

Financial Viability Assessment

P3-VALUE Webinar *March 21, 2016*

Instructors

Patrick DeCorla-Souza

P3 Program Manager Office of Innovative Program Delivery

Marcel Ham

Vice President IMG/Rebel

P3-VALUE 2.0 Webinars

- P3: Public Private Partnership
- P3-VALUE 2.0: Analytical tool to help practitioners understand processes used to quantitatively evaluate P3 options
- This is one of a series of webinars on P3-VALUE
 - P3 Evaluation Overview (January 25, 2016)
 - Value for Money Analysis (February 8, 2016)
 - Value for Money Exercise (Feb. 16, 2016)
 - Project Delivery Benefit-Cost Analysis (Feb. 22)
 - Project Delivery BCA Exercise (Feb. 29, 2016)
 - Risk Assessment (March 7, 2016)
 - Risk Assessment Exercise (March 14)
 - Financial Viability Assessment (today)

Webinar Outline

Part 1 P3 Project Financing

Part 2 P3 Financial Structure

Part 3 Traffic & Revenue Forecasting

Part 4 Financial Viability Analysis

Part 5 Financial Models

Part 6 Using P3-VALUE for Financial Viability

Assessment

Recap Summary of Webinar

Webinar Objectives

After this webinar you should be able to:

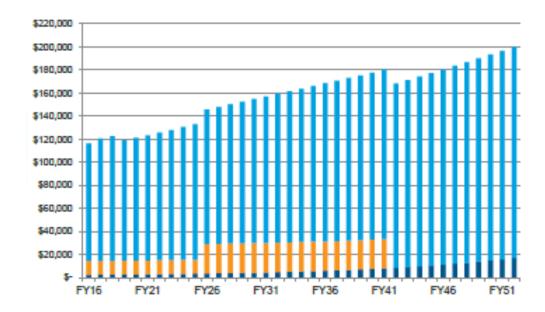
- Explain how P3s are structured
- Describe the process for toll revenue forecasting
- Describe the key metrics used to evaluate the financial viability of a P3 project
- Describe the role of financial models and list key inputs and outputs

Part 1

What is P3 Project Financing

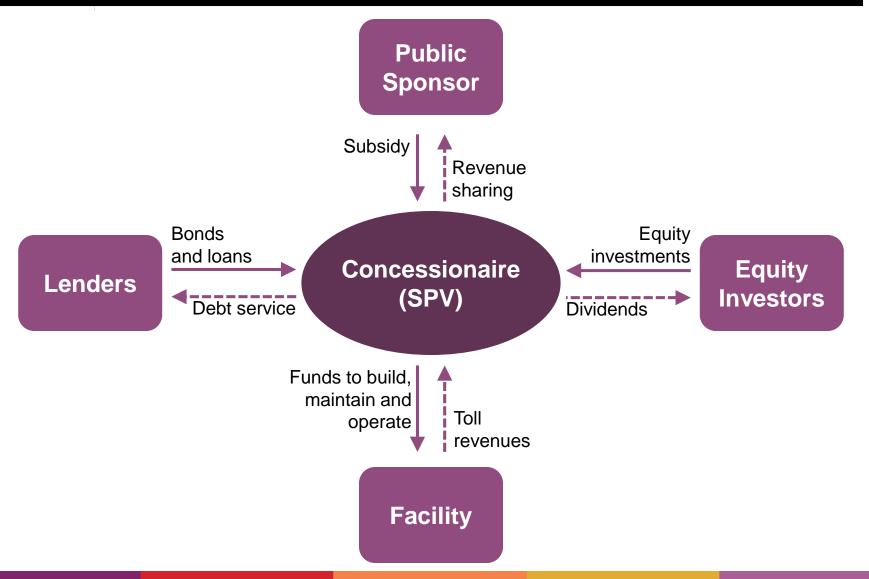
What is Financing?

