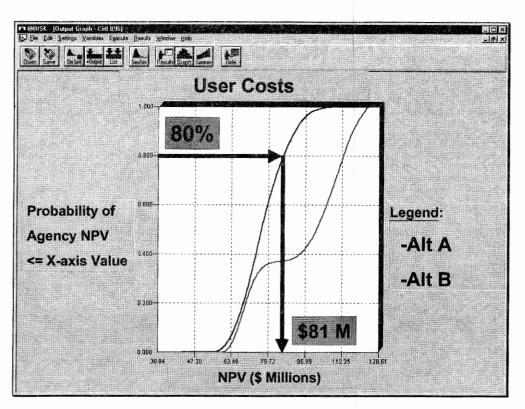
Scenario Analysis Observations Cont'd. Alternative A ... Initial Pavement Life is more significant than Initial Constr. days in both scenarios.

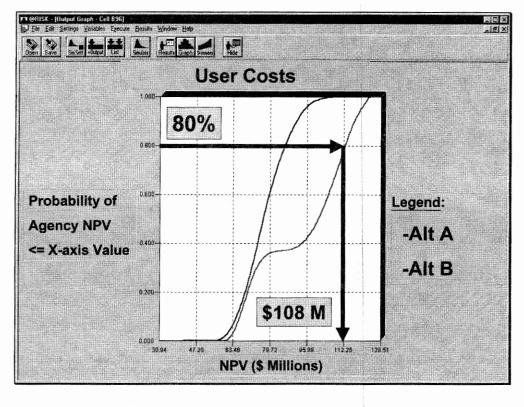
 35
 Scenario Analysis Observations Cont'd.

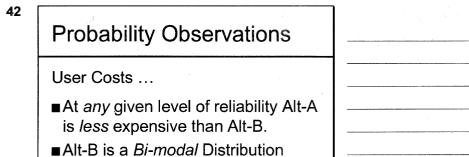
 Alternative B ...
 Initial Constr. Days is more significant than Initial Pavement Life in both scenarios.

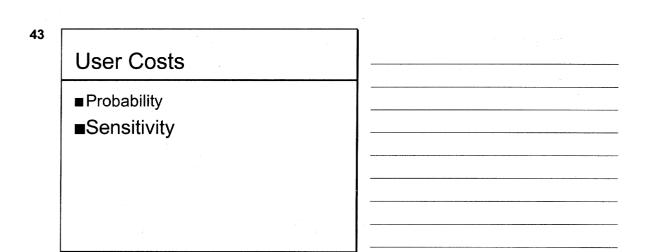

~	-
- 4	

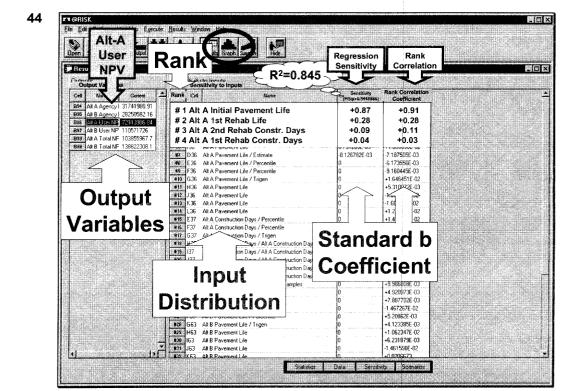
	A	8	Ç	D	E	F	G
02 03							
04							
05			Risk Ana	alysis Sı	ummary	Results	
06			Net Pre	esent Va	lue (\$Mil	llions)	
07		Age	ncy	U	ser	Тс	otal
08		Alt A	Alt B	Alt A	Alt B	Alt A	Alt B
09	Minimum	\$28.9	\$24.1	\$30.9	\$51.5	\$61.0	\$78.5
10	Maximum	\$35.8	\$33.2	\$119.2	\$128.5	\$153.5	\$155.3
11	Mean	\$31.9	\$28.4	\$72.4	\$88.8	\$104.3	\$117.3
12	Std Deviation	\$1.0	\$1.4	\$10.0	\$20.0	\$9.2	\$20.3
13	Mode	\$29.1	\$27.0	\$71.5	\$61.8	\$63.6	\$88.7
14 P	ercentile - 10	\$30.6	\$26.5	\$60.2	\$61.5	\$93.3	\$89.3
15	25	\$31.2	\$27.4	\$65.4	\$66.4	\$98.0	\$94.0
16	50	\$31.8	\$28.4	\$71.8	\$95.9	\$103.6	\$125.0
17	75	\$32.6	\$29.4	\$78.8	\$105.9	\$110.0	\$134.5
18	90	\$33.2	\$30.3	\$85.8	\$111.7	\$116.6	\$140.0
19 20 21							

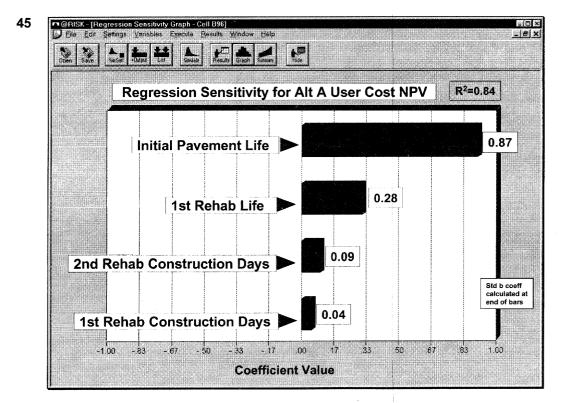



User Costs

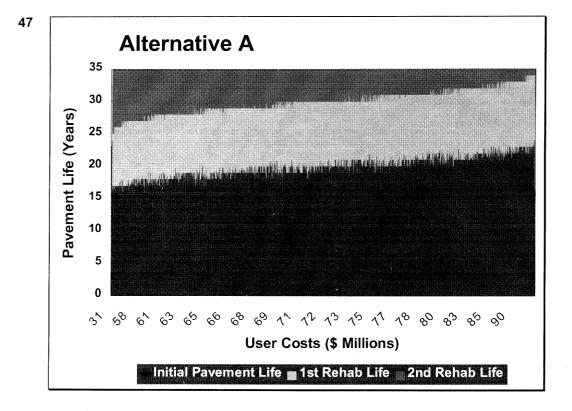

- Probability
- Sensitivity
- Scenario Analysis



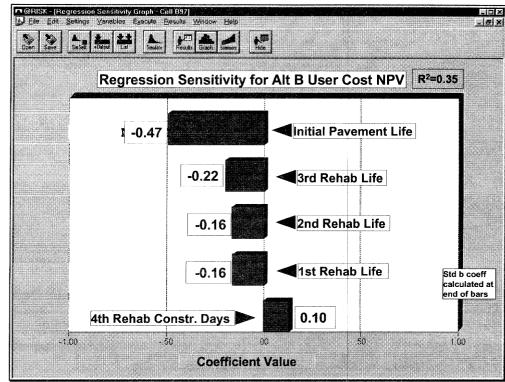


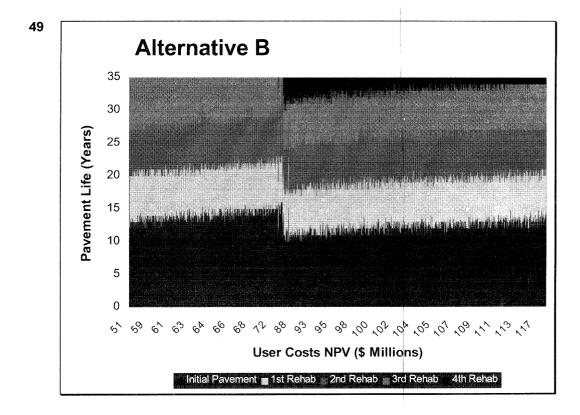


■Alt-B is *twice* as variable as Alt-A



The Graph says ... When Initial Pavement Life Samples High ...


High User Costs are Produced.


Does this make sense?

Sensitivity Observations

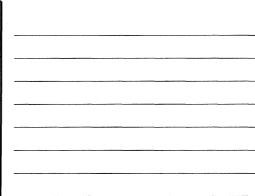
For both Alt A & B User Costs ...

Initial Pavement Life has the greatest influence

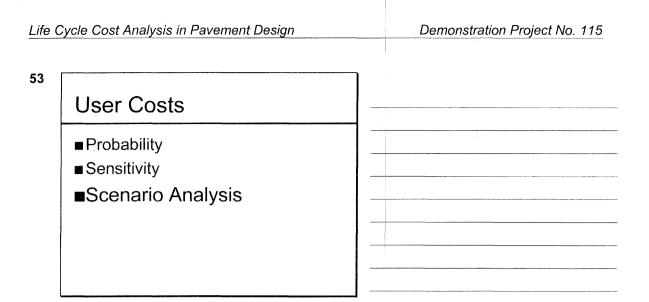
51

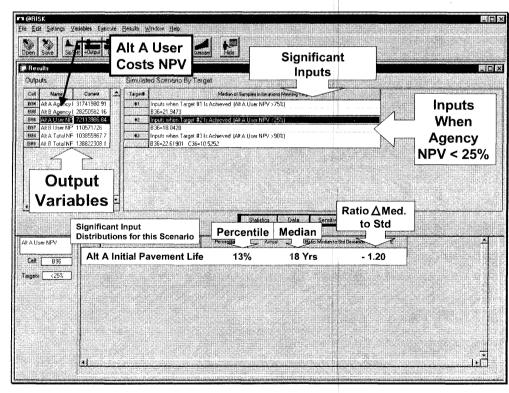
Sensitivity Observations Cont'd

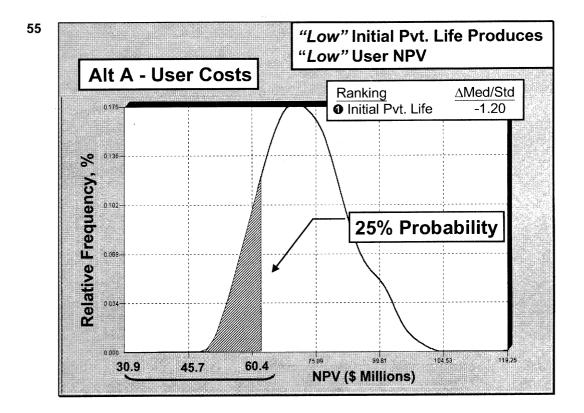
Alternative A

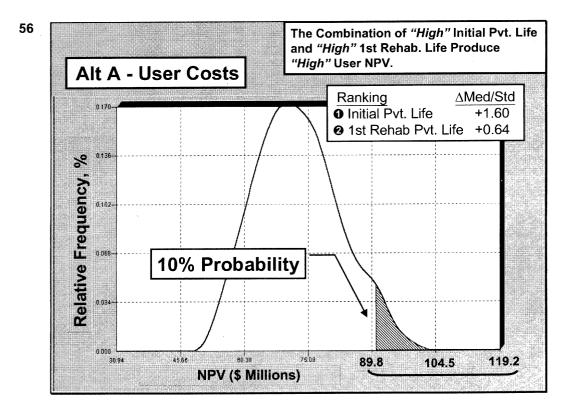

- The variability of pavement life was such that two rehabs *always* occurred during analysis period
- ■As a result lower pavement lives produced lower user costs.

