Page 1

U.S. DEPARTMENT OF TRANSPORTATION

+ + + + +

GAS PIPELINE ADVISORY COMMITTEE (TECHNICAL PIPELINE SAFETY STANDARDS COMMITTEE)

AND

LIQUID PIPELINE ADVISORY COMMITTEE (TECHNICAL HAZARDOUS LIQUID PIPELINE SAFETY STANDARDS COMMITTEE)

+ + + + +

JOINT MEETING

+ + + + +

WEDNESDAY OCTOBER 22, 2014

+ + + + +

The Joint Meeting convened in the Washington Georgetown Marriott, West End Ballroom, 1221 22nd St., N.W., at 9:00 a.m., Colette D. Honorable, presiding.

GAS PIPELINE ADVISORY COMMITTEE MEMBERS:

COLETTE D. HONORABLE, Chair DENISE M. BEACH LINDA K. BREATHITT MARK BROWNSTEIN CHERYL F. CAMPBELL J. ANDREW DRAKE SUSAN L. FLECK ROBERT W. HILL DONALD J. STURSMA RICHARD L. WORSINGER JEFF C. WRIGHT CHAD J. ZAMARIN

Page 2 LIQUID PIPELINE ADVISORY COMMITTEE MEMBERS: VADM BRIAN SALERNO (Ret.) LANNY W. ARMSTRONG C. TODD DENTON TIMOTHY C. FELT MICHELE F. JOY RICHARD B. KUPREWICZ CHARLES LESNIAK, III RONALD G. McCLAIN CRAIG O. PIERSON CARL M. WEIMER DEPARTMENT STAFF PRESENT: JEFF WIESE, Designated Federal Official LINDA DAUGHERTY, PHMSA STEPHEN DOMOTOR, PHMSA JOHN GALE, PHMSA DAVID LEHMAN, PHMSA ALAN MAYBERRY, PHMSA DAVE MURK, PHMSA STEVE NANNEY, PHMSA KATE ROSENBERG, PHMSA CAMERON SATTERTHWAITE, PHMSA CHERYL WHETSEL, PHMSA DAVE MURK, PHMSA ALSO PRESENT: DR. PAULA GANT, Deputy Assistant Secretary, Office of Oil and Natural Gas, Department of Energy PAUL ROBERTI, Commissioner, Rhode Island Public Utilities Commission DR. JAMES WHITE, University of Colorado, Institute of Arctic and Alpine Research

Page 3 T-A-B-L-E O-F C-O-N-T-E-N-T-S Call to Order. 4 Briefing: Methane Emissions Reduction. . . . 8 Discussion 109 Briefing: Performance Metrics. . . 126 Discussion 162 Briefing: Oil Spill Response Plans 173 Briefing: Construction Issues (Reversal and Conversion of Service) 198 Discussion 216 Briefing: Subcommittee Report on Midstream Discussion 249 Briefing: Class Location Study Adjournment.

	Page 4
1	PROCEEDINGS
2	9:06 a.m.
3	MR. WIESE: Good morning,
4	everyone. Hope you had a fun night last
5	night; I know the bulk of you were here in the
6	hotel. Some people like us decided, let's
7	take the Metro yesterday and so we got soaked
8	between here and the Metro. So I would
9	recommend today, take a cab, use Uber or
10	something like that.
11	But I apologize for bringing you
12	into a town where the weather is so bad; but
13	thank you again so much for your service.
14	Before we go on the record and start the
15	transcription, I thought I would just mention
16	a couple of things really quickly. Again, for
17	those of you who yesterday put up, please just
18	put up with me.
19	I want to point out that there
20	will be some new people in the crowd. Every
21	time we start a meeting by telling people how
22	to get out of here in the event of an

	Page 5
1	emergency. Our safety moment of the day is
2	use the doors to your right, over here; not
3	the ones behind you. Those take you into some
4	hallways for the staff. So go down the
5	escalators or the fire door in the far corner
6	there, gather in the lobby and there will be
7	people from the hotel up here and in the lobby
8	directing you. But that's the general route
9	out. The comfort moment is restrooms are just
10	out the door right over here, so that should
11	be no problem.
12	Today we've got a number of
13	interesting panels. The first one, in
14	particular, I think that you will find
15	fascinating, but my goal today and I want to
16	work for you; because most of you are from out
17	of town, is to get you out of here at 3:00.
18	That's our goal. I know a number of you have
19	to catch flights. So if you want to adjust
20	your flights and get home a tad earlier,
21	that's up to you; but I know I have the able
22	assistance of the Commissioner from Arkansas.

	Page 6
1	We will, she will nicely manage to get us to
2	a 3:00 close.
3	So I think with that, Cheryl any
4	other housekeeping matters that I, no?
5	MS. WHETSEL: No.
6	MR. WIESE: Okay. Adjust your
7	phones. Okay? Besides that, there are, there
8	is a sheet on the registration table with
9	restaurants nearby for lunch. We'll give it
10	a reasonable lunch; we'll gauge out the
11	progress we're making about whether it's an
12	hour and a half or an hour. But I'm very much
13	looking forward to today, so with no further
14	ado, I will turn it over to my colleague from
15	Arkansas.
16	CHAIR HONORABLE: Thank you, Jeff,
17	and good morning everyone. I hope you had a
18	good evening, not too much fun, okay? We've
19	got a lot of work to do. And while we do want
20	to get you home safety and in an expeditious
21	way, I certainly don't want to cut off any
22	dialogue or the questions that you might have,

i	
	Page 7
1	this is what we came here to do.
2	So I greatly appreciate your
3	attention yesterday and most of all, your
4	involvement and your participation. It's
5	great when we have a lot of tent cards up. So
6	this is your day as well; this is why we're
7	here. So I don't want to limit discussion or
8	questions in any way.
9	But to the extent that we're able,
10	we would like for you to be able to return
11	home, particularly with the rainy weather that
12	we're having today. And also, please remember
13	than when you speak, we would like for you to
14	please state your name first, because we are
15	making a record of the proceedings here today,
16	and I'd like to welcome you back to the Joint
17	Meeting of the Gas Pipeline Advisory Committee
18	and the Liquid Pipeline Advisory Committee.
19	And we'll begin with agenda item
20	number one, a briefing on Methane Emission
21	Reduction and I'll turn it over to Jeff for
22	introductions, but I wanted to thank the

i	
	Page 8
1	panelists who made time to be here today; some
2	of them who I know very well. And this is a
3	great, great topic for this joint committee to
4	take up. So without further ado, Jeff.
5	MR. WIESE: Great. Thank you so
6	much, Colette. I just have a couple of quick
7	remarks to set this up. We asked to establish
8	this panel because it's a topic that the
9	committee, it's very germane to the work that
10	we do; but we haven't ever talked about it in
11	the past, other than just as a side note on
12	other discussions we've had.
13	Yet, my guess is many of us in
14	this room have been involved for some time in
15	this topic. So it seemed appropriate, you
16	know, for us to kind of collect advice from
17	you, but to start, I assume we'll have
18	continuing discussions on this topic, given
19	its importance I think that everyone here as
20	well as to the administration, but I thought
21	we would start with some basics.
22	Again, I don't like to assume that

Page 9
everyone is at the same point of knowledge, so
to begin with, what I'd thought we'd do is
kind of a primer. So I reached out, I
thought, who would do the primer? I reached
out to the National Academy of Sciences. We
do business with them a lot and I said, who's
really good fact-based, science-based, neutral
sort of person? And it was immediately they
recommended Dr. Jim White. So I called Jim
and he was kind enough, after some badgering
from me to agree to come in and I consider it
a high accolade if the National Academy is
referring him.
So, just real a quick bio, I've
got a panel that's comprised this morning for
you of Dr. White, Dr. Paula Gant from the
Deputy Assistant Secretary at DOE and friend
of many of ours for many years, and Paul
Roberti, another one of our friends. Paul is
Commissioner from Rhode Island. So I thought
we would start out with Professor White, we'll
go to Paula and then to Paul.

	Page 10
1	But I will pause, I think, after
2	each of these speakers and, you know, take
3	some questions for the speakers. And when
4	that's done, I've asked a couple of people
5	here, Mark Brownstein will be speaking as well
6	on this panel, forgive me, since I recruited
7	him for the committee on this topic and this.
8	Sorry, Mark. It's early. I did go down and
9	get coffee. So Mark will be presenting as
10	well in EDS interests in measurement and
11	monitoring. Sorry about that.
12	So we'll do that. Let's pause and
13	let you take questions of all these people and
14	then I've asked a couple people on the
15	committee to kind of talk a little bit about
16	the work that they've been doing; that we
17	think that contributes.
18	So I'll start out with Dr. White.
19	Dr. James White, Professor of Geologic
20	Sciences, the University of Colorado/Boulder
21	and Fellow and Director of INSTAAR, the
22	Institute of Artic and Alpine Research. I'm

	Page 11
1	not going to read through the long cycle, but
2	Jim has talked to me before. He's been
3	involved in methane monitoring and measurement
4	for quite a few years. I'll let him give you
5	any other quick tips on himself, but again I
6	consider it a high accolade to be referred by
7	the Academy and I want to thank him for taking
8	time out of his schedule.
9	DR. WHITE: Thank you very much,
10	Jeff. Thank you, Madame Chairwoman. I would
11	point out that Jim White is a very common
12	name, so you probably should check to make
13	sure you got the right one. I don't know, I
14	have worked with the National Academy.
15	Jeff asked me to give you sort of
16	a very brief overview on climate change, what
17	we know, what we don't know. So I'm going to
18	stick to the basics. I'm going to stick to
19	simple physics. I'm not going to try to go
20	into models and stuff like that. I don't do
21	modeling. I go to places like Greenland and
22	Antarctica and drill ice cores and look

Page 12 1 thousands of years into the past to try to 2 understand how our climate system works. I've 3 also since the early 1990's measured the 4 isotopes of methane in the atmosphere. I've 5 been affiliated with NOAA's monitoring of methane in the atmosphere. So I'll make some 6 7 comments specific to methane as I go through my talk. But I will also talk broadly, more 8 9 broadly about climate change in general. 10 I always like to start with a 11 slide of where we are; actually, this is a 12 picture of the other side of the world. You can make out India on the left there. 13 I like to show pictures like this for a couple of 14 One is this is Typhoon Haiyan from 15 reasons: 16 last year, from 2013; this is a pretty big 17 storm. If you actually lay it over India, 18 it's about half of India. But you also see all these orange things, and these are lights, 19 obviously; and those are powered almost all, 20 21 as you know, by either coal, oil or natural And India and China are countries that 22 qas.

	Page 13
1	use far less energy per capita than the
2	industrialized countries. So a global view
3	would show you that the industrialized world
4	lights up the night even more than these
5	countries do, but these countries are the
6	places where growth is happening; China in
7	particular. Huge growth in use of fossil
8	fuels; and India is not far behind, and with
9	a billion people moving into the use of fossil
10	fuels, they'll need something like four to
11	five times more energy, total energy in the
12	future because just growing from where they
13	are and their use of fossil fuels, which is
14	very low per capita, up to some level in the
15	future.
16	With all the environmental
17	changes, we want to know a lot, but three
18	basic things: How fast are things going to
19	occur, how big is the change going to be
20	eventually, and how likely is it to happen?
21	These are the same sort of questions we ask
22	when we buy insurance. So knowing these

	Page 14
1	things, we can do very important things, like
2	manage risk, provide resilience, etc. So as
3	I go through my talk, I'm going to move back
4	to these issues of fast, how far or how big
5	and how likely. So we'll keep moving back to
6	those. And again, I'll try to keep it simple;
7	and that's why I threw in this slide to remind
8	myself to keep it simple.
9	So let's start with, you can
10	actually understand how our climate system
11	works in about three minutes. So in the next
12	three minutes, we're going to understand how
13	our climate system works. Not getting into
14	the details of, how Washington's weather works
15	or Colorado's weather works or South America,
16	whatever. Just looking at the globe, if you
17	wanted to determine the temperature of our
18	planet all you would need to know are three
19	things: You would need to know how much
20	energy we get from the sun, because we're a
21	sun-driven planet. There's very little energy
22	that comes out of the Earth, some by

	Page 15
1	radioactive decay and some by friction between
2	tectonic plates, but we'd be a very, very cold
3	planet if it weren't for the sun.
4	You need to know then how much of
5	that sun's energy is reflected back to outer
6	space; and that's reflected by things like
7	clouds, aerosols, volcanos when they go off
8	are very good at producing sulfate aerosol,
9	which makes ice crystals and cools the planet
10	off. And the obvious one is things like sea
11	ice and land ice, etc. So, and that's what we
12	call a positive feedback; because the colder
13	the planet gets, the more ice you have, the
14	more snow you have and the colder the planet
15	gets.
16	A third thing you need to know is
17	the amount of greenhouse gases. The
18	greenhouse gases are just sort of a colloquial
19	term for those gases that absorb the Earth's
20	energy; not the sun's energy, the Earth's
21	energy. So the sun's energy as it passes
22	through the atmosphere, warms the planet up.

ſ

	Page 16
1	The planet warms up to some point and then
2	radiates energy into outer space. Everybody
3	radiates energy. I noticed on TV this
4	morning, they were pointing little
5	thermometers at everyone's head who was coming
6	into the United States, for obvious reasons.
7	And those thermometers are simply reading the
8	radiation emitted by those human beings; and
9	you can calculate your temperature quite well
10	by knowing what frequency of radiation we all
11	radiate.
12	So greenhouse gases don't care
13	about the sun's incoming radiation, they
14	absorb the Earth's radiation as it goes back,
15	as it tries to go back to outer space. They
16	absorb infrared radiation. The number one
17	greenhouse gas with a bullet is water vapor;
18	it makes up about half of the greenhouse
19	effect. CO2 is about a quarter. And then the
20	other quarter is made up by methane, which is
21	an important part of that quarter. Nitrous
22	oxides, CFC's, other smaller amounts of gases.

	Page 17
1	In terms of how they're growing, methane is
2	actually one of the ones that we're watching
3	very, very carefully; because it is growing
4	faster than CO2 and given it's about twenty to
5	thirty times more powerful than CO2 per
6	molecule, likely to take over CO2 at some
7	point in the future. And I'll talk about
8	that, because I think there's good reason to
9	believe that it might actually happen.
10	So if you know those three things,
11	you can actually, I should back up. You
12	actually calculate the temperature of the
13	planet; and physicists did this back in the
14	1800's. There's a lot of really classic
15	physics worked out at that time. We do get
16	variations in all of these things, so the
17	amount of energy we get from the sun that
18	varies because the orbit of the Earth varies.
19	So if we're farther away from the sun, we have
20	ice ages; if we're closer away from the sun,
21	we have warm periods, like we're in now. And
22	the pacing of the elliptical shape of the

1	
	Page 18
1	orbit is a very important part of climate,
2	particularly the last million years. The
3	Earth has the amount of reflectivity on the
4	planet changes so when a volcano goes off,
5	it's very obvious. You can look at the
6	temperature pattern over the last hundred
7	years, you can spot all the major volcanos
8	that occur.
9	And the amount of greenhouse gas
10	in the atmosphere varies. You go back sixty
11	million years ago and greenhouse gases were,
12	CO2 for example, which today is 400 parts per
13	million, pre-Industrial, about 280 parts per
14	million. Sixty million years ago was probably
15	a couple thousand parts per million. So it's
16	been high in the past. It's not gone much
17	lower than 180 parts per million for
18	interesting reasons that we can talk about.
19	This slide just reminds us that we
20	don't get enough energy from the sun to be a
21	liquid planet; we're too far away. So the
22	Earth's temperature without greenhouse gases

(202) 234-4433

	Page 19
1	are essentially without an atmosphere, if you
2	want, is about -18 degrees C. You can measure
3	that with satellites; that's what physicists
4	calculated. I think it's too cold for
5	advanced life. And I do ice core work, so.
6	The Earth's temperature, however, that you can
7	take with thermometers or with satellites
8	around the world is about +15, which is a nice
9	cozy planet. It's not too hot at the equator
10	and it's pretty darn cold but not too cold, at
11	the poles.
12	And the difference between that -
13	18 and that +15 is greenhouse gas. We can
14	calculate that, we know that quite well. It
15	raises the temperature of the planet by about
16	33 degrees Celsius, about 60 degrees
17	Fahrenheit; and really makes the planet
18	habitable. So if somebody complains about
19	greenhouse gases, just pause for a moment and
20	think, well they actually make it possible for
21	us to be here.
22	So it's a very, greenhouse gas is

	Page 20
1	a very integral part of the energy balance of
2	the planet and the energy balance of the
3	planet or the energy at the surface of the
4	Earth, is indeed climate. That's the simplest
5	definition of climate is how the energy at the
6	surface of the Earth, how much there is and
7	how it's distributed. Whether it's
8	evaporation, whether it's sensible heat,
9	whether it's leaves moving, whether it's that
10	rain that's pouring outside.
11	So if we add lots of greenhouse
12	gases to the atmosphere, the Earth's climate
13	will definitely change. We know this; this
14	is, again, simple physics. Because the
15	physics of greenhouse gases absorbing energy
16	is actually we know better than gravity, and
17	we all, you know, next time you feel the urge
18	to deny simple physics, try denying gravity.
19	I do a little exercise in the class I teach on
20	energy and the environment where I have a
21	student stand on a chair. And I have, I talk
22	about this thought experiment. What if I push

	Page 21
1	the student off and the students will say,
2	well she'll jump off and land on her feet.
3	Well, we'll tie her feet together. Tie her
4	hands together, you know, we'll do whatever.
5	And they, you know, this is 18 to 22 year old
6	set; they love this stuff. You know, they
7	talk about you'd smash your face, blood, guts,
8	you know. Definitely an injury here. And
9	then I point out to them that in twenty-
10	something years of doing this exercise in
11	class and countless times in public, no one
12	has ever raised their hand and said, so and so
13	won't fall.
14	So we, and we get that. We
15	understand that you simply cannot deny
16	physical laws; you know, this is not something
17	you can pass a law against, this is not
18	something you legislate. If Congress could
19	pass a law against gravity or could change the
20	gravitational constant, we could all lose
21	weight immediately. And they haven't done
22	that, so.

1	
	Page 22
1	This is a context of human change.
2	I put CO2 on here, it's in red; and your CO2
3	is up about 30 percent from where it was.
4	This is CO2 levels going from today, going
5	back 400,000 years; each of these high
6	periods, what we call interglacial periods.
7	A couple things you can notice on here. Most
8	of the time in the last million years, has
9	been cold. We spent time in what we call
10	glacial periods, large glaciers covering
11	Canada, wiping out the National Hockey League,
12	stuff like that.
13	Methane also follows a similar
14	pattern, although with more excitement; and
15	methane has that excitement because it's very
16	tied to the hydrologic cycle. Methane is
17	primarily produced by anaerobic bacteria in
18	swamps and places like that. It has, however,
19	increased much more than CO2. Methane has
20	tripled in the atmosphere since the Industrial
21	Revolution. So our impact on methane is much
22	larger than our impact on carbon dioxide; in

1	
	Page 23
1	part because methane is lower in
2	concentration. But also in part because our
3	production of methane mostly by rice
4	cultivation and by domesticated animals
5	burping their brains out, has a larger percent
6	of the flux relative to natural.
7	So what are the impacts? What do
8	we know will happen? So I've broken the
9	impacts into what we know will happen and what
10	do we think will happen. And you know, if you
11	read the IPCC and these other reports, you get
12	words like very likely and probabilities and
13	stuff like that. I'm going to talk to you
14	like a human being and not a scientist. We
15	know these things are going to happen, right?
16	The physics are so simple that this is going
17	to happen. So, 50 percent of the energy in
18	the lower atmosphere is expressed as heat,
19	sensible heat. So if we increase the amount
20	of greenhouse gas in the atmosphere, we know
21	we're increasing energy in the atmosphere, the
22	odds of it warming up are very, very, very,

1	
	Page 24
1	very, very high. All right? So it's going to
2	get warmer.
3	It will also mean more
4	evaporation. So more energy in the atmosphere
5	means there's actually going to be more rain
6	globally. Now that rain might fall in the
7	ocean, might not do as good on the land, but
8	it will on the whole, rain more in the future.
9	And it has been raining more. Another thing
10	that will definitely happen is that sea level
11	will go up. And I'll talk more about that,
12	because that has implications for
13	infrastructure along the coast that I think
14	you folks in the pipeline world ought to know
15	about. But again, the physics are so simple
16	here that when you warm the planet, you are
17	going to raise sea level. The ocean's going
18	to acidify, because we're putting CO2 in the
19	atmosphere; that's happening today.
20	And the other thing that's going
21	to happen, and it happens slowly, fortunately,
22	because I don't think this is going to happen

Page 25
rapidly. Is that carbon in the form of CO2
and methane is going to be released as
permafrost melts in cold regions of the world.
That's something that has normally happened as
the planet has warmed and cooled in the past.
Interestingly, it's the ratio of methane to
CO2 that's really important here. And we
don't know what that ratio's going to be.
What do we think will happen?
There's a whole bunch of things that we think
will happen; here's just ones I've listed. We
think it's going to get drier in the western
U.S. I live in Colorado, that's very
important to me. We think there will be
changes in the weather. It's going to be both
colder and warmer because of the changes in
jet stream, changes in circulation patterns.
We think it will be drier in some places,
wetter in others. We think there will be
bigger storms; there's actually evidence for
this today, as there is more energy in the
atmosphere, you'll have bigger storms that

	Page 26
1	rain more per event. That has implications
2	for infrastructure in terms of sewer runoff
3	and stuff like that. And we think there's
4	going to be more heat waves. There's a bunch
5	of other stuff that we think's going to
6	happen, but that energy's going to be
7	redistributed around the planet in interesting
8	ways.
9	Is it surprising that human beings
10	are changing the planet? I get this question
11	a lot. I used to get this question from my
12	dad, and we used to have long conversations
13	about this. So I started to collect metrics
14	for humans running the planet. We're very
15	impressive. We're the biggest cause of change
16	on the planet by far. Here's just a couple of,
17	you know, there's a bunch of them in here,
18	I'll just talk briefly about the first one
19	here and if we have time, I can come back to
20	the second one. This surprised me. My
21	friends in the geological science business
22	added up how much dirt flows through rivers

Page 27 1 and through dust in the atmosphere, and they 2 compared that to the amount of dirt that we 3 move by mining activities. Just by mining 4 activity. We move ten times more dirt than 5 nature does every year. So the natural erosive processes that wear mountains down and 6 7 keep these mountains from getting higher and higher, we move ten times more dirt per year 8 9 than nature does. Which impressed me. And I 10 can come back to this. This has to do with 11 nitrogen fertilizer and I don't know if I'll 12 have time to come back to it; but this is, I 13 think the one that really makes my jaw drop is 14 the fact that we human beings really are equal to all the bacteria on the planet in terms of 15 16 fertilizer production. Nitrogen production, 17 which is like, that's really strange. 18 We can try this. So how fast, so we did, the National Academy probably fingered 19 me because I was the lead author on a report 20 21 in which we looked at abrupt change. And one of the abrupt changes is happening today is, 22

	Page 28
1	is sea ice loss. And this is a little movie
2	prepared by NASA and NOAA and I like it
3	because it makes a couple of examples here.
4	So what you're going to see here is the movie
5	cranks up is the circulation of the Arctic
6	Ocean and the Arctic atmosphere circulation as
7	ice spins around. And in the natural, in the
8	world before it got warmer, ice would come
9	around Greenland here, it goes out in the
10	Atlantic, it sinks the Titanic, it does other
11	stuff. But the white stuff here is old ice,
12	and the blue stuff is young ice; and what's
13	happened as time goes by and you'll see a big
14	change in 2007. It's episodic. Is that the
15	old ice, which is meters and meters thick, is
16	being shoved out and it's not been cold enough
17	to replace the old ice with more old ice. And
18	we end up with an Arctic Ocean that has pretty
19	much one year ice covering a lot of it. So if
20	you remember what that looked like in the
21	beginning, it was mostly white, which is
22	multiyear ice, able to survive a warm winter.

	Page 29
1	And what we have now in the Arctic in the
2	wintertime, it still freezes over in the
3	wintertime. We have mostly one year ice,
4	which is capable of melting, to a large
5	extent, any given summer when you have enough
6	warmth and when you have the right wind
7	conditions.
8	An example of this, this is the
9	Great Lakes, to give you an example. So this
10	is Lake Erie, which I used to pick on Rhode
11	Island, but not anymore, so. This is New
12	Jersey, roughly. And this is February 27,
13	1973; Lake Erie is frozen over. March 13, two
14	weeks later; Lake Erie is almost entirely ice
15	free. And if you've lived in an area where
16	you have lakes, abundant lakes, you'll know
17	that this happens in the springtime, it just
18	seems as though the ice goes away very
19	quickly. And that happens because the
20	atmosphere warms, the water also is melting
21	the ice, and then the wind comes along and
22	stirs the drink and you end up with ice being

	Page 30
1	removed very rapidly. That's what's happening
2	in the Arctic today. And now keep in mind that
3	the three things, class, that controls
4	climate: How much energy from the sun, how
5	much reflectivity there is. So we're trading
6	white ice in the Artic for blue ocean; which
7	is about the biggest trade you can make from
8	an energy-absorbing point of view. That's why
9	a lot of climate scientists are focused on
10	what is going on today in the Arctic; because
11	what happens in the Artic doesn't stay in the
12	Arctic. It's totally the opposite of Las
13	Vegas. It begins to impact the entire
14	northern hemisphere, because it changes the
15	energy budget of the northern hemisphere.
16	So why should you care about
17	Arctic sea ice? There's a bunch of reasons
18	why you should. This thing that you folks
19	have lived through called the Arctic Paradox;
20	where cold air leaks out of there because the
21	jet stream slows down and can't bottle up cold
22	air anymore. A lot of political stuff. The

Page 31 1 Russians dropped a flag at the North Pole. 2 There's more ships, there's more Whoopee. 3 resource extraction going on up there; and in 4 red here, I put the permafrost is melting. 5 And it's being aided in warming up by the fact that you now have blue ocean in the summertime 6 7 along the coast much longer into the fall than you used to have. And the folks who live in 8 Alaska can, I mean, this is something they 9 10 This is very real change, a very easy know. 11 change to see. This is a distribution of 12 Just pointing out a couple permafrost. 13 things. One is that most of that permafrost 14 is in Russia; the second amount is in Canada. But we in the United States have a lot of 15 permafrost; and I've talked about folks, 16 17 talked about this with folks in the State 18 Department; pointing out that, you know, as we talk about carbon agreements globally, we own 19 a lot of stock here that is going to be coming 20 21 out. And how this stuff gets counted in the future is an interesting question. 22 Just to

	Page 32
1	scale you, this amount of carbon is equal to
2	all coal, oil and natural gas put together.
3	And it will, as the planet warms up, melt;
4	because it did it in the past. And we have
5	very good evidence. At warm periods in the
6	past, only a couple of degrees warmer, trees
7	were growing all the way up into these islands
8	right here, on both sides. So this was, very
9	clearly, a much warmer place and permafrost
10	was gone because trees don't grow that well in
11	the really frozen permafrost.
12	Just pointing out to you that we
13	are monitoring very carefully what's happening
14	here. We don't have enough sites, I think, to
15	do that very well, but we have enough that we
16	can tell you that even though methane is now
17	increasing in the atmosphere, this is methane
18	from since 2000 from the NOAA data. It
19	actually plateaued for a while and there was
20	a whole bunch of papers written, including
21	some by me; and we don't really know why this
22	happened, which is an interesting problem.

	Page 33
1	But methane is going up in the atmosphere
2	again since 2006 or 7, it's been going up
3	again. It's going up again, and this is the
4	isotope, I won't go into details here, but
5	basically if this goes down while this goes
6	up, this has to be anaerobic. It has to be
7	rice, it has to be swamps, it has to be more
8	rain. It is not Arctic permafrost that's
9	melting and putting that methane into the
10	atmosphere. We all think that this is going to
11	happen in the future; as a matter of fact,
12	it's going to happen in the future. But it
13	isn't happening yet.
14	Some thoughts then. Ours is a
15	water planet. It takes time for water to heat
16	up. One of the most, I'd say, the second most
17	important message I have to give you today
18	about climate change is that the impacts, that
19	is, it will be warmer, come after the causes,
20	which are increased greenhouse gases by at
21	least fifty years or more. And that's because
22	water is out there. And it doesn't take a

	Page 34
1	whole lot of experimentation. I have
2	students, another thought experiment. Put two
3	pots on the stove. Put two cups of water in
4	one and no water in the other. Turn the heat
5	on equally. Walk away for a couple minutes,
6	come back. Thought experiment. Put your
7	finger in both and you will burn your finger
8	in the one with no water, and the one with
9	water in it, you barely feel it's a little bit
10	warmer. Energy is neither created nor
11	destroyed. So where did all that energy go?
12	That, on the water side? Well, it goes into
13	warming water up because water has an enormous
14	heat capacity. So this is an interesting
15	problem, because it creates, even though today
16	we have about 400 parts per million CO2, and
17	I'll show you what that means from a climate
18	point of view. We don't have a 400 part per
19	million CO2 climate yet. It will take a long
20	time for the ocean to warm up to express that
21	400 part per million CO2 climate. And it's
22	always going to be a lag of at least a

	Page 35
1	generation; and that causes what's called
2	intergenerational inequity. And a lot of what
3	we talk about in climate change today has to
4	do with ethics. What we're doing to our, with
5	the problems we leave to our kids. And will
6	they do the same thing? Will they leave our
7	grandkids the same kind of problems? So this
8	is an interesting problem. And it's, the time
9	frame is long enough, it's certainly longer
10	than the political time frame. But the time
11	frame is long enough, it's really an
12	interesting problem.
13	Let me talk a little bit about sea
14	level rise. This is probably the most
15	inevitable result of a warmer planet. And
16	this one, I want to talk about it because the,
17	as a paleoclimatologist, I sort of yawn when
18	I look at sea level rise curves. But the, it's
19	something that we haven't gotten out into the
20	public domain, the importance of a dynamic sea
21	level on our planet. So the physics behind
22	sea level rise are simple. So as you warm

	Page 36
1	water up, water expands; and that's not
2	trivial in an ocean that's several kilometers
3	deep. So as the ocean warms up, sea level
4	rises. The other thing that happens is that
5	a warmer ocean and a warmer air melt land ice.
6	And on our planet, there's a trade always
7	going on between water on land, as ice, and
8	water in the ocean. And that trade goes back
9	and forth as our climate changes. As our
10	planet cools off, we tend to grow ice on the
11	land. That ice came from the ocean and so the
12	sea level drops. During the last glacial
13	period, for example, sea levels were 120
14	meters lower than today; almost 400 feet. All
15	right? So that's a lot of water that got
16	taken out of the ocean and made into ice. As
17	our planet warms up, sea level rises. So
18	120,000 years ago, we were slightly warmer
19	than today, maybe a degree on average for
20	globally. Sea level was about 5 to 7 meters
21	higher than today. Meters. So that's 15
22	feet. So then I'll show you what that looks

	Page 37
1	like in the next few slides. But this is very
2	important, because the small changes in
3	temperature eventually translate into large
4	changes in sea level and that's just the way
5	our planet functions, because of this trade
6	between land ice and the ocean.
7	This is just a figure showing you
8	the fidelity, I've used CO2 here, by
9	temperature can be substituted for this; and
10	sea level showing that over the last 500,000
11	years, I apologize the direction of time is
12	now going this way. That's what
13	climatologists do. These are again the
14	interglacial periods that you see here. But
15	the, what's important to note on this is that
16	these are the difference between an
17	interglacial period and a glacial period,
18	which is about 6-7 degrees Celsius. Sea level
19	changes here are on the order of 120 meters.
20	All right? So you can get a scaling right
21	away that, at one degree of sea level, one
22	degree of temperature change is something on

	Page 38
1	the order of 15 to 20 meters of sea level. And
2	keep in mind that the IPCC target is 2 degrees
3	Celsius, all right?
4	Sea level is rising, a meter by
5	the end of this century is a conservative
6	current estimate. It's conservative. And
7	there's a whole lot of implications for this.
8	In the Abrupt Climate Change report, we talked
9	about this infrastructure failure is a key
10	threshold in sea level rise. So as, you can
11	talk about, okay, Miamians will move from
12	these wet spots here to these drier spots.
13	But you all know how cities work, and you know
14	the underground pipelines, the power lines,
15	the sewer systems. The infrastructure of
16	cities are really what begin to fail as sea
17	level rises. And that becomes a real serious
18	problem. And these failures could indeed be
19	abrupt changes in the system; that's probably
20	one of the biggest fears we have is that you
21	will have problems in the infrastructure, the
22	system not functioning abruptly.

