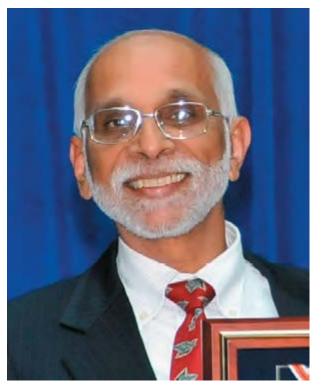


P3 Project Risk Assessment


P3-VALUE Webinar March 7, 2015

Instructors

Patrick DeCorla-Souza

P3 Program Manager Office of Innovative Program Delivery

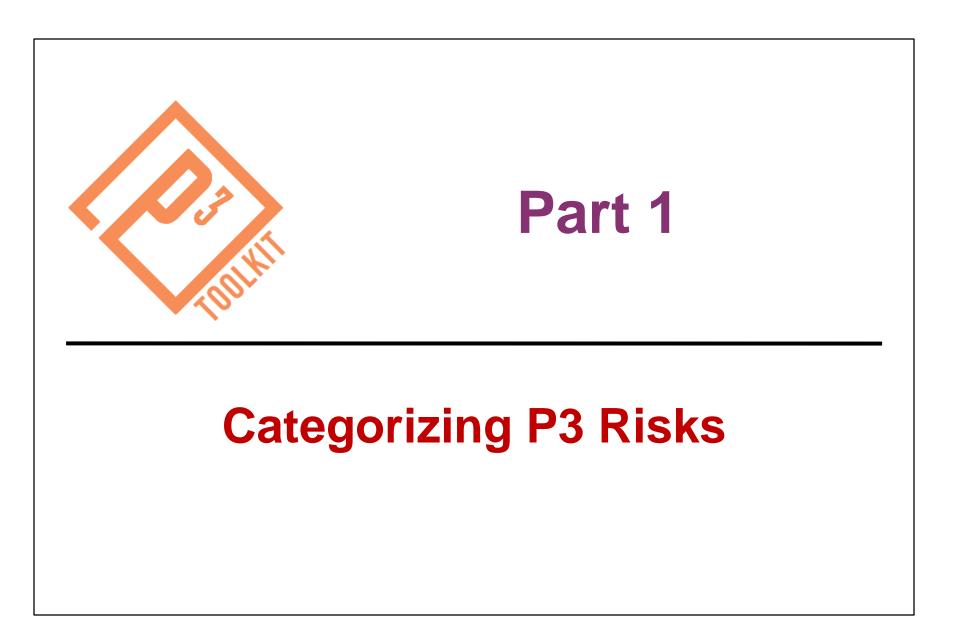
Marcel Ham

Vice President IMG Rebel

- P3: Public Private Partnership
- P3-VALUE 2.0: Analytical tool to help practitioners understand processes used to quantitatively evaluate P3 options
- This is one of a series of webinars on P3-VALUE
 - P3 Evaluation Overview (January 25, 2016)
 - Value for Money Analysis (February 8, 2016)
 - Value for Money Exercise (Feb. 16, 2016)
 - Project Delivery Benefit-Cost Analysis (Feb. 22)
 - Project Delivery BCA Exercise (Feb. 29, 2016)
 - Risk Valuation (today)
 - Financial Viability Assessment

- Part 1 Categorizing Risk
- Part 2 Risk Management Process
- Part 3 Pure Risk Assessment
- Part 4Lifecycle Performance and RevenueUncertainty Risk Assessment
- Part 5 Risk Allocation
- Part 6 Using P3-VALUE 2.0 for Risk Assessment

Summary



After taking this course you should be able to:

- Categorize P3 risks
- List the steps in the risk management process
- Explain the methods for quantifying and monetizing various type of risks
- Describe the risk allocation process
- Use P3-VALUE 2.0 to perform risk assessment

🅢 Innovative Program Delivery

- To calculate value of risks
- To design draft agreement for RFP
- To assist in *negotiation* with bidders
- To develop risk management plans

Financial Impacts of Project Risks

Costs

Increase in expenses

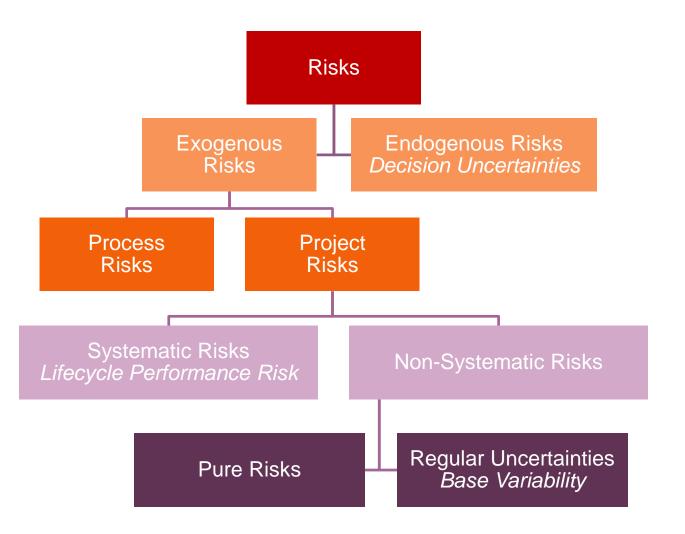
- Construction
- O&M
- Major maintenance