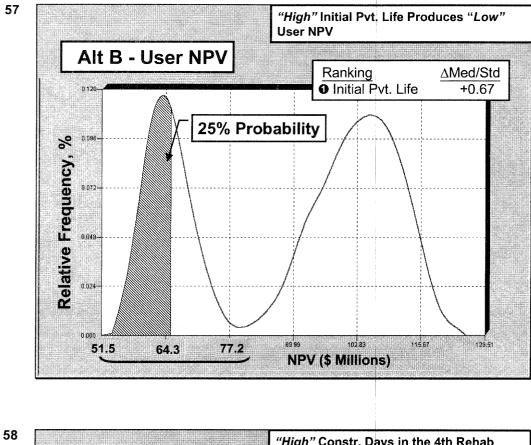
52

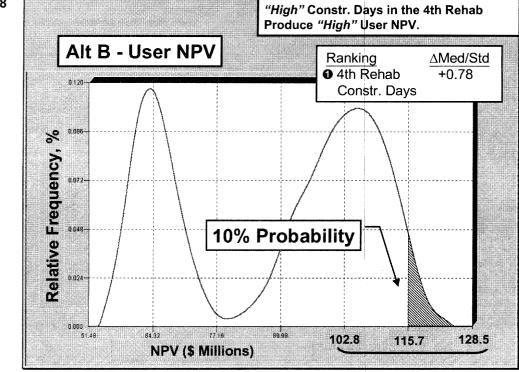

Sensitivity Observations Cont'd

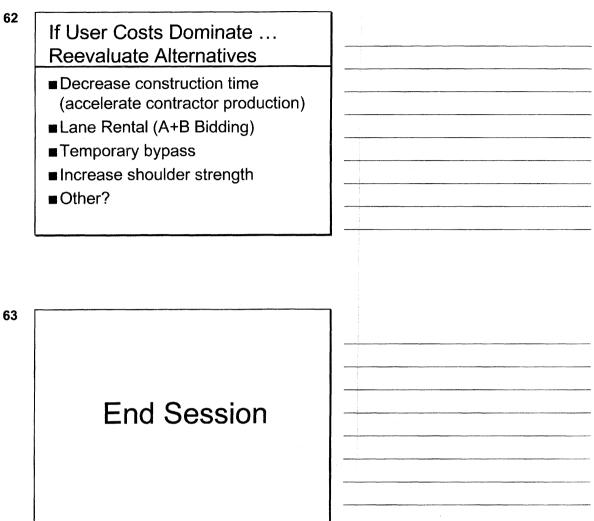

Alternative B

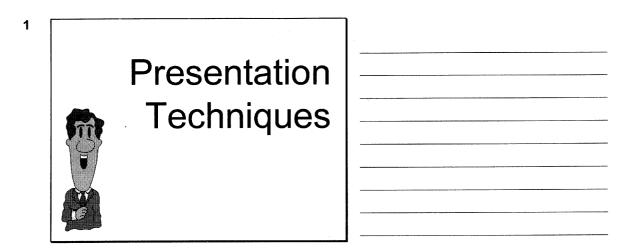

- The variability of pavement life was such that 3 and 4 rehabs occurred during analysis period
- This caused a Bi-modal Distribution
- ■As a result lower pavement lives produced higher user costs.

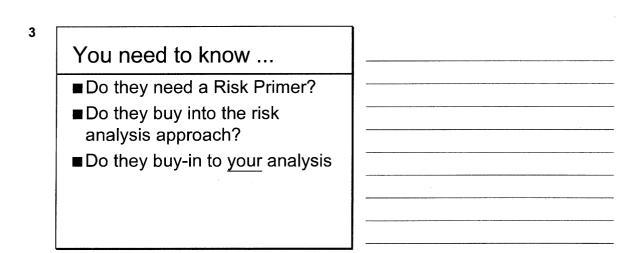


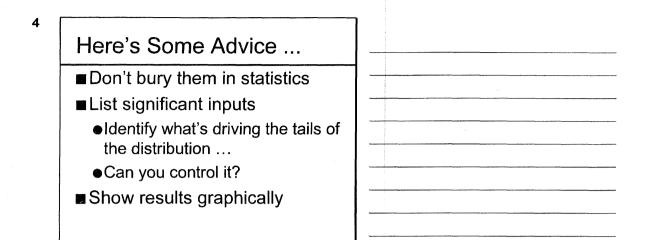




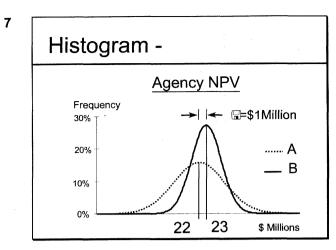

⁵⁹ Scenario Analysis Observations

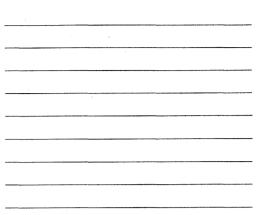

User Costs Alternative A

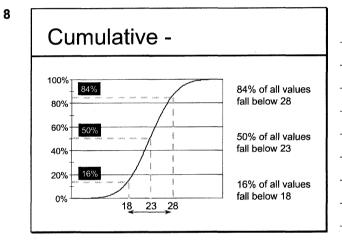

- "Low" Initial Pavement Life produces Low User NPV
- The Combination of *"Low"* Initial Pvt. Life and *"High"* 1st Rehab. Life Produce Low User NPV

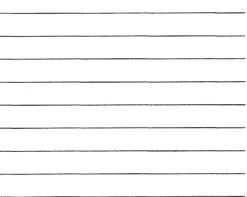

60	Scenario Analysis Observations	
	 User Costs Alternative B "High" Initial Pavement Life produces Low User NPV "High" Constr. Days in the 4th Rehab produce "High" User Costs. 	

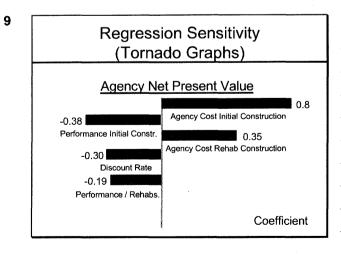
61 Which Alternative would you select? Must define Agency's tolerance for risk.

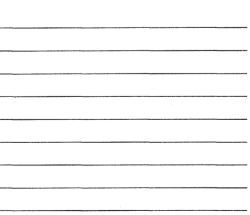

Report

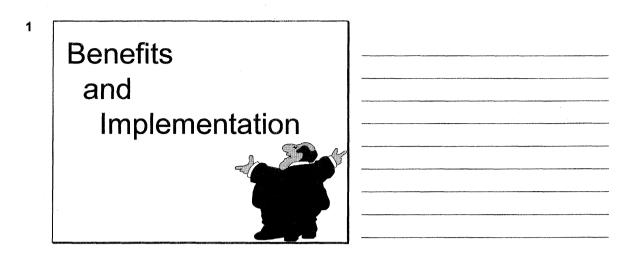

- One page summary (???)
- Supporting documentation

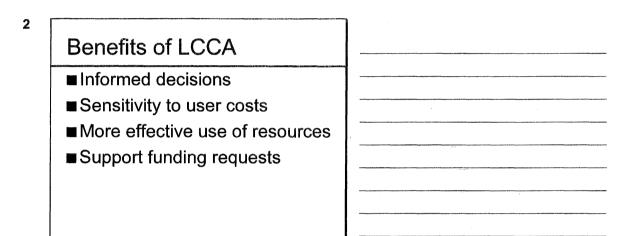

6

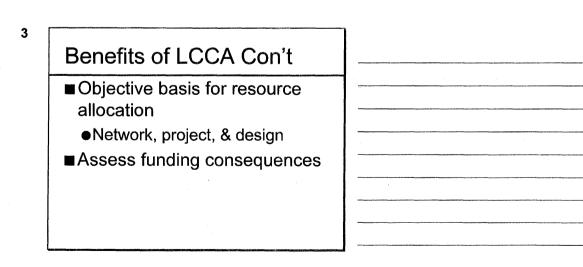

One Page Summary


- Inputs: List uncertain variables
- Outputs:
 - Histogram & Cumulative
 - Mean, Std. Dev., Percentiles
- Analysis of results
 - Tornado graphs, Scenario analysis
- Recommendations
 - Include level of risk



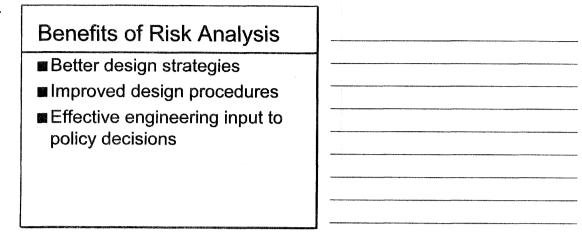



Supporting Documentation


- Distributions with supporting justifications
- Structure and layout of model
- Sensitivity analysis of proposed distributions
- Analysis of uncertain events

11

End Session



Demonstration Project No. 115

4

5

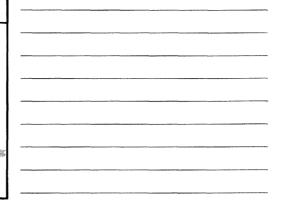
Benefits of RA Cont'd

- Expose areas of uncertainty
- Quantify risk
- Opportunity for mitigating action
- Improved credibility
- Assess impact of risk on investment decisions
- Avoid disasters

6

Benefits of RA Cont'd

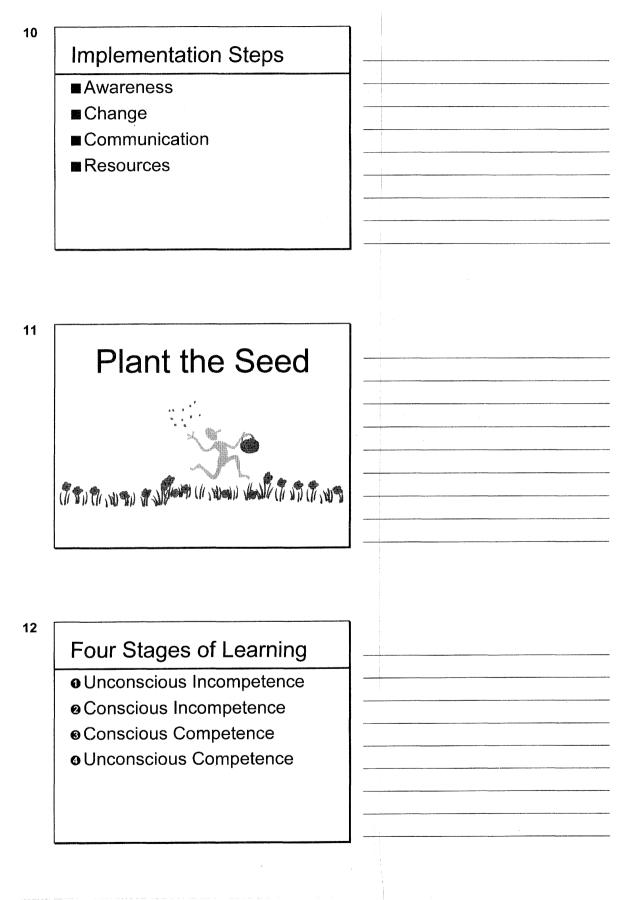
- Determine significance of difference between alternatives
- Examine influence of underlying variables on final results
- Evaluate all possible outcomes


Caveats

7

8

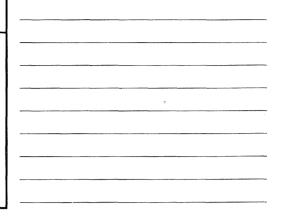
■New concept


- Requires statistical background
- Computer intensive
 - Proprietary software
 - Complex models
- Requires risk management "buy in" by senior executives

9

Obstacles

- ■Lack of awareness
- Resistance to change
- ■Time pressures
- ■Lack of communication
- ■Unavailability of resources