	Page 39
1	Interestingly, current plans. For
2	example, there's a big meeting in New York
3	City recently. Typically go out to 2050 with
4	little or no recognition that sea level rise
5	will continue. So sea level rise is not going
6	to go a meter by 2100 and then stop there.
7	The how far part of this is really important.
8	And how far is in the neighborhood of 10 to 20
9	meters. So with 400 parts per million CO2,
10	I'll show you a curve here in a minute; that's
11	the sort of level we'll expect in, and it will
12	take a couple hundred years, a few hundred
13	years, to do that. But what's really
14	important is that sea level rise, if we allow
15	this to go unchecked, will mean a continuous
16	and strategic retreat to that how far level.
17	So, it's interesting that folks are thinking
18	of building twenty billion dollars' worth of
19	hardening against sea level rise, and at that
20	point, you go, okay now what? You guys spend
21	another, we all know the number will be even
22	bigger. But it's going to be a continuous

1	
	Page 40
1	fight. And at some point, you think, well,
2	you know, are we going to, we're going to give
3	up. Miami, for example, is a city that you
4	simply can't save. It's a city that's built
5	on sand and coral and you put a dike around
6	Miami and water just comes up underneath it.
7	It's completely porous under your feet. The
8	City of Miami actually hired some Dutch
9	engineers who told them that and charged them
10	a few hundred thousand bucks, so. Wish I had
11	that gig.
12	This is a nice compilation, just
13	showing you very briefly and roughly speaking
14	that here's the global mean temperature; our
15	average today of 15. Here's sea level.
16	Again, if you go back to the Glacial Period,
17	which was about 6 or 7 degrees colder, about
18	120 meters. Going forward to a warmer planet.
19	If you melt all of the ice, if you melt
20	Antarctica, here's the Eocene, forty million
21	years ago, that's when the Antarctica began;
22	it's about 80 meters of sea level rise. The

	Page 41
1	last time the Earth had 400 ppm CO2, which is
2	what is in the atmosphere today, is a period
3	called the Pliocene, which was about three
4	million years ago. And you can sort of gauge
5	across here; that's about 20 meters of sea
6	level rise. This is the IPCC forecast for the
7	year 2100 temperature. There's no reason that
8	we can think of for this point not to migrate
9	up towards that line. It will take hundreds
10	of years to do so, because fortunately, ice
11	doesn't melt quickly. But again, it's a
12	strategic and phased retreat that we're
13	thinking about, rather than, I still think we
14	can do something about this. But it is
15	interesting that this is something that a lot
16	of people really don't want to hear about, but
17	if you look at, if you study the history of
18	the planet, this is just how our planet
19	functions.
20	So I point out to my class, don't
21	get depressed, you can have some fun with
22	this. This is what 20 meters of sea level

	Page 42
1	look like. I always ask them what's really
2	important about this part of Florida? I'll
3	ask you folks that. Disney World. Right. I
4	heard the words, Disney World, right? So it
5	turns out that Disney World is high and dry at
6	20 meters of sea level and really importantly,
7	you can sail the Disney Princess right up to
8	the Magic Kingdom. All right. So there are
9	winners and losers in climate change. I
10	always get sad because I learned that
11	Louisiana looked like a foot and it's
12	unfortunately, you know, I hate to say it, but
13	an amputated foot at that point. Nonetheless,
14	you get the picture. And I also like to show
15	this slide, because as I tell people, this is
16	the only thing you'll remember about what I
17	say. There's a state lurking over here and
18	you folks in the northeast know which state
19	that is? Delaware. Right. Now what was the
20	first State of the Union? Delaware. They're
21	really, really, really proud of that. So if
22	you want to remember ultimate sea level rise,

i	
	Page 43
1	all you have to remember is first in, first
2	out. Okay? If you can remember FIFO, you can
3	remember ultimate sea level rise.
4	I had to pick on Rhode Island
5	here. This is just a little bit of me getting
6	up on a soapbox here. I think it's time to
7	rethink the global conversation; and it's
8	certainly a national conversation, and really
9	stop blaming fossil fuels. Yes, CO2 is causing
10	a lot of climate change, but the fossil fuel
11	providers get a lot of grief for that and I
12	find that rather odd; for two reasons. One
13	is, it's not just about fossil fuels. And
14	this is a really important message for
15	methane. Methane, the human methane fluxes
16	are primarily rice cultivation and
17	domesticated animals. So we have a little
18	program where we drive around the front range
19	of Colorado and we have a little Piccaro
20	Methane Analyzer in the back and we're trying
21	to ground truth the aircraft measurements.
22	The biggest signals we see are feed lot

	Page 44
1	operations; concentrated feed lot operations.
2	CAFO's. We do see some leakage from pumping
3	operations from methane, natural gas
4	operations; we also see landfills. But the
5	biggest spikes we see are CAFO's. And the
6	nitrous oxide is produced by bacteria when
7	they get an abundance of fertilizer. As I
8	told you, the one example I had to skip there
9	is that human beings have doubled the amount
10	of nitrate and ammonia in the Earth's system.
11	And some nitrous oxide is going up and it's
12	going up rapidly. These two things together
13	roughly equal CO2; and they're largely tied to
14	food. Not energy. So one of the key messages
15	for the future is that we're going to have to
16	deal with climate change. We have a large
17	environmental footprint. We got to deal with
18	it. Because we're not going to get out of the
19	food eating business. We may get out of the
20	fossil fuel business at some point down the
21	road, but we're not going to get out of the
22	food eating business. All right? You simply

	Page 45
1	can't, I can't imagine a world like that,
2	although some of my futuristic friends talk
3	about it.
4	So I think, you know, whatever
5	strategies we have to deal with climate change
6	in the future has to get out of being wrapped
7	around the axel of just fossil fuels. The
8	other important point I want to make here is
9	that fossil fuels supply 80 percent of our
10	energy. And I've always found it odd that
11	blaming the supplier of a basic need is odd.
12	All right? In other words, I ask my class
13	this: I mean, do we blame farmers for
14	obesity? Farmers are out there producing
15	calories. Right? Why aren't we crabbing the
16	farmers, you're producing too many calories?
17	And I think we know the answer. We know it
18	because we know that there's a lot that
19	happens between the production of calories and
20	how we consume it. We inject ourselves, and
21	we say, I need to be responsible for how I
22	consume those calories. We don't have a

ſ

Page 46 1 sensible energy policy, and so we can't inject 2 ourselves in between the providers of that, of 3 energy and the result of that energy. So my 4 big message here is, we certainly need a 5 sensible energy policy and we need a sensible approach to what is really happening; and it 6 7 is really happening. So I will stop there. MR. WIESE: Very good; thank you, 8 9 Professor White. I actually have some 10 questions myself, but I think we've conferred 11 and think that we won't get through our agenda 12 if we don't save questions for the end of the 13 panel. 14 So with your permission, I just ask you to queue them up. Okay? 15 So what 16 that, I think we'll shift now to Dr. Paula 17 Gant. I haven't been calling her Doctor, I 18 realize I'm going to have to become more formal, Paula. 19 Paula is the Deputy Assistant 20 21 Secretary for Oil and Natural Gas in the Department of Energy's Office of Fossil 22

1	
	Page 47
1	Energy. Deputy Assistant Secretary, Dr. Gant,
2	administers domestic and international oil and
3	gas programs; including policy analysis,
4	liquefied natural gas import and export
5	authorization.
6	Paula has a long history, I think
7	many here in the room probably know her. She
8	worked with the American Gas Association and
9	Duke Energy in the past, has served as faculty
10	on Louisiana State University, University of
11	Louisville. So with that, I think I would ask
12	you to welcome Dr. Paula Gant. Thank you,
13	Paula.
14	DR. GANT: Thanks, Jeff. Five
15	minutes-ish?
16	MR. WIESE: Whatever, five, ten.
17	DR. GANT: Great. Good morning,
18	everyone. It's nice to see a lot of friendly
19	and familiar faces, and it's great to get a
20	current primer on the climate science. I
21	thought that was really insightful and makes
22	me glad that I don't have to try to make this

	Page 48
1	interesting to college students. I don't know
2	that I have the innovation that you do, Dr.
3	White.
4	So I'm going to talk about methane
5	from a couple of different angles; focusing on
6	not bovine flatulence, but natural gas, our
7	domestic natural gas abundance; and talk about
8	why from an administration perspective,
9	methane matters in that regard. And then how
10	that relates to some of our objectives around,
11	addressing climate change and working to
12	mitigate the impacts of it.
13	So, why does methane matter? It
14	turns out that we have a lot of natural gas,
15	a lot of proven reserves of natural gas in
16	this country. And thanks to decades of
17	continual innovation and technological
18	advance, we can get it out of the ground very
19	effectively and thanks to the 2.4 million
20	miles of pipeline infrastructure we have in
21	this country, we can get it to markets around
22	the country very safely, efficiently and

	Page 49
1	reliably. And because of that, we have an
2	incredible opportunity to make good use of
3	this resource in ways that allow us to
4	underpin our economic security, our national
5	security, and our environmental quality. And
6	when I think about what the challenges for us
7	at this point in time from a policy
8	perspective, and my opportunity to serve on
9	behalf of the President, it's really to help
10	insure that as a country, we realize that
11	promise. And that's what President Obama has
12	us focused on, is making sure that we're
13	thinking about our natural gas resources in
14	ways that insure that we are developing them
15	prudently. By prudently, we mean that we get
16	the most out of the resource, we produce it
17	efficient and that we also minimize impacts on
18	other natural resources; our air, our land,
19	our water, and our local communities.
20	And the upside is tremendous; the
21	downside risk we think is completely
22	manageable; and it's our responsibility now as

	Page 50
1	policy makers to insure that we're conducting
2	the basic science and analysis and
3	constructing policies based on that that
4	insure that the resource is developed
5	prudently. And that it's used efficiently.
6	So when we think about why methane
7	matters, one of the things that I want to
8	point to is the President's Climate Action
9	Plan, where he called out the importance of
10	reducing methane emissions as a powerful way
11	to take action on climate change. As
12	Professor White pointed out, methane is a much
13	more potent greenhouse gas than carbon,
14	particularly in the short term. And the
15	challenge for us is to make sure that we put
16	that methane to good use and derive an
17	economic growth in providing energy, rather
18	than having it released into the atmosphere.
19	So, to that end, the President
20	directed an interagency group to develop a
21	methane strategy for reducing methane
22	emissions across the economy. Within that

	Page 51
1	strategy that was released this past spring,
2	the Department of Energy is very much focused
3	on reducing methane emissions from natural gas
4	systems; and that's what I'm going to talk
5	about today. And the driver here is the
6	understanding that our domestically abundant
7	natural gas resources are going to underpin
8	our economic growth and our quality of life
9	for decades to come. And we're expanding our
10	use across our economies, whether it's heating
11	homes and buildings, industrial processes, or
12	for large scale power generation. And we want
13	to make sure that that expanded use of natural
14	gas is actually a win for the climate, not
15	just for our economy.
16	So our work is focused on looking
17	at ways that we can accelerate reductions in
18	methane emissions from natural gas systems.
19	And at the Department of Energy, we're
20	currently primarily focused downstream of
21	production; so this is largely focused on the
22	pipeline infrastructure that you spend a lot

	Page 52
1	of time thinking about. And the Environmental
2	Protection Agency is very actively engaged,
3	looking right now at how to best reduce
4	methane emissions from production.
5	So the Secretary of Energy,
6	Secretary Moniz convened a series of round
7	tables this past spring, that were really
8	intended to focus a conversation downstream of
9	production, looking at natural gas storage,
10	transmission and distribution infrastructure.
11	And get an understanding of what the data
12	tells us, what we know about where those
13	methane emissions, leakages are occurring, and
14	what efforts are underway to continue to
15	improve what we know. And the good news is
16	that we know quite a lot. The data on methane
17	emissions, leakages from natural gas systems
18	has improved greatly in recent years, in some
19	part due to the mandatory reporting required
20	by the Environmental Protection Agency, but
21	also due to actions that natural gas utilities
22	and pipeline transmission companies have taken

	Page 53
1	to get a better sense of where these leakages
2	are happening, some of it driven by the types
3	of regulations that you discuss here, the
4	regulatory approaches that are driven from a
5	safety perspective. So while there are always
6	things that we can do and are continually
7	underway, as Dr. White mentioned, to get
8	better understanding of what leakages are
9	actually occurring and how you true up these
10	measurements that you do at the source of the
11	leakage with these atmospheric measurements.
12	So these top-down versus bottom-up analysis.
13	Well, there's a lot of work that continues to
14	go on to improve what we know. We know a good
15	bit. And in this regard, I'll also give a nod
16	to the work that Mark Brownstein and the team
17	have been doing at EDF over the past couple of
18	years; teaming with companies across the
19	natural gas value chain as well as many
20	academic institutions and national labs across
21	the country. That has contributed greatly to
22	the science in understanding what leakages are

	Page 54
1	occurring.
2	And it's been very helpful, and
3	that collaboration, in I think helping to
4	center this conversation and bringing it out
5	of conjecture or hyperbole into a science-
6	based understanding of where leakages are
7	happening so that we can focus our
8	conversation on continuing to take actions to
9	reduce those. So, thanks to Mark and the team
10	on that.
11	The other thing the Secretary
12	wanted to make sure that we had a conversation
13	around was what are the leading practices? I
14	mentioned the voluntary actions that companies
15	have taken as well as, as you know, from a
16	pipeline perspective, the things that you
17	would do to reduce leakages are driven first
18	and foremost by public safety. So getting an
19	understanding of how pipeline and the
20	distribution companies commitments to safety
21	are actually are resulting in, how is that
22	impacting the trend of methane leakages from

Page 55 1 natural gas systems? 2 And again, the news is quite 3 encouraging there. There's a great deal of 4 leadership happening among companies as well as since the President's call to action with 5 the Department of Transportation in 2011 on 6 7 accelerating infrastructure, modernization and replacement efforts, I think the data 8 9 demonstrates that we're seeing great results 10 from that in reducing leakages from the systems. 11 And I know I'm sort of preaching to 12 the choir on this one; because this is the 13 work that you're focused on. So leading practices and industry leadership. 14 And then the third thing that the 15 Secretary wanted to hear from the broad group 16 17 of stakeholders that were convened is, what 18 can DOE do to help this? And we'd like to be able to continue our work on measurement so 19 that we can demonstrate what the trend is. 20 21 Many of us believe there is a declining trend of methane leakages from natural gas systems. 22

	Page 56
1	And we want to know what we can do to focus
2	the conversation on how we can accelerate that
3	decline. Where can we invest smartly to
4	accelerate the rate of leakage reduction, if
5	you will. Because we know there are so many
6	efforts that are already focused on doing
7	that.
8	So some of the things that came
9	out of the Secretary's efforts, where we're
10	focused is, there's a request for information
11	and comments on the possibility of doing a
12	compressor efficiency rulemaking. There is
13	also an effort underway with the Office of
14	Fossil Energy, where I work; and the Advanced
15	Manufacturing Office in EERE. We're having a
16	workshop in Pittsburg in November that's going
17	to look at the technologies available and
18	needed for leak detection and repair for
19	pipelines. And our focus here in on remote
20	leak detection and measurement in particular,
21	as well as alternatives to, for example,
22	hydrostatic testing. So you wouldn't have to

	Page 57
1	blow down these pipelines in order to do the
2	testing.
3	And we're going to be taking input
4	from the industry and stakeholders on what is
5	next needed and what is the best type of
6	research for the Department of Energy to be
7	conducting in this area. And we have a new
8	infrastructure R and D program that assuming
9	Congress gives us all budgets that we very
10	much hope to be able to kick off next year.
11	And all of that feeds into a
12	partnership that we have elevated with NARUC,
13	thanks to Chairman Honorable's leadership, and
14	Commissioner Roberti; where we're going to
15	look specifically at how our R and D program
16	can contribute to improved safety outcomes and
17	efficiency for our natural gas distribution
18	infrastructure. And PHMSA is a partner with
19	us in that as well. So we're very much
20	looking to make sure that one, we know what
21	the research gaps are and we've identified the
22	ones where the Federal government should be

1	
	Page 58
1	working; and that ultimately, those research
2	outcomes are useful in supporting regulator's
3	efforts to enact good sound public policy.
4	Whether that's with a regulatory requirements
5	that PHMSA is considering from a safety
6	perspective, or whether that is the efforts
7	that NARUC commissioners are making to insure
8	continued safe, reliable, efficient and
9	adequate infrastructure; serving our homes and
10	communities.
11	So we're in the process of
12	receiving inputs on where that R and D should
13	focus. We expect by the end of the year,
14	well, not expect, will be required in December
15	to submit a recommendation to the Secretary
16	and he's very eager for us to get busy on it.
17	The final thing I would say is,
18	when we think about reducing methane leakages
19	across the natural gas system, again, the goal
20	here is to insure the full promise of this
21	incredibly clean and abundant domestic fuel.
22	But when we think about how best to do that,

	Page 59
1	I would offer that there are, along the
2	natural gas value chain, there are a spectrum
3	of levers or tools or approaches that can be
4	brought to bear. And we're very much thinking
5	about not a homogenous approach to that value
6	chain. But what is the right tool and what is
7	the right approach, depending on which piece
8	of equipment, which operational model, which
9	commercial or regulatory incentives that
10	you're looking at.
11	And I raise this because as you
12	all well know, when you work your way down
13	from exploration and production to delivery
14	and you look at pipeline infrastructure, the
15	primary driver for investments in pipeline
16	infrastructure, whether it's ongoing
17	maintenance or new expansions; is primary
18	driver is public safety.
19	And when we talk about public
20	safety and how we best maintain our systems,
21	that is informed greatly by the conversation
22	you have here with PHMSA, and the regulations

1	
	Page 60
1	that come out of PHMSA that then get
2	implemented at a State level as you all know.
3	And those investments happen with the approval
4	of State regulators around the country.
5	So we're very much interested at
6	the Department of Energy of understanding how
7	our technology and our research can be brought
8	to bear to inform that conversation as well.
9	Because we think that a prime driver in
10	achieving the maximum benefits for natural gas
11	is reducing methane leakages; and the way you
12	get there is thinking about safety first.
13	Which is what you're doing here in all of
14	these conversations.
15	So I'm happy to take questions
16	later, and thanks for a chance to be here. I
17	appreciate it.
18	MR. WIESE: Thank you, Paula. I
19	think you can see the relevance of what we're
20	talking about. Paula, I think captured it
21	very well. I'll use that as a segue way to
22	talk about, just for a second abut Mark

	Page 61
1	Brownstein and invite him for his comments.
2	We've been in this conversation
3	for a while; we've got people in the room, I
4	know Bob Smith is here. Our R and D program
5	has been involved in this for probably five or
6	six years. And the EPA used to come to our
7	forums and we would talk about these issues.
8	We funded a few projects in the
9	area, but as I mentioned to the Committee
10	yesterday, it just, we have an opportunity
11	where a lot of things are coming together
12	right now that can really kind of snowball on
13	each other and allow us to make significant
14	progress on multiple fronts at one time. I
15	think Paula did a great job of capturing that;
16	but one of the keys in her remarks were the
17	science-based understanding. And honestly, I
18	think we make progress faster when people
19	start agreeing on the facts, and we get out of
20	the hyperbolic realm. I was attracted to Mark
21	on that basis. Mark was doing some really
22	interesting work as far as I was concerned, in

1	
	Page 62
1	terms of trying to take a science-based
2	approach to better understanding methane
3	measurement and monitoring. I'll let him
4	describe the work that they were doing, but
5	it's sort of what attracted me to him and I
6	knew this would be an issue we'll be talking
7	about for years. So, he was kind enough, I
8	invited him to join the Committee and he was
9	kind enough to volunteer.
10	So Mark will be with us for a
11	while and you'll get a chance to get to know
12	him better. He introduced himself quickly,
13	but for the record, Mark is Associate Vice
14	President and Chief Counsel of the U.S. Energy
15	and Climate Program at the Environmental
16	Defense Fund, where he leads EDF's natural gas
17	efforts. He specializes in utility-related
18	issues, including transmission development,
19	wholesale and retail electric market design,
20	rate reform, power plant siting, investment.
21	I would just say that Mark also, kind of
22	interestingly, has a background in utilities.

	Page 63
1	So I think he understands the world that we're
2	talking about on a daily basis.
3	So I'll close on my introduction
4	to Mark, but also I apologize for saying, I
5	forgot to mention, it would be discourteous of
6	me not to thank Paula. Paula has been very
7	helpful to us in trying to get other people
8	mindful of the importance of the regulations
9	that this group is entertaining and will
10	entertain hopefully soon. But with Paula's
11	help, we're really hoping to push that to you
12	very soon. So these conversations will go on.
13	So with no further ado, Mark, thanks so much.
14	Appreciate it.
15	MR. BROWNSTEIN: Well, thank you.
16	So I already moved up my train by an hour, so
17	I will talk quickly. Cognizant of the fact
18	that we do want to try to end on time, but if
19	you'll indulge me for just a few minutes. We
20	already had, you know, a great presentation on
21	the science, so I won't dwell on this because
22	I won't even be able to do it justice, given

I	
	Page 64
1	the excellent presentation we had. But this
2	is just a way that we often use to try to
3	represent to policy makers what we were
4	talking about just a moment ago.
5	Methane is far more effective at
6	trapping the Earth's, you know, radiation than
7	carbon dioxide itself. Now one thing, the
8	other thing that we do know about methane is
9	that it does decay in the atmosphere much
10	quicker. Right? This is one of the reasons
11	why historically we have focused as a
12	community on reducing carbon dioxide
13	emissions. This is the gas that the basically
14	stays in the atmosphere over many, many
15	generations; some of it as we now know settles
16	out into the ocean, but much of it stays in
17	the atmosphere.
18	Methane disappears much quicker.
19	But for the time that it is present in the
20	atmosphere, and I should say by the way, that
21	methane breaks down to carbon dioxide, all
22	right? So it's not like it disappears

	Page 65
1	entirely it turns into something else. But
2	for the time that methane as methane is in the
3	atmosphere, it is far more effective at
4	trapping the Earth's radiation than carbon
5	dioxide, and so therefore, right, we argue
6	that a comprehensive strategy to deal with the
7	climate issue requires you to address both CO2
8	and methane emissions. For all of the reasons
9	we talked about.
10	This is a graphic from a paper
11	that was released in December of 2013 in the
12	Journal of Science, and it basically is making
13	the argument, that you need to focus both on
14	the long term climate forcer, carbon dioxide;
15	and what we now call the short term climate
16	forcers, methane, black carbon, others; but
17	primarily methane. And that you get a
18	synergistic effect.
19	We talked a moment ago about you
20	know, what happens when more open ocean is
21	exposed, you know, is exposed. You lose the
22	reflective surface of the ice, okay? You get,

	Page 66
1	you create more dark surfaces that absorb more
2	solar radiation and reflect more back up into
3	the atmosphere, right? The reason why we focus
4	so much on methane is that methane can
5	accelerate. Because it's a short term warmer,
6	it can accelerate those phenomena. And so we
7	talk about methane as a strategy to
8	controlling the rate of warming. Carbon
9	dioxide is ultimately controlling the total
10	amount of warming that we see over
11	generations. And that's the reason why we want
12	to do both.
13	The other reason why we focus on
14	methane is because, frankly it's relevant to
15	the whole conversation of whether or not
16	switching to natural gas is a good thing or a
17	bad thing in terms of a climate strategy. My
18	colleague, Ramon Alvarez, authored a paper
19	with a number of his colleagues; this was in
20	the proceedings in the National Academy of
21	Sciences back in April of 2012, that tried to
22	take a look at, what do methane emissions mean

	Page 67
1	in the context of our efforts to switch to
2	natural gas as a strategy to reduce greenhouse
3	gas pollution overall. And the conclusion that
4	Ramon came to is that, because of the effect
5	that methane has, both in the short term and
6	the long term, relative to carbon dioxide, the
7	argument is that leak rates across the natural
8	gas supply system are relevant, to whether or
9	not switching to natural gas is good or bad
10	strategy for reducing our overall impact on
11	the climate.
12	Ramon concluded that a leak rate
13	of 2.7 percent is about the breakeven point
14	between coal and natural gas, for example. If
15	you're talking about switching from natural
16	gas from diesel to natural gas, which is
17	happening in many parts of the country today
18	simply on the price differential between
19	natural gas and diesel fuel, at least up until
20	recently. The leak rate has to be below 0.08
21	percent.
22	Now, there's a great deal of

	Page 68
1	debate right now as to what is the actual leak
2	rate across the natural gas supply system. And
3	what do I mean when I say the natural gas
4	supply system? I'm really talking about from
5	well to burner tip. So that's everything,
6	right? That's the well, that's the gathering
7	and processing, that's transmission and
8	storage, that's local distribution and in the
9	case of the natural gas vehicles, it's even,
10	we've even taken a shot at trying to figure
11	out what are the leak rates with the fueling
12	infrastructure and with the vehicles
13	themselves. Okay, and I'll talk more about
14	that in a minute.
15	But suffice it to say, right, that
16	EPA's current estimate is, is that the leak
17	rate is somewhere about 1.2 to 1.3 percent.
18	That's based on the greenhouse gas
19	inventorying that they do. Much of that is
20	based on reports that many of you in industry
21	file. Now, many people think that the rates
22	are higher than that. The basic concern is

	Page 69
1	that we don't, other than these estimates that
2	EPA have done, we don't really have good data,
3	and so one of the things that we embarked on
4	two years ago was a project to try to get
5	better data. Paula alluded to this, but
6	basically, we've got sixteen different studies
7	that are in process. Some of them have
8	already been published, some of them are well
9	on their way to being published and they look
10	at each point in the value chain. Production,
11	gathering and processing, transmission and
12	storage, local distribution and as I said, we
13	even have a study now looking at vehicles and
14	fueling infrastructure.
15	Each one of these studies is being
16	led by a major research university, so in this
17	case, University of Texas, here, Colorado
18	State University, here, Colorado State
19	University, Washington State University. This
20	one is University of West Virginia. In each
21	case, we were partnering with relevant players
22	in that part of the business. So for example,

i	
	Page 70
1	on local distribution, we've been working with
2	our friends at National Grid, with Xcel, here
3	and transmission and storage, Kinder Morgan
4	has played a role. And what we're doing is,
5	is we're getting access to sites and we're
6	doing basically bottom-up measurement. And
7	each study is being done using a protocol that
8	is peer reviewed by science, by scientists.
9	The results, the interpretation of the results
10	are also peer reviewed. All of the results
11	wind up in papers that are published in peer
12	reviewed scientific journals. So we're trying
13	to keep this as straight down the middle, as
14	fact based as possible.
15	At the same time, we understand
16	the bottom-up studies, going out to actual
17	facilities and doing measurement may not give
18	you the full picture. You're only as smart as
19	what you know. You could only be as effective
20	in understanding the footprint of an industry
21	based on bottom-up measurements when you have
22	a reasonable understanding of all the places

	Page 71
1	where leaks could occur. But to gut check our
2	work, we have also been doing overflight work,
3	where we outfit aircraft with methane sensors
4	and they will fly over a basin and we use
5	these top-down measurements to compare to our
6	bottom-up measurements. And sure enough, we
7	see a difference.
8	When we do the overflights, we see
9	leak rates, you know, in the 2 to 4 percent
10	range; where the bottom-up might suggest a
11	leak rate closer to what EPA's estimating. So
12	what accounts for the difference? How much of
13	that is difference in methodology? How much
14	of that is overflight's capturing sources that
15	the bottom-up studies don't capture? We're in
16	the process now of working with NETL in what
17	we call a synthesis paper; taking a look at
18	all the data that we've collected, both from
19	the overflights and from the bottom-up work to
20	better understand why those differences in
21	readings occur. And to try to create a
22	synthesized view of what the overall emission

Page 72 1 rate across the region would be. 2 We expect that most of these 3 papers, if not all of them, will be submitted 4 for publication by the end of this year and 5 therefore hopefully, all of them will be out in the public domain within the first or 6 7 second quarter of next year. At the same time, we are also 8 9 looking at what we currently know about 10 methane emissions, where they come from and 11 the technologies that are available to address 12 it. Our view is that yes, we can always get 13 better data, but we already know enough to 14 know that there are opportunities to reduce emissions across the system, even if you 15 16 accepted EPA's, what I'll call low end 17 estimate of 1.2 or 1.3 percent. That's 18 telling us that we still have work to do, if we want natural gas to be a low carbon 19 alternative to oil or coal. 20 21 And so, that begs the question, well what can we do? So we commissioned ICF 22

	Page 73
1	International to do a study in which they
2	looked at a range of reduction opportunities
3	again across the industry, the technologies
4	that were currently available. We asked them
5	to make no heroic assumptions about cost of
6	technologies or effectiveness of technologies.
7	They worked with over forty different
8	participants in industry to ground truth their
9	assessment of the technologies and the cost.
10	And what you have here is a cost curve. This
11	is in dollars per ton of CO2e reduced. So
12	that's the metric. The width of the bar is
13	the magnitude of the opportunity. And I'm
14	sorry it's a little hard to read, but for
15	example, this wedge here is substituting high
16	bleed pneumatic devices for low bleed
17	pneumatic devices.
18	Here, this has to do with going
19	from wet seal compressors to dry seal
20	compressors. And what you notice is, is that
21	for some of these opportunities, there's a net
22	payback. In other words, the gas that you're

	Page 74
1	saving at four dollars an Mcf, make it
2	profitable to engage in these reduction
3	opportunities. These actually imply that
4	there's some additional cost to industry. But
5	we would argue that this is marginal at cost
6	to industry. The ICF study concluded that we
7	could make a 40 percent reduction in methane
8	emissions across the natural gas supply chain,
9	well to burner tip. 40 percent reduction for
10	a penny per thousand cubic feet of gas
11	reduced. A penny. Now that's not to say that
12	any one company's compliance costs would be a
13	penny. But if we're sitting here as policy
14	makers, if we're thinking about here what our
15	cost effective opportunities to solve the
16	problems that we were just talking about, this
17	is pretty damn cheap.
18	Now I will note that some of the
19	most expensive stuff you can do in this
20	panoply of, is reducing leaks on local
21	distribution. So if you were doing this in
22	step ways, step fashion order, you would spend

	Page 75
1	much more of your time early on the production
2	side, on the gathering and processing side on
3	the transmission and storage side; the more
4	cost effective opportunities are there. But
5	even still, changing out or tightening up or
6	metering and regulation stations yields a cost
7	of \$41 per ton of carbon reduced. That's
8	actually pretty cheap when you're talking
9	about carbon abatement.
10	So local distribution is not the
11	first thing you would do, if you're talking
12	about reducing leaks across the natural gas
13	supply chain. But if you're taking a step
14	back and you're looking at all of the things
15	that we have to do to get to a low carbon
16	economy, it's still a pretty good bet.
17	For that reason, we have spent a
18	lot of time thinking about how to do a better
19	job of understanding emissions from across the
20	natural gas supply chain including local
21	distribution. I should say parenthetically
22	that one of the things that we hope our

	Page 76
1	studies do in addition to gaining greater
2	insight into the total amount of emissions
3	across the natural gas supply chain, is the
4	studies are also helping to pioneer new ways
5	of monitoring methane emissions, which are
6	good, I think, not only for the science, but
7	we hope ultimately lead to process
8	improvements in industry itself.
9	Better measurement techniques lead
10	to better management techniques. We often
11	say, you can't manage what you don't measure;
12	and so improving measurement is a way to
13	improve management. The work that we're doing
14	now with Google is an example of that. We
15	have outfitted three of their street view cars
16	with methane monitoring technology. And we
17	have been driving city streets monitoring
18	methane emissions across utility systems.
19	I'll quickly walk you through.
20	This is a screenshot of the methane maps that
21	we have produced to date. You can see here,
22	it's a little hard to see, this is Boston.