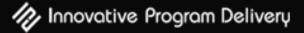
Delays

Effects of delays

- Additional costs
- Cost escalation
- Lost revenues
- NPV effect

Revenues


Loss in revenues


- Delay: foregone toll/AP revenues
- Traffic: Lower than expected revenues

Categories of Risk

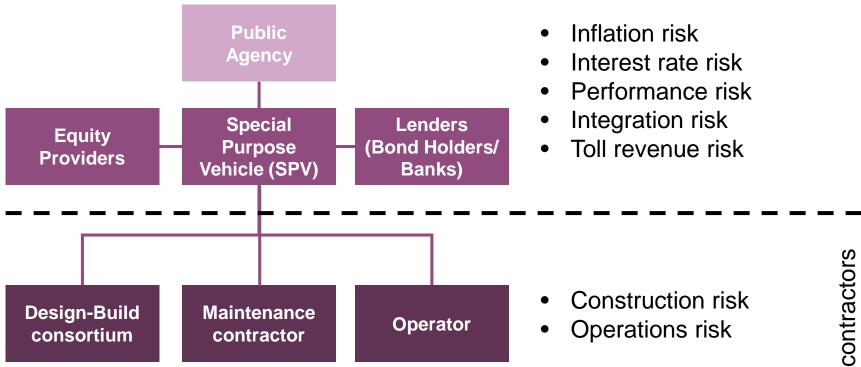
Base Variability

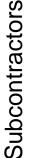
Example: Uncertainty in volume of asphalt

Pure Risks

Example: Accident at construction site, causing cost overrun and/or delays

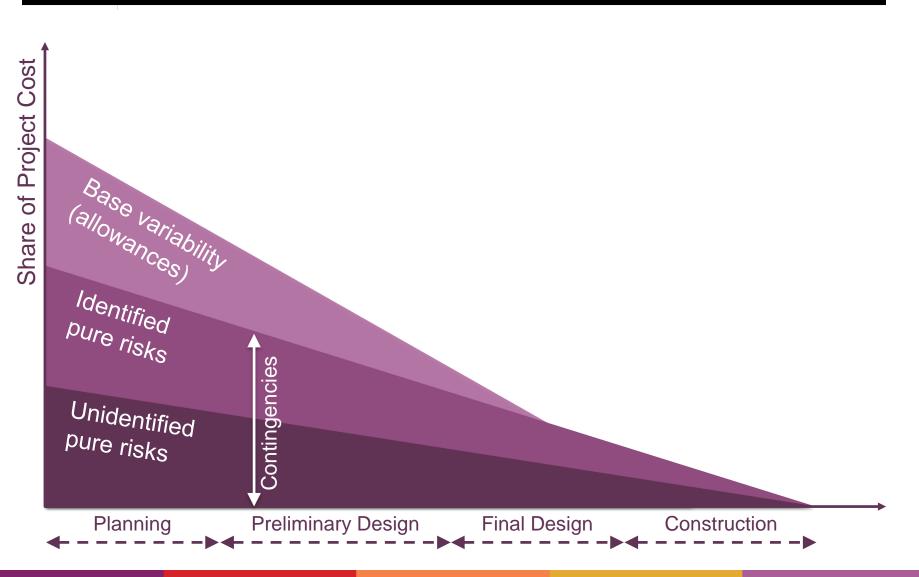
 Lifecycle Performance Risks & Revenue Uncertainty Example: Conflicts between DB and O&M contractors, supervening events exceeding liability caps, inflation, T&R risk (for toll concessions)