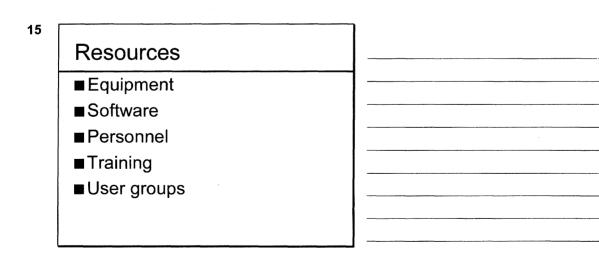


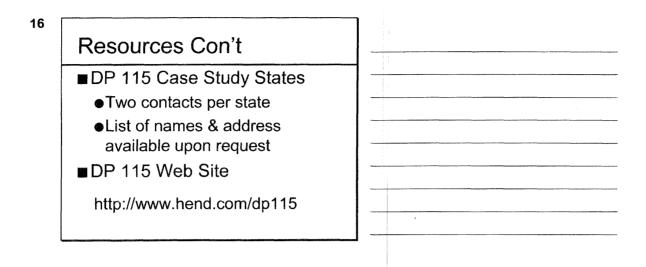
Module XII - 4

Implementation Steps

■ Identify a champion

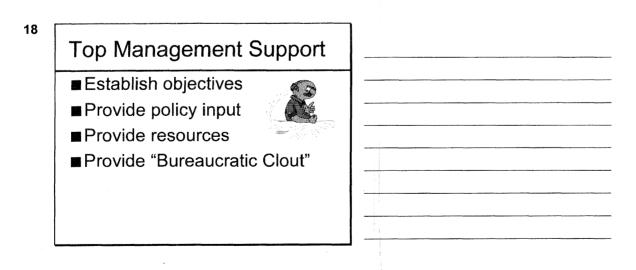
- Understand classical LCCA
- ■Assess current procedures
- Determine data availability
- Tap expert opinion

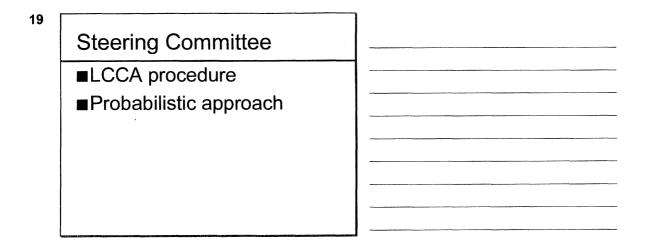


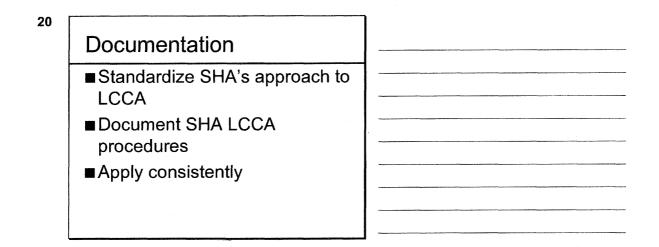

14

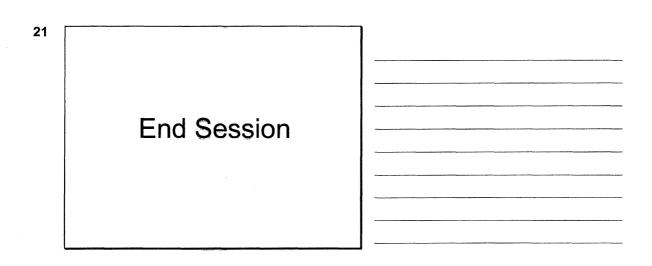
13

Probabilistic Champion


- ■Believer
- ■Well founded in LCCA
- ■Spreadsheet literate
- ■Time available

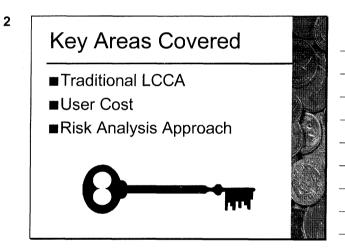


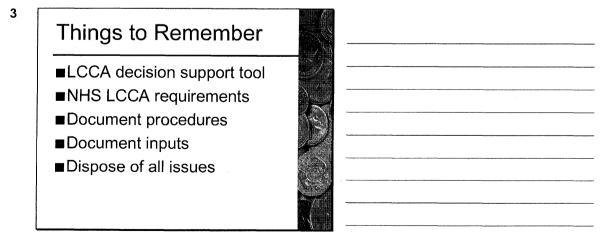

C Home Page - Microsoft Internet Explorer provided by MSN wsn .) Betre 2 A Probabilistic Life Cycle Cost Analysis in Pavement Design Demonstration Project No. 115 Welcome to the Federal Highway Administration's Demonstration Project No. 115 web site. This project is a technology transfer effort that provides technical guidance in the conduct of life cycle cost analysis in pavement design and introduces a probabilistic approace in the treatment of uncertain data inputs. Follow the links below for nore infomation LCCA Training Useful Links Technical ۲ Developer's Group Bulletin ŵ

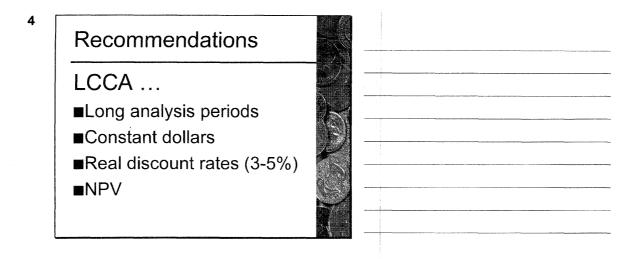

17

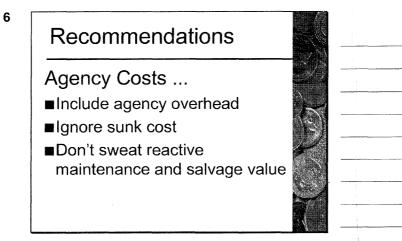


Module XII - 6









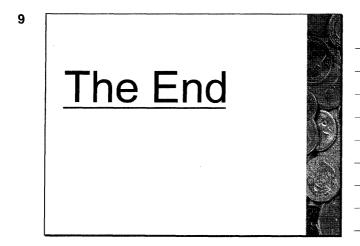
5

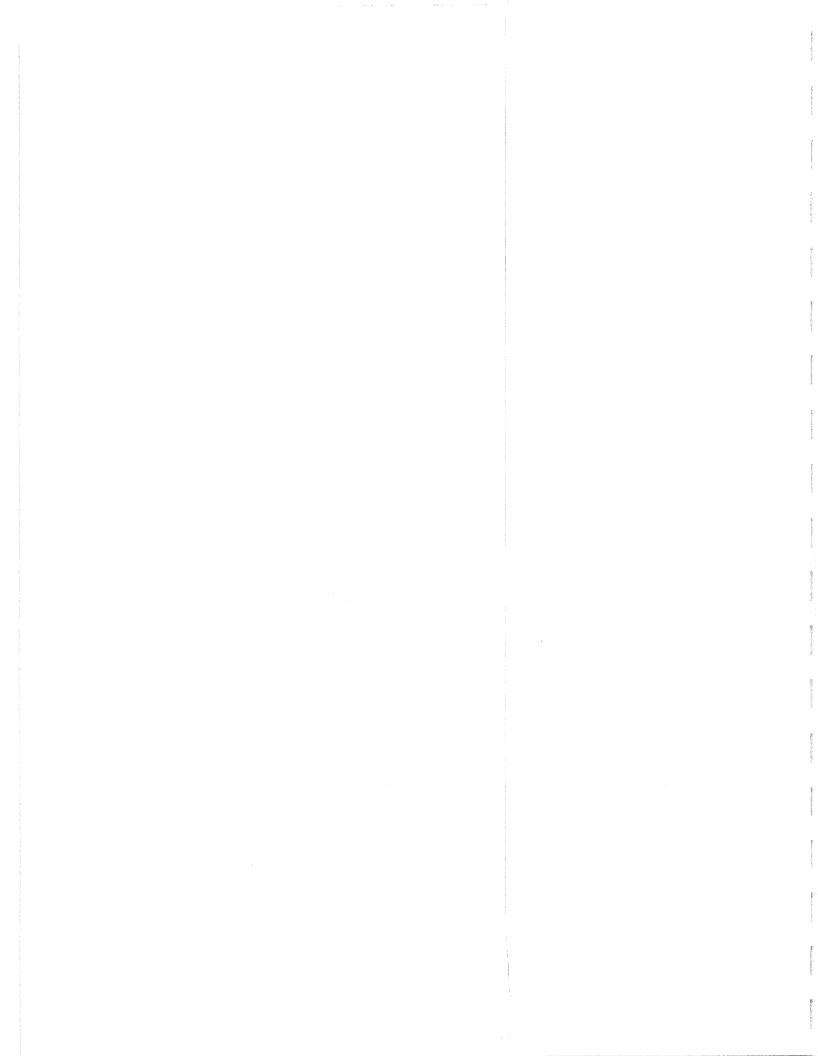
Recommendations Value of time •Passenger \$10 - \$13 •Single Unit Trk \$17 - \$20 •Combo Trk \$21 - \$24

Module XIII - 2

Recommendations

User Costs ...

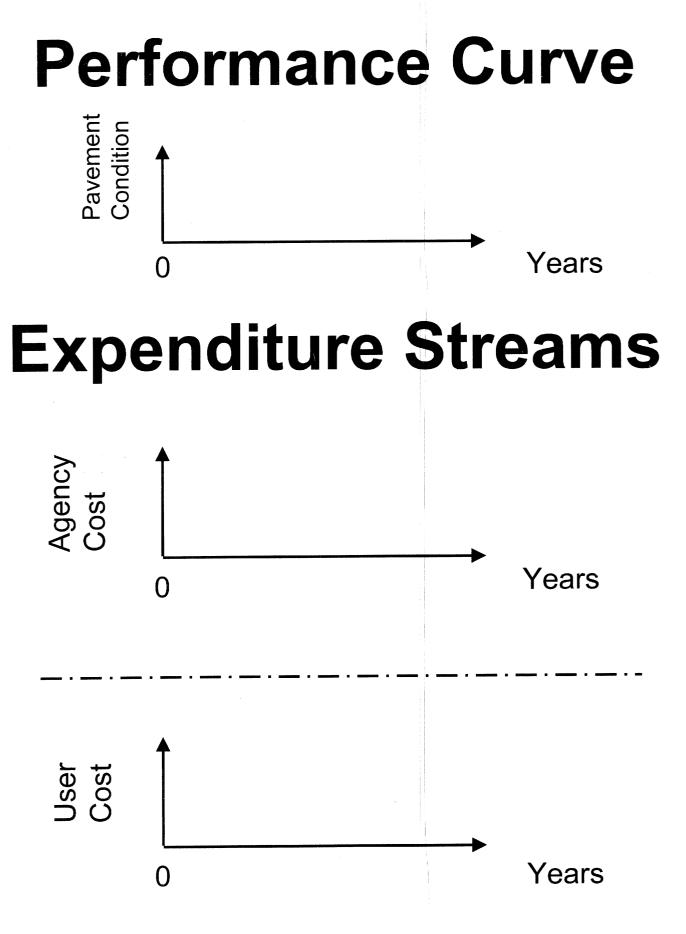

Traffic grows


7

8

- Queuing cost dominate
- Hourly distributions key
- ■\$ Value of time major influence
- Circuity can be major

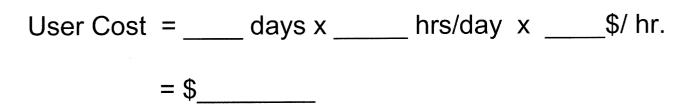
Recommend a risk analysis approach in the treatment of uncertainty.