	Page 77
1	Staten Island got cut off here. This is
2	Indianapolis, so the first thing that I can
3	tell you is, Indianapolis is an example of the
4	system that has spent the last twenty years
5	investing in replacing its older cast iron
6	pipe. They're largely done. As a
7	consequence, when we drove their system, we
8	got four leaks. Boston, older infrastructure,
9	much bigger challenge. I should note that,
10	both national grid and regulators of
11	Massachusetts are acutely aware of this and
12	taking steps to address it. But it's a big
13	challenge. Older system, more leaks. The
14	good news is, is that we know that with
15	investment we can address this problem.
16	The second point I make about
17	these maps is, is that we not only worked to
18	map leaks; that in and of itself is not
19	particularly innovative. We know that the
20	industry already does this. The value that we
21	think we add with this work is, is that we've
22	worked with Colorado State University to

	Page 78
1	develop an algorithm that helps bin the leaks.
2	And why is that important?
3	Because our view is, is that aside from
4	knowing the inventory of leaks, if we can do
5	a better job of sizing the leaks, right, we
6	can being to think in a more sophisticated way
7	about where to deploy limited capital dollars.
8	If you only have so much money that you can
9	spend in any given year for leak repair and
10	replacement, number one, by all means, let's
11	fix the ones that are immediate safety
12	problems. Utilities already do that. But to
13	the extent that you can go beyond simply a
14	safety approach, focus your resources on those
15	leaks which are greatest; and thereby work
16	down your inventory getting the, pardon the
17	expression, the biggest bang for the buck.
18	We have worked very hard to
19	express this data, not in terms of safety, but
20	in terms of climate. So for example, if you
21	went to this site and you clicked on what high
22	means, you would learn that a high emission,

	Page 79
1	here's an example of one. A red dot. The
2	emissions coming from this site is the
3	equivalent of driving a car more than 9,000
4	miles every day. That's the greenhouse gas
5	pollution equivalent of what that red dot
6	means. The yellow dots are between 9,000 and
7	1,000 miles, I'm sorry. The orange ones are
8	9,000 and 1,000 miles, the yellow ones, is
9	basically the equivalent of driving a car
10	between 1,000 and 100 miles a day. So even the
11	quote-unquote "small leaks" represent big
12	greenhouse gas pollution reduction
13	opportunities.
14	The map, you can click down and
15	you can see with specificity where the leaks
16	are and again, the sizing. So again, if we
17	were advising National Grid on where to devote
18	their first dollar in fixing a leak, we'd say
19	let's get after this one over here. And
20	again, the whole idea behind these maps is
21	first of all, to raise public awareness. We
22	often find that when we're working with public

	Page 80
1	service commissioners, they're challenged by
2	the fact that they get folks coming into rate
3	cases who say, hey, why are we putting any
4	money into the gas system at all? I'm senior
5	on a fixed income, I'm a large commercial or
6	industrial customer; I don't want to spend one
7	dollar more on rates than I have to. Our view
8	is that you can't ask the public to invest in
9	new infrastructure if they're not aware that
10	there's a problem to be solved; so part of the
11	reason for these maps is to raise awareness so
12	that people understand the challenge and also
13	the opportunity that's in front of us. But
14	then also to use this technique to help the
15	utilities develop strategies that are very
16	easy to explain to customers as to why we're
17	devoting money here as opposed to here or
18	here.
19	And so again, the whole idea
20	behind our work is yes, let's better
21	understand the magnitude of the problem.
22	Let's understand the opportunities that are in

	Page 81
1	front of us, but let's also create some
2	methodologies that can help us do this in the
3	most cost effective way possible. Thank you.
4	MR. WIESE: Okay, thank you very
5	much, Mark. Trying to be mindful of the need
6	for a break, but I think what we'll do is with
7	your permission, we'll go through at least, we
8	have three quick presentations from
9	stakeholder groups, starting with Paul
10	Roberti. And with your permission, we'll try
11	to go through those quickly and then take a
12	break. It seems like logical and we'll come
13	back and quick questions for people before we
14	move on in the agenda. But thank you all.
15	So if I can, I'll introduce Paul
16	Roberti to those of you. I don't have a
17	formal bio for Paul, but I've known him for
18	some time. Paul's a Commissioner from the
19	State of Rhode Island, but as importantly to
20	this committee, Paul is the head of the
21	Pipeline Safety Task Group at the National
22	Association of Regulatory Utility

	Page 82
1	Commissioners. So Paul and I run into each
2	other all over the place. I know Paul has
3	worked with Colette for a very long time and
4	some of the other Commissioners on the
5	committee on these issues, and I welcome him.
6	Thank him for coming.
7	MR. ROBERTI: Good morning.
8	Thanks, Jeff for that introduction. It's
9	really good to be here today. Again, my name
10	is Paul Roberti; I'm a Commissioner with the
11	Rhode Island Public Utilities Commission, and
12	I serve as Chair of the National Association
13	of Regulatory Utility Commissioners, their
14	subcommittee on pipeline safety, and I'm
15	speaking in that capacity today.
16	As you know, much of the pipeline
17	safety work at NARUC that we've accomplished
18	over the last five or six years is because of
19	Colette's leadership and passion for this
20	issue. And I think we have accomplished a
21	great deal in the last five years, and I
22	personally want to thank her for all that she

1	
	Page 83
1	has done for the organization in bringing this
2	issue front and center in prime time before
3	the organization.
4	CHAIR HONORABLE: Please forgive
5	my interruption, but I would have to share
6	that with you, because you've been an
7	incredible, incredible spokesman for the
8	Association and advocate. Please forgive the
9	interruption, but I had to share that with
10	you.
11	MR. ROBERTI: Thank you. Now
12	before I get started, I should probably
13	provide a little bit of background on NARUC as
14	an organization. We are a national
15	association representing more than two hundred
16	utility regulators in all fifty states. Our
17	members are responsible for assuring that
18	consumers pay fair, just and reasonable rates
19	for safe and reliability service. We are a
20	nonpartisan, consensus-driven organization
21	that brings together our members so that we
22	can educate and share best practices between

Page 84 1 and amongst the fifty states. With PHMSA, NARUC, NARUC members 2 3 play a key role in insuring natural gas 4 companies deliver their product safety to 5 consumers. The majority of our state pipeline safety inspection work force personnel are 6 7 employed by the respective public service commissions. Through our meetings and 8 9 committees, NARUC gives staff and 10 commissioners across the country a venue to 11 share best practices and lessons learned so 12 that we can assure that the utilities we 13 regulate are putting safety above all else. 14 We share with PHMSA the mantra of safety first; but there are environmental 15 16 benefits to running a safe and efficient 17 system. For the safety inspectors, their core 18 responsibility is making sure that the regulated companies are following applicable 19 requirements and constantly checking for leaks 20 21 throughout their systems. Having spent time with inspectors and commissioners over the 22

i	
	Page 85
1	last several years in my role as Chair of the
2	subcommittee, I know personally how committed
3	we are to safety and insuring that the
4	utilities we regulate are operating a safe and
5	reliable system.
6	No one understands more than our
7	inspectors that leaks in general are
8	problematic; but we also understand that not
9	all leaks are created equal. For instance,
10	the leak in a densely populated urban setting
11	is very different and poses a much greater
12	risk than a leak in a cornfield. So when it
13	comes to methane emission reductions, we
14	believe that safety programs can and do have
15	an environmental benefit on the natural gas
16	system as a whole. After all, a safe system
17	is a clean and efficient one.
18	Over the last several years,
19	nearly all states have focused on accelerating
20	the pace of pipeline replacement. Thirty-
21	eight states now have some kind of rate
22	mechanism encouraging utilities to proactively

	Page 86
1	replace and repair outdated infrastructure.
2	And those that do not already have replaced
3	their outdated pipes or they have other
4	approaches to doing so. Either way, these
5	programs provide utilities with dedicated
6	revenues that are being used to target the
7	highest risk segments of the system. This
8	insures that the leaks with the potential to
9	cause the most damage are fixed at the outset,
10	while providing enough resources to replace
11	other sections as needed. These programs are
12	an important element of our safety programs,
13	but the onus is still on the utilities to
14	operate and manage their systems safety, no
15	matter what kind of regulatory mechanism is in
16	place.
17	I am confident that we are making
18	progress at replacing the outdated
19	infrastructure, which I have said, translates
20	into environmental benefits. NARUC is also
21	involved in some Federal efforts aimed at
22	reducing methane emissions from the pipeline

	Page 87
1	system. As we heard from Dr. Gant this
2	morning, President Honorable and I also have
3	participated in the White House-sponsored
4	roundtables on methane emissions from
5	pipelines. We expressed to them what we are
6	expressing to you today; safety is job number
7	one. NARUC members are economic and safety
8	regulators, but again, the more outdated pipe
9	we replace, we will inevitably make the system
10	cleaner and more efficient.
11	An important outgrowth of these
12	discussions was a new arrangement we signed
13	with DOE on natural gas infrastructure
14	modernization. The partnership is still in
15	its very early stages, but the concept is for
16	DOE to provide and fund resources, grants,
17	workshops and other forms of technical
18	assistance to NARUC and its members, so that
19	new technologies and practices for measuring
20	system leaks and making repairs can be put to
21	work. There's not a lot more that I can offer
22	on that front, except to say that we are

	Page 88
1	looking forward to working with DOE on what I
2	think is going to be a very important and
3	productive initiative.
4	To conclude, going forward, I see
5	NARUC, PHMSA and our inspectors at the
6	National Association of Pipeline Safety
7	Representatives continuing our focus on the
8	safe and reliable operation of the nation's
9	natural gas infrastructure. NARUC and State
10	agencies have been at the forefront of safety
11	regulation for decades and all of our members
12	are pursuing policies aimed at replacing the
13	highest risk pipes first. On behalf of NARUC,
14	thank you for the opportunity to speak to you
15	today, and I certainly look forward to
16	answering any questions you may have.
17	MR. WIESE: Thanks so much, Paul.
18	Paul is actually a good example, between Paul
19	and Colette, I can't think of two
20	Commissioners I would rather work with.
21	Honestly. I have worked with both for a long
22	time. I think the work that we have just been

(202) 234-4433

www.nealrgross.com

1	
	Page 89
1	talking about is going to rely on us working
2	together and having good partnerships. And so
3	strengthening the relations as these two have
4	done for the past five-plus years, is going to
5	be critical to our success.
6	So, with your indulgence, we've
7	got two more. I have asked both presenters if
8	they would be succinct, so that we can get to
9	you a break and come back for some Q and A.
10	But maybe we'll start, in deference start to
11	Sue. Just ask Sue to talk a little bit about
12	what gas distribution is doing in this area
13	and then Chad, I've asked to speak a little
14	bit about what gas transmission is doing, just
15	to kind of queue it up. So Sue?
16	MS. FLECK: Thank you, Jeff. Sue
17	Fleck with the Gas Committee. The natural gas
18	distribution companies have been doing a great
19	deal around emissions reduction, not on
20	purpose. It's about safety and driving
21	safety. But certainly the voluntary efforts
22	through the EPA STAR programs for more than

	Page 90
1	decade have had many companies engaged
2	voluntarily doing things above and beyond
3	pipeline replacements, to drive down the
4	amount of gas that's being emitted into the
5	atmosphere accidentally. But some of the
6	things that we are really focused on going
7	forward around, you know, coupling safety with
8	emissions reduction is modernizing of
9	distribution systems. We've talked about it
10	on many different forums, but it's really all
11	about getting that older leaky pipe out of the
12	ground. When I look at the maps that Mark
13	just showed, Boston versus Indianapolis, I
14	have Indianapolis envy. I want Boston to look
15	like that. And when I look at the maps, I
16	know those are cast iron mains and I know that
17	they're capturing little leaks at every joint.
18	I wasn't surprised to see it; I'm very
19	disappointed, but certainly we're all driving
20	the modernization to improve safety and you
21	get that great emissions reduction benefit
22	along with that safety improvement.

	Page 91
1	In addition to that, we are laser
2	focused on damage prevention programs across
3	the industry. It's something that we've
4	talked about in these committees over and over
5	again. Every damage, I mean, any damage
6	releases a lot more gas to the atmosphere than
7	an unfortunate leaking cast iron joint. So
8	you got to drive damages down to nothing, and
9	we're doing the best we can around that.
10	We're working on new and increasing methods to
11	reduce the amount of gas lost during blow-
12	downs. As we replace these systems, the old
13	pipes have to be blown down for the new pipes
14	to get in. So we're using draw-down
15	compressors and trying to drive some research
16	in that area to find other ways to capture
17	that gas and put it back in the pipe. We're
18	improving on our directed inspection and
19	maintenance programs at gate stations and reg
20	stations. We're using composite wrap, we're
21	looking at using composite wrap to improve
22	pipeline defects rather than blowing down the

	Page 92
1	system to perform a permanent repair. So
2	we're looking at ways to do that. Obviously,
3	getting rid of the high bleed pneumatic
4	devices. The bang for the buck there is
5	pretty tremendous and I think a lot of
6	companies on the distribution side have done
7	that through their voluntary efforts in the
8	EPA STAR Program over the years. So we've
9	already kind of gotten pretty far ahead on
10	that.
11	Repairs. We can't replace all the
12	pipe. I can't replace all that pipe you saw
13	in my map in five years or ten years; it's
14	going to take me twenty years, so in that
15	interim period, we're going to use some of
16	this volumetric measurement on leaks to figure
17	out which ones to repair in the meantime.
18	We're going to try to do that really well.
19	And we're hoping to be able to get to move
20	forward with opportunities to line pipe
21	instead of having to replace it all. When we
22	talk about those larger diameter cast iron

	Page 93
1	mains that are 24 inch, 48 inch; these big
2	gigantic pipes. Replacing them may not be the
3	right solution, but if we're going to go with
4	lining methodologies then we need to find some
5	way to be able to report that differently and
6	get credit for those efforts where the
7	existing EPA reporting programs would still
8	count that pipe as legacy pipe, as cast iron
9	or bare steel or whatever.
10	So I think there's some real
11	opportunities here to continue to modernize
12	with replacement programs where appropriate,
13	repair, until you can get that replacement
14	done. Drive research to help us get new
15	lining methodologies, better blow-down control
16	methods, and better measurement of leakage, so
17	we know where to point our resources. And
18	then to continue with our inspection and
19	maintenance programs and damage prevention
20	programs.
21	So that's kind of really, I'm
22	talking fast, I've got my New York hat on

1	
	Page 94
1	today. But what I'm trying to indicate here
2	is distribution companies are doing a lot,
3	have been doing a lot, and will continue to do
4	a lot to drive safety; and along with safety,
5	you get that great environmental benefit, so
6	thank you.
7	MR. WIESE: Thank you.
8	MS. FLECK: Was that short enough?
9	MR. WIESE: Yes, that was great.
10	Excellent. Chad?
11	MR. ZAMARIN: Thanks, Chad Zamarin
12	with Cheniere Energy. I'll try to be even
13	shorter. Because I think one key message at
14	least that I've seen in the transmission
15	industry is that a targeted approach is
16	important. So I think that the presentations
17	earlier about data is key. What we see when
18	we look at a transmission system is, that
19	there is a less than 0.01 percent leakage and
20	emission rate across transmission volumes.
21	Leaks are down over 94 percent
22	over the last thirty years, so the work that's

	Page 95
1	been done that the PHMSA team and the industry
2	has been partnered on, it has been effective
3	and when you take a step back and look at the
4	transmission industry, we see that the vast
5	majority of remaining emissions come from the
6	compressor stations. It's from either
7	operational blow-downs that, if you've ever
8	seen one, will put to shame any leak that
9	you're going to try to attack. It's really
10	remarkable, actually, the amount of gas that
11	we have to vent at times to do certain
12	activities.
13	So when we think about
14	regulations, it's a different facet to
15	consider that, for example, we're going to be
16	spending a lot of time on the testing of
17	legacy pipelines. And to pressure test a
18	pipeline often requires a blow-down or
19	evacuation of that pipeline, and that's a
20	significant emitter, much more impactful than
21	anything else that happens along a pipeline
22	system. And key to keep that in mind as we

1	
	Page 96
1	think about activities that we're going to be
2	driving from a regulatory perspective.
3	So for us, the two main factors,
4	so of that 0.01 percent of emissions that
5	occur more than 70 percent of that is due to
6	operational blow-downs and exhaust emissions
7	from compressors. So if we focused on two key
8	areas, it's how can we better, more
9	efficiently operate transmission systems to
10	reduce evacuations of pipelines and how can we
11	continue to improve the emissions, controls
12	and efficiency of our compressor fleet. By
13	far, the most impactful.
14	So with that, I will also mention
15	just one last thing. The interstate
16	transmission companies are going to be putting
17	out a guideline. There's a standard referred
18	to as a Directed Inspection and Maintenance
19	Program, an EPA recognized methodology for
20	targeting your investment and activities to
21	better reduce emissions and while most
22	operators do that already, one of the efforts

	Page 97
1	that are underway inside of INGAA is to put
2	out a formal guideline that will help
3	operators to understand the data, target the
4	activity and better reduce emissions. That's
5	it, thanks.
6	MR. WIESE: Very good, Chad.
7	Thanks so much. And then you, Sue. One of
8	the things I'm hoping, by queueing this
9	discussion up and inviting your questions in
10	just a minute, Colette and I have conferred,
11	by the way, and decided that if you have to
12	take a break, you're going to have to take it
13	when we're going to go to Q and A, wrap this
14	panel up before we take a formal break. And
15	she is the boss, so I'm listening.
16	But one of the things that I'd
17	like to continue the conversation in future
18	meetings, I would like your advice on how to
19	focus the conversation. Because listening to
20	Chad and listening to Sue and others here,
21	it's the role of technology. What's the role
22	of technology? And some of you have heard me,

	Page 98
1	my soapboxes were really grossly
2	underinvesting in that. You know, we really
3	need to step up our game in R and D. The
4	technology can be part of the solution that
5	leads to a far more efficient outcome?
6	I agree with you entirely the
7	opportunities instead of blowing down fifteen
8	miles of pipe how to capture that, how to
9	reduce that impact is important. So let's at
10	least one of the topics we'd like to talk
11	about in the future is the role of technology
12	and how can we kind of amp that up? Thank
13	you.
14	CHAIR HONORABLE: Thank you, Jeff.
15	And I'd like to thank all of our presenters.
16	Wonderful, wonderful presentations. A lot of
17	great information. Thank you, Professor. I
18	made lots of notes. All right, now's your
19	time. Please put your tent cards up if you
20	have questions for any of the speakers. And
21	I see Don can't wait. Go right ahead, Don.
22	MR. STURSMA: Surprise, surprise,

i	
	Page 99
1	ain't it? Don Stursma, Gas Committee. As an
2	Iowa farm boy, I can attest that the digestive
3	systems of cows and horses have gaseous
4	byproducts. But whenever I hear animal
5	contributions to methane, raised as a climate
6	change issue, there's, the first question I
7	have, which I need to set up a little bit; is
8	that for much of the history of land life on
9	Earth, we've had vast herds of herbivores
10	roaming the planet.
11	I know enough about dinosaur
12	digestion now, I know the Jurassic was a very
13	noisy, smelly place. So is there any, has
14	anybody attempted to figure out whether
15	domesticated animals produce a methane level
16	that's any way outside of the normal
17	background level for having herbivores on the
18	planet?
19	CHAIR HONORABLE: Sounds like a
20	professor question.
21	DR. WHITE: It's a great question.
22	And it's always a struggle to figure out

1	
	Page 100
1	what's natural and then what is anthropogenic
2	on top of that. The short answer is that
3	globally, there's a lot of domesticated
4	animals; and when we add, we've added large
5	numbers. That has, and when we add those
6	domesticated animals, we certainly add little
7	methane producers.
8	Probably the question then would
9	be how many methane producers have we removed
10	from the system, in the natural sense; and
11	that's a harder number to get a handle on.
12	But we do know that when you add cows and when
13	you add other ruminants, you will add methane
14	to the atmosphere. So the short answer to your
15	question is we know we're adding more methane.
16	We don't, the balance between the loss of the
17	natural methane producers and the growth of
18	the, those that we use for food, that's a
19	really interesting question. I don't think we
20	know the answer to that.
21	CHAIR HONORABLE: All right, Rich,
22	and then Jeff.

1	
	Page 101
1	MR. WORSINGER: Thank you. Rich
2	Worsinger, City of Rocky Mount, representing
3	APGA. Excellent, excellent presentations;
4	thank you so much. I think just as I looked
5	around the audience, you had captured
6	everybody's attention. Obviously these are
7	topics we all read about and hear about and it
8	was great to have, especially for you
9	Professor, a down to earth explanation of it.
10	Thank you.
11	Just two comments. The public gas
12	industry typically repairs all the leaks that
13	we encounter, whether they are Class 1, Class
14	2, or Class 3 leak. We've just learned
15	through the years that it's best for our
16	customers. Even if there's that Class 3 that
17	we just have to monitor every six months, we
18	typically repair them. So we're ahead of the
19	curve I think, on that.
20	Second thing. Just to I guess, a
21	point of information. Lost and unaccounted-
22	for gas, as we call it in the gas industry,

	Page 102
1	that does not mean its gas leaks. A lot of
2	that is simply the accounting difference
3	between the large meter, large sophisticated
4	meter at our supply point, our gate station;
5	and then the various meters at our customer
6	homes, which are not as sophisticated. A lot
7	are not temperature compensated.
8	And one other thing that DOT can
9	help us with, I believe when we report our
10	losses, sometimes they are not a loss; it's
11	simply the difference, the accounting
12	difference between one year you had what
13	appears to be a large loss. The difference
14	between when you're billed from your supplier
15	and then the month later when you bill your
16	customers, and sometimes it appears you make
17	gas. It just balances everything out. But if
18	I'm correct on this, DOT, if we are reporting
19	it as a negative loss, has us report that as
20	a zero. And that could help, if you allowed
21	us to actually report that as a positive
22	number, it will indicate that it's not as

	Page 103
1	large a number as you think it is.
2	CHAIR HONORABLE: Thank you.
3	Jeff, and then Cheryl.
4	MR. WRIGHT: Jeff Wright, FERC.
5	Dr. White, that was a great presentation. One
6	thing stood out in listening to Dr. Gant's
7	presentation, you know, it articulates the
8	administration's position and where we're
9	going. What tantalized me at the very end,
10	you said, what is a sensible energy policy? Do
11	you have, I mean, in a very brief time, do you
12	have a couple idea there?
13	DR. WHITE: No. No. Policy is
14	not my area of expertise. I can, as a
15	scientist, I can help provide policy makers
16	with the facts and information they need; and
17	I hope they use those facts and information.
18	I think though, that the, one of
19	the problems we have is that we, and we always
20	seem to like to blame the boogeyman, you know?
21	Ebola's a nice example of that. I don't see,
22	a hundred people a day die from the flu. So

	Page 104
1	there are big problems and then there are the
2	flashy problems. And I think the argument
3	today seems to be about flashy things, the
4	bright, shiny objects. And so I guess my one
5	policy contribution would be, let's go back to
6	the basics and let's actually look at what's
7	really out there. And then try to do
8	something about that. Privately, maybe I can
9	unleash a whole bunch of stuff on you, but as
10	a private citizen, but no.
11	CHAIR HONORABLE: Professor, your
12	restraint is quite admirable. We don't see
13	that too often around here. Cheryl?
14	MS. CAMPBELL: Cheryl Campbell
15	with the Gas Committee. Not a question so
16	much as probably more of a statement. First
17	of all, I just cannot agree more that the gas
18	in the pipes is the best place for it. That's
19	my favorite place for it. And we talk about
20	that a lot internally.
21	We've worked a lot with EDF and
22	others on the data side; we're very interested

1	
	Page 105
1	in getting the numbers right and understanding
2	that information so that we can all make the
3	right decisions. So any work that we can
4	continue to do to get the data and understand
5	the data correctly, we're very much interested
6	in collaborating and participating with.
7	And Jeff, we're very interested in
8	more technology to help us continue; so I
9	appreciate PHMSA and others trying to, you
10	know, push that R and D and that technology
11	side. Frankly, I've been known to say
12	regularly, I need technology to help save me
13	in a couple of areas, and I think this is one
14	of them that we're very interested in. But I
15	also want to throw one comment out that's just
16	a perspective for Xcel Energy. We're a combo
17	utility and we have limited resources. I mean,
18	we talked about that before. And when we look
19	at our carbon footprint, less than 1 percent
20	of our carbon footprint comes from our gas
21	systems. And we are a top ten gas utility in
22	the U.S. on the basis of size. So we do spend

i	
	Page 106
1	a lot of time focused on our other issues
2	around carbon footprint and have done a lot in
3	the last five or ten years to reduce that,
4	continuing to do that going forward. And we
5	do participate in EPA Gas STAR and all those
6	voluntary programs.
7	I think we've made a lot of
8	progress, but we do still struggle with that
9	dynamic, right? Of the vast majority of our
10	carbon footprint on our issues are not related
11	to our gas systems at all. And I would suspect
12	that most other combo utilities have similar,
13	have a similar balance.
14	CHAIR HONORABLE: Thank you.
15	Carl?
16	MR. WEIMER: Carl Wiemer, Pipeline
17	Safety Trust. I think one of the gorillas in
18	the room that I get addressed with all the
19	time and I'm going to try to put Dr. White on
20	the spot a little bit. Is we've heard a lot
21	of things. The presentations were great. I'm
22	glad to hear that all the utilities are doing

	Page 107
1	what they can to keep the gas in the pipe;
2	that's important.
3	EDF's doing some great work. But
4	I know even EDF has come under criticism from
5	others within the climate discussions about if
6	all we're talking about is keeping the gas in
7	the pipe, we're kind of ignoring a larger
8	problem which Dr. Gant addressed about
9	insuring the full promise of our fuels. Well,
10	the full promise at this point seems to be, I
11	was intrigued with your map to begin with,
12	where you showed India and China kind of in
13	the dark. Well, the full promise right now
14	seems to include export of these fuels to
15	light up China and India. And I wondered if
16	you had an opinion about the wisdom of that.
17	DR. WHITE: Okay. Can't get me to
18	step in something here, huh? Yes, as a fellow
19	human being on the planet, I find it very
20	difficult to say to India and China, you
21	cannot industrialize. And industrialization
22	today, given the technology we have, is

	Page 108
1	largely driven by fossil fuels. So just from
2	a, I guess a fairness point of view, I would
3	argue that it's very difficult for me to
4	understand how we could do that. How we could
5	limit that. On the other hand there's
6	certainly capability of developing alternative
7	technologies, being a leader in that; and then
8	exporting those technologies. We should be an
9	exporter of wind technology and solar
10	technology, etc. Other countries are doing
11	that and making a lot of money doing it. And
12	we're not. So I think we're leaving some
13	money on the table there in terms of industry.
14	But the basic answer to your
15	question is that for, I can't see a good
16	strong reason for saying no we should not
17	export that, other than, as you folks know,
18	these are limited resources and there's, some
19	strategic reasons for keeping what we have.
20	Or at least keeping a lot of what we have, in
21	order to keep our energy future brighter and
22	safer and easier to handle. Because we all

	Page 109
1	know the disruptions can handle, so. There's
2	a couple of sides of that, but. Does that
3	answer your question?
4	MR. WEIMER: Partially.
5	MR. WIESE: To be continued. Now,
6	we're going to have a lot more discussions on
7	this and be happy to have Dr. White back. I
8	found that fascinating as well and I
9	appreciate your contributions. I know we have
10	one more comment. I'm stepping in temporarily
11	as the Chair to acknowledge our friend Rick
12	Kuprewicz for his question.
13	MR. KUPREWICZ: Friend, okay. A
14	couple observations, excellent discussions and
15	presentations this morning I fully support
16	those. A couple references I think to kind of
17	put everything in perspective from a public,
18	and the public has a hard time understanding
19	that.
20	First of all, it's not illegal to
21	leak natural gas. End of subject. It's not
22	even illegal to leak hazardous leaks in

	Page 110
1	natural gas, okay? And so that's kind of the
2	mind frame that you have to kind of put
3	everybody on all sides of the fence on.
4	Because to be fair to industry, some are way
5	ahead of this curve; others are trying to get
6	up to it. So it can be a real challenge if
7	you're trying to have that debate. A lot of
8	this was uncovered in terms of the hazardous
9	leaks, the many years of discussion and the
10	development of DIMP regulation.
11	And finally, the definition of a
12	hazardous leak in that regulation was a, it
13	didn't just happen. There was a lot of
14	interaction that was going on there, a lot of
15	push back, give; and even today, there are
16	operators despite the great advances made in
17	the DIMP efforts, who still don't map their
18	hazardous leaks. And I think they're rare, I
19	hope they're rare; many of others in the room
20	here are probably way ahead of that curve. So
21	that's a big place that you have to move,
22	whether you be the public, PUC, a rate payer,

Page 111

1 or a company.

2	The other thing, and I've said
3	this many times, is in all this technology
4	discussion and all this, hoping for a magic
5	bullet? One, safety isn't free nor is it a
6	blank check to go ask for two or three billion
7	dollars and you can't defend it. So as a
8	public person, I have to just kind of watch
9	everybody. I live in Microsoft Country and
10	they always live on software's great. Okay.
11	Well, why is it not bug free? And they're
12	making great, they're making billions of
13	dollars, so I'm not taking that away from
14	them. So be careful in trying to set up the
15	public that you have this magic bullet. Given
16	the challenges of you'd need to understand
17	where your problem is and whatever.
18	I really like the discussions I
19	hear again, I like to think of a success story
20	involving many people over the years in the
21	DIMP of the collaboration and the
22	constructiveness. I cannot emphasize the

	Page 112
1	importance of trying to solve a problem
2	working together; knowing that no one solution
3	will get you there. You've got to watch for
4	what I call junk science; and I didn't see any
5	of that today. And I'm not making those kinds
6	of things. But it's an easy, dangerous trap
7	if you're looking for the magic bullet
8	especially.
9	And I love the analogy of the
10	gravity example. I've seen that used in cases
11	where people were under oath, and experts, and
12	having to have them point it out, well you
13	just committed something called perjury. Or
14	you've just, you've got to explain why you
15	repealed the law of gravity. And those people
16	were under oath. So it's an easy trap to fall
17	into. So I think there's some real
18	willingness on all sides here to move this
19	ball forward, but understand the ballgame's
20	just kind of getting started here and you may
21	be trying to work out the rules. That might
22	take a while.

i	
	Page 113
1	So I think the public needs to
2	understand while these are generational
3	issues, there's no real quick fix here and if
4	someone comes across saying we have one,
5	they're going to probably get challenged.
6	Anyway, I appreciate the extra chance to have
7	a presentation today, I thought it was very
8	informative. And thanks again.
9	CHAIR HONORABLE: Very good. I
10	don't see any other tent cards. Okay.
11	MR. BROWNSTEIN: I know I've
12	probably overstayed my welcome, but I just
13	want to offer two thoughts. Since we're on
14	the topic and since Jeff teed up the idea of
15	so what can we take away from the
16	conversation? I fully agree that a focus on
17	technology is important. As we have talked
18	about, it's not just technology to fix leaks
19	or new technologies that prevent them, but
20	it's also the monitoring technologies.
21	I think it's incredibly important.
22	But I go back to the conversation we were

	Page 114
1	having yesterday about management systems
2	being a technology. All right? And one of
3	the things that we're finding universally
4	across our studies is that you can basically
5	put this into two buckets. Do you have the
6	right technology in place to minimize
7	emissions? And then do you have the right
8	management systems in place to make sure that
9	operation and maintenance is being done?
10	There is a, the evidence has
11	increasingly showing, that what I'll
12	characterize as poor operation and maintenance
13	practices leads to emissions. You'll hear in
14	the popular press about fat-tail emissions or
15	a few sources are responsible for a majority
16	of emissions. That's largely because we're
17	finding out in the field that valves get stuck
18	open and they stay open for two or three days
19	until someone finds them. Maybe someone
20	doesn't even find them. And it's that sort of
21	stuff. So if we could make sure that as we
22	talk about technology, we also go back to the

1	
	Page 115
1	conversation we were having yesterday about
2	management systems and operation and
3	maintenance. I think we will make a big
4	contribution. So that's number one.
5	Number two is, I can't emphasize
6	enough how important it is to get a regulatory
7	approach. The rule that's currently stuck in
8	limbo, we need to move that forward; in
9	particular we need to focus on gathering
10	lines. I hear anecdotally repeated from
11	producers, the gathering lines are inadequate
12	to the task. This is not only a question of
13	how much gas we're flaring as opposed to
14	putting to constructive use. But it's also
15	the fact that gathering lines are either
16	undersized for the volumes of gas that are
17	currently being sent through the system and
18	that is causing pressure relief valves to be
19	working overtime.
20	Or we're risking catastrophic
21	failure of gathering lines because they're
22	being over pressurized and they weren't meant

	Page 116
1	for what they're being currently asked to do.
2	The fact that we don't even have a good
3	inventory of gathering lines in this country
4	is like incredible to me. Even more so now
5	because so much of this gas production is
6	taking place in populated areas. And I only
7	invite some of you to come join me for a tour
8	of the Marcellus and you see all these
9	gathering lines running past people's farms
10	and small communities. I mean, gas production
11	is no longer a out in the hinterlands kind of
12	deal. And the gathering lines are in close
13	proximity to where people live and the fact
14	that we don't have a handle on this is just a
15	huge challenge.
16	So I would just, for the record,
17	would urge that whatever needs to happen in
18	order to get forward progress on your
19	regulations as it relates to gas
20	infrastructure that we need to really get a
21	move on with that.
22	CHAIR HONORABLE: I'll give Jeff

	Page 117
1	the last word.
2	MR. WIESE: Hear, hear. That's
3	all I have to say is hear, hear. So.
4	CHAIR HONORABLE: Brian?
5	VICE ADMIRAL SALERNO: Thanks.
6	Actually, I have a question; it's probably an
7	ill-informed question. But in all of the
8	discussions, what I'm hearing is there's a
9	great societal need, you know, to solve the
10	problem of emissions. But also it's a
11	relatively small percentage of the volumes
12	that are transmitted.
13	So I guess my question is, is
14	there, is are the percentages so small, and I
15	heard 1 percent, that it doesn't really
16	represent a significant economic loss to the
17	operator to be a compelling reason to invest
18	in the R and D and the technology to capture
19	it. So what's the driver here? Is it a
20	societal need to prevent the emissions because
21	of the issues that were discussed on climate
22	change? Or is there an economic reason to

1	
	Page 118
1	invest in fixing this problem? And I haven't
2	really heard anything that really addressed
3	the economic component.
4	MR. BROWNSTEIN: So a little, so
5	let me just give you, so the ICF study, which
6	I commend to you, suggested that 40 percent of
7	the reduction opportunity that they
8	identified, had a net payback for industry
9	making the investment. Okay? 60 percent by
10	extension, 60 percent was a net cost. Okay?
11	Now, of that 40 percent that had a
12	net payback, then you have to ask yourself the
13	question, what's the opportunity cost?
14	Because we often get asked this question, and
15	sometimes industry even offers this as a
16	reason why we don't need regulation. Look,
17	hey, we produced a product, our job is to get
18	the product to market. We have every
19	incentive in the world to deliver it. That's
20	true up to a point. But the fact that you can
21	earn an 11 or 10 percent return fixing a leak,
22	has to be taken into consideration; if you

	Page 119
1	could take that same dollar of capital and put
2	it into drilling a new well that gives you a
3	30 or 40 percent return.
4	So yes, both activities are
5	profitable, but the opportunity cost causes
6	you to put the capital into drilling the new
7	well as opposed to investing and maintaining
8	your existing infrastructure. So even where
9	you see that the opportunity is quote-unquote
10	"profitable" there's a reason why companies
11	wouldn't invest the money. And that's the
12	fundamental reason why we think at the end of
13	the day, you need a regulatory approach;
14	whether it's through safety standards such as
15	PHMSA could do or EPA is currently considering
16	regulations under the Clean Air Act.
17	CHAIR HONORABLE: I'm going to
18	call on Sue. I think she has, I thought you
19	guys would want to pipe up, here.
20	MS. FLECK: Yes. I think, and
21	this is Sue Fleck, representing the Gas
22	Committee. I think this safety driver is

Page 120 1 innate in the companies, in most of the 2 companies, distribution companies across the 3 We want to keep the gas in the pipe business. 4 because we want to sell it; but we want to 5 keep the gas in the pipe because of the risk to the public, the risk to our employees, and 6 7 safety regulations help us do things in a more programmatic way. But we would be doing the 8 9 right thing largely in absence of regulations. The environmental benefit is a different 10 11 thing. It's kind of a layer on top and it's 12 a great thing that's moving forward. But 13 safety drives us and it's in our DNA. It's, we want to fix those leaks, we don't want our 14 product in the atmosphere and we are, most 15 companies, most employees and most companies 16 17 are laser focused on doing that, so. 18 CHAIR HONORABLE: I'll call on I would also say, we should 19 Chad. Thank you. remind ourselves that we're talking about 20 21 different buckets. The production bucket, transmission, distribution. 22 So you've heard,

1	
	Page 121
1	I think, a distribution point of view. Chad?
2	MR. ZAMARIN: Thanks. Chad
3	Zamarin, Cheniere Energy. And yes, I just
4	want to reinforce that I fundamentally
5	disagree with the concept that we would trade
6	activities based on just economic drivers. We
7	are absolutely, I think we've said it as an
8	industry, committed to zero from a safety
9	perspective.
10	We're also, as a company and I
11	think generally as an industry, committed to
12	environmental stewardship. And that's not in
13	the context of whether it's a good profit
14	center. That is the fundamental ticket to do
15	business in our industry and I think we
16	generally believe that being a good operator,
17	a safe operator from an environmental and a
18	safety perspective is just the cost of
19	admission to get to compete for the projects
20	that earn us a return. So I fundamentally
21	think that if we focus on regulations and
22	activities around this table, I would dispute

	Page 122
1	that that would be a bad framework to apply to
2	how we need to regulate. We should regulate
3	based on what makes sense as an industry from
4	a safety and environmental perspective; not
5	because we believe that decisions aren't going
6	to be made from an economic perspective.
7	I think we've come a long way from
8	those days. Certainly, I think that we've
9	proven that in the safety arena and I think
10	this conversation that we're starting, we
11	should start collaboratively in good faith
12	from an environmental perspective as well. So
13	I just would say that that's how we make those
14	decisions and I think also to Colette's point
15	also, most of us around this table are not
16	involved in upstream production; we're not
17	kind of competing internally against different
18	places to put our money. But again, I still
19	think that I can tell you I've never sat in a
20	room and thought about whether or not I could
21	make more money, you know, not spending, you
22	know, not trying to save a life or minimize a

1	
	Page 123
1	release versus going and putting that
2	investment somewhere else. Thank you.
3	CHAIR HONORABLE: All right. I
4	know you all will be back after our break, but
5	before we do
6	DR. GANT: Chairman Honorable,
7	Chair Honorable, can I have a beg for you for
8	the last, last, last word very briefly?
9	CHAIR HONORABLE: Oh, indeed.
10	DR. GANT: I'm sorry.
11	CHAIR HONORABLE: Dr. Gant, of
12	course.
13	DR. GANT: Just to extend out some
14	of this last discussion and Jeff's question
15	about what's next. And the point raised about
16	management systems. We're very interested, in
17	addition to our technology work, in the
18	conversation around how do we take the data
19	that we're gathering and apply it in a way
20	that allows us to improve our decision making
21	about operational practices?
22	And this gets down to very unsexy