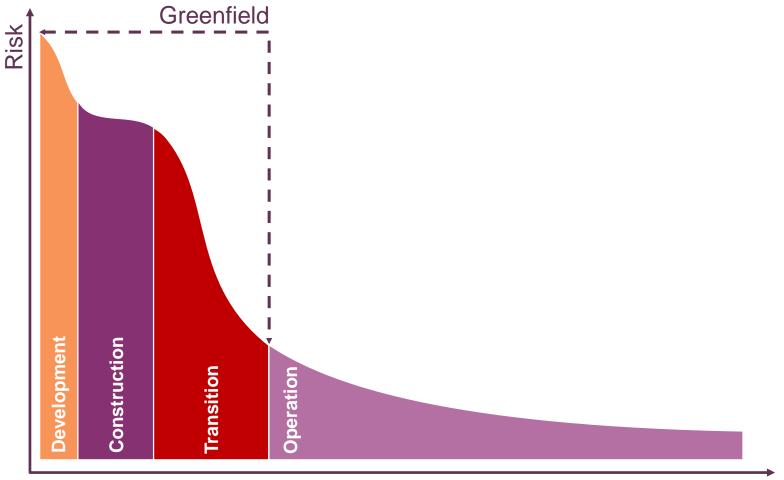


- Typically a percentage of costs (+ or variation)
- May differ by project phase
- Reflects the uncertainty in cost estimates will reduce as the design level becomes more detailed
- P3-VALUE 2.0 uses a factor (percentage of base cost) to estimate cost impact
- Example:
 - Base variability: 20% of construction cost
 - Construction cost: \$200M
 - Value of base variability: 20% X \$200M = \$40M

Includes both systematic and some non-systematic risks


12

Risk though Project Completion



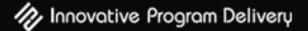
Risk over Project Life

Time

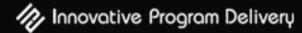
Audience Feedback

True or False

 All project risks are pushed down to subcontractors of the concessionaire.



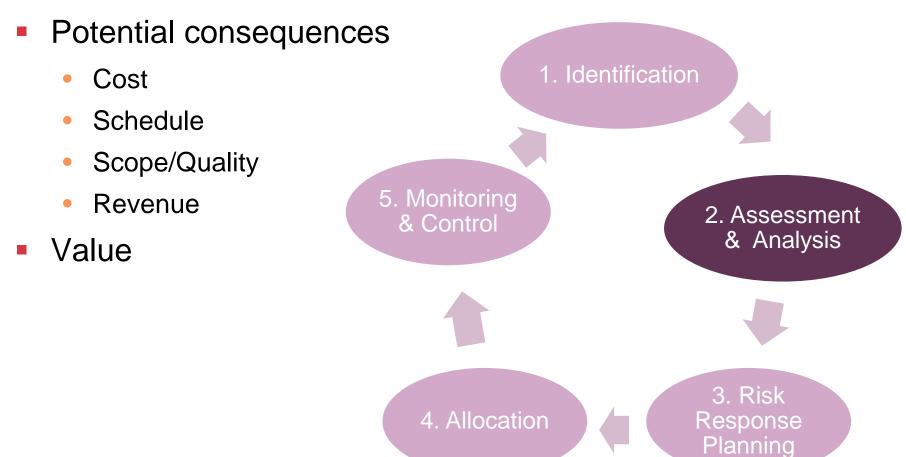
Submit a question using the chat box

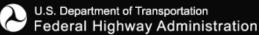


Risk Management Process

Risk Management Process Overview

1. Risk Identification


Risks: Threats 1. Identification **Opportunities Risk Workshops** 5. Monitoring 2. Assessment & Control Who? & Analysis Facilitator Subject matter experts What tools are used? 3. Risk **Risk checklist** 4. Allocation Response Planning **Risk register**