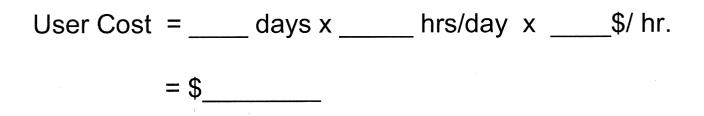

Class Exercise No. 1 Net Present Value

Compute the Net Present Value (NPV) for the following Alternative.

	· · · · · · · · · · · · · · · · · · ·	
	Initial Constr.	Rehab.
Design Period, (yrs)	20	10
Agency Cost (\$ Millions)	26	9
Construction Period (days)	210	105

Assume the following:


Analysis Period (yrs)	30
Daily Delay (Hours)	3000
Routine Maintenance	Insignificant
Discount Rate, %	4
Value of Time (\$/hr)	10


User Cost Calculations

User Cost = Construction Days x Daily Delay x Value of Time

Initial Construction

Rehabilitation

 $NPV = InitialCost + \sum_{k=1}^{N} FutureCost \left| \frac{1}{(1+i)^{n_k}} \right|$

Note: Quantity in brackets is present value factor from page 1.5.

Agency Cost

NPV =

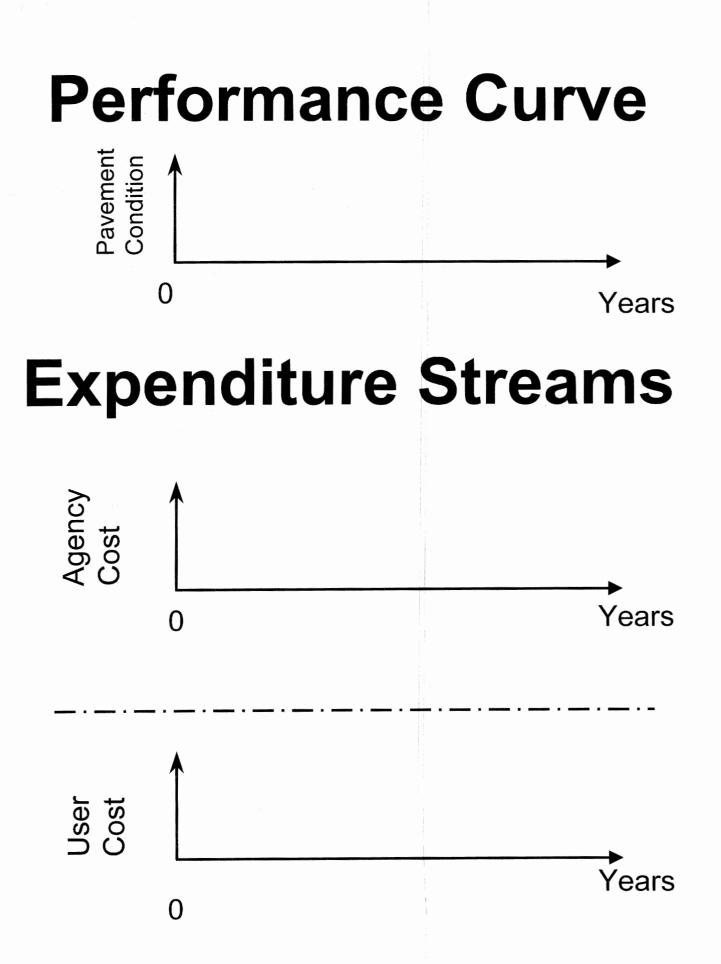
User Cost

NPV =

Exercise 1-4

Present Value Factors

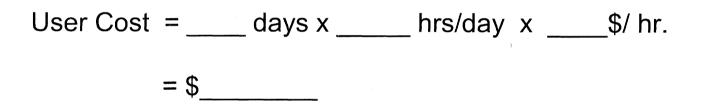
[Discou	nt Rate	e, (i)	
4.0%	4.5%	5.0%	5.5%	6.0%
0.9615	0.9569	0.9524	0.9479	0.9434
0.9246	0.9157	0.9070	0.8985	0.8900
0.8890	0.8763	0.8638	0.8516	0.8396
0.8548	0.8386	0.8227	0.8072	0.7921
0.8219	0.8025	0.7835	0.7651	0.7473
0.7903	0.7679	0.7462	0.7252	0.7050
0.7599	0.7348	0.7107	0.6874	0.6651
0.7307	0.7032	0.6768	0.6516	0.6274
0.7026	0.6729	0.6446	0.6176	0.5919
0.6756	0.6439	0.6139	0.5854	0.5584
0.6496	0.6162	0.5847	0.5549	0.5268
0.6246	0.5897	0.5568	0.5260	0.4970
0.6006	0.5643	0.5303	0.4986	0.4688
0.5775	0.5400	0.5051	0.4726	0.4423
0.5553	0.5167	0.4810	0.4479	0.4173
0.5339	0.4945	0.4581	0.4246	0.3936
	0.4732	0,4363	0.4024	0.3714
0.4936	0.4528	0.4155	0.3815	0.3503
				0.3305
	0.4146		:	0.3118
	0.3968			0.2942
				0.2775
:		:	0.2919	0.2618
			0.2767	0.2470
				0.2330
:		:	:	0.2198
			:	0.2074
				0.1956
:		:		0.1846
				0.1741
				0.1643
:		:		0.1550
				0.1462
			:	0.1379
:		:		0.1301
	4.0% 0.9615 0.9246 0.8890 0.8548 0.8219 0.7903 0.7599 0.7307 0.7026 0.6756 0.6496 0.6246 0.6246 0.6006 0.5775	4.0%4.5%0.96150.95690.92460.91570.88900.87630.85480.83860.82190.80250.79030.76790.75990.73480.73070.70320.70260.67290.67560.64390.64960.61620.62460.58970.60060.56430.57750.54000.55530.51670.53390.49450.51340.47320.49360.45280.47460.43330.45640.41460.43880.39680.42200.37970.40570.36340.39010.34770.37510.33270.36070.31840.32070.27900.30830.26700.29650.25550.28510.24450.27410.23400.26360.2239	4.0%4.5%5.0%0.96150.95690.95240.92460.91570.90700.88900.87630.86380.85480.83860.82270.82190.80250.78350.79030.76790.74620.75990.73480.71070.73070.70320.67680.70260.67290.64460.67560.64390.61390.64960.61620.58470.62460.58970.55680.60060.56430.53030.57750.54000.50510.55530.51670.48100.53390.49450.45810.51340.47320.43630.49360.45280.41550.47460.43330.39570.45640.41460.37690.43880.39680.35890.42200.37970.34180.40570.36340.32560.39010.34770.31010.37510.33270.29530.36070.31840.28120.30830.26700.23140.29650.25550.22040.28510.24450.20990.27410.23400.19990.26360.22390.1904	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$


Class Exercise No. 2 Net Present Value

Compute the Net Present Value (NPV) for the following Alternative.

	Initial Constr.	Rehab.
Design Period, (yrs)	20	8
Agency Cost (\$ Millions)	30	9
Construction Period (days)	200	80

Assume the following:


Analysis Period (yrs)	30
Daily Delay (Hours)	4000
Routine Maintenance	Insignificant
Discount Rate, %	4
Value of Time (\$/hr)	15

User Cost Calculations

User Cost = Construction Days x Daily Delay x Value of Time

Initial Construction

Rehabilitation

User Cost = ____ days x ____ hrs/day x ____\$/ hr. = \$____

 $NPV = InitialCost + \sum_{k=1}^{N} FutureCost \left\lfloor \frac{1}{(1+i)^{n_k}} \right\rfloor$

Note: Quantity in brackets is present value factor from page 2.5.

Agency Cost


NPV =

User Cost

NPV =

Present Value Factors

Year	r Discount Rate, (i)					
n	4.0%	4.5%	5.0%	5.5%	6.0%	
1	0.9615	0.9569	0.9524	0.9479	0.9434	
2 3	0.9246	0.9157	0.9070	0.8985	0.8900	
3	0.8890	0.8763	0.8638	0.8516	0.8396	
4	0.8548	0.8386	0.8227	0.8072	0.7921	
5	0.8219	0.8025	0.7835	0.7651	0.7473	
6	0.7903	0.7679	0.7462	0.7252	0.7050	
7	0.7599	0.7348	0.7107	0.6874	0.6651	
8	0.7307	0.7032	0.6768	0.6516	0.6274	
9	0.7026	0.6729	0.6446	0.6176	0.5919	
10	0.6756	0.6439	0.6139	0.5854	0.5584	
11	0.6496	0.6162	0.5847	0.5549	0.5268	
12	0.6246	0.5897	0.5568	0.5260	0.4970	
13	0.6006	0.5643	0.5303	0.4986	0.4688	
14	0.5775	0.5400	0.5051	0.4726	0.4423	
15	0.5553	0.5167	0.4810	0.4479	0.4173	
16	0.5339	0.4945	0.4581	0.4246	0.3936	
17	0.5134	0.4732	0.4363	0.4024	0.3714	
18	0.4936	0.4528	0.4155	0.3815	0.3503	
19	0.4746	0.4333	0.3957	0.3616	0.3305	
20	0.4564	0.4146	0.3769	0.3427	0.3118	
21	0.4388	0.3968	0.3589	0.3249	0.2942	
22	0.4220	0.3797	0.3418	0.3079	0.2775	
23	0.4057	0.3634	0.3256	0.2919	0.2618	
24	0.3901	0.3477	0.3101	0.2767	0.2470	
25	0.3751	0.3327	0.2953	0.2622	0.2330	
26	0.3607	0.3184	0.2812	0.2486	0.2198	
27	0.3468	0.3047	0.2678	0.2356	0.2074	
28	0.3335	0.2916	0.2551	0.2233	0.1956	
29	0.3207	0.2790	0.2429	0.2117	0.1846	
30	0.3083	0.2670	0.2314	0.2006	0.1741	
31	0.2965	0.2555	0.2204	0.1902	0.1643	
32	0.2851	0.2445	0.2099	0.1803	0.1550	
33	0.2741	0.2340	0.1999	0.1709	0.1462	
34	0.2636	0.2239	0.1904	0.1620	0.1379	
35	0.2534	0.2143	0.1813	0.1535	0.1301	

Class Exercise No. 3 Work Zone User Cost

The eastbound lanes of a six-lane facility are undergoing rehabilitation. Figures 1 and 2 provide a layout of the work zone and the associated user cost components. The facility carries 95,000 vehicles per day of which 90% are passenger cars, 6% single unit trucks, and 4% combination unit trucks. The directional factor is 54% for the eastbound direction. A 7 mile work zone closing one lane will be in place 24 hours each day until construction is complete. It is estimated to take 75 days to complete construction. The upstream approach speed is posted at 55 mph and the speed through the work zone will be posted at 35 mph. The free flow capacity of the roadway is estimated at 2100 vehicles per hour per lane (vphpl) while the work zone capacity is estimated at 1400 vphpl. A capacity analysis of the work zone is shown in Table 1. This class exercise includes three separate problems identified below.

Problem **1**

Determine the quantity of traffic associated with each work zone user cost component.

Problem @

Determine the reduced speed delay to traverse the work zone and queue.

Problem **③**

Calculate the user costs associated with the work zone.