Method by which an investment is paid for:

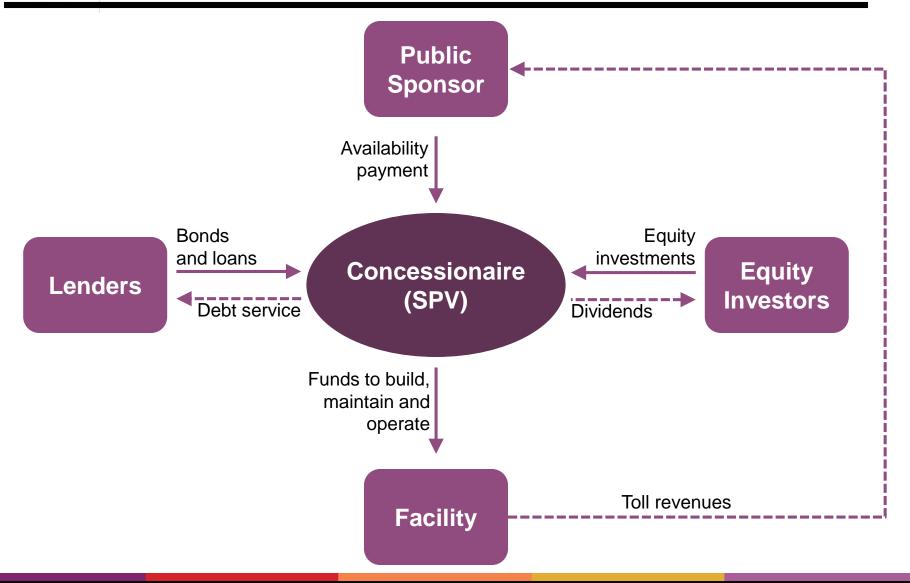

- A temporary provision of funds in exchange for a return paid to investors from future revenues
- Bridges mismatch in timing between ultimate funding source (e.g. tolls/availability payments) and required investments (e.g. capex)

What is Project Finance?

- Financing of (infrastructure) projects based on future project cash revenues (typically tolls or availability payments for roads)
- Non-recourse debt secured by project assets and repaid from project cash flows only


Special Purpose Vehicle

- Set up to finance the activities of a specific project
 - Created to ring fence project's assets and cash flows from private sponsor's other activities
 - No recourse to private sponsor's balance sheet, limiting exposure of private sponsors in case of bankruptcy
- Financiers may ignore the private sponsor's other activities that are not part of the project



Typical Toll Concession

Typical Availability Payment P3

Test Your Knowledge

True or False

 An SPV's debt providers have no recourse to the private sponsor's balance sheet in case of bankruptcy of the SPV.

Questions?

Submit a question using the chat box

Part 2

P3 Financial Structure

Typical Cash Flow Waterfall

Revenue Fund

Operation & Maintenance Expenses

Operations & Maintenance Reserve Fund

Senior Debt Service Payments and Reserve Fund

Subordinate Debt Service Payments and Reserve Fund

Rehabilitation & Reconstruction Reserve Fund

Return on Equity

Sources of Project Revenues

Facility Revenues

- Tolls from users
- Ancillary revenue (e.g. fees from advertising)

Public Agency Payments

- Availability Payments
- Shadow tolls
- Subsidies
- Milestone payments

Sources of Project Financing: Equity

- Infrastructure development companies
- Private equity and infrastructure funds
- Pension funds, foundations, insurance companies, etc.

Sources of Project Financing: Debt

Loans

- Private bank loans
- TIFIA loans

Bonds

- Private Activity Bonds (PABs)
- Project revenue bonds

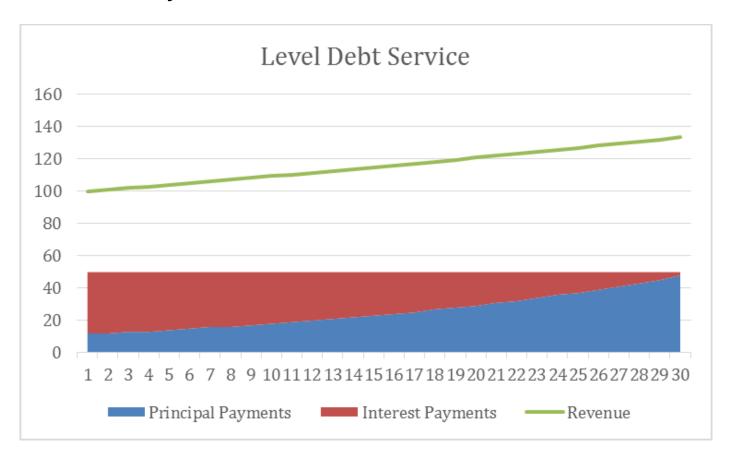
Debt Repayment

Annuity type:

- Equal payment amount every period
- Multiple tranches may be used with differing maturities