2. Risk Assessment

Probability

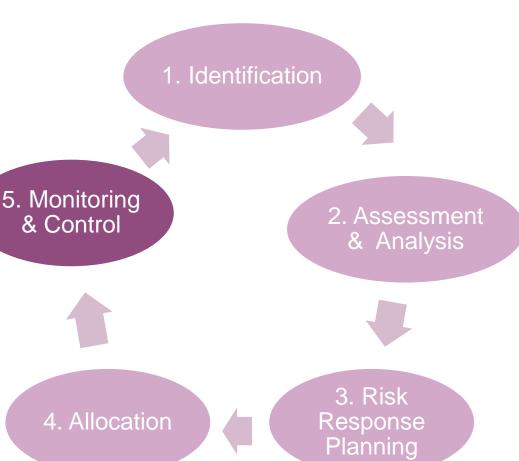


3. Risk Response Planning

Risk Response Strategies

- Avoid
- Mitigate
- Transfer/Share
- Accept

4. Risk Allocation



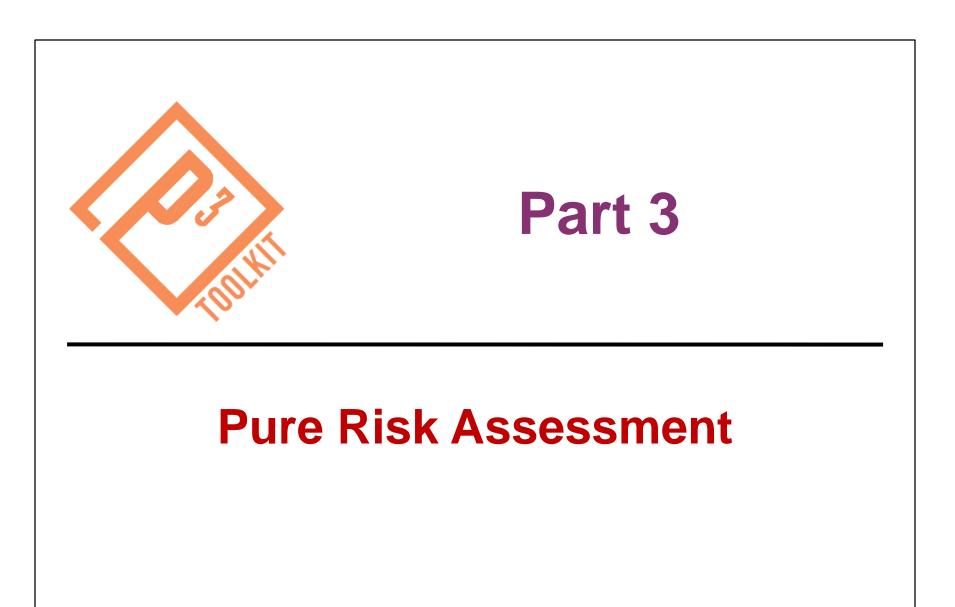
5. Risk Monitoring & Control

- Performance metrics to monitor risk
 Understand P3 risk management
 - provisions
 - Avoid taking back transferred risks
 - Validate previous risk identification, risk assessment, and risk response planning

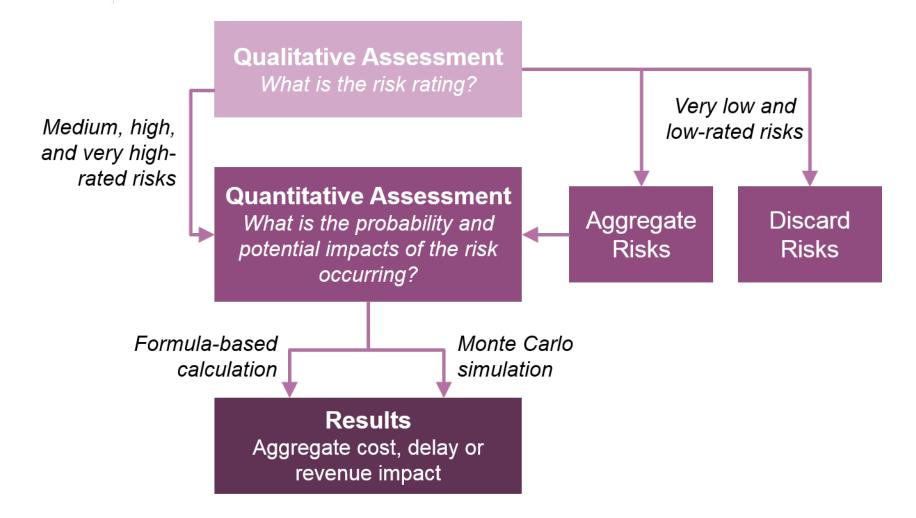
Audience Feedback

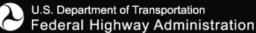
True or False

 The probability and potential consequences of a specific risk must be quantified in order to estimate its cost impact



Submit a question using the chat box

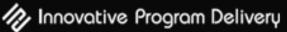



🅢 Innovative Program Delivery

Pure Risk Assessment Process

Qualitative Assessment

- Probability of risk occurrence
 - Very low
 - Low
 - Medium
 - High
 - Very high
- Scale of impact if risk occurs
 - Very low
 - Low
 - Medium
 - High
 - Very high

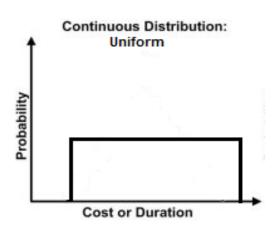


Qualitative Assessment Matrix

Example

Representative Cost Impact Assessment Matrix												
	Cost Consequence											
		5	4	3	2	1						
Probability	Scale	> 25%	10% - 25%	3% - 10%	1% - 3%	<1%						
	5 - > 70%	High	High	High	Medium	Low						
	4 - 40% - 70%	High	High	Medium	Medium	Low						
	3 - 20% - 40%	High	Medium	Medium	Low	Low						
	2 - 5% - 20%	Medium	Medium	Low	Low	Low						
	1 - 0% - 5%	Low	Low	Low	Low	Low						
	Representative Schedule Impact Assessment Matrix											
		Schedule Consequence										
		5	4	3	2	1						
Probability	Scale	> 365 days	120 - 365 days	30 - 120 days	7 - 30 days	< 7 days						
	5 - > 70%	High	High	High	Medium	Low						
	4 - 40% - 70%	High	High	Medium	Medium	Low						
	3 - 20% - 40%	High	Medium	Medium	Low	Low						
	2 - 5% - 20%	Medium	Medium	Low	Low	Low						
	1 - 0% - 5%	Low	Low	Low	Low	Low						