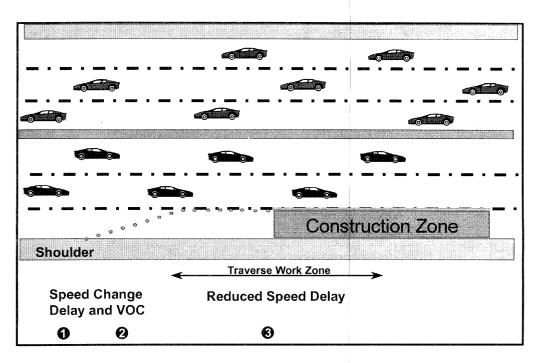


Figure 1. Eastbound Work Zone User Cost Components at Free Flow Conditions.

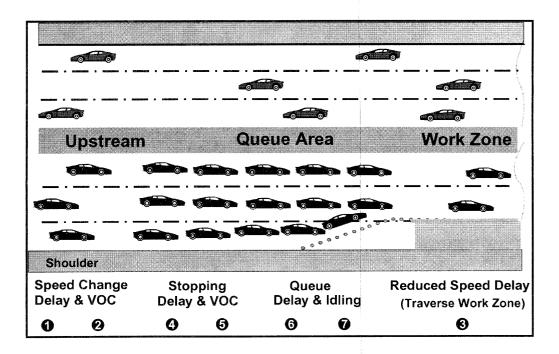


Figure 2. Eastbound Work Zone User Cost Components at Forced Flow Conditions.

		Eas	tbound				AADT	95,000		
Di	irec		Factor	54.0%		Directio	onal AADT	51,300		
			Hrly	Vehicle	Vehicle		Culm.		Vehicles that	
			Distri.	Demand	Capacity	Rate	Que Veh.	Stop	Traverse WZ	SlowDown
	Ηοι	ır	%	vph	vph	vph		55-0-55	at 35 mph	55-35-55
0	-	1	0.9	462	2,800	(2,338)	0	0	462	462
1	-	2	0.5	257	2,800	(2,544)	0	0	257	257
2	-	3	0.4	205	2,800	(2,595)	0	0	205	205
3	-	4	0.4	205	2,800	(2,595)	0	0	205	205
4	-	5	0.6	308	2,800	(2,492)	0	0	308	308
5	-	6	1.8	923	2,800	(1,877)	0	0	923	923
6	-	7	4.4	2,257	2,800	(543)	0	0	2,257	2257
7	-	8	6.2	3,181	2,800	381	381	3,181	3,181	0
8	-	9	5.7	2,924	2,800	124	505	2,924	2,924	0
9	-	10	5.1	2,616	2,800	(184)	321	2,616	2,616	0
10	-	11	5.2	2,668	2,800	(132)	189	2,668	2,668	0
11	-	12	5.6	2,873	2,800	73	261	2,873	2,873	0
12	-	13	6.0	3,078	2,800	278	539	3,078	3,078	0
13	-	14	5.9	3,027	2,800	227	766	3,027	3,027	0
14	-	15	6.4	3,283	2,800	483	1,249	3,283	3,283	0
15	-	16	7.4	3,796	2,800	996	2,246	3,796	3,796	0
16	-	17	7.8	4,001	2,800	1,201	3,447	4,001	4,001	0
17	-	18	7.5	3,848	2,800	1,048	4,494	3,848	3,848	0
18	-	19	5.9	3,027	2,800	227	4,721	3,027	3,027	0
19	-	20	4.9	2,514	2,800	(286)	4,435	2,514	2,514	0
20	-	21	4.0	2,052	2,800	(748)	3,687	2,052	2,052	0
21	-	22	3.3	1,693	2,800	(1,107)	2,580	1,693	1,693	0
22	-	23	2.4	1,231	2,800	(1,569)	1,011	1,231	1,231	0
23	-	24	1.7	872	2,800	(1,928)	0	457	872	415
	٦	「otal	100	51,300				46,268	51,300	5,032

Table 1. Capacity Analysis of Work Zone Operation.

-4

·8

1.8

Note: The number of vehicles required to stop (55-0-55 mph) during the last hour (23-24) is prorated based on the amount of time required to clear the queue remaining in the previous hour.

Problem No. 2

Compute the reduced speed delay to traverse the work zone.

	Work	Zone Length	Time
Work Zone Speed	mph	mi	hrs.
Upstream Speed	mph	mi	hrs.
Increased	Time to Traverse th	e Work Zone:	hrs.

Compute the reduced speed delay to traverse the queue

	Comp	Value	
 Maximum nu 	umber of qu		
Queue Volume	(V _Q) "Capac	ity of Work Zone"	
Queue Capacity	(C _Q) "Upst	ream Capacity"	
V _Q /C _Q			
Queue Speed (S	S _Q) (See Fig	gure 3 Page 3.7)	
Work Zone [Density (V _Q /	S _Q)	
Upstream Volun	ne (V _U) "Den	nand at Max. No. Queued Vehicles"	
Upstream Speed	d (S _u)		
Opstream Description	ensity (V _U /S	υ)	
△ Density (❷ -	0)		
Maximum Q	ueue Lengt	h ($oldsymbol{0}$ / $ riangle$ Density)	
O Average Que	eue Length		
Queue Travel	0	Θ /Queue Speed (S _Q) (hrs)	
Time	Ð	$\boldsymbol{\Theta}$ /Upstream Speed (S _U) (hrs)	
Queue I	Delay (hrs		

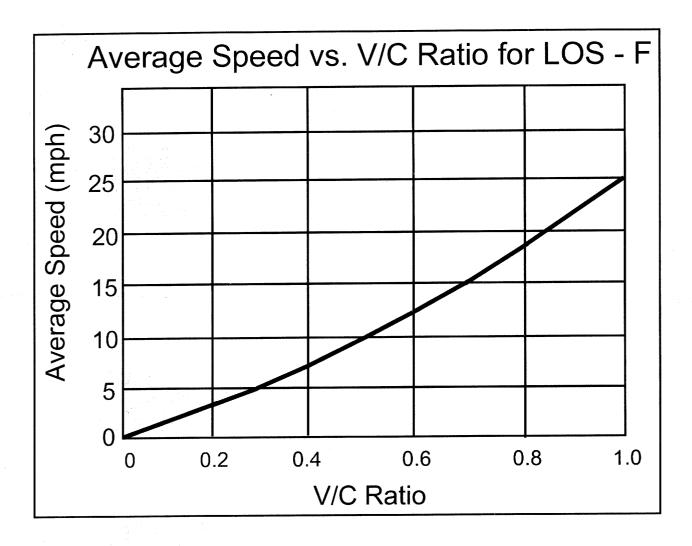


Figure 3. V/C Ratio versus Average Queue Speed (Source: NCHRP 133).

 $V = V_Q$ = Capacity in Work Zone C = C _Q = Upstream Capacity

Problem No. 3

Compute the following user costs associated with the work zone.

Cost Component	Veh. Class	Number Vehicles	Added VOC	Added Time (Hrs/Veh.)	Value of Time ⁽⁴⁾ (\$/Veh. Hr)	Cost (\$)	%
	Auto			/1000 ^(1,3)			
❶WZ Speed Change Delay (55-35-55)	SU			/1000 (1,3)			
	Combo			/1000 (1.3)			
ØWZ Speed Change VOC (55-35-55)	Auto		/1000 ^(1.2)				
	SU		/1000 ^(1,2)				
	Combo		/1000 (1,2)				
	Auto			(5)			
❷WZ Reduced Speed Delay (35 vs. 55)	SU			(5)			
	Combo			(5)			
	Auto			/1000 ^(1,3)			
OQueue Stopping Delay (55-0-55)	SU			/1000 (1.3)			
, (,	Combo			/1000 (1,3)			
	Auto		/1000 ^(1,2)				
Θ Queue Stopping VOC (55-0-55)	SU		/1000 ^(1,2)				
	Combo		/1000 ^(1.2)				
O Queue Added Travel	Auto			(6)			
Time Delay	SU			(6)			
(Queue Speed vs 55)	Combo			(6)			
	Auto		(7)	(6)			
Queue Idle VOC	SU			(6)			
	Combo			(6)			
			Total Work Z	Zone User Co	ost >>>>>		

Notes:

- 1. See Table 2 Page 3.9 for added time and vehicle running cost.
- 2. Speed change VOC typically given as \$/1000 Veh.
- 3. Speed change delay typically given as Hr/1000 Veh.
- 4. See Table 3 Page 3.9 for recommended values of time.
- 5. See Problem No.2 Page 3.6 Answer
- 6. See Problem No. 2. Page 3.6 Answer
- 7. See bottom of Table 2 on Page 3.9 for Idle cost rates. Note Idling cost units \$/Veh.-Hr.


Costs (Costs (August 1996).							
	Adde	d Time (Hr /	1000 Stops)	Add	ed Cost (\$/1	000 Stops)		
Initial	(E	xcludes Idli	ng Time)	(E	xcludes Idli	ng Time)		
Speed	Pass.	Т	rucks	Pass.	Ti	rucks		
(mph)	Cars	Single	Combination	Car	Single	Combination		
5	1.02	0.73	1.10	2.70	9.25	33.62		
10	1.51	1.47	2.27	8.83	20.72	77.49		
15	2.00	2.20	3.48	15.16	33.89	129.97		
20	2.49	2.93	4.76	21.74	48.40	190.06		
25	2.98	3.67	6.10	28.67	63.97	256.54		
30	3.46	4.40	7.56	36.10	80.23	328.21		
35	3.94	5.13	9.19	44.06	96.88	403.84		
40	4.42	5.87	11.09	52.70	113.97	482.21		
45	4.90	6.60	13.39	62.07	130.08	562.14		
50	5.37	7.33	16.37	72.31	145.96	642.41		
55	5.84	8.07	20.72	83.47	160.89	721.77		
60	6.31	8.80	27.94	95.70	178.98	798.99		
65	6.78	9.53	NA	109.02	195.84	NA		
70	7.25	NA	NA	123.61	NA	NA		
75	7.71	NA	NA	139.53	NA	NA		
80	8.17	NA	NA	156.85	NA	NA		
l	dling Cos	st (\$ / vehicl	e-hour)	0.6927	0.7681	0.8248		

 Table 2. Added Time and Vehicle Running Cost / 1000 Stops and Idling

Table 3. Recommended Value of Time (August 1996).

5

Vehicles	\$ / V	ehicle hour
Class	Value	Range
Passenger	11.58	10 – 13
Single Unit	18.54	17 – 19
Combination	22.31	21 – 24

Class Exercise No. 4 Life Cycle Cost Analysis

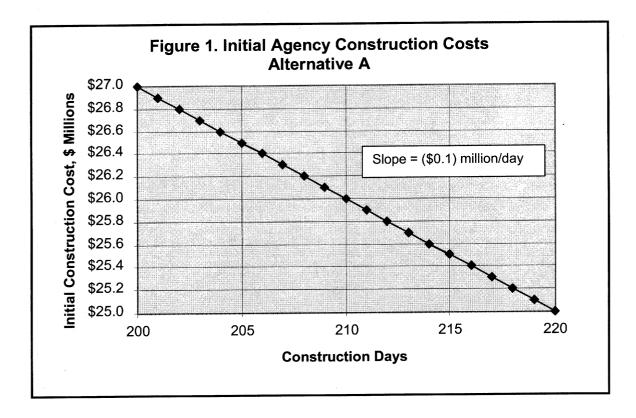
A State highway agency is conducting a Life Cycle Cost Analysis of a 6-lane facility (3 lanes per direction). The current directional AADT is 40,000 vehicles per day. The State is considering two alternatives for the initial construction and rehabilitation strategy for <u>one direction</u>. Planned work zones will be in place 24 hours per day during which time the facility is reduced to 2 lanes of operation. Performance life ranges for the two alternative strategies are shown in Table 1.