	Page 124
1	things like work force scheduling, how you
2	schedule crews, how you get to more
3	modernization, get beyond the leaks. So we're
4	very interested in this. And this is a big
5	data question, right? We're gathering a lot
6	of data.
7	So to the point, how do we bring
8	it to bear to actually get more out of the
9	current investment dollars we're spending?
10	Because we're spending a lot already. And so
11	this isn't a, this, the implication is not
12	that nothing is being done; it's how can, to
13	Mark's point and Cheryl's, there's competition
14	in the board room for capital. We all know
15	that. So let's start with how we get more out
16	of what we're already spending, given that
17	that has been accelerated.
18	So I just put that call there,
19	we're very interested in this, and this is a
20	key part of the conversation that we're having
21	with NARUC and PHMSA; is again, how do we get
22	more out of what we're already doing. Thank

ĺ	
	Page 125
1	you.
2	CHAIR HONORABLE: Thank you, and
3	that really is a great note on which to end,
4	because I think it brings us back to a point
5	that maybe Rick or someone made about
6	collaboration. And so I think something we
7	share around this table is doing what we do
8	better. So thank you for helping us wrap it
9	up.
10	With that, we will take a break
11	until 11:15; but before we do that, I want to
12	ask you to help me thank this great panel. It
13	was a great discussion.
14	(Applause.)
15	Well done. I think we could have
16	gone on another hour. But in the interest of
17	time, we'll take a break now and return at
18	11:15.
19	(Whereupon, the above-entitled
20	matter went off the record at 11:05 a.m. and
21	resumed at 11:18 a.m.)
22	MR. WIESE: I'm going to reconvene

	Page 126
1	the meeting. Colette had to step out for a
2	call that she couldn't avoid, so she said she
3	would be back as soon as she can; and she's
4	deputized me to act in her stead. I know it
5	is scary for people, but fortunately my
6	deputies are next, my trusty deputies. We're
7	going to be talking about the subject
8	Performance Metrics. You heard, correct?
9	MS. DAUGHERTY: Yes.
10	MR. WIESE: Okay. You heard a lot
11	of discussion about data and fact-based. We
12	have been working with the industry, some of
13	the advocacy community and others to try to
14	establish a suite of performance metrics that
15	we could agree to and we have asked Alan and
16	Linda to come in and give us an update on that
17	project. So with no further ado, I'll turn it
18	over to Linda. Thank you.
19	MS. DAUGHERTY: So we had a great
20	opening this morning. We've talked about very
21	controversial issues. This will be a step
22	down in controversy, I hope. But you heard

	Page 127
1	several people talk about the importance of
2	the safety of pipelines and how that leads to,
3	if you can keep a pipeline, keep the gas or
4	the liquid in the pipeline that leads to
5	overall safety and good environmental
6	stewardship.
7	Well, what we're going to talk
8	about is a task that Jeff assigned to Alan and
9	I last year. He said to us, he would like us
10	to identify six to twelve metrics that reflect
11	the performance of the national pipeline
12	infrastructure. And the part in the parens
13	and the regulator was added by the teams later
14	on that said, hey, overall performance needs
15	to look at how well the regulator is doing
16	their job as well.
17	So, by the way, we're going to
18	move really quick. We have way too many
19	slides for the time allotted; and this is
20	going to be a tag team between Alan and I, so
21	we'll just keep rolling. So when we started
22	looking at the various issues, we identified

Page 128
that we needed to look at the infrastructure
performance, regulatory oversight and we
needed to consider what data we have and what
data we needed in the future. There were two
teams that were developed: One has been much
more active, Alan's gas team. The liquid team
has intermittently been active. Recently we
had some proposals from individuals that I
think we're going to be looking at.
I'm going to flip through this.
You've seen this before; basically the
composition of the teams. We had regulators,
we had industry representatives, trade
association representatives. We also had some
pipeline safety advocates, which we very much
appreciated their input. An interesting fact
is that performance measures are the topic of
the day; everyone is interested in measuring
how well an entity does. Companies have
performance measures for their companies.
PHMSA has measures for how well PHMSA is
doing. As a regulator, when we look at how

	Page 129
1	well the infrastructure is doing, we look at
2	both national trends and we look at operator
3	trends. We use data in a variety of ways.
4	These measures primarily look at the national
5	level approach. The liquid team started with
6	identifying what the big questions are. What
7	do, if we want to get six to twelve metrics to
8	describe to all stakeholders how the hazardous
9	liquid pipeline infrastructure is doing, we
10	want to know what the big questions are. What
11	do people want to know, and then try to figure
12	out what metrics would provide answers to that
13	question. And then, do we have the data that
14	supports those metrics? And if we don't, what
15	are the gaps? What do we need to fuel long
16	range? You want to talk about the gas here?
17	MR. MAYBERRY: Yes. In light of
18	the gas team, which I led, we started with the
19	data we currently collect and then we
20	identified, what are our objectives? And then
21	what's the data available? And screens that
22	you would use for the data and you'll see that

	Page 130
1	in some of the examples we'll have. And then
2	what are the normalizers? That's a topic
3	we'll talk about, too; because that's one we
4	had a lot of debate about. And that's really
5	how we came up with how we proceeded. In the
6	end, we kind of end up in the same place,
7	though.
8	MS. DAUGHERTY: Yes. That's the
9	ironic part; it just kind of migrated towards
10	each other.
11	MR. MAYBERRY: Right. And I just,
12	I might add to that, we were lucky enough; I
13	know we met, we had a pretty good productive
14	day when we last saw Carl Weimer one day over
15	at the AGA office. Christina, my co-chair, we
16	were just able to get a lot of work done. So
17	we did identify a number of measures that we
18	wanted to get your input on. And by the way,
19	we have a lot of slides here; we're not going
20	to go through every one, but it's there for
21	you to look at outside of this meeting. But
22	we just, to establish the record.

	Page 131
1	MS. DAUGHERTY: And the slides are
2	not final nor are they completely agreed-to by
3	the teams; but they are arranged in a way
4	where you can see similarities between the
5	liquid and the gas.
6	MR. MAYBERRY: And also, we're
7	going to mention too, that we talked about the
8	membership of the teams. Also within PHMSA,
9	I know Linda led the liquid team and then I
10	was the gas. We also had representatives from
11	PHMSA on the team as well, and I think here
12	today we've got Kate Rosenberg from our
13	office, the Chief Safety Officer, who is
14	represented on the gas team. And the liquid
15	team, too.
16	As far as, and we went over this,
17	this is a review of last time. It's different
18	types of data we collect. We'll just in the
19	interest of time, move on. As far as the
20	objectives, now this is where Linda and I
21	threw what we, what I will call a conference
22	committee; we kind of merged the objectives

	Page 132
1	that both teams had, which were very similar.
2	First off, protect the people and the
3	environment. I think on the gas team, we
4	called that protect human safety but it's the
5	same, same picture there. On the gas side, we
6	had maintain pipeline safety. We're going to
7	show examples under each one of these
8	objectives of what the measures would be.
9	Protect high consequence areas through
10	integrity management. And then monitor, smart
11	modernization of infrastructure. And then
12	last but not least, effective regulatory
13	oversight. That one continues to be a
14	challenge. Linda and I have some, we have
15	some examples here today but that's one that
16	we're really pushing to get, to show some good
17	measures on.
18	MS. DAUGHERTY: We also have,
19	before we go to this slide, we also have a lot
20	of questions for the advisory committee; and
21	I don't think we're going to have sufficient
22	time to really vet these out, so we would, as

	Page 133
1	we present them or as we mention them or as
2	other things come to your mind, please do
3	write them down. Alan and I and the teams
4	would like to really mull over your advice and
5	thoughts on this. Some of these are kind of
6	thought-provoking. So the first part we
7	talked about of that set of objectives was
8	protecting people.
9	MR. MAYBERRY: Yes. Protecting
10	people, or human safety. What we've got here
11	is an example, just from the very top of one
12	of the metrics we came up with, involving
13	incidents. And these are what we classify at
14	PHMSA as serious incidents or incidents
15	involving a fatality or inpatient
16	hospitalization.
17	And this just shows you the trend
18	from 2005 to the last full year. We have
19	normalized it, incidents per a thousand mile;
20	and then also have a breakdown there. We
21	anticipate that this metric, if it ends up
22	being a final metric and we're kind of, this

i	
	Page 134
1	is kind of one we came up with; would be a
2	static metric that resides on our website.
3	Initially, all these metrics would be ones
4	that are just static on the website. Our idea
5	down the road is that within these metrics,
6	you could click, do a lot of clicking to get
7	down levels to get deeper into the data. Here,
8	obviously you have the overall metric of
9	numbers or rate of incidents, and then the
10	causal factors there over time.
11	MS. DAUGHERTY: By the way, some
12	of these do not have the causal factors, just
13	in the interest of time. It's something that
14	can be readily supplied.
15	MR. MAYBERRY: Right. And another
16	thing, by the way. We debated, there's just
17	so much data out there. Even though we
18	discounted saying, okay, we're not going to
19	consider that for this dozen or so metrics,
20	didn't mean that we weren't going to use it,
21	it just wouldn't be a top tier metric.
22	What we're talking about here are

i	
	Page 135
1	really top tier metrics. Another one on gas
2	transmission and protecting human safety or
3	people, were significant incidents. This is
4	a larger grouping of incidents that happened
5	out there. These were basically reportable
6	incidents. Again, normalized per thousand
7	miles and the time of constraint was 2005
8	through 2013.
9	Again, looking at, this is one
10	that was a later metric we developed, I know,
11	working with Carl and his people, is what I
12	refer to as the bathtub curve. It looks at
13	the vintage pipe and the incidents that occur,
14	the rate that occurs in the particular vintage
15	pipe. As you can see, there is a higher
16	occurrence of pre-40's, in pre-40's pipe and
17	then later, modern pipe as well. And that
18	reflects in what we're saying, as far as
19	incidents that happen out there; either early
20	in the life cycle or very late in the life
21	cycle.
22	Another one, protecting HCA's; now

	Page 136
1	this is another objective through integrity
2	management here again on gas transmission. We
3	have rates on the left hand chart, significant
4	instance outside of HCA is represented by the
5	red and then inside HCA is represented by the
6	blue. And then the causal factors, working
7	down as well. Another one. Same objective.
8	Looks at number of repairs made. Now you
9	can't read that, I apologize for the
10	MS. DAUGHERTY: Fine print.
11	MR. MAYBERRY: Fine print. But we
12	have immediate repair conditions, which are
13	the, or one year conditions which are the blue
14	which we started collecting in 2010. And
15	immediate repair conditions, represented by
16	the red. Again, this deal with integrity
17	management and repairs that are made. This is
18	not leaks, or it could be leaks, but it's
19	repairs that are made within the HCA or
20	outside of an HCA. Or within an HCA, sorry.
21	MS. DAUGHERTY: One issue, when
22	you look at repairs made, you have to keep in

	Page 137
1	mind is that integrity management is cyclical.
2	ILI runs, various things are done on a
3	periodic basis. So when you see the up and
4	downs on the repairs, that may be because
5	certain runs were not conducted in a period of
6	a few years.
7	A company, for example, may run a
8	ILI tool once every five years. Well, they're
9	going to have a peak in when they do the
10	repairs. So you're going to see, it's not a
11	consistent steady flow year after year.
12	Although on a national level, you would think
13	it would eventually kind of merge down to a
14	nice little cycle; you're still going to have
15	some carry-over from the initial cycle
16	requirements when operators must to their
17	initial runs and then do it every five to
18	seven years.
19	MR. MAYBERRY: And another thing
20	you don't see with these charts right now are
21	narratives explaining; you just hear us kind
22	of giving an initial perspective, if that.

	Page 138
1	The assignment right now, the gas team is to
2	assign narratives to these charts and okay,
3	what is this telling us? What does this mean?
4	Okay, and this is again with high
5	consequence areas. The breakdown of ILI
6	detectible and ILI or non-ILI detectible leaks
7	that are repaired in those areas. ILI
8	detectible would generally be something like
9	a corrosion leak. ILI non-detectible would be
10	say, third party damage. Just examples of
11	those. Again, going back to 2005. We kept
12	consistent with that time frame of going back
13	to 05.
14	Protecting people, another
15	objective. This relates to, I mean, similar
16	to what we started with. Incidents on gas
17	distribution. Again, similar to transmission.
18	We have this per million miles. I mean, with
19	gas distribution, your normalizer is per
20	million miles. We had a lot of debate over
21	how to do that, but ended up with million
22	miles just because the numbers become more

	Page 139
1	reasonable that you're dealing with on the Y-
2	axis there.
3	MS. DAUGHERTY: One of the things,
4	I'll jump in and mention, you will have seen
5	a lot of charts that talk about significant
6	incidents. That is a standard term that we
7	use on our website relating incident results.
8	We did not use that here. We separated
9	significant incidents have fatalities and
10	injuries, plus an environmental compact on the
11	liquid side, which might be a spill volume
12	release. And there's also a cost issue. The
13	cost of the impact of the incident. And so,
14	in these particular slides, both teams have a
15	proposal which we're all reviewing about
16	considering separating that. Looking at the
17	impact to people, the impact to the
18	environment and we haven't yet looked at the
19	cost side. I'm looking at Alan, I'm not sure
20	if the gas team has done that.
21	MR. MAYBERRY: We did.
22	MS. DAUGHERTY: But that is a

	Page 140
1	change and we do, the liquid team has a
2	proposal from the liquid industry to not
3	include cost.
4	MR. MAYBERRY: By the way, just as
5	a general metaphor, on the gas side, as you
6	might expect and as you've probably seen
7	before, excavation damage is the leading cause
8	in those pie charts we have there. Similarly,
9	on gas transmission, actually excavation
10	damage was the leading cause here, too now.
11	We are dealing with very small numbers,
12	especially on the gas transmission side, as
13	far as numbers of incidents. So you're
14	dealing with ones, tens, very small numbers
15	over the network.
16	MS. DAUGHERTY: Okay, so here's
17	something that's really interesting. When you
18	look at the liquid incidents involving a
19	fatality or inpatient hospitalization and you
20	normalize it per thousand miles on the liquid
21	side, what I did is I took the thousand miles,
22	which the gas team did. And we're trying to

l	
	Page 141
1	come up with metrics that people can look
2	across the industry and say, okay, it's
3	normalized by a thousand miles here, it's
4	normalized by a thousand miles on gas side.
5	The rates look a little awkward. And one of
6	the questions that we'll pose her to you in a
7	minute is about normalization; whether a
8	thousand miles or a million miles, what is
9	best for the reader to understand what's
10	actually going on relative to the
11	infrastructure?
12	So here you've got rates. Again
13	2005 to 2013, for the hazardous liquid lines.
14	National level. Okay? So, I mentioned this,
15	you've also got to look at context and think
16	how the reader will understand what's actually
17	going on. So, a moment ago I showed you the
18	rates. For the liquid side, look at these
19	numbers. These numbers are fairly low. Is it
20	easier for the reader to understand the impact
21	of the hazardous liquid pipeline
22	infrastructure to people by listing the number

1	
	Page 142
1	of people that were either a fatality or an
2	inpatient hospitalization?
3	So to be specific, in 2007, there
4	were fourteen people that were either fatally
5	injured or ended up in the hospital because of
6	a hazardous liquid incident. Versus the rate
7	we had a few pages back. So to put it in
8	context, this whole issue of trying to explain
9	what does this actually mean. The lighter
10	gray color is the actual number of people that
11	died due to lightning strikes over those time
12	periods. I got that from a NOAA website. So
13	when you look at the overall impact to people,
14	you can see the relative amount of fatalities.
15	Now, I can tell you, if you were
16	one of the fatalities that occurred, if your
17	family member was involved in one of those
18	pipeline incidents, that other lightning
19	strike doesn't matter. I'm not saying this to
20	take away from the impact; we have to get to
21	zero. But it does put it into context. So the
22	question to the group is, do we want to

	Page 143
1	consider using context measures when we put
2	things up on our website?
3	I'm going to move right into
4	protecting the environment. Now when we
5	traditionally think about the impact of
6	pipelines on the environment, we automatically
7	go to hazardous liquid pipelines. They can
8	contaminate with spills from liquid pipelines
9	can contaminate the soil. They can
10	contaminate water with some pretty tragic
11	incidences. And very serious context to our
12	sensitive areas. However, we heard this
13	morning about potential impact to the
14	environment from gas lines, and I think Alan
15	will talk about that in a minute. So many of
16	you are going to look at this and you're going
17	to say, well that's a funky number up there.
18	Hazardous liquid accidents over
19	238.1 barrels. How the heck did you come up
20	with that? That is actually the ten thousand
21	gallons which is referenced by other agencies;
22	we just picked that out of the air. It could

	Page 144
1	be fifty barrels. It could be 200 barrels.
2	It could be 500 barrels. We don't know what
3	the right number is. So obviously, input
4	would be good. Our current reporting criteria,
5	we have a 5 gallon, we have a 50 barrel, we
6	have different definitions. But for reporting
7	on a national infrastructure level, what would
8	be appropriate? Look at that beautiful trend.
9	I had to tell you, I should have cut that down
10	to keep with the 2005 through 2013, but I
11	couldn't help myself; I thought that was such
12	a nice downward trend. I kept it.
13	The other issue that we'll be
14	talking about is what do you exclude from the
15	reports? If you were looking at impacts to
16	soil and liquid, you might want to exclude
17	CO2, HVL's. HVL's traditionally don't have a
18	whole lot of impact on the soil or waterways.
19	You can have an anhydrous ammonia spill that
20	kills a lot of fish, but traditionally,
21	generally, the major impact is from the non-
22	HVL. So the question is what do you include

Page 145 1 and what do you exclude? I already mentioned here, another 2 3 major issue on the liquid side; the other 4 proposal we have is should we separate 5 releases within an operator's control versus releases into the long distance right of way? 6 7 For example, if a company spills a thousand barrels of gasoline on the right of way, it 8 9 might get into a river. It might be close to 10 the public. It could have a very close impact 11 to the general public, okay? If they spill a 12 thousand barrels into containment at a pump 13 station, does it have the same impact? And is it important to distinguish between those two? 14 Another question for the advisory committee to 15 16 think about and provide feedback to us on. 17 This is the normalized significant accidents. 18 That is the people and the environment piece put together. You see that the trend is just 19 kind of wobbly. This is a rate, this is not 20 21 the actual numbers. This is per thousand miles. 22

I	
	Page 146
1	There is a proposal, I already
2	mentioned this earlier, there's a proposal to
3	remove the significant definition and just
4	talk about fatalities and injuries and then
5	also a release volume.
6	So just to recap and talk about
7	this. The cost factor. If we produce metrics
8	on our website that say this is how the
9	hazardous liquid and the hazardous, excuse me,
10	natural gas pipeline infrastructure is
11	performing, should we include cost? Should
12	that factor in or should we just look at the
13	impact to people and the environment? Also, I
14	mentioned a moment ago, liquid releases should
15	be excluded. CO2 or HVL's? And then the
16	onsite/offsite. And Carl, as a note, I had
17	kept in my mind a comment you made, and I
18	think it came up earlier. Is this whole idea
19	is, let's say you do have a thousand barrels
20	that spills into containment on a pipeline
21	operator's property. You're going to have
22	fumes, you're going to have vapors and that

Page 147 1 can migrate off site. 2 If you have containment in the 3 vicinity of the public. In other words, in 4 the middle of a city or close by. Some of 5 those fumes are going to migrate. You can have migration of impact. How do we capture 6 7 that? How do we think about it? What is the overall impact? Something to mull over. 8 You 9 want to add? 10 Yes, I mean, really MR. MAYBERRY: 11 what we, as far as the gas team really worked 12 with the data we had and we didn't really 13 consider the cost factor. I mean we, down the road we're looking at, you know, additional 14 data that we need to collect and consider. 15 And perhaps cost could be one of them. 16 17 MS. DAUGHERTY: The one bullet I 18 would like to point out here, we had a question about how could we develop a metric 19 to assess operator's response time. 20 That was 21 an item in our last reauthorization. This was an issue that's come up on several major 22

	Page 148
1	pipeline incidents, San Bruno, Marshall,
2	Michigan. How long does it take an operator
3	to respond to an incident and how can we
4	minimize that? That has an impact on the
5	impact to people. Well, we know that might be
6	a good idea to report on. How do you capture
7	that data? What should we be measuring? What
8	are the ticks that we start counting?
9	Something to think about.
10	MR. MAYBERRY: By the way, just a
11	two second time out. I know we're feeding you
12	with a fire hose and as I recall from some of
13	our meetings when we flip through metrics and
14	go a little bit too quick, it's like a lot to
15	take in. So we realize we're feeding you with
16	a fire hose, but you know, outside of this
17	meeting if you have input, we'd welcome that.
18	MR. WIESE: I wonder if we might
19	just not send their presentation out to the
20	members and give them some time to think about
21	it in a calmer moment, too.
22	MR. MAYBERRY: Yes. Because there

i	
	Page 149
1	was at least one or two meetings where, hey,
2	there's feedback and we're moving a bit too
3	fast, because we're working on it.
4	MR. WIESE: Who said you we
5	removing too fast?
6	MR. MAYBERRY: You said move fast,
7	though. That's the charge. Okay, and this
8	one really relates to methane emissions if you
9	will. Related to leaks eliminated. This is
10	a number that's reported to PHMSA; here again
11	normalized for a thousand miles. These are at
12	least repaired in the distribution system;
13	again going back to 2000, well goes back to
14	2005 but in this case we started collecting
15	for the hazardous leaks in 2010. And then
16	these are causal factors for the pie charts
17	that cover the cost for those. Again,
18	corrosion is a big one related to leaks
19	eliminated.
20	Maintain pipeline safety
21	excavation damage. A key issue, this is the
22	leading cause of injury and harm to people in

1	
	Page 150
1	all of pipelines, so here's a measure for that
2	that we felt was important to have there. Per
3	thousand tickets shown on the, of course, this
4	is one where we have two normalizers per
5	thousand tickets on the right Y-axis. And
6	then the left is just the number of incidents
7	involving excavation damage.
8	MS. DAUGHERTY: On those, we'll
9	just flip real quickly through a bunch of
10	slides here that looks at HCA's. You know,
11	this is, how do we provide additional
12	protections for high consequence areas? So
13	reassessment intervals, how often are they
14	assessed? What about repairs? And then a
15	moment ago I mentioned that, assessments go in
16	cycles. You see that in the numbers. It's a
17	natural and it shows up.
18	The other thing is, any time you
19	produce data, it's subject to
20	misinterpretation. People won't know what it
21	means. And so we have to do a very good job
22	of providing the narrative of what this does

	Page 151
1	say and what it doesn't say. Does it mean
2	that, you know, a bunch of companies were
3	slacking off in 2011? I don't think so.
4	MR. MAYBERRY: This just relates
5	to the inventory of what's out there in the
6	trends obviously modern infrastructure is
7	rising or you know, the gradual decline in
8	older infrastructure. Again, moving on. The
9	amount of bare protected, unprotected steel.
10	For transmission. Here's for distribution,
11	casts and wrought iron. We already have this
12	information on our website, by the way. Many
13	of you are familiar with.
14	MS. DAUGHERTY: And that applies
15	to the conversation we had this morning.
16	MR. MAYBERRY: Right.
17	MS. DAUGHERTY: We've got to the
18	two. Here's the two interesting ones. How do
19	you measure, how effective a regulator is?
20	You could probably say whether you think that
21	PHMSA is doing a good job or is not. How do
22	you measure our effectiveness? Well, we

	Page 152
1	struggled that with ourselves. So we have up
2	there compliance actions. Well, what does
3	that really tell you? You look at those
4	numbers, they go up and down. Does that tell
5	you if an operator, excuse me, if that trend
6	is going down, meaning fewer enforcement
7	items; does that mean operators are more
8	compliant or does that mean that PHMSA is not
9	doing as aggressive or thorough inspection?
10	What does it mean? You don't
11	know. Jeff, says don't go there, don't go
12	there. So what, think about what you would
13	think is a meaningful measure of regulatory
14	performance. Congress asks us every year, or
15	they used to ask us every year, how many civil
16	penalties did you assess? What does that
17	mean?
18	Civil penalties, if you have a
19	major pipeline accident and you have harm to
20	people. You can have one incident that can
21	really skew your overall results and it can be
22	a large civil penalty. What does that mean

Page 153 1 relative to everything else? 2 The other item is how many times 3 do we send people out? Okay, what this tells 4 you is that we send out people to do a lot of 5 inspections; it doesn't tell you how big the inspections were. Right now we have 6 7 inspections that may run from five days to a team of five people that spend eight weeks 8 9 with an operator; depending on the size of the 10 system and what we're looking at. So they 11 varv. So what information is useful to you to 12 evaluate whet her PHMSA is doing its job or 13 not? Things to think about. Our goal is to get 14 MR. MAYBERRY: this done by year's end, as far as finalizing 15 16 these metrics. Right now, we're assigning 17 narratives to the metrics, at least the ones 18 you've seen on the gas side. The gas team does have a meeting right before the Pipeline 19 Safety Trust Conference on November 19th. 20 21 Hopefully, we'll address final loose ends, but you never know and hopefully by that point, I 22

	Page 154
1	expect by that point, we'll have enforcement
2	metrics to have a good robust discussion on.
3	And then the liquid team is still looking at
4	the acceptability of what you've come up with
5	so far. And again, by year's end is our goal.
6	MS. DAUGHERTY: That's it.
7	MR. MAYBERRY: So anyway, our goal
8	is to give you an update. We had spoken about
9	this last time and that's about it.
10	MR. WIESE: Great, thank you, Ms.
11	Daugherty and Mr. Mayberry. I still want to
12	know who said you were going too slow, so.
13	Since I gave them the end of the year to
14	finish this up and we keep checking back in,
15	I know they're working really hard on it; I'm
16	just teasing them for a moment in public. And
17	I myself have a lot of views on some of those
18	measures.
19	I'll just say one and then I'll go
20	to anyone who wants to ask, make a comment or
21	ask a question. I've long wrestled with this
22	notion of enforcement metrics as a measure,

	Page 155
1	performance measure; and the reason for that
2	is, I believe the right goal for enforcement
3	is zero. And that means it's very, until you
4	talk it through, people get shocked by that.
5	But if the system is performing, people are
6	protected, they are safe, they are not being
7	injured, we're not losing product into the
8	environment. The operator's fundamentally,
9	probably in compliance. Our goal is to
10	protect people and the environment. So we had
11	a four hour argument with the Government
12	Accountability Office on this and I lost; and
13	they put out a report saying that we ought to
14	be tracking our civil penalties. Well hey, I
15	issue a couple more civil penalties and to
16	them it's a success. But to me, and I think
17	Brian shares our pain; I'm not sure that
18	that's really societally that that's a very
19	effective measure. So I'll get off my soapbox
20	and invite the members of the committee if you
21	have a comment or question for these two.
22	I'll start with Chad.

	Page 156
1	MR. ZAMARIN: Chad Zamarin,
2	Cheniere; I thought it was a really good
3	presentation and I just, to your comment,
4	Jeff, I think we all, I like the idea that the
5	proof is in the output. And so the statistics
6	you were showing on actual incidents, you
7	know, that's something that we're all
8	accountable for and that's how I think we
9	measure ourselves.
10	It's hard to think of inspection
11	as a leading indicator that we're inspecting
12	safety into the system. I think generally
13	that's not kind of the case, so I like the
14	idea that those more operational metrics be
15	both for your sake and ours. So when people
16	measure us as an industry and as a regulator
17	that that's really what matters. What's the
18	end result? How many tickets did you issue,
19	but how many people did we send home safe
20	every day. Thanks.
21	MR. WIESE: You'd be surprised
22	though, on the operational measures how people

1	
	Page 157
1	will gauge their regulator's failure by an
2	industry failure. You know, you failed. How
3	did you fail? You know? As I point out to
4	them, we don't operate pipeline systems.
5	We're here as a deterrent, but we don't
6	operate the pipeline systems. The
7	responsibility is, I know you guys believe
8	that and own it as the operators. The
9	regulators to try to shift behavior. So I
10	think Sue was next?
11	MS. FLECK: Sue Fleck on the Gas
12	Committee. Just two comments, basically:
13	Appreciate the update and it looks like we're
14	moving in the right direction, but it does
15	look like you have predominantly lagging
16	indicators and not so many leading indicators.
17	So that's something that you want to work on,
18	because maybe that's why we see a gap
19	sometimes in the performance. But the
20	indicators aren't showing why. So I think you
21	need a better mix.
22	And my second comment is really a

Page 158 1 suggestion. Look at safety management 2 We're looking at safety management systems. 3 systems and we're looking at the different 4 risk control categories and we're trying to 5 find metrics that tell us how we're doing in each category; and it's helping us kind of 6 7 quit measuring the stuff we can measure and measure the stuff we ought to be measuring. 8 9 So you're trying to use existing data and I 10 applaud you for that, because you're 11 collecting it, you want to use it; but look at 12 the safety management system stuff and it 13 might trigger some ideas of other metrics that would have some real value around evaluating 14 the performance of a company and why they get 15 the results they do. And I think there could 16 17 be some value there. We're finding it. 18 MS. DAUGHERTY: I completely agree As a matter of fact, I know the 19 with that. liquid team did try to look at leading 20 21 indicators. You know, ideally we'd be at predictive; but we're not there yet. 22 But some

	Page 159
1	of the things that were brought up were the
2	near-miss reporting, you know? How do we get
3	there? We're going to have to collect data.
4	What kind of data do we collect on that? Who
5	holds that? Who holds that information? Does
6	PHMSA need to collect it or is there another
7	mechanism to have someone else collect it? How
8	do we get to those where we can have uniform
9	information?
10	MS. FLECK: That may be a way to
11	engage the NAPSR folks and have the states
12	they're collecting some of that kind of
13	information and have them bubble it up to the
14	State pipeline safety regulators. I don't
15	know, I'm just spitballing here, but there may
16	be an opportunity there to engage them.
17	MR. MAYBERRY: On the gas team, we
18	did look at leading indicators and actually we
19	still have to have more discussion on some of
20	the indicators, like assessments, integrity
21	management assessments by IOI and other
22	methods like that. We've had a pretty robust

	Page 160
1	conversation about that. We do have the
2	repairs made which you could say is like the
3	leading indicator, the way of integrity
4	management.
5	MR. WIESE: As I shift over to
6	Chuck, I'll just add in, remember the goal of
7	this particular project was to identify six or
8	twelve measures that will be across everyone.
9	Kate and then Chief Safety Officer's office at
10	PHMSA are also looking at a lot more measures,
11	working with us, that we're going to put on
12	the PHMSA website. But we expect these
13	measures to be transparent to an operator
14	level. You should be able to see how the
15	operator is doing on that, once we agree on
16	that metric. The rest of them, I think we all
17	realize are a little loosey-goosey, you know?
18	It's really hard to hold people accountable to
19	some of those measures, but they're worth
20	looking at, at an industry level. So with
21	that, maybe I'll turn to Chuck.
22	MR. LESNIAK: Chuck Lesniak,

	Page 161
1	liquids committee. Just a couple of responses
2	to some of the questions you posed. And I'll
3	take a look at the presentation and maybe
4	provide some more feedback. But on the
5	whether or not costs ought to be included, I
6	think yes. I think it's an important
7	management tool and it's also, those costs get
8	passed on to the rate payers. And so, I think
9	that's important. It's not that you're
10	prioritizing costs over public safety or
11	environmental protection, but I think it's an
12	important management tool.
13	Whether or not spills within an
14	operator's property should be included, I
15	think yes. There are air impacts. Just
16	because you're in containment doesn't mean
17	that there's not a release. One the largest
18	environmental contamination incidents I've
19	ever deal with, all the spills were within the
20	operator's property. There were pipelines
21	coming into a tank farm, there had been
22	decades of releases. They had ten feet of

	Page 162
1	product on top of groundwater. So, and a lot
2	of those were spills within containment.
3	Their containment was really crummy.
4	Response time? Yes. It's one of
5	the biggest indicators, in very large
6	releases, response time is so often related to
7	that. And so it measures how effective a
8	pipeline company is operating their system.
9	And the inspections are tough. I like the
10	concept of inspection days, inspection man
11	hours, that kind of thing. But I like what
12	you're doing. I think you're going in the
13	right direction. And I think there also ought
14	to be a narrative to go with each of these
15	that you put up; because, to provide context.
16	Some of these numbers change dramatically
17	based on regulatory or policy initiatives, and
18	I think it provides that context. It's
19	important for the reader.
20	MR. WIESE: Okay, thank you,
21	Chuck. Mark?
22	MR. BROWNSTEIN: So let me second

Page 163 1 the idea that spills within an operator's 2 property should definitely be included. The 3 fact that containment catches the product and 4 therefore you don't have a bigger problem is 5 really of no consequence in the same way that you say the air bag deployed and I wasn't 6 7 Right? But you still had a crash. And hurt. so I think you need to look at this. If part 8 9 of the goal here is to create not only public 10 accountability, but also give companies 11 information that they can use to drive process 12 I think you have to go right to improvement. 13 the source and hold them accountable for that. The other point that I would make 14 is, I apologize, I walked in a little late and 15 16 I saw that slide up there that compared, you 17 know, leaks to, or spills to lightning 18 strikes. I'm not guite sure what the point of that exercise is, but I don't think it's a 19 very useful one. You know, comparing, you 20 21 know, comparing something to an act of God, I don't think is a very useful metric. 22 okay?