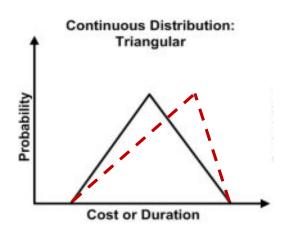
29



- Probability of risk occurrence
 - % probability (0% 100%)
- Scale of impact if risk occurs
 - Dollar amount or number of days of delay

Valuing Pure Risks (Formula-Based)

- Risk Value = Probability X Impact (distribution)
- Example for *uniform* probabilistic impact distribution:
 - Probability of occurrence: 10%
 - Minimum impact: \$2M
 - Maximum impact: \$4M
 - Value = 10% x ½ x (\$2M + \$4M) = \$0.3M



Valuing Pure Risks (Formula-Based)

- Risk Value = Probability X Impact (distribution)
- Example for triangular impact distribution:
 - Probability of occurrence: 10%
 - Minimum impact: \$2M
 - Maximum impact: \$4M
 - Most likely impact = \$3.5
 - Value = 10% x (\$2M + 3.5 + \$4M)/3 = \$0.32M

32

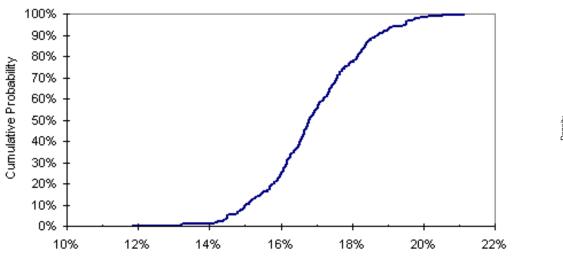
Aggregate of Pure Risks

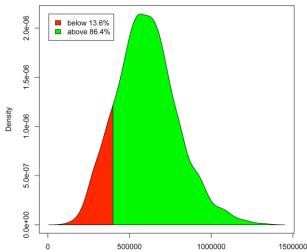
- Central limit theorem can be used if pure risks are independent:
 - Distribution of the sum of a sufficiently large number of independent random variables is approximately normal
- To apply central limit theory, variance and mean value of each individual risk must be calculated and added

Example using uniform risk distributions (P3-VALUE 2.0)

Risk Item	Probability A	Most likely Impact B	Most likely v C = A x E		Minimum value D	Maximu m value E	Shape	
Risk 1	20% \$10,000k		\$2,000k		-20%	+50%	Uniform	
Risk 2	25%	\$4,000k	\$1,	000k	-20%	+50%	Uniform	
Risk 3	50%	\$4,000k	\$2,	000k	-20%	+50%	Uniform	
Risk Item					an value* ½ x (F + G)	Variance* I = (G – F) ² / 12		
Risk 1	Risk 1 \$1.		,600k \$3,000k		\$2,300k	\$163,333k		
Risk 2		\$800k	\$1,500k		\$1,150k		\$40,833k	
Risk 3	Risk 3 \$1,600k		\$3,000k		\$2,300k	\$	\$163,333k	
Total \$4,000k		l,000k	\$7,500k		\$5,750k	\$	\$376,500k	

Mean value: \$5,750k, standard deviation of \$606k


Using Excel NORMINV function, P70 risk value: \$6,068k



Monte Carlo simulation

- Simulation of large number of scenarios based on probabilities of risk occurrence and probability distribution of magnitude of impact
- Result is a probability distribution of aggregate risk value
- Provides estimates at confidence levels

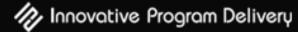
🔗 Innovative Program Delivery

Audience Feedback

True or False

 The aggregate impact of pure risks on costs may be estimated either by using a formula-based method or by using Monte Carlo simulation.