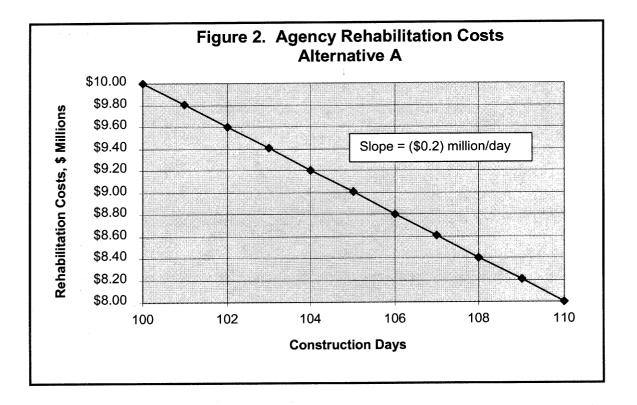
Compute the total Net Present Value (NPV) for each alternative. Use a 35 year analysis period. Include in your analysis the effect of salvage value, if applicable. Construction costs are directly related to the number of days allowed for initial construction and rehabilitation activities as shown in Figures 1 - 4. Use Table 2 to summarize your selected input values. Real opportunity cost of money to the State highway agency is 4%. The SHA estimates the value of time to be \$10 per hour. Routine reactive maintenance cost differences between alternatives are insignificant. Use the formula provided to calculate net present value. If needed use Table 3 for the appropriate discount factor. Use Table 4 to determine the daily cost of delay. Use Table 5 as a worksheet.

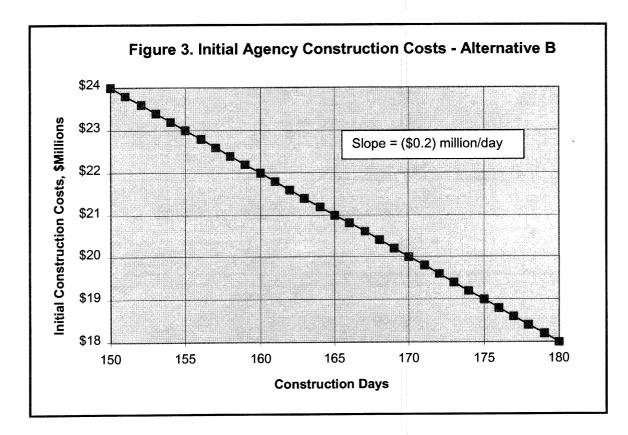
	Alternative – A				Alternative – B			
	Initial		Rehabs.		Initial		Rehabs.	
	Low	High	Low	High	Low	High	Low	High
Performance (years)	16	24	8	12	10	16	6	8

 Table 1.
 Performance life ranges.

Table 2. Selected input values.


	Alternative – A			Alternative – B				
		Rehabs.			Rehabs			
	Initial	1	2	Initial	1	2	3	4
Performance (years)								
OConstruction Days ¹								
Ø Agency Cost ² (\$)								
Obaily Delay Cost ³ (\$)								
OUser Cost \$ (O x O)								


Notes: ^{1,2} See Figures 1.4


³ See Table 4 Page 4.5

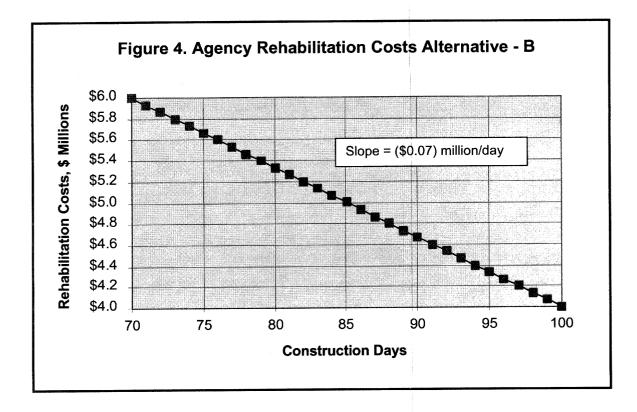

Year	Discount Rate					
n	4.0%	4.5%	5.0%	5.5%	6.0%	
0	1.0000	1.0000	1.0000	1.0000	1.0000	
1	0.9615	0.9569	0.9524	0.9479	0.9434	
2	0.9246	0.9157	0.9070	0.8985	0.8900	
3	0.8890	0.8763	0.8638	0.8516	0.8396	
4	0.8548	0.8386	0.8227	0.8072	0.7921	
5	0.8219	0.8025	0.7835	0.7651	0.7473	
6	0.7903	0.7679	0.7462	0.7252	0.7050	
7	0.7599	0.7348	0.7107	0.6874	0.6651	
8	0.7307	0.7032	0.6768	0.6516	0.6274	
9	0.7026	0.6729	0.6446	0.6176	0.5919	
10	0.6756	0.6439	0.6139	0.5854	0.5584	
11	0.6496	0.6162	0.5847	0.5549	0.5268	
12	0.6246	0.5897	0.5568	0.5260	0.4970	
13	0.6006	0.5643	0.5303	0.4986	0.4688	
14	0.5775	0.5400	0.5051	0.4726	0.4423	
15	0.5553	0.5167	0.4810	0.4479	0.4173	
16	0.5339	0.4945	0.4581	0.4246	0.3936	
17	0.5134	0.4732	0.4363	0.4024	0.3714	
18	0.4936	0.4528	0.4155	0.3815	0.3503	
19	0.4746	0.4333	0.3957	0.3616	0.3305	
20	0.4564	0.4146	0.3769	0.3427	0.3118	
21	0.4388	0.3968	0.3589	0.3249	0.2942	
22	0.4220	0.3797	0.3418	0.3079	0.2775	
23	0.4057	0.3634	0.3256	0.2919	0.2618	
24	0.3901	0.3477	0.3101	0.2767	0.2470	
25	0.3751	0.3327	0.2953	0.2622	0.2330	
26	0.3607	0.3184	0.2812	0.2486	0.2198	
27	0.3468	0.3047	0.2678	0.2356	0.2074	
28	0.3335	0.2916	0.2551	0.2233	0.1956	
29	0.3207	0.2790	0.2429	0.2117	0.1846	
30	0.3083	0.2670	0.2314	0.2006	0.1741	
31	0.2965	0.2555	0.2204	0.1902	0.1643	
32	0.2851	0.2445	0.2099	0.1803	0.1550	
33	0.2741	0.2340	0.1999	0.1709	0.1462	
34	0.2636	0.2239	0.1904	0.1620	0.1379	
35	0.2534	0.2143	0.1813	0.1535	0.1301	

 Table 3. Discount factors.

Table 4. Daily cost of delay.

 $\gamma_{\rm b}$

 $\mathcal{R}_{\mathbf{h}}$

 \sim

 \mathcal{D}_{i}

1

 $a_{\rm c}$

 $r_{i} = \frac{r_{i}}{r_{i}} \frac{r_{i}}{r_{i}} \frac{r_{i}}{r_{i}}$

		Value Time	\$ 10.00	per hour
	Directional	AADT(initial)	40000	vpd
	Traffic	Growth Rate	3	percent
De	lay Per Veh.	Growth Rate	10	percent
		Delay/Veh.	Daily Delay	
Year	AADT	min	hours	Daily Cost
0	40000	5.0	3333	\$ 33,333
1	41200	5.5	3777	\$ 37,767
2	42436	6.1	4279	\$ 42,790
3	43709	6.7	4848	\$ 48,481
4	45020	7.3	5493	\$ 54,929
5	46371	8.1	6223	\$ 62,234
6	47762	8.9	7051	\$ 70,511
7	49195	9.7	7989	\$ 79,889
8	50671	10.7	9051	\$ 90,514
9	52191	11.8	10255	\$ 102,553
10	53757	13.0	11619	\$ 116,192
11	55369	14.3	13165	\$ 131,646
12	57030	15.7	14915	\$ 149,155
13	58741	17.3	16899	\$ 168,993
14	60504	19.0	19147	\$ 191,469
15	62319	20.9	21693	\$ 216,934
16	64188	23.0	24579	\$ 245,786
17	66114	25.3	27848	\$ 278,476
18	68097	27.8	31551	\$ 315,513
19	70140	30.6	35748	\$ 357,476
20	72244	33.6	40502	\$ 405,020
21	74412	37.0	45889	\$ 458,888
22	76644	40.7	51992	\$ 519,920
23	78943	44.8	58907	\$ 589,070
. 24	81312	49.2	66742	\$ 667,416
25	83751	54.2	75618	\$ 756,182
26	86264	59.6	85675	\$ 856,755
27	88852	65.5	97070	\$ 970,703
28	91517	72.1	109981	\$ 1,099,806
29	94263	79.3	124608	\$ 1,246,081
30	97090	87.2	141181	\$ 1,411,809 \$ 1,500,580
31 32	100003 103003	96.0 105.6	159958 181232	\$ 1,599,580 \$ 1,812,324
32	106093	116.1	205336	\$ 2,053,363
34	109276	127.7	232646	\$ 2,326,460
35	112554	140.5	263588	\$ 2,635,880
36	115931	154.6	298645	\$ 2,986,452
37	119409	170.0	338365	\$ 3,383,650 \$ 2,822,675
38 39	122991 126681	187.0 205.7	383368 434355	\$ 3,833,675 \$ 4,343,554
39 40	130482	205.7	434355 492125	\$ 4,921,247
, .	TOUNDE			÷ .,•=,=

Note: Values shown are for illustrati

are for illustrative purposes only.

Year Year Table 5. NPV Worksheet. 0 0 **Present Worth Factor** Present Worth Factor User Cost (Present Worth) Total NPV (User Cost) Agency Cost (Constant \$) Present Worth Factor User Cost (Constant \$) User Cost (Present Worth) Total NPV (User Cost) User Cost (Constant \$) Grand Total NPV (all costs) Total NPV (Agency Cost) Agency Cost (Constant \$) Present Worth Factor Agency Cost (Present Worth) Agency Cost (Present Worth) Total NPV (Agency Cost) Alternative - B Alternative - A

and the second

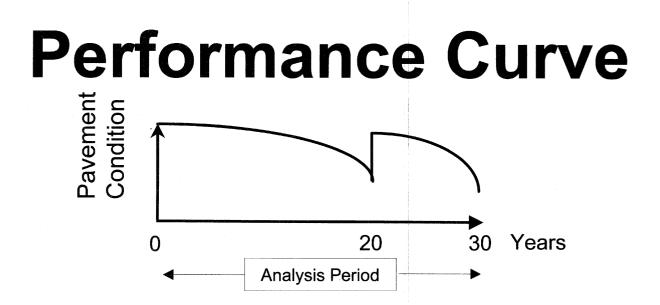
The second secon

Canada and Anna and Anna

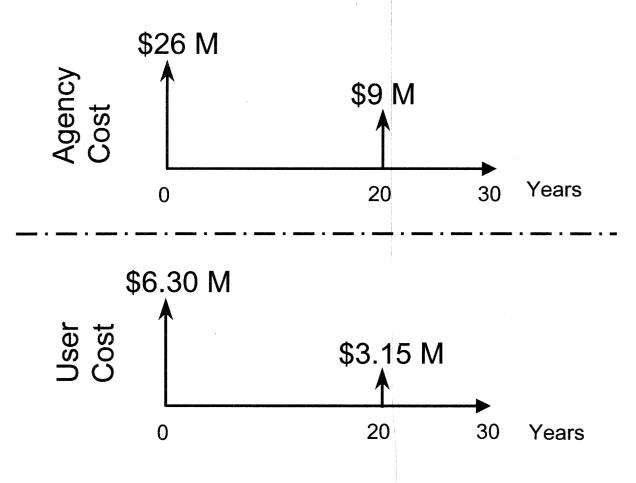
With Marine

Grand Total NPV (all costs)

Exercise 4 - 6


Class Exercise No. 1 Net Present Value (Solution)

Compute the total Net Present Value (NPV) for the following Alternative.