1	
	Page 164
1	You know? We have to all live with acts of
2	God; there's nothing we can do about that.
3	But we can definitely do something about the
4	rate of discharges to the environment or
5	spills. And I think the point is that we are
6	trying to drive this down to zero. And to that
7	widow, to that child who's now motherless or
8	fatherless, it really is of no consequence
9	that the risk of lightning strikes are that
10	much greater.
11	MR. WIESE: And I think Linda
12	acknowledged that. That slide was about
13	fatalities from different sources and I think
14	we sort of agree with you. We wrestled with
15	that forever. The point of it is, she was
16	asking is it useful in a context setting to
17	say it's not the greatest risk on the face of
18	the earth, and that's how much effort do you
19	put into it. But I think we do recognize and
20	we have not ever used those publically for the
21	same reason that you just said.
22	MR. BROWNSTEIN: Yes, I don't

	Page 165
1	think it's, I don't think it's PHMSA's place.
2	MR. WIESE: Right, yes.
3	MR. BROWNSTEIN: Much less a smart
4	thing to do politically.
5	MR. WIESE: Right. I will say to
6	both Chuck and to you on the issue of
7	containment. I want to make sure that we
8	weren't unclear. We do intend to report that;
9	but what we were asking was in the top six or
10	twelve measures, should we do ones into
11	containment if in fact the job was to protect
12	the public and the environment. I'm with you
13	that some of them go bad, but other tank farms
14	have a liner underneath in it, impermeable
15	liner. There's a lot of money involved in
16	cleaning that up, and it is a failure that
17	should be measured and monitored. The
18	question was, should it be one of those top
19	six or twelve metrics that are reported
20	transparently. But they should definitely be
21	tracked. So I think with that, wait a second,
22	I think Carl was jumped, yes, I think Rick was

	Page 166
1	up there. And Chuck will put his down.
2	Thanks.
3	MR. KUPREWICZ: Just a couple
4	observations. You have to be real careful
5	about the response time. I think it's
6	important that you have some sort of parameter
7	there, because people are going to ask that
8	anyway. The problem is in the qualification.
9	And then I want to be sure to inject here,
10	it's easy to overreact to response times. If
11	you have a conflict, this is for the liquid
12	pipeline operators, between emergency response
13	plan and an oil spill response plan. Which
14	one gets priority, folks? Do I have to answer
15	that? Okay.
16	You may be in a situation where
17	you are not going to be allowed to enter an
18	oil spill response teams. They're that
19	dangerous. And so a lot of the public doesn't
20	understand that, but if you've got a choice
21	between saving lives or spilling oil, you
22	don't want to be in either one. But you

	Page 167
1	better be focusing on saving lives, first,
2	because you get into all kinds of
3	complications there. And there will be places
4	where you just cannot send, the nature of
5	where it is or what it is; and so that's going
6	to be something you're going to have to
7	wrestle with as you try, if you move that
8	metric up to response time, which sounds like
9	you do need to do that. But it's going to be
10	a real Pandora's box here. Thank you.
11	MR. WIESE: Thank you, Rick.
12	Maybe we'll go to our friend here, Ron.
13	MR. MCCLAIN: Ron McClain, liquids
14	committee. I thought it was very interesting
15	presentation. I have to say that a couple of
16	those terms and trends are puzzling. I'm sure
17	you're puzzled by the data, too; but you know,
18	I hear a lot of focus on trying to get these
19	metrics right, and I think that's important.
20	But it's also a case where the perfect is the
21	enemy of the good. And we should be able to
22	pick a few metrics that are meaningful and

	Page 168
1	normalized for either throughput or mileage.
2	And I would lean toward having six rather than
3	twelve, Jeff. But just pick some things that
4	are very meaningful. Let's not set in stone
5	that you can't come back and learn and
6	improve. So I think the meetings you have
7	scheduled with gas and liquid is a very
8	positive way to go about that. Lean toward
9	fewer, but also it's not set in stone. So we
10	just pick them and move on and see does that
11	tell the story or not.
12	MR. WIESE: Thank you, Ron. And I
13	note your use of the phrase meaningful, for
14	those of you who don't recall, we have
15	recommendations from the National
16	Transportation Safety Board to develop and
17	deploy and use in shaping individual
18	operator's performance, a suite of meaningful
19	metrics.
20	MR. MCCLAIN: And they are
21	required as part of the Safety Management
22	System as well.

	Page 169
1	MR. WIESE: Agreed.
2	MR. MCCLAIN: You have to build
3	those in to measure yourself. So this thing
4	kind of fits together perfectly in the end.
5	MR. WIESE: It does. Carl?
6	MR. WEIMER: Carl Weimer, Pipeline
7	Safety Trust. I just wanted to say first off
8	to Linda and, that I didn't script my fellow
9	public members today. I'm the only public
10	member on both the gas and the liquid data
11	teams and it was quite heartening to hear some
12	of the public members haranguing on some of
13	the same things I have been saying. So there
14	you go. I was the one that was kind of pushing
15	for some kind of a metric on regulatory
16	performance, because I think that's only fair.
17	And I don't think we've really come to any
18	agreement on what that metric would be some of
19	the things about field days and inspection
20	days might be valuable.
21	The one reason I just wanted to
22	make the committee clear on why we thought

	Page 170
1	that was important is, PHMSA's put up some
2	data on metrics on like the State Regulatory
3	Authorities. And if you look at that, it's
4	pretty kind of unfounding because you'll see
5	some states that will find hundreds of
6	probable violations and then there will be
7	kind of a corresponding number of compliance
8	actions. You'll see other states that will
9	find hundreds or even thousands of probable
10	violations and then it lists no compliance
11	actions. So it seems like probable violations
12	to compliance actions is some sort of a metric
13	that tells you something. I'm not sure what
14	at this point, though.
15	MR. WIESE: Okay, I think I'm
16	going to; I'm going to exercise my privilege
17	as Chair of closing this out and adjourning
18	you for lunch by saying that we've had that
19	conversation, Carl, with the states for the
20	past couple of years. The states operate in
21	a different manner than we do. I should be
22	clear, just so we're all on the same

1	
	Page 171
1	wavelength, we are not economic regulators.
2	We are safety regulators. So we're going to
3	lean in to that. The economic regulator has
4	the opportunity of inducing a change in
5	behavior in other ways. And so the states are
6	right now working on that. I think you
7	invited some to your annual meeting. By the
8	way, Carl's annual meeting is in New Orleans,
9	the 18th and 19th?
10	MR. WEIMER: 20th and 21st.
11	MR. WIESE: I was close. 20th and
12	21st. It's always a good time. I would
13	encourage you, if you haven't thought about
14	going down to his meeting, to do so. We'll be
15	webcasting the meeting for Carl so that if you
16	can't go, you can see a lot of the stuff
17	that's happening. But I think the states are
18	going to come forward in your meeting and talk
19	about some of what they're doing that's not a
20	civil penalty, but is still really an
21	enforcement and a change in behavior. So, at
22	any rate, I'm going to exercise a little

	Page 172
1	discretion here since the Chair is not here.
2	She might get even with me later, but I'm
3	going to beg Dave Lehman's indulgence. Dave's
4	back here somewhere. And say we'll take up
5	oil spill response plans when we get back here
6	at, I'm also going to cut it a little short,
7	1:00 o'clock. How does that sound? Very
8	good. Thank you so much. See you at 1:00
9	o'clock.
10	(Whereupon, the above-entitled
11	matter went off the record at 12:03 p.m. and
12	resumed at 1:05 p.m.)
13	MR. WIESE: Okay, welcome back
14	everyone. We'll get going so that we can get
15	you out in your appointed flights and trains.
16	So I think, I really don't have much to add
17	other than we're going to try to be a little
18	more punctual than I was when Colette had to
19	step out for a teleconference. Things went to
20	hell and of course Jeff of course mismanaged
21	the meeting, things went long. So I'm looking
22	forward to having her back here. I'll turn it

	Page 173
1	back to Chairman Honorable.
2	CHAIR HONORABLE: Thank you, Jeff.
3	You really know how to make a Commissioner
4	feel wanted. I hope you all had a great lunch.
5	Thank you for those of you who returned
6	promptly. I'm sure the stragglers are en
7	route. We'll begin now with what is listed on
8	your agenda as Agenda Item 3, Oil Spill
9	Response Plans by David Lehman.
10	MR. WIESE: With your permission,
11	I'm going to set Dave up and then let him do
12	the presentation. That way, Carl can beat on
13	me or instead of Dave. Oil spill response
14	plans, Dave will kind of get into a lot of
15	what we have done to sort of modernize this
16	program.
17	But my two seconds are to segue
18	way into this for Dave is to say that this is
19	a program that we have administered for over
20	twenty years. We have worked pretty
21	studiously over time to make it a process. And
22	I think the process, to be honest with you,

	Page 174
1	went stale. Our world has changed in that
2	twenty years and this didn't keep up.
3	After Deep Water Horizon, the
4	administration asked every agency to go back,
5	anyone who touched oil, go back and look at
6	how you're doing this. One of our
7	reauthorization hearings from right around
8	that time, must have been 2010; one of the
9	Congressmen in one of our jurisdictional
10	committees made Administrator Quarterman
11	promise him that she would go back and look
12	through the whole program. We did that. We
13	engaged some people, outside expertise, we
14	began talking with the other agencies to find
15	out what they were doing to benchmark what we
16	were doing and where we needed to fix it.
17	And it's my pleasure to introduce
18	Dave Lehman. Dave sort of had a lot of this
19	dumped in his lap and I think he has just done
20	a stellar job of really pulling it out of the
21	spiral. So with that, I'll turn it over to
22	Dave.

	Page 175
1	MR. LEHMAN: Thank you, Jeff.
2	Again, Dave Lehman, I'm the Director of the
3	Emergency Support and Security Division. I
4	have been in this position permanently for
5	about nine months now. And when I came to be
6	the Director, Jeff basically says, what we're
7	trying to do is revisit, revitalize and
8	reengage with the oil spill response plan. So
9	I'm using Jeff's words here; and the flow of
10	this will go towards to what we're doing in
11	each of these areas. I'll touch upon each of
12	those areas, some of the accomplishments that
13	we've had, and some of the challenges we still
14	have to face.
15	In revisiting it, Jeff had
16	mentioned a lot of that was done when the work
17	had already begun, when I showed up, to really
18	review and re-engineer the Office of Pipeline
19	Safety's oil spill program. In revitalizing
20	it, we did dedicate resources. We also had a
21	backlog, so we brought some additional
22	resources to bear on a temporary basis, to get

í	
	Page 176
1	rid of the backlog. And then we're also re-
2	engaging. As Jeff had mentioned, we had moved
3	towards working with our other Federal
4	partners; also the regulated industry and the
5	response community. And we're also getting
6	out there and participating in more oil spill
7	response drills and exercises.
8	In revisiting it, we came in and
9	we found that there was over, PHMSA had over
10	eight hundred plans in its inventory; and when
11	they really went through the plans, we found
12	that nearly four hundred of them were unique
13	plans in the sense that they weren't
14	duplicates, they weren't plans that had been
15	superseded by others. And so we found that
16	there was four hundred plans that needed to be
17	reviewed. And when I showed up, there were
18	twenty-four of those plans that had been
19	reviewed completely from the end to end. We
20	streamlined the program and made it repeatable
21	procedures, and that's through standard
22	operating procedures that we created. They're

	Page 177
1	in near-final form right now. We are still
2	working on a few of the little kinks with
3	them, but.
4	The previous program had nearly a
5	hundred questions they would go through to try
6	to answer whether or not the oil spill
7	response plan was appropriate in the sense
8	that it met the OPA 90 Oil Spill Act of 1990.
9	And also the regulations found in 49 CFR Part
10	194. And what we found is, they were asking
11	several. Questions and looking for areas that
12	were really outside the scope or outside the
13	bounds of the regulations. So we really
14	streamlined those and focused on what the
15	regulatory requirements were.
16	And then we also, in the process
17	of it, determined, looked at performance
18	measures. Not as the performance measures
19	that we were discussing earlier this morning,
20	but in the sense of what's the appropriate
21	number of people, how much time should it take
22	to review the plan, what are the key items

ĺ	
	Page 178
1	that must be in the plans. What are areas
2	that, if you will, are gray areas in the
3	regulations. The regulations, for instance,
4	say that you need to have training, everyone
5	has to be trained in the plan. Does that mean
6	that the plan needs to have a section on
7	training? The regulations are gray there.
8	Fortunately, all the plans do have sections on
9	training.
10	So those are areas that we
11	recognize and started to look at performance
12	measures. And we found how much time it took
13	to review an average plan. And part of it, we
14	also, as Jeff had mentioned, went to
15	benchmarked, what other agencies are doing.
16	We use a similar process as what the Coast
17	Guard has implemented and that is having a two
18	tier review process. So the first review is
19	done by one individual and the secondary
20	review is done by a separate individual, so
21	you're not checking your own work, in essence.
22	And all the reviews are now being conducted by

	Page 179
1	Federal employees, so that's kind of a key
2	point. In the past, we have had contractors
3	do this; but in the revamped program, it is
4	Federal employees that are performing the
5	reviews.
6	The primary reviews really were
7	looking for the, do they meet the regulatory
8	compliance aspects of it? Do they have all
9	the required elements? So when you go through
10	Part 194, do they have what it states in 194?
11	The second review is first for quality
12	assurance. Did the primary reviewer get
13	things right? And if you found deficiencies,
14	did they really, how egregious were the
15	deficiencies? And also did they sufficiently
16	review certain key elements. And I'll discuss
17	about the key elements a little bit later on.
18	Then we also trained a cadre of
19	headquarters' staff. And we trained them both
20	on what the OPA 90 requirements were, how we
21	fit within the regulatory framework in the
22	National Contingency Plan, what the National

	Page 180
1	Response Teams responsibilities are; regional
2	response teams. So we trained folks on that.
3	Then also, then we trained them on 49 CFR.
4	What do the regulations require? And then, of
5	course, on our standard operating procedures
6	and the processes and procedures we use to
7	review the plans. So we trained 26 staff
8	within PHMSA and we also brought in some help
9	from the Federal employees up at Volpe on a
10	temporary basis. Trained them to perform
11	reviews and in the reviews, we had the more
12	experienced individuals performing the
13	secondary reviews and then the, if you will,
14	the newer, newer to the review process,
15	reviewed, did the primary review. So that
16	gave us a good checks and balances in the
17	quality control.
18	We also established policy for,
19	we've had numerous requests, FOIA requests,
20	for facility response plans; and under 49 USC
21	60838, it says that we need to protect some of
22	the information in these plans. So following

	Page 181
1	along with that, we protect, to exclude from
2	public disclosure proprietary security
3	sensitive information, specific resources and
4	then the worst case discharge, both in volume
5	and location. We needed to strike a balance
6	between what is the public's right to know and
7	also to protect any responders as well as the
8	organization, to make sure that they can have
9	a successful response to an oil spill. So we
10	were trying to balance that.
11	We will soon be posting that
12	policy on our website. There's a site within
13	the PHMSA website that has lists of all
14	policies that are publicly disclosed,
15	disclosable. To show it's real, there is a
16	copy of it. If anyone wants it, they can look
17	at it; it is available to take a look at. And
18	also, one of the other things that came bout
19	in the last year is we can now enforce 49 CFR
20	Part 194, because previously the OPA 90 had
21	been left out of our enforcement abilities.
22	As mentioned, we streamlined the

	Page 182
1	review process. This is kind of a condensed
2	down, so this rolls up into the standard
3	operating procedures. Really, I won't go into
4	great detail; this is available in the
5	proceedings for this. But I kind of wanted to
6	note a few things. When we check for
7	completeness, it's not the same as the primary
8	and secondary review, did we get the files,
9	did the electronic files come in with all the
10	parts that they said they were supposed to
11	have and the like. The other thing is
12	assigning priority. We have a first in/first
13	out policy on that one. However, we do
14	recognize that there are certain times when,
15	if it's a brand new, unique plan for a new
16	pipeline that's becoming operational, we would
17	like to get that reviewed in a very timely
18	manner. So those go to the front of the line.
19	We also, in mentioning with the
20	performance appraisal, just performance
21	measures, I wanted to say that it is our goal
22	to have a plan reviewed and some type of

	Page 183
1	recommendation out of it within two months of
2	receipt. And so that's from the time it's
3	logged in, we do a primary review, secondary
4	review, and you see under the review, really
5	the secondary reviewer provides a
6	recommendation to me, whether or not the plan
7	should be approved or whether or not
8	corrections, deficiencies were found that
9	require corrections. Also, during the review
10	process, those plans that we found have
11	deficiencies and the secondary reviewer who
12	made those recommendations, will review any
13	incoming plans with corrections to make sure
14	that the corrections were made in accordance
15	with the recommendations that we have made.
16	So, moving on the revitalized part
17	of the program. What we've done is really
18	created more of a sustainable program. We
19	have dedicated staffing, both, we have
20	contractors to help us with some of the
21	preliminary redactions. It is still the FOIA
22	Officer, a Federal employee that applies

1	
	Page 184
1	redactions and my staff also reviews to make
2	sure that they follow the policy documented I
3	mentioned earlier. We've also better
4	integrated the oil spill program with other
5	aspects of our program. One of the bigger
6	pieces, and I understand you had a discussion
7	about this in the information collection.
8	We have integrated with our
9	National Pipeline Mapping System, and one of
10	the items in the information collection is to
11	sit there and look and see if we can get the
12	FRP's associated with the pipelines, and that
13	really helps with, in many instances,
14	specifically with identifying the correct
15	spill plan, should a spill occur, in order to
16	provide it to the Federal on-scene coordinator
17	that might be going to that.
18	We've integrated into the
19	inspection enforcement, as I mentioned, we now
20	have the authority to enforce this. And we've
21	identified key items that the inspectors
22	should look at when they have them. The first

i	
	Page 185
1	one is, do you have a plan? And then also one
2	of the items in the plan is to look at, it has
3	a qualified individual. Who's the qualified
4	individual? Is that person current? Are they
5	available when contacted? And then throughout
6	this whole process, working with the Volpe
7	staff, the other agencies and also internal
8	staff and the enforcement staff, we've
9	collected and shared and applied the lessons
10	learned so we continually improve the program.
11	If we have a question in our standard
12	operating procedures, does this make sense?
13	Is this understandable what we are looking
14	for? We are continuously improving that.
15	And then as noted, we have the
16	policy so that we can increase the program
17	transparency and we have produced the plans
18	online, once they have been approved. And
19	here's an example of the National Pipeline
20	Mapping System. What we've done is, we linked
21	response plan to the pipeline units; so if an
22	FOSC, Federal On Scene Coordinator needs a

	Page 186
1	plan, we can use the NPMS to rapidly identify
2	which plan, if it's not readily apparent to us
3	when that occurs. We also use this as a way to
4	sit there and find plans that might be
5	missing. So were there operators out there
6	that had not provided a plan to PHMSA and this
7	process identified four or five companies that
8	had not provided a more recent plan. So this
9	allowed us to bring them into compliance. Also
10	it helps the inspectors determine which FRP is
11	associated with the lines that they were
12	inspecting. So that was a very good
13	undertaking and it's one that we plan to
14	continue.
15	In the area of re-engagement, we
16	have re-engaged with our Federal partners. We
17	have been engaged in many ways with many of
18	the organizations, Coast Guard, EPA and BSEE;
19	but through the ICOPAR Program and also the
20	National Response Team, but the pipeline
21	safety has really reengaged in the sense of
22	the National Response Team and also with the

	Page 187
1	National Scheduling and Coordinating
2	Committee, and that's the one that looks at
3	exercises in spills. But we've been expanding
4	really the role of that coordinating committee
5	because really you have all the players in oil
6	spill in that one committee, so that is our
7	opportunity to vet ideas as well as concerns
8	that we have had in oil spills. And we've
9	also, with the National Response Team, our
10	regions have engaged more with the Regional
11	Response Teams. Right now, the Regional
12	Response Teams, many of them are updating the
13	area contingency plans. They've asked for oil
14	spill response plans so that they can look at
15	the worst case, discharges, locations, and
16	where the pipelines are. So we've provided
17	access to the National Pipeline Mapping
18	System, the FPR, so that they can better
19	create area contingency plans.
20	And we have improved
21	communications, we believe, with the regulated
22	industries. First of all, we have an open

	Page 188
1	dialogue now, when we find deficiencies and
2	such. We will work through with the regulated
3	industry to make sure that their plan meets
4	the regulatory requirements and has the key
5	elements in it. And we have been more engaged
6	and documenting our participation in drills
7	and exercises; and both from my staff's
8	participation on it as well as our inspectors
9	in the field offices.
10	Hopefully, all of you are aware
11	of, in our reengagements, part of the
12	reengagement is to better communications. We
13	have issued two advisory bulletins that are
14	directly related to the FRP's. The first one,
15	as Jeff had mentioned, is right after the Deep
16	Water Horizon and most recently this January,
17	we had the advisory bulletin for improvement.
18	And the five key elements, which I think I
19	thought I had a slide in here, if not, I will
20	go back; were mentioned in that advisory
21	bulletin. With the National Coordinating
22	Scheduling Committee, we've been working to

ſ	
	Page 189
1	update the National Preparedness Response
2	Exercise Program guidelines or PREP
3	Guidelines. Most plans submitters say that
4	they follow the PREP Guidelines, and so we are
5	a member and we represent DOT on that
6	Committee. And as I mentioned, it's the key
7	players with oil spill response plans.
8	The Coast Guard has taken the lead
9	on publishing the guidelines and we expect
10	that there will be, there has been one Federal
11	registered notice already, saying that the
12	requesting comments and now a draft will be
13	soon submitted, probably within the next sixty
14	days. So I highly recommend you keep an eye
15	out for those. The more substantial changes
16	really were in the area of the Coast Guard and
17	BSEE; although some minor changes were made
18	for DOT including for our other modal partners
19	in Federal Motorcarrier and Federal Railroad
20	made some minor edits to their sections as
21	well.
22	Drills and exercises: We

	Page 190
1	participated during fiscal year 2014 in more
2	than twenty oil spill exercises. The
3	exercises include those that were operator-
4	led. We participated in an area exercise up
5	in Michigan; several of the pictures of the
6	two top pictures are actually from an area
7	exercise from Michigan, and the operator
8	involved was Enbridge. And we participated in
9	that. Linda Daugherty was also there.
10	We've been invited to participate
11	in other Federal agencies government-
12	initiated, unannounced exercises, or GIUE's.
13	The photograph with the individuals in it,
14	that was actually from a GIUE exercise that we
15	participated in, in the Santa Monica area. It
16	also included our State partners in
17	California.
18	We've also been participating in
19	planning for the 2015 Spills Of National
20	Significance, or SONS. And what's really
21	unique about this SONS exercise is that it's
22	one of the first times that I can remember,

	Page 191
1	I've been associated with the National
2	Response Team since the last nineties.
3	They've always either been arctic or gulf or
4	off shore; this one's inland. And several
5	scenarios were presented, some from pipeline
6	and also from rails. And I'm not, the
7	committee that the decides which of the SONS,
8	decided it will be an inland SONS. I do not
9	know the specific scenario at this time that
10	they have chosen; but look forward to that as
11	well.
12	So some of the results, we have
13	SOP's now. Standard Operating Procedures for
14	reviewing; and we've eliminated the backlog.
15	Of the four hundred plans that we cataloged,
16	97 percent of them have been reviewed. And
17	close to 90 percent have been approved at this
18	time. The others are in the state of working
19	out deficiencies that we identified.
20	Approximately half of the plans that we
21	reviewed had deficiencies that we identified
22	in them, and we have asked the operators to

	Page 192
1	correct them. And here are the key elements
2	that I had mentioned earlier. These are also
3	in the Advisory Bulletin. First of all, did
4	they have a qualified individual and
5	alternate; the one that can say, yes bring the
6	resources. I always call it the bellybutton
7	for the operator. Did they have appropriate
8	worst case discharge calculations? And that's
9	the areas, do they have the pipeline worst
10	case historical discharge as well as breakout
11	tanks? We expected to see all three of those
12	in their plans, and that was one of the key
13	areas that we looked at. And then once they
14	determine the worst case discharge, did they
15	have their appropriate resources to respond
16	within the time frame required under the
17	regulations? So the 6-1/2 hours or 12 hours,
18	based on the location. So we looked at that.
19	And we would, if we did not feel comfortable
20	that they had the resources, we would not
21	approve their plan.
22	We also, borrowing upon the Coast

	Page 193
1	Guard with response resources, we really
2	looked at the U.S. Coast Guard's
3	classification, OSRO Classification. So if
4	you have an OSRO, that was Coast Guard
5	classified, and this is specifically really
6	good along the coastal regions that we look at
7	making sure that they have the response
8	resources. There, they would not be required
9	to provide us a copy of the whole list of
10	elements for those that are more inland. If
11	they did not provide us a list of the response
12	resources, then we would require them to
13	provide that to us beforehand. And then also,
14	did they identify the sensitive areas? And
15	then a key was, and kind of it was mentioned
16	earlier today, did they understand what safety
17	is at the site? We don't want people getting
18	hurt during a response. So those, if you
19	missed any of those, I would not approve a
20	plan.
21	Others, there might have been,
22	we've had a few plans that they still had RSPA

	Page 194
1	in them. I'm going to approve the plan, but
2	I'm going to tell them please fix RSPA, get it
3	out of there. Some of the others might have
4	had the instance of the training, the
5	regulations that's kind of a grayer area in
6	their regulations. If they mentioned training
7	but they said we're going to submit it any
8	time it's changed, we would tell them, no,
9	this is the real requirement; but I'm not
10	going to sit there and deny approval for that
11	reason. We will note the deficiency, but it
12	was not one of the areas that would cause a
13	failure.
14	Another thing we have created is
15	the ability to provide these plans to on scene
16	coordinators. The on scene coordinators, we
17	were able to get a plan for a recent spill
18	down in Caddo Parish within five minutes of
19	the request. So, and they were able to review
20	it before they were even on scene. So that's,
21	I think that's a great capability that we've
22	been able to establish. And then insuring more

1	
	Page 195
1	compliance and as we noted, the redacted
2	plans, we have a hundred and eighty plans
3	currently posted. It's a laborious effort.
4	We have had plans that are anywhere from four
5	hundred plans, but we've actually had one plan
6	that was over five thousand pages. And that's
7	a lot of pages to look through to make sure
8	that sensitive information, and also private
9	information is not in there. Home phone
10	numbers and such as that. I do question
11	whether or not a five thousand page plan is
12	implementable or you could train your staff to
13	use it. Our regulations are silent there.
14	So, but that's one of the areas through
15	outreach, we believe we can do.
16	So, what's our path foreword?
17	We're going to continue to address the NTSB.
18	I think you've seen some of these before. We
19	wanted to continuously improve the review
20	process, continue to integrate with the other
21	areas of pipeline safety and to continue with
22	drills and exercises. And we are engaging

1	
	Page 196
1	with regional response teams, area committees,
2	and others; both in drills and also in helping
3	them in their planning activities.
4	With that, do you have any
5	questions?
6	CHAIR HONORABLE: The floor is
7	yours.
8	MR. KUPREWICZ: Rick Kuprewicz, on
9	the liquid committee. I apologize for the
10	rude interruption I had earlier with your
11	presentation. One of these days I'll figure
12	out how to work that iPhone. As long as Apple
13	quits changing the damn operating systems.
14	I thought I heard you say that on
15	the worst case discharge cases, you focused in
16	on three areas? If I heard that correctly
17	could you just reiterate those please?
18	MR. LEHMAN: Yes. First, if there
19	was a break in the pipeline, how much time it
20	would take, it goes to the response time as a
21	little bit discussed earlier. How long before
22	they detect it and shut it down? And then how

Page 197 much would drain down from that? And we did 1 2 question some of the responses. We also found 3 one operator that said, well this one site 4 that has the worst case discharge, we leave it 5 at Friday afternoon and we won't know there's a spill until Monday morning. And I said, I'm 6 7 not going to approve that plan. They changed their operating procedures, thankfully and 8 9 worked with our enforcement folks as well, 10 because that also violated other sections of 11 our regulations. So the pipeline piece, so the 12 13 drain down. Some used very sophisticated California has very sophisticated 14 models. models for determining the pipeline worst case 15 discharge; we accept that. 16 Those type of 17 models. We do want them to provide a 18 description of the models they used. The other one is historical discharge, worst case 19 discharge. We've only had one instance where 20 21 the historical discharge was greater than that were calculated, but we do require them to 22

1	
	Page 198
1	show us that information. Then the other one
2	would be break out tanks, according with the
3	regulations.
4	CHAIR HONORABLE: Thank you, Rick.
5	Any other questions? Well done, Dave. Thank
6	you. I think I'll defer to Jeff, here.
7	MR. WIESE: I just wanted to thank
8	Dave for continuing my habit of alliterating,
9	so. We have alliteration for all aspects of
10	our business; this was on our oil spill
11	response plan. It's the R's. We're working
12	our way through the alphabet. Dave's done a
13	great job. I just want to thank him for all
14	he has done; he really reengaged that program.
15	MR. LEHMAN: Thanks.
16	CHAIR HONORABLE: Hear, hear. And
17	we're right on schedule. I understand now
18	we'll take up Agenda Item Number 4. We'll
19	have a briefing on constructions issues, both
20	reversal and conversion of service by Alan
21	Mayberry.
22	MR. MAYBERRY: Thank you, Madame

	Page 199
1	Chair. The topic I'm going to discuss; we
2	thought it would be important to come back to
3	you today to give you an update on where we
4	stand related to oversight on construction and
5	particularly as it relates to, you know, as
6	far as the replumbing of America, as I've
7	heard it called. These are being done out
8	there with pipelines, especially in regards to
9	reversals, conversations and then also part of
10	changes. Since we last met, there has been
11	some activity in this area as far as things
12	that we've done to deal with this issue.
13	I might also add, last year I was
14	on a panel with the Pipeline Safety Trust. I
15	think, Rick Kuprewicz, you were on that panel.
16	I found that you were very entertaining panel
17	mates, so I'm sure you'll have some input on
18	this topic, too. I know last year, it was
19	certainly very relevant on this. Just sort of
20	what I plan to go through, will flow, just
21	various topics. I only have a few slides
22	here. There are a few pictures, I thought

	Page 200
1	that since we're after lunch, maybe some
2	pictures will help here; especially related to
3	construction.
4	For this one here, perhaps you've
5	seen it before. This is a slide we use quite
6	often. It's like motherhood and apple pie for
7	us. Some people might even call it the
8	liturgy of the agency, I guess. But how we
9	hold operators responsible for operating safe
10	systems. We do influence that operation,
11	obviously, through oversight, through the
12	issuance of regulations, through inspections,
13	and then we also strive for, to impact
14	operator performance beyond the regulations;
15	because as we all know, the regulations
16	represent a minimum standard. So we did that
17	through participation in teams, or in
18	Standards Committees and issuing advisory
19	bulletins, for instance; which is one thing
20	that I will be talking about here as far as
21	something we have done in the last couple of
22	months.

	Page 201
1	So what are we talking about?
2	Like I said, this is a replumbing of America
3	that's going on right now, and its related to
4	the new sources of oil and natural gas; either
5	pipelines that are being reversed to pipelines
6	that are being converted from natural gas to
7	crude oil or natural gas to other products and
8	vice versa. Although I must say what I have
9	seen the most of is conversion to liquid
10	products transportation, particularly crude
11	oil. And obviously, there's increased
12	importation of Canadian crude as well as the
13	domestic production has been a particular
14	focus these days.
15	We've been monitoring the
16	situation and we're out there. Related to
17	construction, traditionally, and some perhaps
18	have heard me say this, traditionally before
19	about 2007, we spent about 8 percent of our
20	inspection time on construction inspections.
21	And here more lately, it's been more in the
22	30, well 20 to 30 to 40 percent range of

1	
	Page 202
1	inspection time. And that is actually a metric
2	that Linda and I are talking about, too; as
3	far as how much inspection time we're spending
4	on things like construction, incident response
5	and O&M. But we do have that and it's
6	definitely ramped up in the last several
7	years.
8	Of course, more recently, just for
9	the energy boom that's going on and the
10	pipelines are being built and pipelines are
11	being converted in service. Here's a map.
12	Perhaps you've seen this before. I grabbed
13	this from the EA website. Just shows you
14	where all the shale plays are in the lower
15	forty-eight. In particular, you've heard of
16	Marcellus, you've heard of Bakken, Eagle Ford,
17	Barnett, you know, and others. There are
18	numerous plays that are going on out there,
19	which is contributed to the influx of energy
20	and we're flushing energy right now in the
21	U.S.
22	A little primer on sort of the

	Page 203
1	code behind what we're talking about. Well,
2	first I'm going to talk about reversals, which
3	is one, like I said; conversions and then
4	product changes. Reversals are not, and this
5	is where pipeline, our flow is going in one
6	direction and either supply changes or market
7	condition changes where you need, instead of
8	moving to the Philadelphia area, for instance,
9	you need to move product to the Gulf Coast
10	region. Pipelines are reversed to account for
11	the changes in the market, and where the
12	product needs to go to the end user.
13	Our code doesn't specifically
14	address, the term reversals, however, in our
15	Integrity Management Plans, in an O&M,
16	operators need to consider that. Certainly an
17	integrity management, as a reversal changes
18	the threat profile of the pipeline, such as in
19	the impact on cyclic fatigue in particular for
20	liquid lines. We need to take that into
21	account in their Integrity Management Program.
22	And just what that impact is on the pipeline.