Submit a question using the chat box



Part 4

Assessment of Lifecycle Performance Risk and Revenue Uncertainty Adjustment

Ways to value lifecycle performance risk

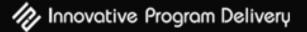
- Use information available to Agency on lifecycle performance risk costs/cash flows
- Use market-based P3 financing conditions as a proxy to determine the value of lifecycle performance risk

Market-based valuation:

Calculate NPV of cost cash flows*, excluding financing:

- A. Using a market-based weighted average cost of capital (WACC) that excludes revenue risk (Availability Payment WACC)
- B. Using project risk-free discount rate
- Calculate difference in NPVs (Δ = A B)

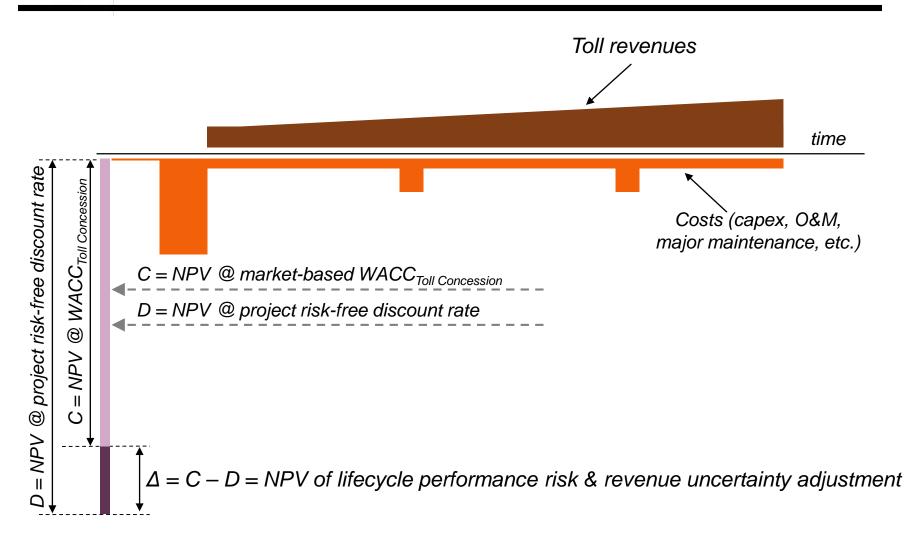
*Use PSC cash flows for PSC lifecycle performance risk, and P3 cash flows for P3 lifecycle performance risk (used only in PDBCA and risk outputs)



Ways to value revenue uncertainty

- Apply percentage haircut to P50 traffic/revenues
- Use market-based P3 financing conditions as a proxy to determine the value of revenue uncertainty

Market-based valuation:

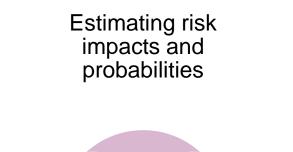

 Calculate NPV of revenue and cost cash flows, excluding financing:

C. Using a market-based weighted average cost of capital (WACC) that *includes* revenue risk

- D. Using project risk-free discount rate
- Calculate difference in NPVs (Δ = C D), which equals the lifecycle performance risk and revenue uncertainty adjustment combined
- NPV of revenue risk is the difference between this Δ and the lifecycle performance risk calculated previously

Revenue Uncertainty Adjustment

Accounting for Risk in P3-VALUE 2.0


Risk Type	VfM PSC	VfM P3	PDBCA PSC	PDBCA P3
Base variability	\checkmark	\checkmark	\checkmark	\checkmark
Pure risk	\checkmark	\checkmark	\checkmark	\checkmark
Lifecycle performance risk	\checkmark		\checkmark	\checkmark
Revenue risk	\checkmark			

Risk Analysis Challenges

Accounting for procurement phase risks that are unique to P3s

Bias of evaluators

Accounting for correlation among risks

Accounting for unidentified risks

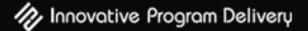
Aggregating low probability/low consequence risks

Avoiding doublecounting of risks

🔗 Innovative Program Delivery

Test Your Knowledge

True or False


 The WACC for a toll concession includes a risk premium that accounts for revenue risk as well as for lifecycle performance risks

Submit a question using the chat box

Part 5

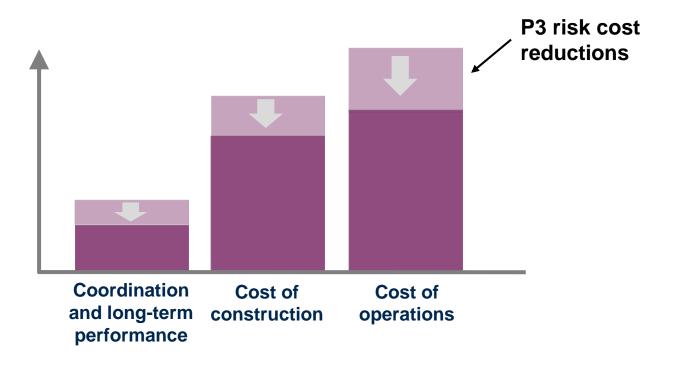
Risk Allocation

Risk Transfer by Delivery Type

Procurement Type	Design Risk	Construction Risk	Financial Risk	O&M Risk	T&R Risk
Design-Build (DB)	\checkmark	\checkmark			
Design-Build-Finance (DBF)	\checkmark	\checkmark	\checkmark		
Design-Build-Finance-Operate- Maintain (DBFOM) with Availability Payment	\checkmark	\checkmark	\checkmark	\checkmark	
Design-Build-Finance-Operate- Maintain (DBFOM) with Toll Concession	\checkmark	\checkmark	\checkmark	\checkmark	√