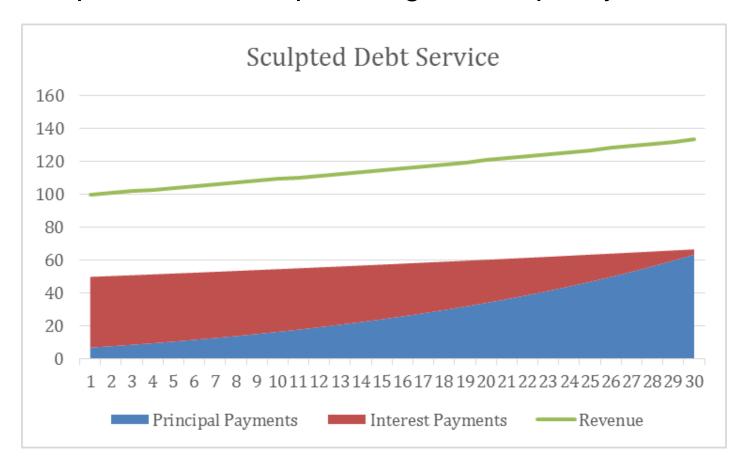
Interest only:

"Bullet" payment of principal at maturity

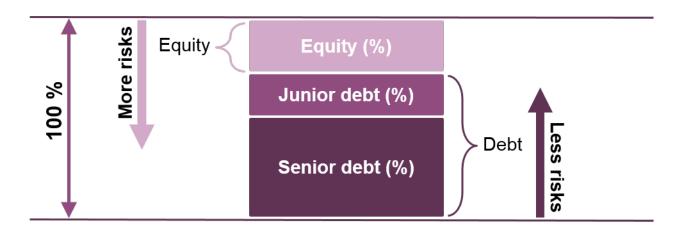

Sculpted repayment:

 Debt service payment is a mix of interest and principal that is "sculpted" to match the revenue stream profile

Annuity Debt Repayment


Example of annuity type debt service: Equal debt service payments in all years

Sculpted Debt Repayment


Example of sculpted debt service: Debt service follows net revenue profile, hence optimizing debt capacity

Risk and Leverage

- Leverage (or gearing or debt-to-equity ratio) indicates debt as a share of total required financing
- As debt service is paid before dividends, equity finance forms a buffer for debt, making debt less risky
- Lenders require less equity for projects with lower risks

Leverage vs. Required Revenues

	50/50 leverage	90/10 leverage
Project cost (millions)	\$1,000	\$1,000
(a) Debt	\$500	\$900
(b) Equity	\$500	\$100
(c) Required rate of return on equity	15%	15%
(d) Annual return on equity: (b) x (c)	\$75	\$15
(e) Annual interest rate on debt	5%	6%
(f) Interest payment: (a) x (e)	\$25	\$54
Annual revenue required to pay for financing: (d) + (f)	\$100	\$69

Note: This simplified example assumes "bullet" repayments of the principal on debt and the equity investment at the end of the concession term. It also does not consider minimum DSCR requirements (see later).

Equity in US Transportation P3s

Project	Concession Type	Equity (% of Financing)	Equity (% of Cost)
I-95 HOT Lanes	Toll	35%	32%
LBJ-635 Corridor	Toll	31%	25%
North Tarrant Express	Toll	29%	21%
I-495 HOT Lanes	Toll	23%	18%
Midtown Tunnel	Toll	17%	11%
SH-130 Segment V-VI	Toll	16%	16%
I-595	AP	13%	11%
Presidio Parkway	AP	12%	12%
Port of Miami Tunnel	AP	11%	7%
East End Crossing	AP	10%	10%

Source: Official bond statements

Credit Enhancements

External:

- Letters and lines of credit
- Bond insurance
- Construction risk guaranties
- Governmental guaranties

Internal

- Cash reserves
- Debt tranches (senior vs. junior)
- Cash flow optimization (apply excess cash to prepay ahead of scheduled amortization)

Test Your Knowledge

True or False

 A sculpted debt repayment schedule is able to optimize debt capacity.

Questions?