	Initial Constr.	Rehab.
Design Period, (yrs)	20	10
Agency Cost (\$ Millions)	26	9
Construction Period (days)	210	105

Assume the following:

Analysis Period (yrs)	30
Daily Delay (Hours) Routine Maintenance	3000 Insignificant
Discount Rate, %	4
Value of Time (\$/hr)	10

Expenditure Streams

User Cost Calculations

User Cost = Construction Days x Daily Delay x Value of Time

Initial Construction

User Cost = 210 days x 3000 hrs/day x 10 / hr.

= \$6.30 Million

Rehabilitation

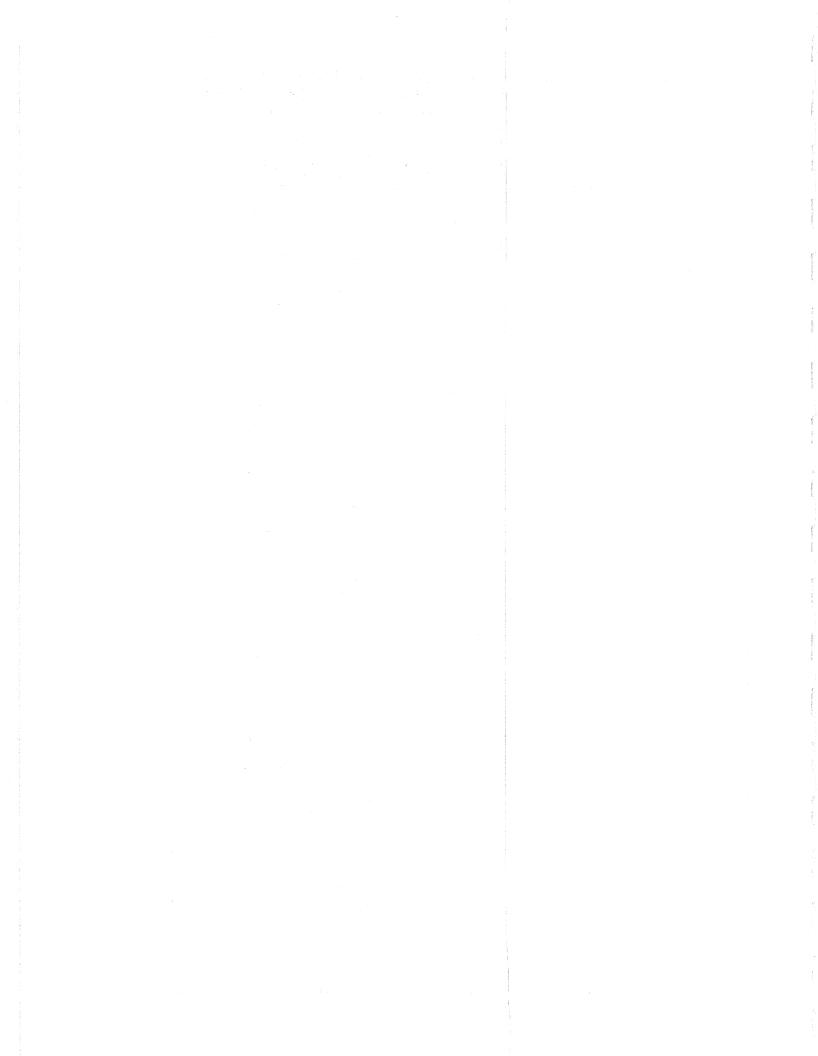
User Cost = 105 days x 3000 hrs/day x 10 / hr.

= \$3.15 Million

 $NPV = InitialCost + \sum_{k=1}^{N} FutureCost \left| \frac{1}{(1+i)^{n_k}} \right|$

Note: Quantity in brackets is present value factor from page 1.5.

Agency Cost


NPV = \$26 + \$9 (0.4564) = \$30.12 M

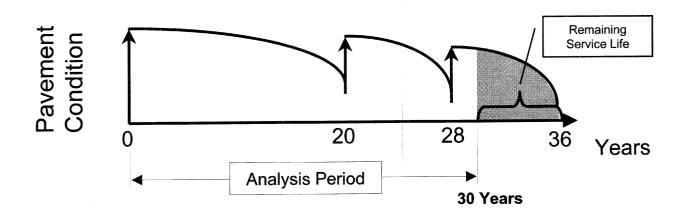
User Cost

NPV = \$6.3 + \$3.15 (0.4564) = \$7.74 M

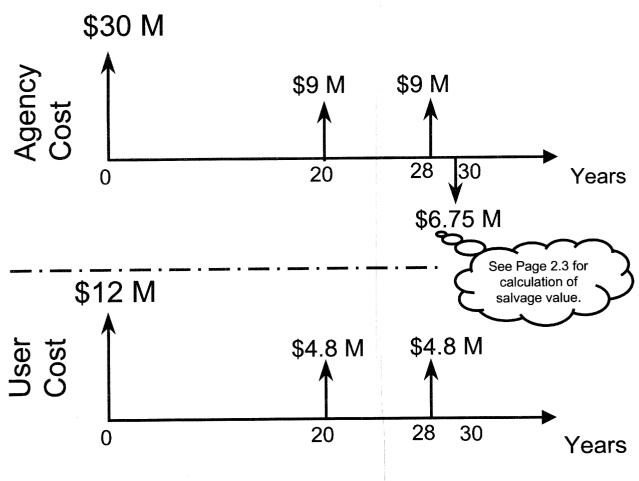
Present Value Factors

Year		Discou	nt Rat	e, (i)	
n	4.0%	4.5%	5.0%	5.5%	6.0%
1	0.9615	0.9569	0.9524	0.9479	0.9434
2	0.9246	0.9157	0.9070	0.8985	0.8900
3	0.8890	0.8763	0.8638	0.8516	0.8396
4	0.8548	0.8386	0.8227	0.8072	0.7921
5	0.8219	0.8025	0.7835	0.7651	0.7473
6	0.7903	0.7679	0.7462	0.7252	0.7050
7	0.7599	0.7348	0.7107	0.6874	0.6651
8	0.7307	0.7032	0.6768	0.6516	0.6274
9	0.7026	0.6729	0.6446	0.6176	0.5919
10	0.6756	0.6439	0.6139	0.5854	0.5584
11	0.6496	0.6162	0.5847	0.5549	0.5268
12	0.6246	0.5897	0.5568	0.5260	0.4970
13	0.6006	0.5643	0.5303	0.4986	0.4688
14	0.5775	0.5400	0.5051	0.4726	0.4423
15	0.5553	0.5167	0.4810	0.4479	0.4173
16	0.5339	0.4945	0.4581	0.4246	0.3936
17	0.5134	0.4732	0.4363	0.4024	0.3714
18	0.4936	0.4528	0.4155	0.3815	0.3503
19	0.4740	0.4333	0.3957	0.3616	0.3305
20	0.4564	0.4146	0.3769	0.3427	0.3118
21	0.4000	0.3968	0.3589	0.3249	0.2942
22	0.4220	0.3797	0.3418	0.3079	0.2775
23	0,4057	0.3634	0.3256	0.2919	0.2618
24	0.3901	0.3477	0.3101	0.2767	0.2470
25	0.3751	0.3327	0.2953	0.2622	0.2330
26	0.3607	0.3184	0.2812	0.2486	0.2198
27	0.3468	0.3047	0.2678	0.2356	0.2074
28	0.3335	0.2916	0.2551	0.2233	0.1956
29	0.3207	0.2790	0.2429	0.2117	0.1846
30	0.3083	0.2670	0.2314	0.2006	0.1741
31	0.2965	0.2555	0.2204	0.1902	0.1643
32	0.2851	0.2445	0.2099	0.1803	0.1550
33	0.2741	0.2340	0.1999	0.1709	0.1462
34	0.2636	0.2239	0.1904	0.1620	0.1379
35	0.2534	0.2143	0.1813	0.1535	0.1301

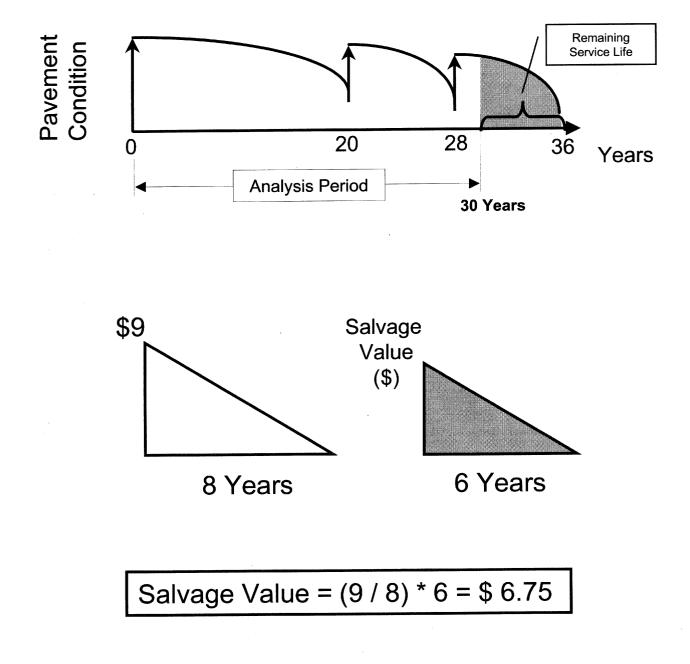
Class Exercise No. 2 Net Present Value (Solution)


Compute the total Net Present Value (NPV) for the following Alternative.

	Initial Constr.	Rehab.
Design Period, (yrs)	20	8
Agency Cost (\$ Millions)	30	9
Construction Period (days)	200	80


Assume the following:

Analysis Period (yrs)	30
Daily Delay (Hours)	4000
Routine Maintenance	Insignificant
Discount Rate, %	4
Value of Time (\$/hr)	15


Performance Curve

Expenditure Streams

Salvage Value Calculation

User Cost Calculations

User Cost = Construction Days x Daily Delay x Value of Time

Initial Construction

User Cost = 200 days x 4000 hrs/day x 15 / hr.