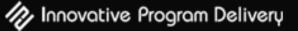
Typical DBFOM Risk Allocation

Risk	Design-Bid-Build	Availability Payment DBFOM	Toll Concession DBFOM
Design errors	Public	Contractor	Contractor
Change in scope	Public	Public	Public
Delay in permits	Public	Shared	Shared
Delay in right-of-way acquisition	Public	Public	Public
Construction cost overruns	Contractor	Contractor	Contractor
Construction risks	Contractor	Contractor	Contractor
Archeological findings	Public	Public	Public
Delay in relocation of cables & pipes	Public	Contractor	Contractor
Unknown ground conditions	Public	Contractor	Contractor
Hazardous materials	Public	Shared	Shared
Security	Public	Contractor	Contractor
Major maintenance cost overruns	Public	Contractor	Contractor
Snow & ice removal cost overruns	Public	Contractor	Contractor
Regular maintenance	Public	Contractor	Contractor
Traffic information systems	Public	Public	Public
Incident management	Public	Contractor	Contractor
Toll revenue risk	Public	Public	Contractor
Financing risks	Public	Contractor	Contractor
Force majeure	Public	Shared	Shared


Risk Allocation Steps

Step 1: Likelihood	 Which party is best able to control the likelihood of the risk occurring?
Step 2: Impact	 Which party is best able to control the impact of the risk?
Step 3: Lowest Cost	 Which party is best able to absorb the risk at lowest cost if the likelihood and impact cannot be controlled?

- Transferred risks include risks pushed down to subcontractors
- Efficient P3 risk management may reduce overall risk valuation and contingencies



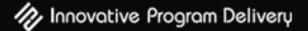
Example Tunnel Project

Dick Cotogony	Risk Allocation			
Risk Category	Public	Private	Shared	
Political	\checkmark			
Financial		\checkmark		
Traffic and Revenue	\checkmark			
Right of Way	\checkmark			
Planning and Permitting			\checkmark	
Utilities			\checkmark	
Procurement	\checkmark			
Construction		\checkmark		
Operations and Maintenance		\checkmark		
Hand-Back		\checkmark		
Force Majeure			\checkmark	
Change in Law	\checkmark			
Geotechnical			\checkmark	