Submit a question using the chat box

Part 3

Traffic & Revenue Forecasting

Traffic & Revenue Forecasts

Level 1: Conceptual, based on available information Level 2: Requires current and comprehensive survey data and full analysis

Level 3:

"Investmentgrade" forecast
with toll plan, fully
supported data
and assumptions

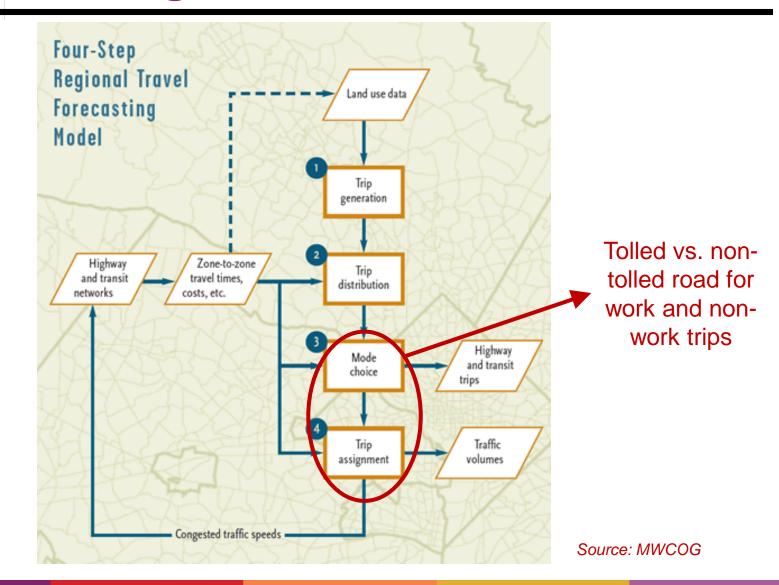
Use of Traffic & Revenue Forecasts

Public Policy

- Are tolls a viable funding source?
- What is a feasible project size?
- How much funding from users? How much funding from subsidy?

Finance

- Credit analysis by lenders
- Return on equity for equity investors


Debt Rating

Credit agencies rate transaction (not forecast):

- Stress test the traffic & revenue (T&R) forecasts
- Assess security of the finance structure (DSCR, leverage)
- Borrowers typically structure a finance plan to the standards of a specific, desired "investment grade" rating

Regional Travel Forecasts

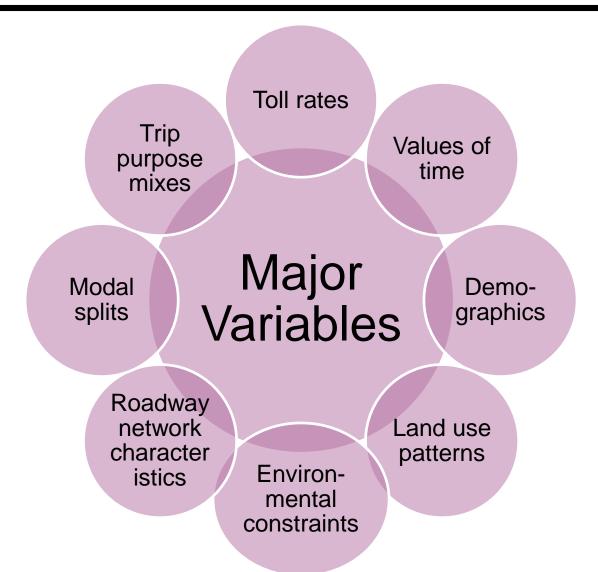
Project Traffic & Revenue Forecast

Refine model to corridor/facility level

Perform scenario or risk analysis

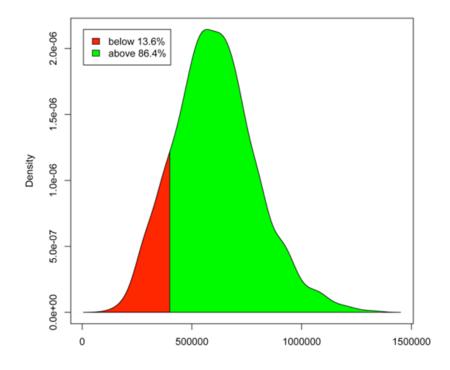
Evaluate assumptions

Modeling Considerations


Definition of "conservative"

Truck and commercial traffic may not be specifically modeled

Peak period vs. annual traffic


Major Variables

Probabilistic Forecast

- Perform sensitivity analyses for each major variable (separately) to estimate its relative significance
- Develop probability distribution functions for revenues

Probabilistic Confidence Levels

P50: 50% probability of revenue attainment
 "Most likely" case, may be used by equity investors

P90: 90% probability of revenue attainment
 "Severe downside" case, may be used by debt providers

Test Your Knowledge

True or False

 Traffic forecasts obtained from regional travel models developed by MPOs are more than adequate for the purpose of rating debt.