= \$12 Million

Rehabilitation

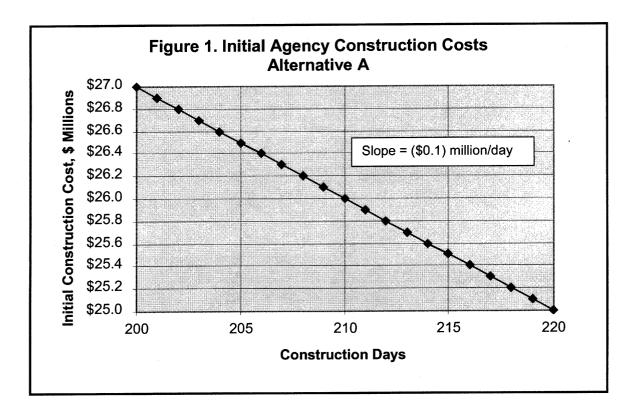
User Cost = $80 \text{ days } \times 4000 \text{ hrs/day } \times 15 / \text{hr.}$

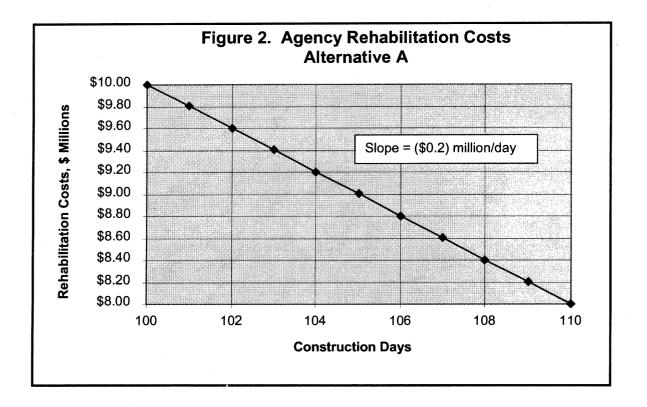
= <u>\$4.8 Million</u>

 $NPV = InitialCost + \sum_{k=1}^{N} FutureCost \left| \frac{1}{(1+i)^{n_k}} \right|$

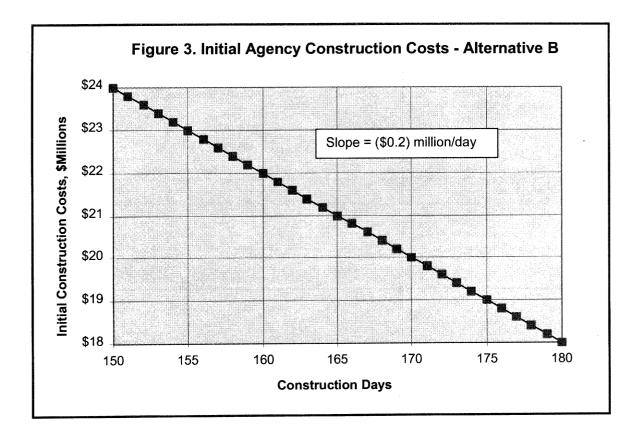
Note: Quantity in brackets is present value factor from page 2.6.

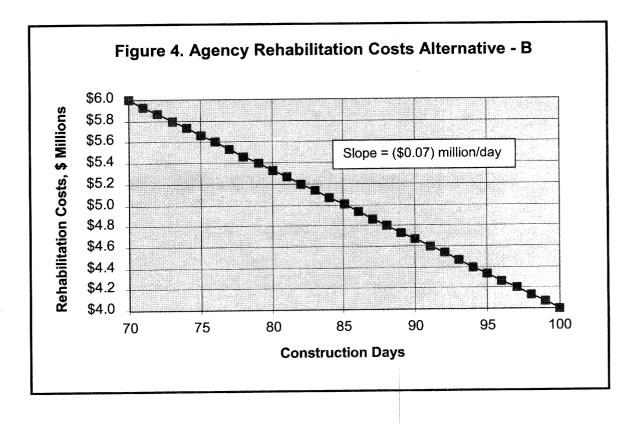
Agency Cost


NPV = \$30 + \$9(0.4564) + \$9 (0.3335) - \$6.75 (0.3083) = \$35.03 M


User Cost

NPV = \$12 + \$4.8(0.4564) + \$4.8 (0.3335) = \$15.79 M


Year	l		Discount R	ate	
n	4.0%	4.5%	5.0%	5.5%	6.0%
0	1.0000	1.0000	1.0000	1.0000	1.0000
1	0.9615	0.9569	0.9524	0.9479	0.9434
2	0.9246	0.9157	0.9070	0.8985	0.8900
3	0.8890	0.8763	0.8638	0.8516	0.8396
4	0.8548	0.8386	0.8227	0.8072	0.7921
5	0.8219	0.8025	0.7835	0.7651	0.7473
6	0.7903	0.7679	0.7462	0.7252	0.7050
7	0.7599	0.7348	0.7107	0.6874	0.6651
8	0.7307	0.7032	0.6768	0.6516	0.6274
9	0.7026	0.6729	0.6446	0.6176	0.5919
10	0.6756	0.6439	0.6139	0.5854	0.5584
11	0.6496	0.6162	0.5847	0.5549	0.5268
12	0.6246	0.5897	0.5568	0.5260	0.4970
13	0.6006	0.5643	0.5303	0.4986	0.4688
14	0.5775	0.5400	0.5051	0.4726	0.4423
15	0.5553	0.5167	0.4810	0.4479	0.4173
16	0.5339	0.4945	0.4581	0.4246	0.3936
17	0.5134	0.4732	0.4363	0.4024	0.3714
18	0.4936	0.4528	0.4155	0.3815	0.3503
19	0.4746	0.4333	0.3957	0.3616	0.3305
20	0.4564	0.4146	0.3769	0.3427	0.3118
21	0.4388	0.3968	0.3589	0.3249	0.2942
22	0.4220	0.3797	0.3418	0.3079	0.2775
23	0.4057	0.3634	0.3256	0.2919	0.2618
24	0.3901	0.3477	0.3101	0.2767	0.2470
25	0.3751	0.3327	0.2953	0.2622	0.2330
26	0.3607	0.3184	0.2812	0.2486	0.2198
27	0.3468	0.3047	0.2678	0.2356	0.2074
28	0.3335	0.2916	0.2551	0.2233	0.1956
29	0.3207	0.2790	0.2429	0.2117	0.1846
30	0.3083	0.2670	0.2314	0.2006	0.1741
31	0.2965	0.2555	0.2204	0.1902	0.1643
32	0.2851	0.2445	0.2099	0.1803	0.1550
33	0.2741	0.2340	0.1999	0.1709	0.1462
34	0.2636	0.2239	0.1904	0.1620	0.1379
35	0.2534	0.2143	0.1813	0.1535	0.1301


Table 3. Discount Factors.

Solution 4 - 3

Solution 4 - 4

	Table 4	. Daily cos			
		Value Time	•	-	
	Directional /	ADT(initial)	40000	vpo	d i
	Traffic	Growth Rate	3	per	rcent
D	elay Per Veh.	Growth Rate	10	ре	rcent
		Delay/Veh.	Daily Delay		
Year	AADT	min	hours	D	aily Cost
0	40000	5.0	3333	\$	33,333
1	41200	5.5	3777	\$	37,767
2	42436	6.1	4279	\$	42,790
3	43709	6.7	4848	\$	48,481
4	45020	7.3	5493	\$	54,929
5	46371	8.1	6223	\$	62,234
6	47762	8.9	7051	\$	70,511
7	49195	9.7	7989	\$	79,889
8	50671	10.7	9051	\$	90,514
9	52191	11.8	10255	\$	102,553
10	53757	13.0	11619	\$	116,192
10	55369	14.3	13165	\$	131,646
12	57030	15.7	14915	\$	149,155
13	58741	17.3	16899	\$	168,993
14	60504	19.0	19147	\$_	191.469
15	62319	20.9	21693	Š	216,934
10	64188	23.0	24579	\$	245,786
17	66114	25.3	27848	\$	278,476
18	68097	27.8	31551	\$	315,513
10	70140	30.6	35748	\$	357.476
20	72244	33.6	40502	\$	405,020
20	74412	37.0	45889	\$	400,008
22	76644	40.7	51992	\$	519,920
23	78943	44.8	58907	\$	589,070
23	81312	49.2	66742	Ψ \$	667,416
24	83751	43.2 54.2	75618	\$	756,182
25 26	86264	59.6	85675	Ψ \$	856,755
20 27	88852	65.5	97070	\$	970,703
28	91517	72.1	109981		1,099,806
20	94263	79.3	124608		1,246,081
30	97090	87.2	141181		1,411,809
31	100003	96.0	159958		1,599,580
32	103003	105.6	181232		1,812,324
33	106093	116.1	205336	\$	2,053,363
34	109276	127.7	232646		2,326,460
35	112554	140.5	263588		2,635,880
36 37	115931	154.6	298645 338365		2,986,452 3,383,650
37 38	119409 122991	170.0 187.0	338365 383368		3,883,650
39	126681	205.7	434355		4,343,554
40	130482	226.3	492125		4,921,247

Note:

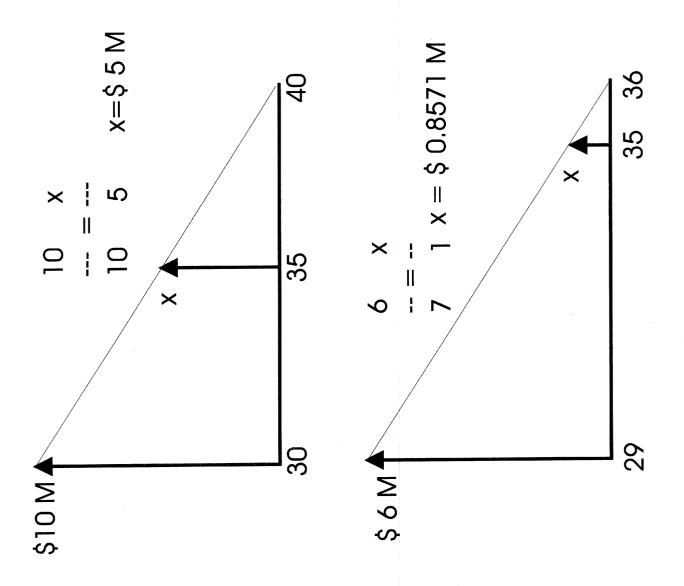

Values shown are for illustrative purposes only.

Table 5. Solution	Year	0 20 30 35		1.000 0.4564 0.3083 0.2534	25.00 M 4.564 M 3.083 M -1.267 M	31.38	7.333 M 40.50 M 141.2 M	1.000 0.4564 0.3083	7.333 M 18.48 M 43.53 M	69.34 M	100.7 M	Year	0 15 22 29 35	18.00 M 6.000 M 6.000 M -0.8571 M	1.000 0.5553 0.4220 0.3207 0.2534	18.00 M 3.332 M 2.532 M 1.924 M -0.2172 M	25.57 M	6.000 M 15.18 M 36.39 M 87.22 M	1.000_0.5553 0.4220 0.3207	6.000 M 8.429 M 15.54 M 27.97 M	57.94 M	83.51 M
Table						31.38				69.34 M	100.7 M						25.57 M				57.94 M	83.51 M
		Alternative - A	Agency Cost (Constant \$)	Present Worth Factor	Agency Cost (Present Worth)	Total NPV (Agency Cost)	User Cost (Constant \$)	Present Worth Factor	User Cost (Present Worth)	Total NPV (User Cost)	Grand Total NPV (all costs)		Alternative - B	Agency Cost (Constant \$)	Present Worth Factor	Agency Cost (Present Worth)	Total NPV (Agency Cost)	User Cost (Constant \$)	Present Worth Factor	User Cost (Present Worth)	Total NPV (User Cost)	Grand Total NPV (all costs)

Selection of Construction Days.

Alternative	Agency Cost	User Cost	Construction Days (Range)	Construction Days (Selection)
Alt - A Initial	100,000 / day	33,333 / day	200 to 220	220
Alt - A Rehab Year 20	200,000 / day	405,020 / day	100 to 110	100
Alt - B Initial	200,000 / day	33,333 / day	150 to 180	180
Alt - B Rehab Year 15	70,000 / day	216,934 / day	70 to 100	70

Solution 4 - 7

Publication No. FHWA-SA-98-040 HNG-40/8-98 (3M)EW 1.1 A DE LOS DE LOS