Test Your Knowledge

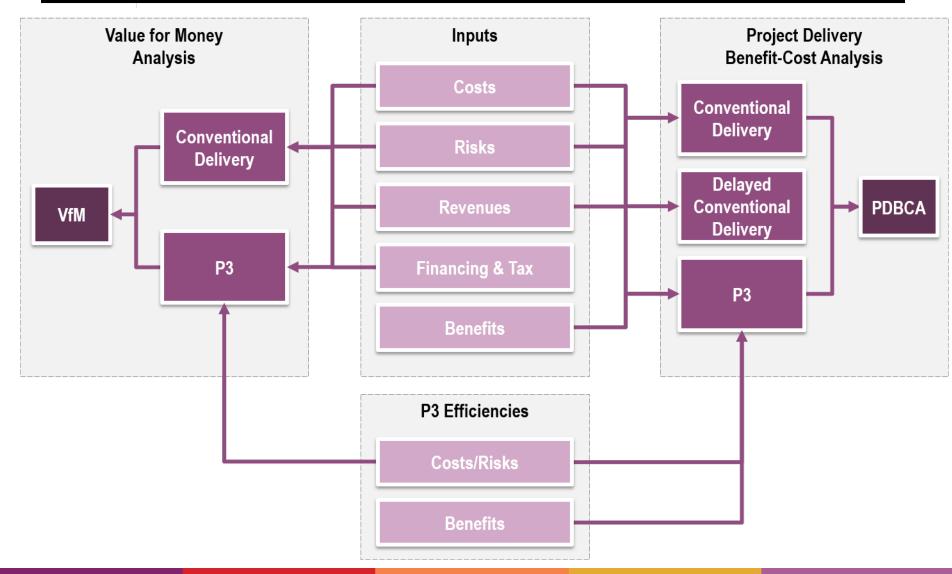
True or False

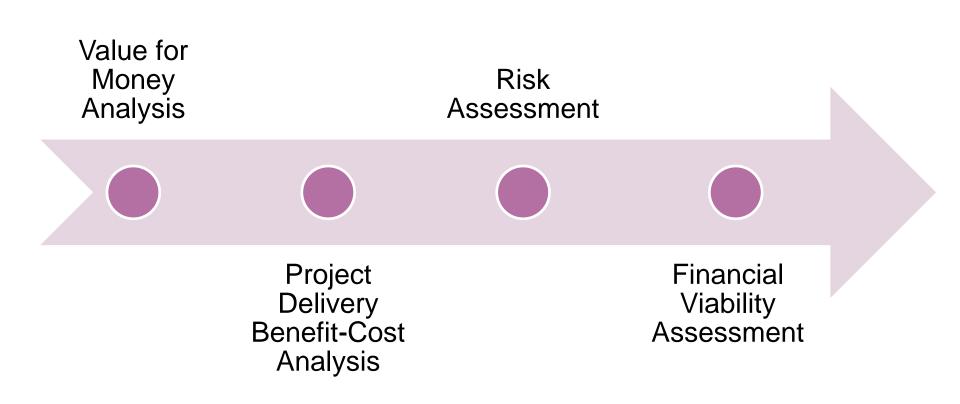
 The public agency's goal in risk allocation should be to transfer all risks to the private partner in a P3.

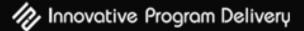


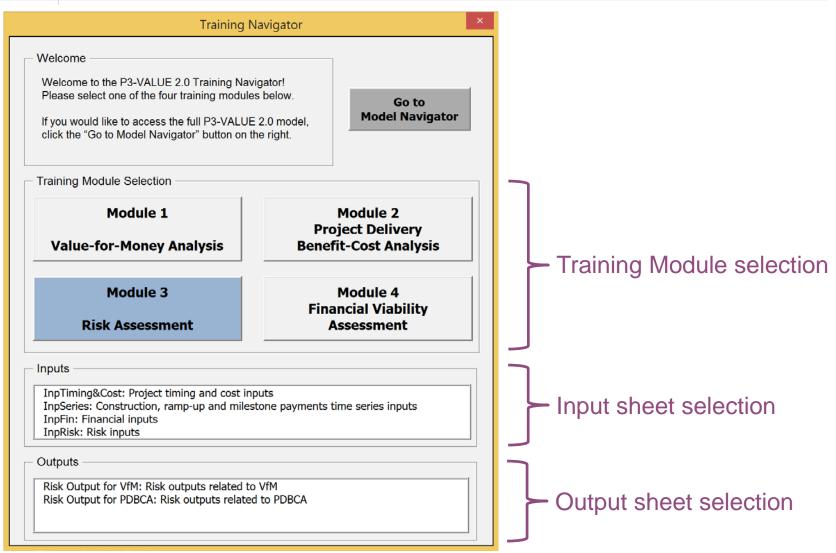
Submit a question using the chat box

Part 6

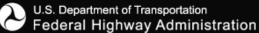

Using P3-VALUE 2.0 for Risk Assessment


FHWA's P3-VALUE 2.0





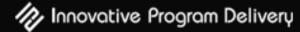
Training Navigator User Interface



Demonstration of Risk Module

Please stand by as we open the Excel file

Submit a question using the chat box



Webinar Summary

- Part 1 Categorizing Risk
- Part 2 Risk Management Process
- Part 3 Pure Risk Assessment
- Part 4Lifecycle Performance and RevenueUncertainty Risk Assessment
- Part 5 Risk Allocation

Part 6 Using P3-VALUE 2.0 for Risk Assessment

P3-VALUE 2.0 Excel Spreadsheet

User Guide

Risk Assessment Primer & Guidebooks

- Exercise review March 14 at 12:30pm EST
- March 21 Financial Viability Assessment
- Exercise instructions may be downloaded from the web room
- Technical assistance options:
 - E-mail questions to: patrick.decorla-souza@dot.gov
 - Or call (202)-366-4076
 - Participate in "Exercise Review" webinar

To access the Exercise Review webinar, please use the following link and telephone number:

- Link: <u>https://connectdot.connectsolutions.com/p3</u>
- Telephone: 1-888-363-4749, Passcode: 6139168#

FHWA's Office of Innovative Program Delivery Website:

http://www.fhwa.dot.gov/ipd/

P3 Website:

http://www.fhwa.dot.gov/ipd/p3/

Submit a question using the chat box

Patrick DeCorla-Souza

P3 Program Manager

Office of Innovative Program Delivery

Federal Highway Administration

(202) 366-4076

Patrick.DeCorla-Souza@dot.gov

69