Questions?

Submit a question using the chat box

Part 4

Financial Viability Analysis

Purpose

To determine affordability of the project

To structure an optimum P3 to ensure marketability

To determine likely concession fee or public subsidy

Key Metrics for Public Agency

- Concession fee for "NPV positive" projects
- Public subsidy for "NPV negative" projects
- Toll rates
- Concession term

Key Financial Metrics

- Debt service coverage ratio (DSCR)
- 2. Gearing (or debt-to-equity ratio)
- Equity internal rate of return (Equity IRR)
- 4. Weighted average cost of capital (WACC)

Debt Service Coverage Ratio (DSCR)

Debt service coverage ratio (DSCR) =

Cash Flow Available for Debt Service (CFADS)

Required Annual Debt Service

Higher minimum debt service coverage ratio requirement reduces debt capacity

2. Gearing

Gearing (or debt-to-equity ratio) =

Debt Amount Equity Amount

Higher gearing is the result of higher debt capacity and a lower equity requirement

3. Equity Internal Rate of Return

- Equity IRR is the discount rate at which the NPV of equity cash flows is zero
- Solve for r in the formula:

$$\sum \frac{D_i - I_i}{1 + r} = 0$$

Where

 D_i = Equity distributions I_i = Equity investments

Weighted Average Cost of Capital

- WACC is calculated by combining both cost of debt and equity
- Text book formula (applicable only if gearing is constant):

$$WACC = \frac{E}{D+E} \times r_e + \frac{D}{D+E} \times r_d \times (1-\tau)$$

Where E = equity amount D = debt amount $r_e = \text{required equity return}$ $r_d = \text{debt interest rate}$ $(1-\tau) = \text{tax shield}$

WACC Calculation: Textbook Example

- Equity amount = 50% of total financing
- Required equity return = 12%
- Debt amount = 50% of total financing
- Interest rate = 6%
- Tax rate = 35%, tax shield = 65%

$$WACC = [50\% \times 12\%] + [50\% \times 6\% \times 65\%]$$

$$WACC = 7.95\%$$

WACC Calculation in Project Finance

- In project finance, debt-to-equity ratio changes over time, so text book WACC formula cannot be applied
- WACC can be calculated by determining the internal rate of return (IRR) of all financing cash flows, i.e., the Project IRR:
 - Debt drawdown & debt service
 - Equity investment & dividend payments
 - Reserve movements

Project Internal Rate of Return

- Project IRR is the discount rate at which the NPV of financing cash flows is zero
- Solve for r in the formula:

$$\sum \frac{R_i - I_i - C_i}{1 + r} = 0$$

Where

 R_i = Revenues

 I_i = Investments

 C_i = Operating costs

Test Your Knowledge

True or False

 A higher required minimum DSCR will allow a project to obtain a higher amount of debt

Questions?

Submit a question using the chat box

Part 5

Financial Models

Financial Calculations

Funding/financing sources

- Equity & debt
- Subsidies/Agency budget
- Toll revenues

Uses of funds

- Capital expenses
- Operating expenses
- Debt service
- Tax & dividends

P3-VALUE 2.0 Financial Model

- Capacity of project revenues to repay debt
- Capacity to attract equity
- Required public subsidy payments

Discounting of Cash Flows

- Converts future costs and revenues to "present value" terms
- Discount rate reflects risk and the time value of money

$$PV = \sum_{0}^{n} \frac{CF_n}{\left(1+r\right)^n}$$

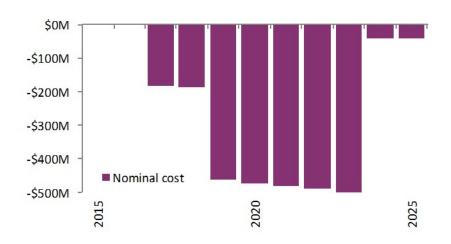
Where

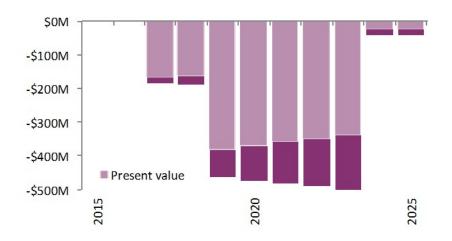
PV = Present Value

 CF_n = Cash Flow in year n

r = discount rate

n = year




Effects of Discounting

- Cash flows later in a concession period will have a relatively lower impact
- In the example depicted below, the nominal and present value of the cost cash flows in year 2020 are:

Nominal value: \$472M

Present value: \$370M

Use of Financial Modeling

Project Development

- Determine financial viability
- Assess P3 Value for Money

Bid Preparation

- RFP designed to ensure project can be successfully tendered
- Bidders test potential financial structures
- Bid evaluation by public agency

Use of Financial Modeling

Commercial & Financial Close

- Due diligence by Lenders
- Term negotiations

- Monitoring project performance
- Calculate compensation payments
- Calculate any refinancing gains
- Revenue sharing
- Handback

Test Your Knowledge

True or False

 Using a high discount rate with a stream of future cash flows will result in a lower NPV

Questions?

Submit a question using the chat box



Part 6

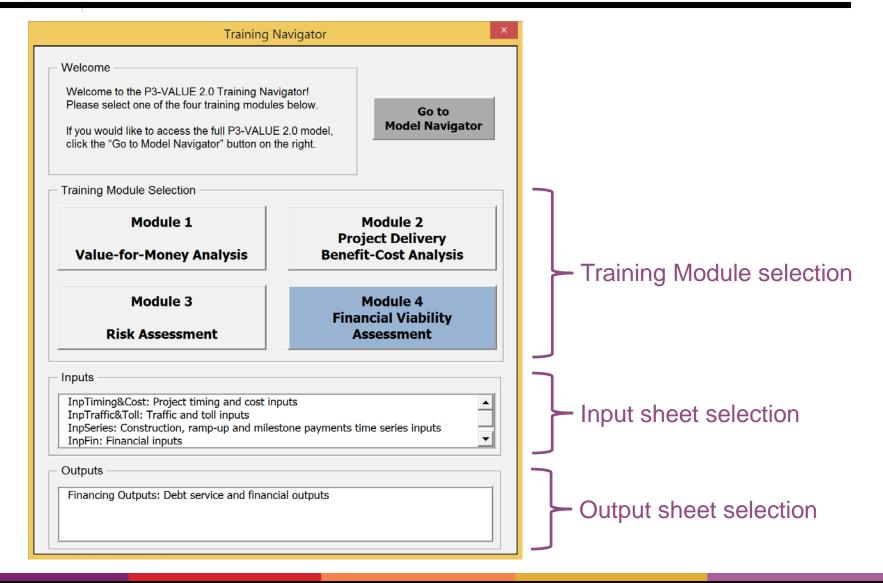
Using P3-VALUE for Financial Viability Assessment

FHWA's P3-VALUE 2.0

Training Modules

Value for Money Analysis

Risk Assessment



Project Delivery **Benefit-Cost Analysis**

Financial Viability Assessment

Training Navigator User Interface

Demonstration of Financial Module

Please stand by as we open the Excel file

Tool and References

P3-VALUE 2.0 Excel Spreadsheet

User Guide

P3 Project Financing Guidebook

Questions?

Submit a question using the chat box

Webinar Summary

Webinar Recap

Part 1 P3 Project Financing

Part 2 P3 Financial Structure

Part 3 Traffic & Revenue Forecasting

Part 4 Financial Viability Analysis

Part 5 Financial Models

Part 6 Using P3-VALUE for Financial Viability

Assessment

Resources

FHWA's Office of Innovative Program Delivery Website:

http://www.fhwa.dot.gov/ipd/

P3 Website:

http://www.fhwa.dot.gov/ipd/p3/

Financial Assessment Exercise

- Exercise instructions may be downloaded from the web room
- Technical assistance options:
 - E-mail questions to: <u>patrick.decorla-souza@dot.gov</u>
 - Or call (202)-366-4076
 - Participate in "Exercise Review" webinar
- Exercise review webinar March 28 at 12:30pm EST

To access the Exercise Review webinar, please use the following link and telephone number:

Link: https://connectdot.connectsolutions.com/p3

Telephone: 1-888-363-4749, Passcode: 6139168#

Contact Information

P3 Program Manager

Office of Innovative Program Delivery

Federal Highway Administration

(202) 366-4076

Patrick.DeCorla-Souza@dot.gov