1	
	Page 204
1	Certainly with overpressure protection and the
2	location of where you're monitoring pressure,
3	also can change with a reversal. A control
4	and management, just how the pipeline is
5	operated obviously changes. And operator
6	qualifications and other issues, as far as you
7	need to make the program relevant to the
8	product that's being transported.
9	What Dave covers, spill response
10	plans, certainly that needs to be addressed,
11	too. Related gas pipelines, especially with
12	how MAOP may have been determined, Maximum
13	Allowable Operating Pressure, if it was
14	determined using pressure gradient, that needs
15	to be looked at as well and considered in
16	whether or not it's even a good thing to do
17	for that particular pipeline. And then we as
18	an agency have been dealing with special
19	permits and addressing, and actually have a
20	few more questions that we have relevant to
21	reversals when they come up for renewal.
22	Service conversions are addressed

1	
	Page 205
1	in code and what are we talking about with
2	service conversions? That is when a product
3	or when a pipeline changes from liquid to
4	natural gas, or from natural gas or gas to
5	liquid. So that is covered in certain
6	procedures an operator must go through; not
7	unlike some of what I just talked about. It's
8	things you would expect related to integrity
9	management. There's also a records
10	requirement in there as well. I'll come back
11	to that, because I have an order issue here.
12	Product changes. Where we're
13	going from say, refined products to crude oil;
14	that was a project that we dealt with that
15	some are familiar with, in Texas, with the
16	Longhorn Project. That was a reversal project
17	that involved that, just that right there as
18	far as refined products to crude oil and
19	reversal in direction, too. Again, that's not
20	specifically addressed in code, however, and
21	that is like from one liquid product to
22	another liquid product. However, again, like

	Page 206
1	reversals, it needs to be considered in the
2	plan and in your spill response program.
3	Now, let's shift gears here a bit.
4	Oh, I'm sorry, I need to go back to one I
5	skipped. In September, we issued an advisory
6	bulletin, and this is in the aftermath of a
7	couple failures, or more than a couple of
8	failures. A few failures and then inspections
9	where the inspectors; we thought it would be
10	important to remind operators of what
11	considerations need to be made when they're
12	considering reversing a pipeline or changing
13	the product. We outlined a couple points in
14	particular that were important to consider,
15	like I mentioned grandfathered lines and
16	natural gas lines; as far as considering the
17	pressure test that was done. You know,
18	perhaps that validation of MAOP is not
19	relevant if it was established using a
20	pressure gradient.
21	The second bullet there is,
22	there's some other legacy pipe, particularly

	Page 207
1	like low frequency ERW pipe or lap welded
2	pipe, pipe of unknown seams, where you might
3	have a seam factor that's considered in your
4	design formula of less than one, that needs to
5	be considered as well. And then there are
6	other perhaps they are obvious if the pipeline
7	has a failure history, a leak history, perhaps
8	stress corrosion cracking or internal
9	corrosion. Maybe that's one that wouldn't be
10	a good candidate for a reversal; maybe it
11	would be better to replace the pipe.
12	And then finally, pipelines,
13	natural gas lines that operate above 72
14	percent SMYS. No, I'm not really talking
15	about the newer ones that were installed under
16	the alternate MAOP rule, but these are
17	primarily the grandfathered lines that operate
18	above 72 percent. You need to consider that
19	as well. Of course, going into that, I know a
20	lot of those were tested, rigorously tested;
21	but none the less need to consider the
22	operating history, how it was tested, and

	Page 208
1	whether or not it would be a good candidate
2	for reversal.
3	Now I'm going to shift gears and
4	go on to construction observations. Another
5	aspect of this replumbing is building new
6	pipelines. Certainly, we've seen a big influx
7	of that; certainly our inspectors are quite
8	busy in that area, as are our operators who
9	are out there building these lines. We see a
10	lot of pipelines that are sort of short haul
11	pipelines, medium haul, not that long, maybe
12	a couple hundred miles but pretty active
13	nowadays. We did recently issue as far as
14	that second bullet points out, we issued
15	another advisory bulletin related to
16	construction notifications.
17	Now, we don't regulate through
18	advisory bulletins, but we did ask that, and
19	remind operators that yes, there's a sixty day
20	notice out there, but if you could, would you
21	please notify us sooner? And this is really
22	to help us be engaged in the project sooner;

i	
	Page 209
1	because there are a lot of activities that go
2	on, like weld procedure qualification,
3	qualification of welders, just a variety of
4	things that are relevant to the integrity of
5	the line that we'd like to be involved in
6	earlier. So that's why we put that out. And
7	plus, a number of operators have really cut it
8	close in notifying us, so it was really a
9	reminder about that.
10	A lot of these issues that we're
11	seeing, and I'll point some of them out,
12	they're not really solvable through added
13	regulation. It's really up to the operator to
14	do the right thing and have the controls in
15	place and expectations and oversight of the
16	contractor to do it. Looking back to 2007 and
17	since then we've had a workshop and a lot of
18	discussion. I know There was a tendency to
19	contract out a lot of construction including
20	the inspection; and one of the items that was
21	pointed out, or we saw, that was, there needed
22	to be really good oversight of the contractor.

i	
	Page 210
1	Since then, I know a lot of work has been done
2	related to building best practices for how to
3	improve construction quality and I'm going to
4	go through a couple of those in a minute.
5	It's just a kind of a collage of
6	different issues that are out there, but kind
7	of the different areas that it covers, perhaps
8	you've seen this before. It's really
9	consistent with what we tend to always see out
10	there, just something we need to focus on
11	related to the life cycle. Because if you look
12	at it, you think about it, the failures that
13	we've seen over the last few years, especially
14	like in 2010, there is an aspect of new
15	construction that you can implicate in those
16	failures. If you look at San Bruno, they have
17	the issue with the pipe that is of
18	questionable manufacture. In Marshall,
19	Michigan, you had the tape coat, it had a
20	coating, the selection of coating that was
21	used, of course, when it was built, we didn't
22	know. But these issues, these decisions did

	Page 211
1	impact the long term integrity and we're
2	living with those, really decisions made early
3	in the life cycle, today and having to deal
4	with them. So it's important to get it right
5	up front.
6	And then, of course that curve I
7	showed you earlier, the so called bathtub
8	curve shows that early in the life cycle of a
9	pipe is when you do have failures. And then
10	the older pipes as well. Issues like handling
11	and storage of pipe. On the left there,
12	that's probably stacked too high. In this
13	case, we've got a good example. See, that
14	regulator doesn't always show the bad
15	examples. Here's a good example of storage
16	and handling of pipe. Here's I guess, a not
17	so good example. Another thing we've seen
18	here, just looking at side booms and moving
19	pipe and lowering in pipe, is and that's a
20	side boom turned over, if you can't make it
21	out. But you need to have enough side booms
22	to handle the pipe, because that is a factor

	Page 212
1	in how much stress you put on that weld. A
2	weld will undergo the most stress following
3	its lifecycle when it's being lowered in the
4	ditch.
5	And when the weld procedure is
6	qualified, it does assume or it does figure in
7	that it's going to have a certain stress
8	level. And that stress level is determined by
9	how much support it has when it's going in the
10	ground. So that's an issue we've seen, that
11	we've had to address. Pipe that's resting on
12	rock is a common issue, and has been
13	implicated in a number of failures involving
14	general corrosion. That's probably one of the
15	more prevalent issues that we see later in
16	life and just different handling of the
17	coating. Things like that that can long term
18	impact the integrity of the pipe.
19	One thing I like to say is we
20	don't have throw away regulations and usually
21	I say that in response to somebody where you
22	have a coating issue and there's an assumption

	Page 213
1	that, well, the cathodic protection will
2	protect the pipe long term, so it doesn't
3	matter. The CP that you add later will take
4	care of that holiday that may be in there.
5	But that doesn't mean we don't expect
6	perfection up front. Certainly the CP system
7	is there to provide that protection, but we do
8	expect proper handling of the coating.
9	I know I'm preaching to the choir,
10	especially with operators. But it's an issue
11	that really warrants close focus on projects.
12	Probably coating issues were the biggest one
13	we see. I hear some others that I won't
14	really get into it. Another one, a newly
15	installed line with no markers. And then
16	another issue that's popped up, I know we've
17	talked about this a few years, is related to
18	interference currents causing corrosion on
19	pipelines. This is where you have pipelines
20	that might be parallel and you have
21	interference between CP systems.
22	In a lot of cases, we see it's

	Page 214
1	with parallel transmission power lines, so it
2	can really cause extensive corrosion in a
3	short period of time. So the moral of the
4	story here is there is what I have up there is
5	don't put off your AC surveys and then just
6	material verification. It is one that we've
7	been focusing on. Certainly, there are
8	requirements in the code. I might add that in
9	our rulemaking on gas, as we deal with some of
10	the recommendations and mandates, we are
11	dealing with record keeping issue there as
12	well.
13	As far as looking forward, the
14	first bullet up there; we've already done. We
15	issued an advisory bulletin and that's
16	probably the main extent of our policy work
17	right now other than some items we have that
18	are in pending rulemaking that we're
19	considering. We are in the throes of integrity
20	management 2.0 that, with our rulemaking
21	that's in progress right now. We also
22	considered the same one of those rules that

	Page 215
1	John talked about yesterday, operator
2	qualification for construction. And QMS for
3	construction, that was a topic that's been
4	talked about. I know there's been a lot of
5	good work in that area done. I know industry
6	has a number of initiatives that has produced
7	some good results in that area, as a way to
8	manage quality and insuring that you have
9	quality product in dealing with these issues
10	that you've seen there. To insure quality in
11	product. I know there's still a lot of work in
12	progress and we're expecting to see some of
13	that from industry; but then also we have an
14	R&D project right now on quality management
15	systems for construction.
16	And finally, that integrity
17	verification process. Like I said, one of the
18	rulemaking's deals with record keeping. That
19	one specifically to gas, deals with that
20	issue. And that's it. Just a quick update on
21	where we stand, and be glad to answer any
22	questions you might have.

	Page 216
1	CHAIR HONORABLE: Thank you, Alan.
2	Are there any questions? Comments? All
3	right. We'll move along to our next agenda
4	item. Just a moment.
5	MR. WIESE: Are you really letting
6	him off that easy? Come on. Chad, I was
7	looking at you.
8	CHAIR HONORABLE: Chad?
9	MR. ZAMARIN: Chad Zamarin,
10	Cheniere. Just a question, maybe; because I
11	think as an industry, we've seen that the next
12	three to five years, I think, I'm sure the
13	FERC folks would tell us the same. It's really
14	going to be a remarkable period of time in our
15	industry from a construction perspective. A
16	lot of the last few years has been a lot of
17	upstream and midstream activity, but a lot of
18	repiping the existing infrastructure and we've
19	kind of run out of the ability to do that.
20	And so we're going to be building a lot of
21	greenfield pipe and it's going to be a very
22	active time. Just put it out there, what are

	Page 217
1	your thoughts and what would PHMSA look to do
2	differently? We're thinking about it as an
3	industry. How do we manage this workload
4	safely and effectively, but are you also
5	seeing that same demand on your resources
6	coming over the next three to five years?
7	MR. MAYBERRY: Good question.
8	Yes. We expect to increase the focus on
9	construction, so as projects increase, one
10	thing we're finding is it has been difficult
11	to catch the number that we want to inspect.
12	We are looking at our resources and just even
13	the skillset that we hire to, because we, at
14	the same time, we're also looking, we are
15	getting additional staffing that would come to
16	bear on construction inspections in
17	particular.
18	With that, we are looking at,
19	because of the challenge in hiring that we
20	have, we are looking at the skillset and
21	people that may be more focused in the
22	construction area versus integrity management.

	Page 218
1	So that's one area we're looking at. And
2	Linda, I know this is kind of her bailiwick,
3	so. That's dealing with staffing. And we're
4	also looking at curriculum changes at our T&Q
5	office to sort of change with the times as far
6	as dealing with construction.
7	MR. WIESE: With the Chair's
8	permission, I want to just take a small swing
9	at that one, too. I appreciate the question.
10	We have a fixed box like you, a fixed box of
11	resources; we have to parse it out and some
12	parts of our turf are growing. Others, not
13	many of them are shrinking; they're generally
14	growing. One of the things that we've adopted
15	and I think you'll, it's obvious to everybody,
16	but I'm just going to state it so we're on the
17	record here. You know, we believe the
18	operator is responsible. We believe it's a
19	process that needs to be managed from the
20	beginning to the end. There, it is part of
21	why we're talking about things like QMS, you
22	know, we should all be comfortable when we see

1	
	Page 219
1	a monogram, for example, on a pipe, what
2	you're getting and what we're getting. I have
3	raised questions on that.
4	I think the industry is responding
5	in terms of quality control at the mill. A
6	lot of companies sending their own people
7	there. So I would say that the industry can
8	manage this process by stepping up its level
9	of quality control from the beginning to the
10	end. I would also say that its part of your
11	SMS. QMS is nothing more than are you
12	achieving quality underneath the management
13	system you have put in place? The last thing
14	I'll say to you is that we will probably never
15	be resourced to cover what some people,
16	including some people in the public want us to
17	do and still cover our other bases.
18	So I think you'll see an
19	increasing use of us asking for third party,
20	independent third party verification out on
21	the right of way. I don't know how else we do
22	it, you know? I don't think we can cover all

1	
	Page 220
1	the bases without that. I know operators
2	aren't thrilled to hear that; but it's either
3	that or we triple our staff. And I don't
4	think you probably want that, either, though.
5	CHAIR HONORABLE: Jeff?
6	MR. WRIGHT: Going back to Chad's
7	comment, just so everyone knows
8	CHAIR HONORABLE: I'm sorry, will
9	you introduce yourself?
10	MR. WRIGHT: Oh, I'm sorry; Jeff
11	Wright, FERC. Just so everyone knows out
12	there in the public, too; it's a tremendous
13	load that's coming. It's like a tsunami of
14	pipelines. I can say since 2000, we've
15	approved over 16,000 miles of pipeline, most
16	of which has been built. I'm looking on my
17	plate right now, whether pre-filing or
18	currently under application, we have several
19	thousand miles more. And then the potential
20	is slightly ridiculous, so. You still want to
21	come over, Chairman Honorable?
22	That said, we do as agencies look

	Page 221
1	into novel ways of processing, at least from
2	my perspective, processing, using contractors,
3	delegating, that kind of thing. Same thing
4	with PHMSA, it's going to be a constant battle
5	to look for novel ways to meet the public's
6	need for gas, at least in my perspective, and
7	also being responsive to all of our
8	stakeholders at the same time.
9	MR. WIESE: And with your
10	permission, I'll just say we've had a good
11	relationship with FERC. We've worked on the
12	L&G, the same thing, right? We did the import
13	wave and then it all died off; now we're on
14	the export wave, you know, and eventually the
15	market will be met there and that will sort of
16	die off.
17	And pipelines, the same way, they
18	come in waves in the construction cycle. So
19	we'll continue to collaborate and to Jeff's
20	point, he's talking about interstate gas
21	alone. We're not even talking about oil,
22	which is also huge; and all the intrastate

	Page 222
1	growth around some of these plays. So I think
2	that as a country, I think your point is well
3	taken and can be extrapolated wider. It's
4	huge.
5	MR. WRIGHT: I was just going to
6	add, and eventually they're going to make me
7	die off with all this going on.
8	CHAIR HONORABLE: We sure hope
9	not, Jeff. Well, thank you for that, and
10	thank you for the questions and for the
11	discussion. It really helped put this in
12	context, both for where we are now and where
13	we're headed. I think we're ready now for
14	Agenda Item Number Six; which is a briefing on
15	the Subcommittee Report on Midstream
16	Regulatory Jurisdiction from Linda Daugherty
17	and Chad Zamarin.
18	MS. DAUGHERTY: Thank you,
19	Chairman Honorable. Well, with great
20	pleasure, I'm going to introduce Chad to give
21	an update from the Subcommittee group for
22	Midstream Safety. Just to kick it off, as a

Page 223

1 refresher.

2	A while back some operators
3	approached us and said look, we have a
4	dilemma. There are some facilities in which
5	there appears to be dual oversight from OSHA
6	and from PHMSA, and there's a lot of confusion
7	about who regulates what, who regulates both,
8	how to make a good decision going forward on
9	how to regulate these, or how to prepare for
10	inspection on these facilities. And so we
11	established the group to look at basically,
12	what is the best way to achieve a safety
13	outcome without wasting resources from both
14	OSHA and PHMSA, and to get to an outcome we
15	can all agree to. Chad is going to give us an
16	update on how we reach that point and where we
17	are right now. So I'll turn it over to Chad.
18	MR. ZAMARIN: Thank you. Chad
19	Zamarin, Cheniere Energy. And as Linda
20	mentioned, I think this is a good example of
21	how we as a group can work to solve real
22	issues. We have put together a subcommittee

i	
	Page 224
1	that's really operating on behalf of this
2	group. Todd Denton is also a part of the
3	group; he's not here today. Also in
4	attendance, we've got a couple of our
5	subcommittee members from industry as well as
6	Linda and members of her team have also been
7	involved. But if we've got any detailed
8	questions, we've got Graham Bacon from
9	Enterprise Products and Francis Foret from
10	Targa Resources, who are on the subcommittee.
11	But what I'll do is just briefly kind of go
12	through what we were chartered to do, refresh
13	the group's memory and then where we are today
14	and where, I think we're heading and then if
15	Linda wants to add or correct anything that I
16	put out there, she'll do so.
17	We formed this, it's a
18	collaborative group. We've got PHMSA, we've
19	got OSHA, and we've got industry
20	representatives working together to work this
21	issue. And the initial scope I think, of our
22	effort is summed up in terms of we need to

	Page 225
1	make sure that we have adequate regulatory
2	coverage for the types of midstream assets
3	that we're looking at. We need there to be
4	clarity. There are assets in infrastructure
5	in our industry that have historically been
6	designed and operated under an OSHA set of
7	standards; and obviously, we have a large set
8	of infrastructure designed and operated under
9	a PHMSA set of standards. And there have been
10	areas of potential overlap or confusion as to
11	which assets fall under which framework.
12	And so we've worked to try to
13	delineate what fits where, make sure we've got
14	the right regulatory framework for the right
15	set of assets and provide some clarity. We've
16	all come to the, I think, agreement that it
17	makes sense for there to be no gap, but also
18	no overlap. Let's make sure we've got a well-
19	established regulatory structure that matches
20	the infrastructure. And so the process that
21	we've gone through is first we've worked to
22	insure and convince ourselves that we've got

	Page 226
1	good solid regulatory processes and frameworks
2	for each of the asset types; so that not one
3	side or the other feels like we're not being
4	adequately taken care of if one set of assets
5	are being regulated under a PHMSA or an OSHA
6	set of standards. We've also canvassed the
7	industry and regulatory experts for common
8	ground regarding what should fall under OSHA,
9	what should fall under PHMSA. And we've
10	looked at different design and operating
11	scenarios. I'll show you in a little bit that
12	there's some, these are complex facilities.
13	So it can be difficult to come up with a very
14	simple definition of what constitutes an OSHA
15	PSM facility versus a facility that is just a
16	PHMSA regulated asset.
17	And so we've worked to try to at
18	least identify the boundaries. And then to
19	propose a method for formal communication and
20	clarification that the industry can understand
21	and that also regulators can understand, and
22	staff members when they come to a facility,

i	
	Page 227
1	it's clear if they're visiting, that they
2	understand where the assets that should be
3	applied under a PHMSA regulation end and where
4	an OSHA facility set of regulations begins.
5	And oftentimes, that happens in the same
6	footprint. So, we need clarity for our
7	inspectors and for our folks to know where
8	that occurs.
9	So far, our progress, we've had
10	several meetings; have had a good cross
11	section of PHMSA, OSHA and industry folks in
12	those meetings. We've had several conference
13	calls as well. And we've also done outreach
14	to stakeholders outside of the subcommittee.
15	I know that Linda has MC'ed meetings with her
16	staff across the PHMSA regions and we've taken
17	work that we're doing back to operators, to
18	educate them, get input in, you know,
19	hopefully create as much of a collaborative
20	process as possible. I've kind of sat through
21	this process and tried to identify some of the
22	general areas of alignment, and it looks like

	Page 228
1	a relatively short list, but I think these are
2	pretty significant. The first, that both are
3	good strong regulatory frameworks, PHMSA, Part
4	192, 195, 49 CFR, and the complementary OSHA
5	PSM framework. And we spent quite a bit of
6	time educating ourselves, because on both
7	sides, there wasn't always a full appreciation
8	of the differences or similarities between the
9	two. Clear consensus that it makes sense not
10	to have overlap and certainly to insure that
11	there are no gaps.
12	We've also been working to
13	navigate the statutory authority and the
14	ability to kind of allow for or clarify where
15	one regulatory framework would hand off or
16	take over from the other, and so that's an
17	issue we're still working to, to further
18	clarify but I think what I would say is, from
19	my perspective, there's general agreement I
20	think technically, we still have to work
21	through some of the process-related issues,
22	some of the more legal issues about how we

Page 229

1	memorialize	that.

2	The last point is, there is a
3	desire to memorialize an understanding of
4	where a PHMSA-regulated facility ends, where
5	an OSHA/PSM facility begins. But we've still
6	got some work to do to figure out exactly the
7	best means for that. I'll just do a quick OSHA
8	PSM 101, since most of our time is spent
9	looking at PHMSA-related regulations. But
10	what you'll see here is not surprisingly, I
11	think, consistent with a lot of what we've
12	already been talking about. In particular,
13	the PSM framework looks a lot like the API
14	1173 work that's being done. It's a safety
15	management system that consists of what you
16	would expect, some very common core elements.
17	I would say that it's got a very robust set of
18	technical standards and procedures. It has a
19	lot of process elements that are important to
20	insure safe design and operations. And then it
21	has those cultural, behavioral elements,
22	employee engagement doing a job hazard

	Page 230
1	analysis. Doing the things that you would do
2	from a behavioral perspective that drive good
3	safe facilities.
4	In addition, and this is just an
5	example of a few that I've put up here. But
6	I'm, the safety management system is supported
7	by a large library of technical standards and
8	specifications that support the design and
9	construction and operation of these
10	facilities. You can see obviously, a lot of
11	ASME boiler and pressure vessel code, ASME
12	B31.3, process piping; and then a host of API
13	and other consensus standards that are
14	incorporated by reference into the PSM
15	structure. But when the rubber hits the road,
16	the challenge that we have is that these are
17	very complex facilities that vary from one to
18	the other. These pictures don't really do
19	them justice. But the take away is that these
20	are processing facilities primarily; these are
21	not interstate transmission related
22	facilities.

ſ

	Page 231
1	Now there may be interstate and
2	regulated facilities that run to and/or from
3	these facilities and making sure we can
4	delineate where one asset exists versus the
5	other is the challenge. How does an inspector
6	walk into one of these properties and know how
7	to trace the regulated transmission line
8	versus the infrastructure that's really there
9	to support a PSM operating facility. That's
10	the challenge. And when I look at it, the
11	hardest deliverable of this group is to make
12	sure that we don't get caught in the trap of
13	trying to define every possible technical
14	scenario. It's how do we have a definition or
15	a standard that someone can interpret and
16	accurately apply each and every time they walk
17	into a facility of varying complexity and
18	design.
19	So that's really the core
20	challenge that we have as a group, that we're
21	still working through; but I think we will
22	figure out. Just to give folks a quick idea

1	
	Page 232
1	of what we're talking about; I know this is
2	elementary to everyone here. But these are
3	processing facilities primarily in the
4	midstream space that we're focused on for this
5	effort; so dehydration facilities, natural gas
6	processing, NGL separation, cryo units,
7	fractionation, petrochemical operations,
8	storage associated with these facilities.
9	There is a need, and we're working through
10	defining those storage assets that are related
11	to interstate commerce, because there is a
12	vast network of storage facilities across the
13	country that is intended to support interstate
14	transmission and delivery of products. Those
15	are clearly PHMSA facilities that are of
16	interest.
17	There are also storage facilities
18	that are primarily or solely intended to
19	support processing and midstream operations.
20	And making sure that it's clear what facility
21	is which. Many of those facilities were built
22	and operated under an OSHA PSM standard; and

	Page 233
1	so we need to be careful to properly define
2	each of those different types of facilities.
3	So, to achieve no gap, no overlap, we're
4	working through criteria that we would need to
5	delineate the transition from a 49 CFR-covered
6	facility to an OSHA PSM facility; and some of
7	the examples, some of the ideas that we're
8	working to further define and clarify and just
9	as a point of process, our goal is by the next
10	advisory committee meeting to have this
11	drafted for the group's final review. I
12	certainly want to take any input at this
13	meeting.
14	But the idea of is it a pressure
15	control device that when you move into a
16	facility, there is some piece of safety
17	equipment that helps to identify where you've
18	transitioned from your pipeline to a midstream
19	facility. Is it an isolation valve? A meter
20	skid? The pig trap that delivers into the
21	facility? I think a combination and it may be
22	different for different facilities, so again,

	Page 234
1	coming up with a clear criteria that could be
2	used is what we're trying to accomplish. There
3	are other devices that may be shown to
4	transition that again, there's going to have
5	to be a definition that allows for some
6	interpretation; because it's going to be very
7	different in different facilities, and so,
8	there's always that last catchall that you may
9	have to sit down and work through a process to
10	understand whether you've now transitioned
11	into a OSHA PSM facility.
12	I mentioned the storage issue. I
13	think clearly facilities solely used to
14	transport/storage in and out of, to transfer
15	products in and out of storage for interstate
16	commerce are clearly subject to 49 CFR. We
17	need to make sure we're clear on those storage
18	assets, that are OSHA PSM designed, built and
19	regulated. And then clearly, a lot of
20	infrastructure was built under an assumption
21	of an OSHA PSM framework and we need to test
22	whether any of those facilities need

	Page 235
1	reconsideration, but I think our general
2	technical view has been that that has been an
3	effective tool for building midstream
4	infrastructures, so if we can get it right,
5	then we think there's a good marrying of the
6	PHMSA-regulated facilities and the OSHA-
7	regulated facilities.
8	There's still a bit of work left
9	to do. We're going through the process right
10	now. Linda and the PHMSA team are working
11	through their stakeholders; we're working
12	through the industry stakeholders to craft a
13	definition that again, I think will likely not
14	define every possible scenario, but hopefully
15	provides guidance that allows someone to walk
16	into any given facility and clarify where the
17	49 CFR framework ends, where the OSHA PSM
18	framework begins. Kind of the next steps.
19	We obviously want to get any
20	input, answer any questions from this group.
21	Our view is we're working on behalf of this
22	committee and we want to make sure we deliver

	Page 236
1	back a good result. We need to finalize the
2	definition of the parameters that delineate
3	the transition from an OSHA to a PHMSA
4	facility. We need to figure out how we
5	memorialize this group's output and whether we
6	can do that through a letter agreement between
7	PHMSA and OSHA, or a clarifying publication
8	from PHMSA or some other means, will, I think,
9	have better determined by the next meeting.
10	And then we want to present that deliverable
11	at the next joint advisory committee meeting,
12	so our goal is that this is, hopefully a
13	helpful update, and that by the next meeting,
14	we will have kind of these remaining questions
15	answered and the detail ready to present.
16	Linda, anything I missed there?
17	MS. DAUGHERTY: Yes, I'd just add,
18	first of all, thank you for that excellent
19	recap. It's a lot of information. Sometimes
20	when you're a regulator, you have to think
21	back to the advice that says, sometimes you
22	can do something, but you have to think about

	Page 237
1	whether you should do it. And in this case, we
2	had some people approach with an issue. They
3	said, hey let's work on a solution together.
4	I want to call out some of the people, Graham
5	Bacon, Francis Foret, Todd Dent and Chad.
6	There's other members of the committee. Some
7	of them may be here. But the point is, if
8	they came to us with a challenge and they
9	said, this is how we perceive the issue, let's
10	work together on a solution. And so we're
11	going to get to a good place.
12	What Chad tactfully didn't mention
13	is that we've all agreed, I think pretty much,
14	that we want to get there, the no gap/no
15	overlap. We just have to navigate some of the
16	legal challenges. We've had OSHA attorneys
17	and PHMSA attorneys on a phone call, talking
18	about how do we achieve where we want to go?
19	And how do we make this work? And I think
20	that's the best way to solve issues like this,
21	where we believe there's a good safety
22	standard in place, either through OSHA/PSM or

	Page 238
1	through Part 195 or 192; let's figure out how
2	we can save resources and get to where we want
3	to be. So, thank you.
4	CHAIR HONORABLE: Well said; I
5	would defer now to Jeff in case he has any
6	other comments.
7	MR. WIESE: Thank you, Colette. I
8	just wanted to add my thanks to the group.
9	And I know, by mentioning names, you always
10	leave people out, so it's not my intent; but
11	Jerry Barnhill was another person who was
12	heavily involved, and I wanted to thank him as
13	well. I would just say, I think it's smart
14	government, we have a choice here. We can go
15	fight, and go to our opposite corners and take
16	off our gloves, right? And fight it one by
17	one. Or we get smart and sit down in a room
18	and haggle it out. I think as long as we agree
19	to the primary principles, no gaps/no overlaps
20	early on.
21	So I think it's a really good
22	group; it's a good example of how we can

1	
	Page 239
1	collaborate. Some people think that's a dirty
2	word, I don't. We have our own set of ethics,
3	trust me; I don't think anybody thinks we're
4	shy. But OSHA, too. So we'll, it's a smart
5	way of doing business, and I just wanted to
6	add my thanks to everyone, Chad included, for
7	their leadership in helping us do this in a
8	smarter way.
9	CHAIR HONORABLE: Hear, hear. And
10	thank you, Chad, for an excellent
11	presentation. And also I'm just very pleased
12	to see the progress from the time that this
13	issue was first presented to the Joint
14	Committees and it seemed like a tough nut to
15	crack, but we have very capable people
16	involved and I'm confident that we can arrive
17	at no gap/no overlap. I learn a new slogan at
18	each one of these. All right. Any questions
19	for Chad or Linda? All right? Please
20	proceed, Jeff.
21	MR. LESNIAK: Chuck Lesniak,
22	liquids committee. Just a quick comment.

	Page 240
1	It's something that I didn't hear in the
2	presentation. Did you all talk about the
3	goals of the two sets of regulations? OSHA is
4	primarily a worker safety, which you can
5	translate to public safety; but I would
6	suspect it's primarily focused on worker
7	safety and the pipeline regulations, I think
8	are broader. And have you all looked at the
9	two sets of regulations in terms of goals of
10	the regulation? And I agree with the concept
11	of no gap/no overlap, but if there are areas
12	where the goals are different, maybe there
13	should be overlap. And did you all look at
14	that?
15	MR. ZAMARIN: No, that's a good
16	question. Chad Zamarin, Cheniere. We did.
17	Even from, for my own sake, I think each of us
18	took a fresh look at that; and the OSHA, I
19	think the overarching OSHA framework, I agree
20	is primarily focused on personal safety. But
21	the PSM framework is very much a process
22	petrochemical safety management system that is

1	
	Page 241
1	very robust, has been in place for many
2	decades. There are many clear PSM facilities
3	across the United States that are built under
4	the design and maintenance and operating
5	standards that PSM has had in effect for a
6	long time.
7	So I think the OSHA umbrella can
8	sometimes lead us to think, to not realize
9	that there is a very detailed set of
10	specifications and standards, specifically
11	designed for petrochemical and processing
12	midstream facilities. So there are facilities
13	that have been operated well away from, you
14	know, PHMSA jurisdiction; because they don't
15	even touch the interstate grid. They're down
16	along the coast or they're solely focused on
17	petrochemical operations. And that PSM
18	framework has been the standard for designing,
19	building and operating those facilities
20	safely.
21	And so we took some time to
22	convince ourselves that there were

	Page 242
1	complementary equivalent goals and adequate
2	tools in place to achieve the same result. And
3	I think we unanimously as a group came to that
4	conclusion that we're not giving anything up
5	by having one versus the other. And that was
6	our first step. That's where we started as a
7	team, because that would have been kind of
8	hey, we weren't going to have, we would have
9	considered that a gap. If there was a goal
10	that wasn't being met by PSM handling a
11	certain piece of infrastructure versus PHMSA
12	then that would have been a gap that we would
13	have, I think, as a team, concluded you know,
14	we're still going to have to apply both or
15	we're going to have to do something
16	differently. So we did spend quite a bit of
17	time looking at that.
18	MS. DAUGHERTY: I would also add,
19	we took it a step further; because this is a
20	very valid question. And, PHMSA has statutory
21	responsibilities, OSHA has statutory
22	responsibilities. So when the first few

i	
	Page 243
1	meetings, I kept saying over and over, broken
2	record, you know, we could not step back if
3	OSHA didn't cover the statutory
4	responsibilities. We just couldn't do it. I
5	couldn't walk away knowing something was going
6	to be left uncovered. So we actually went in
7	a little bit farther and we looked at accident
8	rates at facilities inspected by PHMSA and
9	those by OSHA. And then we also looked at
10	inspection rates. One of the first concerns
11	I had is, OSHA is overwhelmed with a number of
12	facilities they inspect. Will they get out
13	there frequent enough? If you say OSHA can't
14	get to all of its facilities but once every
15	hundred years, that's not good enough. So we
16	wanted to make sure that they had a reasonable
17	inspection cycle for these facilities. And in
18	fact, they are risk-based. They have a
19	different system than we do. But they do get
20	out on a fairly frequent basis. So, valid
21	concern.
22	MR. WIESE: I just wanted to add

	Page 244
1	one comment, because it's actually, I think
2	it's a good question. But I think about and
3	I bet Ron would pick up on this; one of the
4	things that we've noticed in our development
5	of the safety management systems is that
6	competition between process safety and worker
7	safety. I think we agreed unanimously, there
8	should be no competition. A properly executed
9	safety management system ought to be covering
10	all of these issues. PSM has a really good
11	hazard identification section. But I would
12	just say, we brought OSHA in, we did talk to
13	them. We're mindful of where they're headed.
14	They put a proposal out three or four months
15	ago about the future direction of PSM, which
16	we're interested in, but we're collaborating
17	with them. I think the smart thing about
18	talking with your partners is you end up
19	heading in the same direction and not off like
20	that. Fair question, though.
21	CHAIR HONORABLE: Don?
22	MR. STURSMA: Now as I understand

1	
	Page 245
1	it
2	CHAIR HONORABLE: And you are?
3	MR. STURSMA: Don Stursma, gas
4	committee. Excuse me. I should know better
5	by now. As I understand it, OSHA cannot exert
6	its jurisdiction if another agency has already
7	exerted jurisdiction in a particular safety
8	area. And a number of years ago, we had a
9	conflict like that in the pipeline business
10	over who had primary jurisdiction for sending
11	a worker into a bell hole with gas blowing.
12	Where OSHA had a whole different idea about
13	how things ought to be done versus the way the
14	industry actually did it. That was resolved
15	with a rulemaking clearly putting it in
16	PHMSA's, under PHMSA's jurisdiction. Is there
17	anything like that going on right now where
18	there's kind of a conflict over who has
19	jurisdiction and maybe some regulatory action
20	would be needed to address that?
21	MS. DAUGHERTY: Yes, there is.
22	Did I mention we have lawyers involved? So

	Page 246
1	what we came down to at the end, we figured
2	out which way we wanted to go generally. And
3	we convened with our lawyers and said, can we
4	do this? And they came back and said no.
5	What, the strict reading of the rule says that
6	according to both the OSHA lawyers and the DOT
7	lawyers, is that PHMSA has statutory authority
8	and we inspect, and we have regulations, and
9	we inspect. We have a history of inspecting.
10	Therefore, the pre-emption clause that boots
11	OSHA out of a facility applies. However, we
12	knew that that may not be the best safety
13	approach. So what we went to our lawyers and
14	we said, okay, knowing all that is in play, is
15	there a way for us to come to an agreement
16	where OSHA would continue to inspect these
17	facilities?
18	And we do have an approach. It
19	beats the legal hurdles, so I'm told. We are
20	looking at how we are defining certain
21	facilities. In our regulations, we identify
22	regulations applied to, I won't use the term,

ĺ	
	Page 247
1	because, but certain facilities. What we are
2	doing right now is we are setting up a team
3	within PHMSA that will later work with OSHA
4	and industry that will perhaps redefine the
5	boundaries of those facilities. So basically,
6	PHMSA may be changing where we are going to
7	exert our authority. That will allow OSHA to
8	step into that area. So we are looking for a
9	solution. It's not an easy solution, but we
10	think we can get there.
11	CHAIR HONORABLE: Thank you, any
12	other questions? Craig?
13	MR. PIERSON: Craig Pierson,
14	liquids. Linda, in that regard, have you
15	contemplated a similar exercise in refineries
16	where we've got pipelines going into
17	refineries?
18	MS. DAUGHERTY: You know, Craig,
19	that issue really hasn't come up. We haven't
20	had much discussion specifically about
21	refineries. I would say in general that
22	various regulatory agencies, BSEE and PHMSA

I	
	Page 248
1	play very well together. You know, we have an
2	old MOU where we defined where we stop and
3	where they begin. We have a clear
4	understanding. We are working with OSHA to
5	try to figure out where we can have no gaps,
6	no overlaps. As has been mentioned, there are
7	places where different agencies will have
8	different focus of the regulations and their
9	safety oversight.
10	So for example, there may not be a
11	good place for EPA in PHMSA, to define that;
12	because we have slightly different objectives.
13	But in those places where you have regulatory
14	agencies that are looking at safety issues,
15	there may be approaches. And we are reaching
16	out to our other partners and trying to reach
17	that. Refineries specifically has not come
18	up.
19	MR. PIERSON: Where it occurs is
20	where you've got typically where you've got a
21	crude pipeline that delivers into the refinery
22	and you've got a relief system. And all that

