REGULATORY ANALYSIS OF POWERTRAIN TECHNOLOGIES: ONE PATHWAY FOR COMPLIANCE WITH CAFE AND GHG EMISSIONS STANDARDS

Jim Tamm National Highway Traffic Safety Administration

US Transportation Sector Energy Use in 2012

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014

US Transportation Sector CO₂ Emissions in 2012

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014

CAFE: Required Fleet Fuel Economy and Actual Fuel Economy

Key Gasoline Engine Technologies

- Spray Guided Gasoline Direct Injection (GDI)
- Variable Valve Timing, Variable Valve Lift
- Turbocharging with Engine Downsizing
- High BMEP: 24 bar BMEP available beginning in 2012, 27 bar BMEP in 2017
- Cooled EGR (option for 24 bar engines, assumed required for 27 bar engines)
- Relative to fixed-valve naturally aspirated gasoline engine: Projected Effectiveness: 20 - 27% for 24 bar BMEP

24 - 28% for 27 bar BMEP (low usage in 2025)

Projected Cost in 2025: \$650 - \$2300

Turbocharger

EGR Cooler

Gasoline Direct Injection

Advanced Diesel Engine

- Common Rail Fuel Injection
- Selective Catalytic Reduction (SCR) Aftertreatment
- Higher Injection Pressures
- Advanced Controls
- Reduced Friction
- Relative to fixed valve naturally aspirated gasoline engine:

```
Projected Effectiveness: 28 - 31%
```

Projected Cost in 2025: \$2300 - \$3400

Key Transmission Technologies

- Greater than 6 speeds
- Dual Clutch Transmission
- High Efficiency Gear Box
- Optimized Shift Control
- Relative to a 5- speed automatic transmission:

Projected Effectiveness: 16% - 19%

Projected Cost in 2025: \$285 - \$360

P2 Hybrid Electric Vehicles

- Stop/Start
- Regenerative Braking
- Electric Assist and Short EV Range

• Effectiveness*: 45 – 49%

Hyundai Sonata Hybrid

	Vehicle Class											
MY 2025 P2 Hybrid	6	mnact	N	/lidsize Car		argo Car		Small Truck	V	/inivan	lar	oo Truck
		mpace		Cai	LC	inge car		HUCK		minvan	Lai	ge muck
Motor/battery power (kW)		19		28		51		24		37		47
Battery Cost	\$	822	\$	908	\$	1,066	\$	885	\$	985	\$	1,143
Non-Battery System Cost	\$	1,809	\$	2,019	\$	2,391	\$	1,947	\$	2,229	\$	2,353
Total Cost (2009 \$)	\$	2,631	\$	2,927	\$	3,458	\$	2,832	\$	3,214	\$	3,496
Battery Unit Cost (\$/kW)	\$	43	\$	32	\$	21	\$	37	\$	27	\$	24

(All table values assuming 2010 baseline fleet)

* Relative to a fixed valve naturally aspirated gasoline engine with a 5-speed automatic transmission

Plug-In Hybrid Electric Vehicle

- High capacity Li-ion battery
- All electric accessories
- Regenerative braking
- Effectiveness*: 68 70%

Not used for CAFE standard setting

Electric Drive Unit

Charge Port

Electricity use accounted for by Petroleum Equivalency Factor

MY 2025		Vehicle Class								
PHEV 30	(Compact	Μ	idsize Car	l	arge Car				
Motor size (kW)		95		142		254				
Battery Energy (kWh)		10.4		12.8		15.2				
Battery Cost	\$	4,710	\$	5,626	\$	7,461				
Non-Battery System Cost	\$	3,173	\$	3,990	\$	5,748				
Total Cost (2009 \$)	\$	7,883	\$	9,617	\$	13,210				
Battery Unit Cost (\$/kWh)	\$	453	\$	440	\$	491				

* Relative to a fixed valve naturally aspirated gasoline engine with a 5-speed automatic transmission

Electric Vehicle

- High capacity lithium ion battery
- Significant electric range (~ 70-120 miles all electric range)
- Effectiveness: 90 91%

Not used for CAFE standard setting Electricity use accounted for by Petroleum Equivalency Factor

MY 2025 EV100		Vehicle Class							
		Compact	N	Aidsize Car	Large Car				
Motor size (kW)		95		142		254			
Battery Energy (kWh)		30.4		37.4		44.4			
Battery Cost	\$	9,363	\$	10,742	\$	13,263			
Non-Battery System Cost	\$	526	\$	1,626	\$	2,869			
Total Cost (2009 \$)	\$	9,889	\$	12,368	\$	16,131			
Battery Unit Cost (\$/kWh)	\$	308	\$	287	\$	299			

Nissan Leaf

* Relative to a fixed valve naturally aspirated gasoline engine with a 5-speed automatic transmission

Wide Range of Technologies is Available to Meet the Standards

The agencies assessed more than 50 technologies can be used to improve fuel economy

- Advanced gasoline and diesel engine technologies
- Transmissions with more than 6 speeds and dual-clutch technology
- Hybrids, plug-in hybrid electrics, and all electric vehicles
- Mass reduction
- Improved vehicle aerodynamics
- Reduced rolling resistance tires
- Improved electric accessories
- Improved air conditioning systems

Use a computer model (the CAFE model) to analyze how the industry and each manufacturer could meet more stringent standards

- Optimization program for cost and effectiveness
- Models each manufacture and every vehicle model
- Accounts for redesign cycles
- Accounts for regulatory constraints
- Provides economic and some environmental effects results

NHTSA analysis projects that most manufacturers could comply in 2025 by producing an overall fleet with:

- 91% Advanced gasoline and diesel vehicles
- 66% Advanced transmissions
- 20% Idle stop-start
- **12% Hybrid Electric Vehicles**
 - **1% Plug-in Hybrid Electric Vehicles or Electric Vehicles**
 - 4% Average passenger car mass reduction
- 8% Average light truck mass reduction relative to 2011

<u>NOTE</u>: the standards are performance standards, not technology mandates. Manufacturers can choose any technologies to meet the standards. The agency analysis projects one pathway for compliance.

Consumer Impacts

- Footprint based standards reduce incentives to change vehicle size and help maintain consumer choice
- The agency model assumed no change in vehicle utility, except for EV driving range.
- Average vehicle cost increase in 2025 \$1800 (relative to 2016)
- 2025 vehicle lifetime fuel savings \$5,700 to \$7,400
- Net lifetime savings \$3,400 to \$5,000

Note: all ranges of \$ values based on use of a 3% and 7% discount rate

Impact on Fuel Consumed by U.S. Passenger Cars and Light Trucks

SAE INTERNATIONAL

Mid Term Evaluation

Summary

- 1. CAFE standards are challenging, but there is lead time and the agencies' analyses show a pathway to develop and implement technologies to meet the standards.
- 2. There is a wide range of technologies that manufacturers can use to improve fuel economy.
- **3.** There is significant potential for fuel efficiency improvement in gasoline and diesel engines and in transmissions.
- 4. The 2025 fleet could be dominated by advanced gasoline and diesel vehicles, with a modest number of HEVs and a small number of PHEV and EVs.
- 5. The agencies' pathway does not compromise vehicle functionality.
- 6. The standards will provide fuel savings that are estimated to significantly exceed consumer costs.
- 7. NHTSA, EPA and CARB will conduct a mid-term review of the 2022 2025 standards. NHTSA will conduct new rulemaking for those years.