	Page 249
1	plumbing that reaches back the relief plumbing
2	and the tank itself and there's a pretty good
3	overlap there that we work through in a number
4	of locations. Just something to consider.
5	MS. DAUGHERTY: Well, let's get
6	this one figured out.
7	MR. PIERSON: Yes, I know.
8	MS. DAUGHERTY: And then let's
9	talk.
10	MR. PIERSON: Yes, yep, thanks.
11	CHAIR HONORABLE: Thank you; any
12	other questions? Well done, Chad and Linda.
13	All right. We're ahead of schedule? I'm
14	fearful to say out loud. It looks as though
15	our last briefing today will be on Class
16	Location Study, by Steven Nanney. Steve?
17	MR. NANNEY: Good afternoon. My
18	name is Steve Nanney and I'm with PHMSA. And
19	I'm going to give an update and it's not of a
20	regulation; it's of a report on class
21	locations and could we use integrity
22	management principles for class locations on

1	
	Page 250
1	gas transmission facilities.
2	First of all, we did this as a
3	statutory mandate on class locations from the
4	Pipeline Safety Act of 2011, Section 5(a),
5	which asks us to evaluate and issue a report
6	on whether integrity management requirements
7	could be extended beyond HCA's and could we
8	use that to mitigate class location
9	requirements. Some of the milestones of this.
10	As we started in August of 2011 with an
11	Advanced Notice of Proposed Rulemaking, with
12	some questions that we asked. Then we, in
13	early 2012, we got the Pipeline Safety Act of
14	2011; and then going on down through this,
15	April 16th of this year, we had a class
16	location workshop.
17	And I know several of you that I
18	see in here today were at that workshop; and
19	it was a lively experience, with a lot of
20	comments and viewpoints. And they were all
21	over the spectrum; it wasn't anything, there
22	was a lot of pro's and con's for whatever

	Page 251
1	option you wanted to consider. And then from
2	that, we completed a Congressional report in
3	the summer; and that was routed to our
4	Administrator and we have proceeded to route
5	that to OST, OST and they are in the process
6	of sending it to OMB. And by the way, we
7	haven't had any comments to date, so I think
8	that, so far, is good news. But I'm sure
9	we'll get some feedback as we go through this
10	process.
11	The report contents, just a quick
12	overview of those. We have an executive
13	summary in there, which I think John and
14	Cheryl sent you a briefing paper that has some
15	tidbits of that, three or four pages, to just
16	give you an overview of what our thoughts
17	were. An introduction, and expansion of IMP
18	requirements beyond HCA's. Does the expansion
19	of IMP requirements beyond HCA's? Does the
20	expansion of IMP mitigate the need for class
21	locations? And that's the key question. And
22	then we looked at alternatives to class

Page 252 1 locations. There were a number thrown out at 2 our workshop. There were several that we were 3 considering and you'll see as I go through 4 this, what those are. Then a conclusion and Again, this is only 5 possible future actions. a report; this is not a regulation that we're 6 7 working on. As far as integrity management, 8 9 just a quick overview of that. Again, we were 10 looking at HCA, a High Consequence Approach, 11 in lieu of class locations. And to just give 12 you an idea, to just see it in a slide, if you 13 look at an HCA approach of the circles, the red circle you see there would be an HCA. 14 An illustration. Where the small red line that 15 you see behind the homes there, that would be 16 17 a Class 2 location. So just to give you an 18 idea in this particular example, if we used an HCA approach, the homes that would be 19 protected would be the ones in the circle 20 21 under integrity management. And then if we did come up with some type of approach using 22

1	
	Page 253
1	integrity management, we would extend that
2	circle some way. Now, we haven't come up with
3	how we would do that, but that would be one of
4	the type of approaches. Where today under the
5	class location methodology, all of that area
6	there with the red line would be a Class 2
7	location.
8	Class locations, what are they?
9	Class locations for gas pipelines are from 1
10	to 4. The design factors are, if it's a Class
11	1, it's 0.72, Class 2 it's 0.6, Class 3, 0.5,
12	and Class 4 would be a 0.4. And that would be
13	applied to whatever design pressure or
14	pressure you come up with, it would derate
15	that pressure for your maximum allowable
16	operating pressure. It was derived in the
17	1950's from B31.8 and when the code came into
18	play in 1970, that was put into the code. As
19	far as class locations for gas transmission
20	pipelines, they impact 28 Code sections. So
21	there's a lot of impact, not only for gas
22	transmission but also for our distribution

1	partners, too.
2	From our class location workshop,
3	just a quick overview. Our State partners,
4	they preferred class locations. Some of the
5	comments we got from AGA, APGA members and a
6	majority of the transmission operators, were
7	that they were comfortable with a class
8	location system for existing pipelines, but
9	wanted us to consider different approaches for
10	new pipelines.
11	A quick overview of what a Class 1
12	location is. A Class 2, 3 and 4. Just have
13	some pictures up there with lines so you'll
14	get an idea when we talk about the various
15	class locations, what each of them look like.
16	And by the way, the Class 3 up in the upper
17	right hand corner, that would also be an HCA.
18	And the Class 4 would also be an HCA. The
19	Class 1 and 2, probably would not be HCA's.
20	To just give you an idea.
21	Why are we having this discussion?
22	Well, one reason is when the code was put into

	Page 255
1	place in 1970, probably most of the, and in
2	the 1950's when B31.8 put the class location
3	factors in, most pipelines were probably of
4	the thirty inch diameter max variety and a
5	thousand pound operating pressure. So the
6	660, if you look at the line we've got there,
7	most of the pipeline mileage would be below
8	that line. It would fall in that category.
9	Well today, we've had pipelines forty-two
10	inch, thirty-six inch, that have operating
11	pressures well above 1,000 pounds; 1,440,
12	some 1,600, maybe up to 2,100 pounds. So your
13	PRR's are now above that dark red line. So
14	that's why we're having the consideration,
15	should we be using a 660 for a class location
16	for all the pipe sizes? Or should we be
17	looking at a different methodology?
18	And then in the next few slides,
19	I'll go through. Again, some of the comments
20	that we got from the public, you can see:
21	Revise IMP to include the entire Class 3 and
22	4 locations and beyond. Expand class location

i	
	Page 256
1	definitions to reflect high density areas.
2	Some of the comments we got were that we
3	needed a Class 5 and a Class 6 location; in
4	other words, a 0.3 design factor and a 0.2,
5	where you have a lot of high rise buildings
6	and a lot of people in the area. But State
7	partners said class locations are a much
8	broader concept than just IMP. In other
9	words, how does it affect distribution
10	systems? How does it affect gathering? How
11	does it affect gas transmission? That we
12	needed to look at everyone that it affects.
13	The industry, mainly the
14	transmission operators, they wanted to keep
15	mostly keep the class locations intact for
16	existing pipelines and to consider or allow a
17	PIR approach to be used for new pipelines when
18	the class locations change. And to use
19	integrity management principles for these
20	class changes and non-HCA areas. And then some
21	of the conclusions that we got from our
22	workshop and like I said, it was some lively

1	
	Page 257
1	debate and lively presentations there. But
2	there was a broad perspective from the
3	industry and the public on expanding these
4	integrity management regulations. There was
5	little support for changing class locations
6	for existing pipelines. I'm not saying that
7	there weren't a few that wanted it changed,
8	but the overall majority was no change for
9	existing pipelines.
10	The third bullet was there was
11	support for changing class locations and going
12	to some form of a PIR approach, a Potential
13	Impact Radius approach, HCA approach; however
14	you want to term it. And some of those
15	alternatives that we discussed and considered
16	was; number one, we heard from some public
17	interest groups that we needed to expand class
18	locations, a Class 5 and 6. Some others we
19	saw, we heard from, was modify the HCA
20	definition; in other words, go to some type
21	expanded HCA definition. Then we also had
22	comments on the potential impact radius

	Page 258
1	sliding mile, is instead of using the sliding
2	mile which is what the code is based upon now.
3	In other words, you look for a class location,
4	you look at a one mile and it slides down the
5	pipeline. Instead of using that, should we go
6	to a potential impact radius or impact circle
7	that actually slides down the pipeline based
8	upon the diameter and the pressure of the
9	pipeline. In other words, if you had a forty-
10	two inch, 2,000 pound pipeline, it may have a
11	1,500 foot PIR; where if you had a twelve
12	inch, 200 pound pipeline, it may only have a
13	150 foot PIR. In other words, doing something
14	based upon consequence based upon diameter and
15	pressure.
16	Then we also heard comments on a
17	single design factor. In other words, where
18	we've got four design factors now, should we
19	consider one design factor like on the
20	hazardous liquid pipelines, the design factor
21	is 0.72. Is what's used out on the pipeline.
22	Where on the gas pipelines, there's the class

	Page 259
1	locations. Now we didn't discuss whether to
2	use 0.72 or 0.6 or 0.5, but consider a single
3	design factor. Then another approach that we
4	looked at and considered and talked about, was
5	the bifurcated approach that INGAA came to us
6	on, and what that would be is on existing
7	pipelines, you would leave it like it is
8	today.
9	On new pipelines, you would look
10	at a single design factor and then you would
11	look at something maybe incorporating a PIR or
12	sliding mile into it as far as using the
13	integrity management principles. So it would
14	be a combination of some of all of it. And
15	looking at new pipelines in that regards
16	leaving the existing pipelines alone. And then
17	there's always no change. In other words,
18	keep the regulation as it is. No reason to
19	make a change. So that's the things that we
20	looked at, what we came down to in the report,
21	were the key alternatives to discuss and to
22	consider.

	Page 260
1	Now, possible future actions, and
2	again, PHMSA hasn't written a rule, we're not
3	in the rule writing business on this at this
4	point. We're in, in sending this report
5	through OST through OMB and to Congress, and
6	then getting feedback from it; and feedback
7	from this committee. But again, any future
8	actions on revising class locations that we
9	would do, of course we will consider all
10	safety concerns of all the affected
11	stakeholders. Whether the public, industry,
12	everybody involved. Some of the possible
13	future rulemaking considerations, and again,
14	we haven't done anything on this; but you
15	know, some of the things that we've heard is
16	you know, number one is, I think we heard loud
17	and clear to leave existing pipelines alone.
18	We've also heard loud and clear
19	that we need to make sure that if we're doing
20	it for one segment of the gas code, is make
21	sure you realize that it affects more than
22	just one group. In other words, if we do

i	
	Page 261
1	something on the transmission side, to make
2	sure we understand what it does on the
3	distribution side. So we hear that loud and
4	clear. But one of the things that I know in
5	going through and looking at it, is this last
6	bullet. More efficient and practical class
7	location approaches that improve safety and
8	avoid minor pipe replacements where safety can
9	be maintained with other robust measures, such
10	as incorporating IMP principles.
11	And just to throw it out, it's
12	like what Chad said earlier. Is PHMSA is,
13	here's everybody as far as the blowdowns and
14	taking pipelines out of service, where you
15	don't need to. And one type approach that, we
16	may want to consider going forward is where an
17	operator's gone in and they've got an existing
18	pipeline or a new pipeline and they've changed
19	out the pipe and put new pipe in, but they
20	have a few outliner homes to be built near
21	that area, that when you look at the sliding
22	mile, makes that change class locations to

Page 262
where they have to change out pipe and
increase it. There may be some things there
that we look at, that here's from the public
side of maintaining a high level of safety,
but also looking at the environmental impacts
and looking at what industry is telling us on
cost. So you know, we're trying to hear all
sides and trying to consider things that take
that into place.
But again, this is just a bullet
throwing out to hear comments. It's not
something that we have discussed fully or even
planned at this point to write a regulation
on.
But anyway, this is a summary of
the report. Again, we're finished with it; it
has been routed. And again, any of you that
attended our workshop in April and gave us
comments in May, we appreciate it. And thank
you. That should be it.
CHAIR HONORABLE: Thank you,
Steve. Are there any questions regarding the

	Page 263
1	class location issue? Don?
2	MR. STURSMA: Don Stursma, gas
3	committee. I'd just like to point out that
4	this is actually kind of one piece of a larger
5	puzzle; and one of those pieces is perhaps,
6	shouldn't some of the integrity management
7	principles be extended to any pipeline in
8	Class 3 or 4 area? Even if it's not an HCA?
9	Which all of a sudden makes you want to make
10	sure that the class location actually
11	represents risk.
12	There are a lot of talks on the
13	big lines, and they have a PAR in excess of
14	660 feet. I've got a lot of 4, 6, 8 inch
15	lines. Some of the smaller lower pressure
16	ones, the PIR may not really get in outside
17	the easement. So now you're, if you impose an
18	expensive new regulations on lines in a Class
19	3 or even a Class 2 area, but my PIR is 100
20	feet and the nearest house is 300 feet away,
21	you know, what purpose is served by spending
22	additional regulations and the additional

1	
	Page 264
1	finances of the company on that piece of pipe?
2	So it's almost like maybe there should,
3	something like was done with the integrity
4	management rules where you can figure your
5	HCA's either way, either in a class location
6	basis or on a PIR basis.
7	Maybe some system could be devised
8	where you can determine class location in the
9	traditional way; or some PIR-based method that
10	would do a better job of accounting what is
11	actually at risk from this pipeline instead of
12	just what's within a certain distance of it.
13	So I think that is maybe something down the
14	road that should be considered, especially if
15	it ties into increased requirements for Class
16	3, 4 or even 2 areas. Like one of the things
17	that was thrown around for a Class 2 location
18	would be a house. Or building within 660 feet
19	of the pipeline, certain integrity management
20	things would kick in. One house is 500 feet
21	away from a 200 foot PIR, I'm sorry, that's
22	not going to make any sense. Anyhow.

Page 265 1 Something for future consideration. 2 MR. WIESE: All right. Thanks, 3 And reminding everyone, if we actually Don. 4 go anywhere, if we ever get the report out, 5 you know that we'll go through rulemaking so the committee will be fully engaged in that 6 7 whole thing. But, and I'm taking over temporarily again. I'm doing my Al Haig. 8 So with that, I'll recognize Chad Zamarin. 9 10 MR. ZAMARIN: Thanks. Chad 11 Zamarin, Cheniere. So just we end on an 12 exciting note, I figured this is an area of passion. 13 I think Don's point is an example of why I would beg that you do something with 14 this; because to even continue talking about 15 16 class locations, a concept that dates to the 17 fifties, that does not as effectively as PIR analysis and other tools, quantify where we 18 have added risk or potential impact; using it 19 to make decisions around pipe replacement, 20 21 around integrity assessments, around risk assessments, is just fundamentally flawed. 22

	Page 266
1	We've learned so much since the fifties. So
2	at one company alone, we spent over three
3	hundred million dollars in the last ten years
4	replacing perfectly good pipe in areas that in
5	many cases, would never have impacted a home
6	in its radius. And that needs to be fixed.
7	So I would beg that we address
8	this issue, not just publish a report.
9	Because I think there is one area that we've
10	demonstrated we've learned a lot. I think it
11	was part of the original cost benefit analysis
12	of the IM Rule and we can do way better than
13	class location. I know it's complex, and it's
14	all over the code, but it just drives me crazy
15	when we talk about a Class 3 location as
16	inherently being a risk to your area, when it
17	could be a 6 inch pipeline with a, 50 pound
18	PIR that would never touch a living home. So,
19	thanks.
20	MR. WIESE: Now look what you did.
21	You made him put his card back up.
22	MR. ZAMARIN: I told you I wanted

	Page 267
1	us to end on an exciting note.
2	MR. WIESE: And I'll just say,
3	it's a good topic for the committee to talk
4	about in the future because a lot of things
5	come into play with you. And we have said
6	publically by the way, that philosophically,
7	we agree. Okay? The problem is, in a
8	practical sense, some operators lack the
9	information necessary and they don't apply the
10	conservatism they need to in order for us all
11	to feel comfortable if that house that's a
12	hundred yards outside of the PIR is okay.
13	So I think it's really, so I just
14	wanted to say, I agree with you
15	philosophically and I think most of us do.
16	With good sound information and conservative
17	applications where your information is less
18	certain, then I think it works, right? But
19	it's, there's a lot in inertia on this for
20	those who haven't been involved in class
21	location discussions; largely because it has
22	been around for so long, and so many parts of

	Page 268
1	the code are predicated on it. So the liquid
2	guys are saying, thank God. But with that,
3	I'll butt out of it, sorry.
4	CHAIR HONORABLE: Rick and then
5	Don.
6	MR. KUPREWICZ: Just real quick.
7	And I appreciate the assistance in getting the
8	report out, get it all going here. But from
9	a public perspective, one way to get something
10	and having a productive discussion moving
11	forward, is the public needs to see where
12	we're at on IMP 2.0. If you don't have that
13	out clearly or some semblance that there's an
14	improvement in the integrity management
15	rulemaking or integrity management process,
16	the public's going to come at you in spades.
17	They're going to have no confidence in the
18	process and I think you have a very good
19	discussion here. We don't want you to waste
20	your money. We don't want ineffective,
21	inefficient regulation. We want effective
22	regulation that's productive. And right now,

	Page 269
1	we keep getting a lot of questions, I know
2	myself, I won't speak for Carl, but along the
3	lines of where in the heck?
4	We know 2.0 is needed. We don't
5	quite understand where it's going to be
6	finalized. And so that could be an obstacle
7	to this discussion. Very good comments here.
8	Support both sides of this. But until we have
9	some other understanding of how effective the
10	next step's going to be, there's a lot of
11	people in this room, the companies, they did
12	IMP 1.0 very effectively. But also, there are
13	companies who did not do it very effectively
14	and we've had some very expensive, serious
15	tragedies in the last ten years. And I'll
16	shut up. Thank you.
17	CHAIR HONORABLE: Don?
18	MR. STURSMA: Don Stursma again.
19	Real fast. One of the issues with the whole
20	class location thing is the concept is so
21	imbedded in Part 192, if you start mucking
22	with the class location definition, you start

	Page 270
1	risking a total rewrite of Part 192 and I at
2	least, don't want to go there. But I think if
3	we look at different ways of defining class
4	location along the lines of what I talked
5	about earlier, I think we can come up with
6	something that would leave the rest of the
7	code intact and we wouldn't have that issue.
8	At least that would certainly be the goal.
9	CHAIR HONORABLE: Thank you. Don?
10	Are you done? Okay. Anyone else? I just
11	have to check with Don; you never know. He
12	might want to say, and another thing. Anyone
13	else? Now's your chance.
14	Well, we've had a robust couple of
15	days here at the Joint Committee; even though
16	we haven't taken up a rulemaking, I've really
17	been very glad to be here. I've learned a lot
18	in the last couple of days, and also a lot of
19	progress that we've observed as well on some
20	ongoing issues. So thank you for your
21	dedication and thank you for your service;
22	because it's making the work that we do

ĺ	
	Page 271
1	collectively better. And I will yield to
2	Jeff.
3	MR. WIESE: So, officially, I
4	think the meeting is over. We can stop the
5	transcript.
6	(Whereupon, the above-entitled
7	matter went off the record at 2:57 p.m.)
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
	Noal P. Gross and Co. Inc.

				
A	accidents 143:18	142:10 145:21	admirable 104:12	40:21 41:4 64:4
\$41 75:7	145:17	156:6	ADMIRAL 117:5	65:19 69:4 141:17
a.m 1:14 4:2 125:20	accolade 9:12 11:6	acutely 77:11	admission 121:19	146:14 150:15
125:21	accomplish 234:2	add 20:11 77:21	ado 6:14 8:4 63:13	244:15 245:8
abatement 75:9	accomplished	100:4,5,6,12,13	126:17	agree 9:11 98:6
abilities 181:21	82:17,20	100:13 130:12	adopted 218:14	104:17 113:16
ability 194:15	accomplishments	147:9 160:6	advance 48:18	126:15 158:18
216:19 228:14	175:12	172:16 199:13	advanced 19:5	160:15 164:14
able 5:21 7:9,10	account 203:10,21	213:3 214:8 222:6	56:14 250:11	223:15 238:18
28:22 55:19 57:10	accountability	224:15 236:17	advances 110:16	240:10,19 267:7
63:22 92:19 93:5	155:12 163:10	238:8 239:6	advice 8:16 97:18	267:14
130:16 160:14	accountable 156:8	242:18 243:22	133:4 236:21	agreed 169:1
167:21 194:17,19	160:18 163:13	added 26:22 100:4	advising 79:17	237:13 244:7
194:22	accounting 102:2	127:13 209:12	advisory 1:3,6,16	agreed-to 131:2
above-entitled	102:11 264:10	265:19	2:1 7:17,18	agreeing 61:19
125:19 172:10	accounts 71:12	adding 100:15	132:20 145:15	agreement 169:18
271:6	accurately 231:16	addition 76:1 91:1	188:13,17,20	225:16 228:19
abrupt 27:21,22	achieve 223:12	123:17 230:4	192:3 200:18	236:6 246:15
38:8,19	233:3 237:18	additional 74:4	206:5 208:15,18	agreements 31:19
abruptly 38:22	242:2	147:14 150:11	214:15 233:10 236:11	ahead 92:9 98:21
absence 120:9	achieving 60:10 219:12	175:21 217:15		101:18 110:5,20
absolutely 121:7		263:22,22 address 65:7 72:11	advocacy 126:13 advocate 83:8	249:13 aided 31:5
absorb 15:19 16:14	acidify 24:18		advocates 128:15	aimed 86:21 88:12
16:16 66:1	acknowledge 109:11	77:12,15 153:21 195:17 203:14	aerosol 15:8	ain't 99:1
absorbing 20:15	acknowledged	212:11 245:20	aerosols 15:7	air 30:20,22 36:5
abundance 44:7	164:12	266:7	affect 256:9,10,11	49:18 119:16
48:7	act 119:16 126:4	addressed 106:18	affiliated 12:5	143:22 161:15
abundant 29:16	163:21 177:8	107:8 118:2	aftermath 206:6	163:6
51:6 58:21	250:4,13	204:10,22 205:20	afternoon 197:5	aircraft 43:21 71:3
abut 60:22	action 50:8,11 55:5	addressing 48:11	249:17	Al 265:8
AC 214:5	245:19	204:19	AGA 130:15 254:5	Alan 2:11 126:15
academic 53:20	actions 52:21 54:8	adequate 58:9	agencies 88:10	127:8,20 133:3
Academy 9:5,12	54:14 152:2 170:8	225:1 242:1	143:21 174:14	139:19 143:14
11:7,14 27:19	170:11,12 252:5	adequately 226:4	178:15 185:7	198:20 216:1
66:20 accelerate 51:17	260:1,8	adjourning 170:17	190:11 220:22	Alan's 128:6
56:2,4 66:5,6	active 128:6,7	Adjournment 3:21	247:22 248:7,14	Alaska 31:9
accelerated 124:17	208:12 216:22	adjust 5:19 6:6	agency 52:2,20	algorithm 78:1
accelerating 55:7	actively 52:2	administered	174:4 200:8	alignment 227:22
85:19	activities 27:3	173:19	204:18 245:6	alliterating 198:8
accept 197:16	95:12 96:1,20	administers 47:2	agenda 7:19 46:11	alliteration 198:9
accept 197.10 acceptability 154:4	119:4 121:6,22	administration	81:14 173:8,8	allotted 127:19
accepted 72:16	196:3 209:1	8:20 48:8 174:4	198:18 216:3	allow 39:14 49:3
access 70:5 187:17	activity 27:4 97:4	administration's	222:14	61:13 228:14
accident 152:19	199:11 216:17	103:8	ages 17:20	247:7 256:16
243:7	acts 164:1	Administrator	aggressive 152:9	allowable 204:13
accidentally 90:5	actual 68:1 70:16	174:10 251:4	ago 18:11,14 36:18	253:15

allowed 102:20	100:14,20 108:14	157:13 218:9	265:12 266:9,16	asset 226:2,16
166:17 186:9	109:3 166:14	262:19 268:7	areas 96:8 105:13	231:4
allows 123:20	177:6 215:21	appreciated 128:16	116:6 132:9 138:5	assets 225:2,4,11
234:5 235:15	235:20	appreciation 228:7	138:7 143:12	225:15 226:4
alluded 69:5	answered 236:15	approach 46:6 59:5	150:12 175:11,12	227:2 232:10
alphabet 198:12	answering 88:16	59:7 62:2 78:14	177:11 178:1,2,10	234:18
Alpine 2:21 10:22	answers 129:12	94:15 115:7	192:9,13 193:14	assign 138:2
alternate 192:5	Antarctica 11:22	119:13 129:5	194:12 195:14,21	assigned 127:8
207:16	40:20,21	237:2 246:13,18	196:16 210:7	assigning 153:16
alternative 72:20	anthropogenic	252:10,13,19,22	225:10 227:22	182:12
108:6	100:1	256:17 257:12,13	240:11 256:1,20	assignment 138:1
alternatives 56:21	anticipate 133:21	257:13 259:3,5	264:16 266:4	assistance 5:22
251:22 257:15	anybody 99:14	261:15	arena 122:9	87:18 268:7
259:21	239:3	approached 223:3	argue 65:5 74:5	Assistant 2:17 9:17
Alvarez 66:18	anymore 29:11	approaches 53:4	108:3	46:20 47:1
America 14:15	30:22	59:3 86:4 248:15	argument 65:13	Associate 62:13
199:6 201:2	anyway 113:6	253:4 254:9 261:7	67:7 104:2 155:11	associated 184:12
American 47:8	154:7 166:8	appropriate 8:15	Arkansas 5:22 6:15	186:11 191:1
ammonia 44:10	262:15	93:12 144:8 177:7	ARMSTRONG 2:2	232:8
144:19	APGA 101:3 254:5	177:20 192:7,15	arranged 131:3	association 47:8
amount 15:17	API 229:13 230:12	approval 60:3	arrangement 87:12	81:22 82:12 83:8
17:17 18:3,9	apologize 4:11	194:10	arrive 239:16	83:15 88:6 128:14
23:19 27:2 31:14	37:11 63:4 136:9	approve 192:21	Artic 10:22 30:6,11	assume 8:17,22
32:1 44:9 66:10	163:15 196:9	193:19 194:1	articulates 103:7	212:6
76:2 90:4 91:11	apparent 186:2	197:7	aside 78:3	assuming 57:8
95:10 142:14	appears 102:13,16	approved 183:7	asked 8:7 10:4,14	assumption 212:22
151:9	223:5	185:18 191:17	11:15 73:4 89:7	234:20
amounts 16:22	applaud 158:10	220:15	89:13 116:1	assumptions 73:5
amp 98:12	Applause 125:14	Approximately	118:14 126:15	assurance 179:12
amputated 42:13	apple 196:12 200:6	191:20	174:4 187:13	assure 84:12
anaerobic 22:17	applicable 84:19	April 66:21 250:15	191:22 250:12	assuring 83:17
33:6	application 220:18	262:18	asking 164:16	Atlantic 28:10
analogy 112:9	applications	arctic 2:21 28:5,6	165:9 177:10	atmosphere 12:4,6
analysis 47:3 50:2	267:17	28:18 29:1 30:2	219:19	15:22 18:10 19:1
53:12 230:1	applied 185:9	30:10,12,17,19	asks 152:14 250:5	20:12 22:20 23:18
265:18 266:11	227:3 246:22	33:8 191:3	ASME 230:11,11	23:20,21 24:4,19
Analyzer 43:20	253:13	area 29:15 57:7	aspect 208:5	25:22 27:1 28:6
and/or 231:2	applies 151:14	61:9 89:12 91:16	210:14	29:20 32:17 33:1
ANDREW 1:19	183:22 246:11	103:14 186:15	aspects 179:8 184:5	33:10 41:2 50:18
anecdotally 115:10	apply 122:1 123:19	187:13,19 189:16	198:9	64:9,14,17,20
angles 48:5	231:16 242:14	190:4,6,15 194:5	assess 147:20	65:3 66:3 90:5
anhydrous 144:19	267:9	196:1 199:11	152:16	91:6 100:14
animal 99:4	appointed 172:15	203:8 208:8 215:5	assessed 150:14	120:15
animals 23:4 43:17	appraisal 182:20	215:7 217:22	assessment 73:9	atmospheric 53:11
99:15 100:4,6	appreciate 7:2	218:1 245:8 247:8	assessments 150:15	attack 95:9
annual 171:7,8	60:17 63:14 105:9	253:5 256:6	159:20,21 265:21	attempted 99:14
answer 45:17 100:2	109:9 113:6	261:21 263:8,19	265:22	attendance 224:4
	1		1	1

attended 262:18	114:22 123:4	121:6 122:3	believe 17:9 55:21	153:5 208:6
attention 7:3 101:6	125:4 126:3	162:17 192:18	85:14 102:9	263:13
attest 99:2	138:11,12 142:7	258:2,7,14,14	121:16 122:5	bigger 25:20,22
attorneys 237:16	149:13,13 154:14	bases 219:17 220:1	155:2 157:7	39:22 77:9 163:4
237:17	168:5 172:4,5,13	basic 13:18 45:11	187:21 195:15	184:5
attracted 61:20	172:22 173:1	50:2 68:22 108:14	218:17,18 237:21	biggest 26:15 30:7
62:5	174:4,5,11 188:20	basically 33:5	bell 245:11	38:20 43:22 44:5
audience 101:5	199:2 205:10	64:13 65:12 69:6	bellybutton 192:6	78:17 162:5
August 250:10	206:4 209:16	70:6 79:9 114:4	benchmark 174:15	213:12
author 27:20	220:6 223:2	128:11 135:5	benchmarked	bill 102:15
authored 66:18	227:17 236:1,21	157:12 175:6	178:15	billed 102:14
Authorities 170:3	243:2 246:4 249:1	223:11 247:5	benefit 85:15 90:21	billion 13:9 39:18
authority 184:20	266:21	basics 8:21 11:18	94:5 120:10	111:6
228:13 246:7	background 62:22	104:6	266:11	billions 111:12
247:7	83:13 99:17	basin 71:4	benefits 60:10	bin 78:1
authorization 47:5	backlog 175:21	basis 61:21 63:2	84:16 86:20	bio 9:14 81:17
automatically	176:1 191:14	105:22 137:3	best 52:3 57:5	bit 10:15 34:9
143:6	Bacon 224:8 237:5	175:22 180:10	58:22 59:20 83:22	35:13 43:5 53:15
available 56:17	bacteria 22:17	243:20 264:6,6	84:11 91:9 101:15	83:13 89:11,14
72:11 73:4 129:21	27:15 44:6	bathtub 135:12	104:18 141:9	99:7 106:20
181:17 182:4	bad 4:12 66:17	211:7	210:2 223:12	148:14 149:2
185:5	67:9 122:1 165:13	battle 221:4	229:7 237:20	179:17 196:21
average 36:19	211:14	BEACH 1:17	246:12	206:3 226:11
40:15 178:13	badgering 9:10	bear 59:4 60:8	bet 75:16 244:3	228:5 235:8
avoid 126:2 261:8	bag 163:6	124:8 175:22	better 20:16 53:1,8	242:16 243:7
aware 77:11 80:9	bailiwick 218:2	217:16	62:2,12 69:5	black 65:16
188:10	Bakken 202:16	beat 173:12	71:20 72:13 75:18	blame 45:13 103:20
awareness 79:21	balance 20:1,2	beats 246:19	76:9,10 78:5	blaming 43:9 45:11
80:11	100:16 106:13	beautiful 144:8	80:20 93:15,16	blank 111:6
awkward 141:5	181:5,10	becoming 182:16	96:8,21 97:4	bleed 73:16,16 92:3
axel 45:7	balances 102:17	beg 123:7 172:3	125:8 157:21	blood 21:7
axis 139:2	180:16	265:14 266:7	167:1 184:3	blow 57:1 91:11
В	ball 112:19	began 40:21 174:14	187:18 188:12	blow-down 93:15
$\overline{\mathbf{B} 2:4}$	ballgame's 112:19	beginning 28:21	207:11 236:9	95:18
B31.3 230:12	Ballroom 1:14	218:20 219:9	245:4 264:10	blow-downs 95:7
B31.8 253:17 255:2	bang 78:17 92:4 bar 73:12	begins 30:13 227:4	266:12 271:1	96:6
back 7:16 14:3,5		229:5 235:18	beyond 78:13 90:2	blowdowns 261:13
15:5 16:14,15	bare 93:9 151:9 barely 34:9	begs 72:21 begun 175:17	124:3 200:14 250:7 251:18,19	blowing 91:22 98:7 245:11
17:11,13 18:10	Barnett 202:17	behalf 49:9 88:13	255:22	blown 91:13
22:5 26:19 27:10	Barnhill 238:11	224:1 235:21	bifurcated 259:5	blue 28:12 30:6
27:12 34:6 36:8	barrel 144:5	behavior 157:9	big 12:16 13:19	31:6 136:6,13
40:16 43:20 66:2	barrels 143:19	171:5,21	14:4 28:13 39:2	board 124:14
66:21 75:14 81:13	144:1,1,2 145:8	behavioral 229:21	46:4 77:12 79:11	168:16
89:9 91:17 95:3	145:12 146:19	230:2	93:1 104:1 110:21	Bob 61:4
104:5 109:7	based 50:3 54:6	beings 16:8 26:9	115:3 124:4 129:6	boiler 230:11
110:15 113:22	68:18,20 70:14,21	27:14 44:9	129:10 149:18	boogeyman 103:20
	55.15,25 7 5.1 1,21	2/12/11/2	12/10 11/10	100.20
L				

	_	_	_	
boom 202:9 211:20	broad 55:16 257:2	bulletins 188:13	calls 227:13	130:14 135:11
booms 211:18,21	broader 240:8	200:19 208:18	calmer 148:21	146:16 165:22
boots 246:10	256:8	bunch 25:10 26:4	calories 45:15,16	169:5,6 170:19
borrowing 192:22	broadly 12:8,9	26:17 30:17 32:20	45:19,22	171:15 173:12
boss 97:15	broken 23:8 243:1	104:9 150:9 151:2	CAMERON 2:13	269:2
Boston 76:22 77:8	brought 59:4 60:7	burn 34:7	Campbell 1:19	Carl's 171:8
90:13,14	159:1 175:21	burner 68:5 74:9	104:14,14	carry-over 137:15
bottle 30:21	180:8 244:12	burping 23:5	Canada 22:11	cars 76:15
bottom-up 53:12	Brownstein 1:18	business 9:6 26:21	31:14	case 68:9 69:17,21
70:6,16,21 71:6	10:5 53:16 61:1	44:19,20,22 69:22	Canadian 201:12	149:14 156:13
71:10,15,19	63:15 113:11	120:3 121:15	candidate 207:10	167:20 181:4
boundaries 226:18	118:4 162:22	198:10 239:5	208:1	187:15 192:8,10
247:5	164:22 165:3	245:9 260:3	canvassed 226:6	192:14 196:15
bounds 177:13	Bruno 148:1	busy 58:16 208:8	capability 108:6	197:4,15,19
bout 181:18	210:16	butt 268:3	194:21	211:13 237:1
bovine 48:6	BSEE 186:18	buy 13:22	capable 29:4	238:5
box 167:10 218:10	189:17 247:22	byproducts 99:4	239:15	cases 80:3 112:10
218:10	bubble 159:13		capacity 34:14	196:15 213:22
boy 99:2	buck 78:17 92:4	$\frac{C}{C}$	82:15	266:5
brains 23:5	bucket 120:21	C 1:22 2:3,3 4:1	capita 13:1,14	cast 77:5 90:16
brand 182:15	buckets 114:5	19:2	capital 78:7 119:1	91:7 92:22 93:8
break 81:6,12 89:9	120:21	C-O-N-T-E-N-T-S	119:6 124:14	casts 151:11
97:12,14 123:4	bucks 40:10	3:1	capture 71:15	cataloged 191:15
125:10,17 196:19	budget 30:15	cab 4:9	91:16 98:8 117:18	catastrophic
198:2	budgets 57:9	Caddo 194:18	147:6 148:6	115:20
breakdown 133:20	bug 111:11	cadre 179:18	captured 60:20	catch 5:19 217:11
138:5	build 169:2	CAFO's 44:2,5	101:5	catchall 234:8
breakeven 67:13	building 39:18	calculate 16:9	capturing 61:15	catches 163:3
breakout 192:10	208:5,9 210:2	17:12 19:14	71:14 90:17	categories 158:4
breaks 64:21	216:20 235:3	calculated 19:4	car 79:3,9	category 158:6
BREATHITT 1:18	241:19 264:18	197:22	carbon 22:22 25:1	255:8
Brian 2:2 117:4	buildings 51:11	calculations 192:8	31:19 32:1 50:13	cathodic 213:1
155:17	256:5	California 190:17 197:14	64:7,12,21 65:4	caught 231:12
brief 11:16 103:11	built 40:4 202:10	call 3:2 15:12 22:6	65:14,16 66:8	causal 134:10,12
briefing 3:3,5,7,10	210:21 220:16	22:9 55:5 65:15	67:6 72:19 75:7,9	136:6 149:16
3:14,18 7:20	232:21 234:18,20		75:15 105:19,20	cause 26:15 86:9
198:19 222:14	241:3 261:20	71:17 72:16 101:22 112:4	106:2,10	140:7,10 149:22
249:15 251:14	bulk 4:5	101:22 112:4	card 266:21	194:12 214:2
briefly 26:18 40:13	bullet 16:17 111:5	124:18 126:2	cards 7:5 98:19	causes 33:19 35:1
123:8 224:11	111:15 112:7	131:21 192:6	113:10	119:5
bright 104:4	147:17 206:21	200:7 237:4,17	care 16:12 30:16	causing 43:9
brighter 108:21	208:14 214:14	called 9:9 30:19	213:4 226:4	115:18 213:18 Colging 10:16 27:18
bring 124:7 186:9 192:5	257:10 261:6 262:10	35:1 41:3 50:9	careful 111:14	Celsius 19:16 37:18 38:3
bringing 4:11 54:4	bulletin 188:17,21	112:13 132:4	166:4 233:1 carefully 17:3	38:3 center 54:4 83:2
83:1	192:3 206:6	199:7 211:7	32:13	121:14
brings 83:21 125:4	208:15 214:15	calling 46:17	Carl 2:6 106:15,16	century 38:5
511125 05.21 125.4	200.13 214.13		Call 2.0 100.13,10	contury 50.5
		•		•

	I	I	1	
certain 95:11 137:5	216:1,8 220:5,8	218:4 256:20	28:5,6	227:1 228:9
179:16 182:14	222:8 238:4 239:9	changing 26:10	cities 38:13,16	232:20 234:1,17
205:5 212:7	244:21 245:2	75:5 196:13	citizen 104:10	241:2 248:3
242:11 246:20	247:11 249:11	206:12 247:6	city 39:3 40:3,4,8	260:17,18 261:4
247:1 264:12,19	262:21 268:4	257:5,11	76:17 101:2 147:4	clearly 32:9 232:15
267:18	269:17 270:9	characterize	civil 152:15,18,22	234:13,16,19
certainly 6:21 35:9	Chair's 218:7	114:12	155:14,15 171:20	245:15 268:13
43:8 46:4 88:15	Chairman 57:13	charge 149:7	clarification	click 79:14 134:6
89:21 90:19 100:6	123:6 173:1	charged 40:9	226:20	clicked 78:21
108:6 122:8	220:21 222:19	CHARLES 2:5	clarify 228:14,18	clicking 134:6
199:19 203:16	Chairwoman 11:10	chart 136:3	233:8 235:16	climate 11:16 12:2
204:1,10 208:6,7	challenge 50:15	chartered 224:12	clarifying 236:7	12:9 14:10,13
213:6 214:7	77:9,13 80:12	charts 137:20	clarity 225:4,15	18:1 20:4,5,12
228:10 233:12	110:6 116:15	138:2 139:5 140:8	227:6	30:4,9 33:18
270:8	132:14 217:19	149:16	class 3:18 20:19	34:17,19,21 35:3
CFC's 16:22	230:16 231:5,10	cheap 74:17 75:8	21:11 30:3 41:20	36:9 38:8 42:9
CFR 177:9 180:3	231:20 237:8	check 11:12 71:1	45:12 101:13,13	43:10 44:16 45:5
181:19 228:4	challenged 80:1	111:6 182:6	101:14,16 249:15	47:20 48:11 50:8
234:16 235:17	113:5	270:11	249:20,22 250:3,8	50:11 51:14 62:15
CFR-covered	challenges 49:6	checking 84:20	250:15 251:20,22	65:7,14,15 66:17
233:5	111:16 175:13	154:14 178:21	252:11,17 253:5,6	67:11 78:20 99:5
Chad 1:22 89:13	237:16	checks 180:16	253:8,9,10,11,11	107:5 117:21
94:10,11 97:6,20	chance 60:16 62:11	Cheniere 94:12	253:12,19 254:2,4	climatologists
120:19 121:1,2	113:6 270:13	121:3 156:2	254:7,11,12,15,16	37:13
155:22 156:1	change 11:16 12:9	216:10 223:19	254:18,19 255:2	close 6:2 63:3
216:6,8,9 222:17	13:19 20:13 21:19	240:16 265:11	255:15,21,22	116:12 145:9,10
222:20 223:15,17	22:1 26:15 27:21	Cheryl 1:19 2:14	256:3,3,7,15,18	147:4 171:11
223:18 237:5,12	28:14 31:10,11	6:3 103:3 104:13	256:20 257:5,11	191:17 209:8
239:6,10,19	33:18 35:3 37:22	104:14 251:14	257:17,18 258:3	213:11
240:16 249:12	38:8 42:9 43:10	Cheryl's 124:13	258:22 260:8	closer 17:20 71:11
261:12 265:9,10	44:16 45:5 48:11	Chief 62:14 131:13	261:6,22 263:1,8	closing 170:17
Chad's 220:6	50:11 99:6 117:22	160:9	263:10,18,19	clouds 15:7
chain 53:19 59:2,6	140:1 162:16	child 164:7	264:5,8,15,17	co-chair 130:15
69:10 74:8 75:13 75:20 76:2	171:4,21 204:3	China 12:22 13:6	265:16 266:13,15	CO2 16:19 17:4,5,6
75:20 76:3	218:5 256:18	107:12,15,20	267:20 269:20,22	18:12 22:2,2,4,19
chair 1:17 6:16	257:8 259:17,19	choice 166:20	270:3	24:18 25:1,7
20:21 82:12 83:4	261:22 262:1 changed 174:1	238:14 choir 55:12 213:9	classic 17:14	34:16,19,21 37:8 39:9 41:1 43:9
85:1 98:14 99:19	0		classification 193:3 193:3	44:13 65:7 144:17
100:21 103:2 104:11 106:14	194:8 197:7 257:7 261:18	chosen 191:10 Christina 130:15	classified 193:5	44:13 65:7 144:17 146:15
104.11 100.14	changes 13:17 18:4	Chuck 160:6,21,22	classify 133:13	CO2e 73:11
116:22 117:4	25:15,16,17 27:22	162:21 165:6	clause 246:10	coal 12:21 32:2
110.22 117.4	30:14 36:9 37:2,4	166:1 239:21	clean 58:21 85:17	67:14 72:20
123:3,7,9,11	37:19 38:19	circle 252:14,20	119:16	coast 24:13 31:7
125:2 170:17	189:15,17 199:10	253:2 258:6	cleaner 87:10	178:16 186:18
172:1 173:2 196:6	203:4,6,7,11,17	circles 252:13	cleaning 165:16	189:8,16 192:22
198:4,16 199:1	204:5 205:3,12	circulation 25:17	clear 169:22 170:22	193:2,4 203:9
	10.110 200.0,12			1,00 . ,. 1 00.,
L				

i		1		
241:16	149:14 158:11	220:13 234:1	188:22 189:6	compilation 40:12
coastal 193:6	159:12	commend 118:6	191:7 196:9	complains 19:18
coat 210:19	collection 184:7,10	comment 105:15	233:10 235:22	complementary
coating 210:20,20	collectively 271:1	109:10 146:17	236:11 237:6	228:4 242:1
212:17,22 213:8	college 48:1	154:20 155:21	239:22 245:4	completed 251:2
213:12	colloquial 15:18	156:3 157:22	260:7 263:3 265:6	completely 40:7
code 203:1,13	color 142:10	220:7 239:22	267:3 270:15	49:21 131:2
205:1,20 214:8	Colorado 2:21	244:1	committees 84:9	158:18 176:19
230:11 253:17,18	25:13 43:19 69:17	comments 12:7	91:4 174:10 196:1	completeness 182:7
253:20 254:22	69:18 77:22	56:11 61:1 101:11	200:18 239:14	complex 226:12
258:2 260:20	Colorado's 14:15	157:12 189:12	common 11:11	230:17 266:13
266:14 268:1	Colorado/Boulder	216:2 238:6	212:12 226:7	complexity 231:17
270:7	10:20	250:20 251:7	229:16	compliance 74:12
coffee 10:9	combination	254:5 255:19	communication	152:2 155:9 170:7
Cognizant 63:17	233:21 259:14	256:2 257:22	226:19	170:10,12 179:8
cold 15:2 19:4,10	combo 105:16	258:16 262:11,19	communications	186:9 195:1
19:10 22:9 25:3	106:12	269:7	187:21 188:12	compliant 152:8
28:16 30:20,21	come 9:11 26:19	commerce 232:11	communities 49:19	complications
colder 15:12,14	27:10,12 28:8	234:16	58:10 116:10	167:3
25:16 40:17	33:19 34:6 51:9	commercial 59:9	community 64:12	component 118:3
Colette 1:15,17 8:6	60:1 61:6 72:10	80:5	126:13 176:5	composite 91:20,21
82:3 88:19 97:10	81:12 89:9 95:5	Commission 2:20	compact 139:10	composition
126:1 172:18	107:4 116:7 122:7	82:11	companies 52:22	128:12
238:7	126:16 133:2	commissioned	53:18 54:14,20	comprehensive
Colette's 82:19	141:1 143:19	72:22	55:4 84:4,19	65:6
122:14	147:22 154:4	Commissioner 2:19	89:18 90:1 92:6	compressor 56:12
collaborate 221:19	168:5 169:17	5:22 9:20 57:14	94:2 96:16 119:10	95:6 96:12
239:1	171:18 182:9	81:18 82:10 173:3	120:1,2,2,16,16	compressors 73:19
collaborating	199:2 204:21	commissioners	128:19,20 151:2	73:20 91:15 96:7
105:6 244:16	205:10 216:6	58:7 80:1 82:1,4	163:10 186:7	comprised 9:15
collaboration 54:3	217:15 220:21	82:13 84:10,22	219:6 269:11,13	con's 250:22
111:21 125:6	221:18 225:16	88:20	company 111:1	concentrated 44:1
collaborative	226:13,22 246:15	commissions 84:8	121:10 137:7	concentration 23:2
224:18 227:19	247:19 248:17	commitments	145:7 158:15	concept 87:15
collaboratively	252:22 253:2,14	54:20	162:8 264:1 266:2	121:5 162:10
122:11	267:5 268:16	committed 85:2	company's 74:12	240:10 256:8
collage 210:5	270:5	112:13 121:8,11	compare 71:5	265:16 269:20
colleague 6:14	comes 14:22 29:21	committee 1:3,4,6,7	compared 27:2	concern 68:22
66:18	40:6 85:13 105:20	1:16 2:1 7:17,18	163:16	243:21
colleagues 66:19	113:4	8:3,9 10:7,15 61:9	comparing 163:20	concerned 61:22
collect 8:16 26:13	comfort 5:9	62:8 81:20 82:5	163:21	concerns 187:7
129:19 131:18	comfortable 192:19	89:17 99:1 104:15	compelling 117:17	243:10 260:10
147:15 159:3,4,6	218:22 254:7	119:22 131:22	compensated 102:7	conclude 88:4
159:7	267:11	132:20 145:15	compete 121:19	concluded 67:12
collected 71:18	coming 16:5 31:20	155:20 157:12	competing 122:17	74:6 242:13
185:9	61:11 79:2 80:2	161:1 167:14	competition 124:13	conclusion 67:3
collecting 136:14	82:6 161:21 217:6	169:22 187:2,4,6	244:6,8	242:4 252:4
	I	I	I	I

conclusions 256:21	259:2,22 260:9	162:2,3 163:3	115:4	cores 11:22
condensed 182:1	261:16 262:8	165:7,11	contributions 99:5	corner 5:5 254:17
condition 203:7	consideration	contaminate 143:8	109:9	corners 238:15
conditions 29:7	118:22 255:14	143:9,10	control 93:15 145:5	cornfield 85:12
136:12,13,15	265:1	contamination	158:4 180:17	correct 102:18
conducted 137:5	considerations	161:18	204:3 219:5,9	126:8 184:14
178:22	206:11 260:13	contemplated	233:15	192:1 224:15
conducting 50:1	considered 204:15	247:15	controlling 66:8,9	corrections 183:8,9
57:7	206:1 207:3,5	contents 251:11	controls 30:3 96:11	183:13,14
conference 131:21	214:22 242:9	context 22:1 67:1	209:14	correctly 105:5
153:20 227:12	257:15 259:4	121:13 141:15	controversial	196:16
conferred 46:10	264:14	142:8,21 143:1,11	126:21	corresponding
97:10	considering 58:5	162:15,18 164:16	controversy 126:22	170:7
confidence 268:17	119:15 139:16	222:12	convened 1:13 52:6	corrosion 138:9
confident 86:17	206:12,16 214:19	contingency 179:22	55:17 246:3	149:18 207:8,9
239:16	252:3	187:13,19	conversation 43:7	212:14 213:18
conflict 166:11	consistent 137:11	continual 48:17	43:8 52:8 54:4,8	214:2
245:9,18	138:12 210:9	continually 53:6	54:12 56:2 59:21	cost 73:5,9,10 74:4
confusion 223:6	229:11	185:10	60:8 61:2 66:15	74:5,15 75:4,6
225:10	consists 229:15	continue 39:5	97:17,19 113:16	81:3 118:10,13
Congress 21:18	constant 21:20	52:14 55:19 93:11	113:22 115:1	119:5 121:18
57:9 152:14 260:5	221:4	93:18 94:3 96:11	122:10 123:18	139:12,13,19
Congressional	constantly 84:20	97:17 105:4,8	124:20 151:15	140:3 146:7,11
251:2	constitutes 226:14	186:14 195:17,20	160:1 170:19	147:13,16 149:17
Congressmen	constraint 135:7	195:21 221:19	conversations	262:7 266:11
174:9	constructing 50:3	246:16 265:15	26:12 60:14 63:12	costs 74:12 161:5,7
conjecture 54:5	construction 3:10	continued 58:8	199:9	161:10
consensus 228:9	199:4 200:3	109:5	conversion 3:11	Counsel 62:14
230:13	201:17,20 202:4	continues 53:13	198:20 201:9	count 93:8
consensus-driven	208:4,16 209:19	132:13	conversions 203:3	counted 31:21
83:20	210:3,15 215:2,3	continuing 8:18	204:22 205:2	counting 148:8
consequence 77:7	215:15 216:15	54:8 88:7 106:4	converted 201:6	countless 21:11
132:9 138:5	217:9,16,22 218:6	198:8	202:11	countries 12:22
150:12 163:5	221:18 230:9	continuous 39:15	convince 225:22	13:2,5,5 108:10
164:8 252:10	constructions	39:22	241:22	country 48:16,21
258:14	198:19	continuously	cooled 25:5	48:22 49:10 53:21
conservatism	constructive	185:14 195:19	cools 15:9 36:10	60:4 67:17 84:10
267:10	115:14	contract 209:19	coordinating 187:1	111:9 116:3 222:2
conservative 38:5,6	constructiveness	contractor 209:16	187:4 188:21	232:13
267:16	111:22	209:22	coordinator 184:16	couple 4:16 8:6
consider 9:11 11:6	consume 45:20,22	contractors 179:2	185:22	10:4,14 12:14
95:15 128:3	consumers 83:18	183:20 221:2	coordinators	18:15 22:7 26:16
134:19 143:1	84:5	contribute 57:16	194:16,16	28:3 31:12 32:6
147:13,15 203:16	contacted 185:5	contributed 53:21	copy 181:16 193:9	34:5 39:12 48:5
206:14 207:18,21	containment	202:19	coral 40:5	53:17 103:12
249:4 251:1 254:9	145:12 146:20	contributes 10:17	core 19:5 84:17	105:13 109:2,14
256:16 258:19	147:2 161:16	contribution 104:5	229:16 231:19	109:16 155:15
	1	1	I	I

,	1	1	1	
161:1 166:3	205:13,18 248:21	140:7,10 149:21	156:20 208:19	defend 111:7
167:15 170:20	crummy 162:3	150:7	days 114:18 122:8	Defense 62:16
200:21 206:7,7,13	cryo 232:6	damages 91:8	153:7 162:10	defer 198:6 238:5
208:12 210:4	crystals 15:9	damn 74:17 196:13	169:19,20 189:14	deference 89:10
224:4 270:14,18	cubic 74:10	dangerous 112:6	196:11 201:14	deficiencies 179:13
coupling 90:7	cultivation 23:4	166:19	270:15,18	179:15 183:8,11
course 123:12	43:16	dark 66:1 107:13	deal 44:16,17 45:5	188:1 191:19,21
150:3 172:20,20	cultural 229:21	255:13	55:3 65:6 67:22	deficiency 194:11
180:5 202:8	cups 34:3	darn 19:10	82:21 89:19	define 231:13 233:1
207:19 210:21	current 38:6 39:1	data 32:18 52:11	116:12 136:16	233:8 235:14
211:6 260:9	47:20 68:16 124:9	52:16 55:8 69:2,5	161:19 199:12	248:11
cover 149:17	144:4 185:4	71:18 72:13 78:19	211:3 214:9	defined 248:2
219:15,17,22	currently 51:20	94:17 97:3 104:22	dealing 139:1	defining 232:10
243:3	72:9 73:4 115:7	105:4,5 123:18	140:11,14 204:18	246:20 270:3
coverage 225:2	115:17 116:1	124:5,6 126:11	214:11 215:9	definitely 20:13
covered 205:5	119:15 129:19	128:3,4 129:3,13	218:3,6	21:8 24:10 163:2
covering 22:10	195:3 220:18	129:19,21,22	deals 215:18,19	164:3 165:20
28:19 244:9	currents 213:18	131:18 134:7,17	dealt 205:14	202:6
covers 204:9 210:7	curriculum 218:4	147:12,15 148:7	debate 68:1 110:7	definition 20:5
cows 99:3 100:12	curve 39:10 73:10	150:19 158:9	130:4 138:20	110:11 146:3
cozy 19:9	101:19 110:5,20	159:3,4 167:17	257:1	226:14 231:14
CP 213:3,6,21	135:12 211:6,8	169:10 170:2	debated 134:16	234:5 235:13
crabbing 45:15	curves 35:18	date 76:21 251:7	decade 90:1	236:2 257:20,21
crack 239:15	customer 80:6	dates 265:16	decades 48:16 51:9	269:22
cracking 207:8	102:5	Daugherty 2:9	88:11 161:22	definitions 144:6
craft 235:12	customers 80:16	126:9,19 130:8	241:2	256:1
Craig 2:6 247:12	101:16 102:16	131:1 132:18	decay 15:1 64:9	degree 36:19 37:21
247:13,18	cut 6:21 77:1 144:9	134:11 136:10,21	December 58:14	37:22
cranks 28:5	172:6 209:7	139:3,22 140:16	65:11	degrees 19:2,16,16
crash 163:7	cycle 11:1 22:16	147:17 150:8	decided 4:6 97:11	32:6 37:18 38:2
crazy 266:14	135:20,21 137:14	151:14,17 154:6	191:8	40:17
create 66:1 71:21	137:15 210:11	154:11 158:18	decides 191:7	dehydration 232:5
81:1 163:9 187:19	211:3,8 221:18	190:9 222:16,18	decision 123:20	Delaware 42:19,20
227:19	243:17	236:17 242:18	223:8	delegating 221:3
created 34:10 85:9	cycles 150:16	245:21 247:18	decisions 105:3	delineate 225:13
176:22 183:18	cyclic 203:19	249:5,8	122:5,14 210:22	231:4 233:5 236:2
194:14	cyclical 137:1	Dave 2:12,14 172:3	211:2 265:20	deliver 84:4 118:19
creates 34:15		173:11,13,14,18	decline 56:3 151:7	235:22
credit 93:6	D	174:18,18,22	declining 55:21	deliverable 231:11
crews 124:2	D 1:15,17 4:1 57:8	175:2 198:5,8	dedicate 175:20	236:10
criteria 144:4	57:15 58:12 61:4	204:9	dedicated 86:5	delivers 233:20
233:4 234:1	98:3 105:10	Dave's 172:3	183:19	248:21
critical 89:5	117:18	198:12	dedication 270:21	delivery 59:13
criticism 107:4	dad 26:12	David 2:11 173:9	deep 36:3 174:3	232:14
cross 227:10	daily 63:2	day 5:1 7:6 79:4,10	188:15	demand 217:5
crowd 4:20	damage 86:9 91:2,5	103:22 119:13	deeper 134:7	demonstrate 55:20
crude 201:7,10,12	91:5 93:19 138:10	128:18 130:14,14	defects 91:22	demonstrated
		l · · · ·	l	l

266:10	detectible 138:6,6,8	240:12 243:19	discretion 172:1	56:11 60:13 61:21
demonstrates 55:9	detection 56:18,20	245:12 248:7,8,12	discuss 53:3 179:16	62:4 70:4,6,17
DENISE 1:17	determine 14:17	254:9 255:17	199:1 259:1,21	71:2 74:21 76:13
densely 85:10	186:10 192:14	270:3	discussed 117:21	86:4 89:12,14,18
density 256:1	264:8	differential 67:18	196:21 257:15	90:2 91:9 94:2,3
Dent 237:5	determined 177:17	differently 93:5	262:12	106:22 107:3
Denton 2:3 224:2	204:12,14 212:8	217:2 242:16	discussing 177:19	108:10,11 120:8
deny 20:18 21:15	236:9	difficult 107:20	discussion 3:4,5,8	120:17 124:22
194:10	determining	108:3 217:10	3:12,16,19 7:7	125:7 127:15
denying 20:18	197:15	226:13	97:9 110:9 111:4	128:22 129:1,9
Department 1:1	deterrent 157:5	digestion 99:12	123:14 125:13	151:21 152:9
2:8,18 31:18	develop 50:20 78:1	digestive 99:2	126:11 154:2	151:21 152:5
46:22 51:2,19	80:15 147:19	dike 40:5	159:19 184:6	160:15 162:12
55:6 57:6 60:6	168:16	dilemma 223:4	209:18 222:11	171:19 174:6,15
depending 59:7	developed 50:4	DIMP 110:10,17	247:20 254:21	174:16 175:10
153:9	128:5 135:10	111:21	268:10,19 269:7	174.10 175.10
deploy 78:7 168:17	developing 49:14	dinosaur 99:11	discussions 8:12,18	229:22 230:1
deployed 163:6	108:6	dioxide 22:22 64:7	87:12 107:5 109:6	239:5 247:2
depressed 41:21	development 62:18	64:12,21 65:5,14	109:14 111:18	259:5 247:2
deputies 126:6,6	110:10 244:4	66:9 67:6	117:8 267:21	265:8
deputized 126:4	device 233:15	directed 50:20	Disney 42:3,4,5,7	dollar 79:18 80:7
Deputy 2:17 9:17	devices 73:16,17	91:18 96:18	dispute 121:22	119:1
46:20 47:1	92:4 234:3	directing 5:8	disruptions 109:1	dollars 39:18 73:11
derate 253:14	devised 264:7	direction 37:11	distance 145:6	74:1 78:7 111:7
derive 50:16	devote 79:17	157:14 162:13	264:12	111:13 124:9
derived 253:16	devoting 80:17	203:6 205:19	distinguish 145:14	266:3
describe 62:4 129:8	dialogue 6:22 188:1	244:15,19	distributed 20:7	domain 35:20 72:6
description 197:18	diameter 92:22	directly 188:14	distribution 31:11	domani 35.20 72.0 domestic 47:2 48:7
design 62:19 207:4	255:4 258:8,14	Director 10:21	52:10 54:20 57:17	58:21 201:13
226:10 229:20	die 103:22 221:16	175:2,6	68:8 69:12 70:1	domestically 51:6
230:8 231:18	222:7	dirt 26:22 27:2,4,8	74:21 75:10,21	domesticated 23:4
	died 142:11 221:13	dirty 239:1	,	43:17 99:15 100:3
241:4 253:10,13 256:4 258:17,18	diesel 67:16,19	disagree 121:5	89:12,18 90:9 92:6 94:2 120:2	43.17 99.13 100.3
,	difference 19:12	-		DOMOTOR 2:10
258:19,20 259:3 259:10	37:16 71:7,12,13	disappears 64:18 64:22	120:22 121:1 138:17,19 149:12	Don 98:21,21 99:1
Designated 2:9	102:2,11,12,13	disappointed 90:19	151:10 253:22	244:21 245:3
designed 225:6,8	differences 71:20	discharge 181:4	256:9 261:3	263:1,2 265:3
234:18 241:11	228:8	192:8,10,14	ditch 212:4	268:5 269:17,18
	different 48:5 69:6	192:8,10,14	Division 175:3	,
designing 241:18 desire 229:3	73:7 85:11 90:10	196:15 197:4,16	DNA 120:13	270:9,11 Don's 265:13
despite 110:16	95:14 120:10,21	discharges 164:4	Diva 120:13 Doctor 46:17	DONALD 1:21
destroyed 34:11	,	187:15	documented 184:2	door 5:5,10
detail 182:4 236:15	122:17 131:17	disclosable 181:15		door 5:5,10 doors 5:2
	144:6 158:3	disclosed 181:15	documenting 188:6 DOE 9:17 55:18	
detailed 224:7 241:9	164:13 170:21			dot 79:1,5 102:8,18
	210:6,7 212:16	disclosure 181:2	87:13,16 88:1	189:5,18 246:6
details 14:14 33:4	226:10 233:2,22	discounted 134:18	doing 10:16 21:10	dots 79:6
detect 196:22	233:22 234:7,7	discourteous 63:5	35:4 53:17 56:6	doubled 44:9
	1	1	I	1

,				1
downs 91:12 137:4	drove 77:7	117:16,22 118:3	either 12:21 86:4	Enbridge 190:8
downside 49:21	dry 42:5 73:19	121:6 122:6 171:1	95:6 115:15	encounter 101:13
downstream 51:20	dual 223:5	171:3	135:19 142:1,4	encourage 171:13
52:8	due 52:19,21 96:5	economies 51:10	166:22 168:1	encouraging 55:3
downward 144:12	142:11	economy 50:22	191:3 201:4 203:6	85:22
dozen 134:19	Duke 47:9	51:15 75:16	220:2,4 237:22	ended 138:21 142:5
Dr 2:17,21 9:9,16	dumped 174:19	EDF 53:17 104:21	264:5,5	ends 133:21 153:21
9:16 10:18,19	duplicates 176:14	107:4	electric 62:19	229:4 235:17
11:9 46:16 47:1	dust 27:1	EDF's 62:16 107:3	electronic 182:9	enemy 167:21
47:12,14,17 48:2	Dutch 40:8	edits 189:20	element 86:12	energy 2:19 13:1
53:7 87:1 99:21	dwell 63:21	EDS 10:10	elementary 232:2	13:11,11 14:20,21
103:5,6,13 106:19	dynamic 35:20	educate 83:22	elements 179:9,16	15:5,20,20,21,21
107:8,17 109:7	106:9	227:18	179:17 188:5,18	16:2,3 17:17
123:6,10,11,13		educating 228:6	192:1 193:10	18:20 20:1,2,3,5
draft 189:12	E E	EERE 56:15	229:16,19,21	20:15,20 23:17,21
drafted 233:11	E 4:1,1	effect 16:19 65:18	elevated 57:12	24:4 25:21 30:4
drain 197:1,13	EA 202:13	67:4 241:5	eliminated 149:9	30:15 34:10,11
DRAKE 1:19	eager 58:16	effective 64:5 65:3	149:19 191:14	44:14 45:10 46:1
dramatically	Eagle 202:16	70:19 74:15 75:4	elliptical 17:22	46:3,3,5 47:1,9
162:16	earlier 5:20 94:17	81:3 95:2 132:12	embarked 69:3	50:17 51:2,19
draw-down 91:14	146:2,18 177:19	151:19 155:19	emergency 5:1	52:5 56:14 57:6
drier 25:12,18	184:3 192:2	162:7 235:3	166:12 175:3	60:6 62:14 94:12
38:12	193:16 196:10,21	268:21 269:9	emission 7:20	103:10 105:16
drill 11:22	209:6 211:7	effectively 48:19	71:22 78:22 85:13	108:21 121:3
drilling 119:2,6	261:12 270:5 early 10:8 12:3	217:4 265:17	94:20	202:9,19,20
drills 176:7 188:6	75:1 87:15 135:19	269:12,13	emissions 3:3 50:10	223:19
189:22 195:22	211:2,8 238:20	effectiveness 73:6	50:22 51:3,18	energy's 26:6 46:22
196:2	250:13	151:22	52:4,13,17 64:13	energy-absorbing
drink 29:22	earn 118:21 121:20	efficiency 56:12	65:8 66:22 72:10	30:8
drive 43:18 90:3	earth 14:22 17:18	57:17 96:12	72:15 74:8 75:19	enforce 181:19
91:8,15 93:14	18:3 20:4,6 41:1	efficient 49:17 58:8	76:2,5,18 79:2	184:20
94:4 163:11 164:6	99:9 101:9 164:18	84:16 85:17 87:10	86:22 87:4 89:19	enforcement 152:6
230:2 driven 52:2 4 54:17	Earth's 15:19,20	98:5 261:6	90:8,21 95:5 96:4	154:1,22 155:2
driven 53:2,4 54:17 108:1	16:14 18:22 19:6	efficiently 48:22 50:5 96:9	96:6,11,21 97:4	171:21 181:21
driver 51:5 59:15	20:12 44:10 64:6	effort 56:13 164:18	114:7,13,14,16	184:19 185:8 197:9
59:18 60:9 117:19	65:4	195:3 224:22	117:10,20 149:8 emitted 16:8 90:4	
119:22	easement 263:17	232:5	emitter 95:20	engage 74:2 159:11 159:16
drivers 121:6	easier 108:22	efforts 52:14 55:8	emphasize 111:22	engaged 52:2 90:1
drives 120:13	141:20	56:6,9 58:3,6	115:5	174:13 186:17
266:14	easy 31:10 80:16	62:17 67:1 86:21	employed 84:7	187:10 188:5
driving 76:17 79:3	112:6,16 166:10	89:21 92:7 93:6	employee 183:22	208:22 265:6
79:9 89:20 90:19	216:6 247:9	96:22 110:17	229:22	engagement 229:22
96:2	eating 44:19,22	egregious 179:14	employees 120:6,16	engaging 176:2
drop 27:13	Ebola's 103:21	eight 85:21 153:8	179:1,4 180:9	195:22
dropped 31:1	economic 49:4	176:10	en 173:6	engineers 40:9
drops 36:12	50:17 51:8 87:7	eighty 195:2	enact 58:3	enormous 34:13
		<u>B</u> y 1/0.2		
L				

		1		
enter 166:17	199:8 200:2	219:1 223:20	257:21	253:1
Enterprise 224:9	204:11 210:13	230:5 238:22	expanding 51:9	extended 250:7
entertain 63:10	213:10 264:14	248:10 252:18	187:3 257:3	263:7
entertaining 63:9	essence 178:21	265:13	expands 36:1	extension 118:10
199:16	essentially 19:1	examples 28:3	expansion 251:17	extensive 214:2
entire 30:13 255:21	establish 8:7	130:1 132:7,15	251:18,20	extent 7:9 29:5
entirely 29:14 65:1	126:14 130:22	138:10 211:15	expansions 59:17	78:13 214:16
98:6	194:22	233:7	expect 39:11 58:13	extra 113:6
entity 128:19	established 180:18	excavation 140:7,9	58:14 72:2 140:6	extraction 31:3
environment 20:20	206:19 223:11	149:21 150:7	154:1 160:12	extrapolated 222:3
132:3 139:18	225:19	excellent 64:1	189:9 205:8 213:5	eye 189:14
143:4,6,14 145:18	estimate 38:6 68:16	94:10 101:3,3	213:8 217:8	
146:13 155:8,10	72:17	109:14 236:18	229:16	F
164:4 165:12	estimates 69:1	239:10	expectations	F 1:19 2:4
environmental	estimating 71:11	excess 263:13	209:15	face 21:7 164:17
13:16 44:17 49:5	ethics 35:4 239:2	excitement 22:14	expected 192:11	175:14
52:1,20 62:15	evacuation 95:19	22:15	expecting 215:12	faces 47:19
84:15 85:15 86:20	evacuations 96:10	exciting 265:12	expeditious 6:20	facet 95:14
94:5 120:10	evaluate 153:12	267:1	expensive 74:19	facilities 70:17
121:12,17 122:4	250:5	exclude 144:14,16	263:18 269:14	223:4,10 226:12
122:12 127:5	evaluating 158:14	145:1 181:1	experience 250:19	230:3,10,17,20,22
139:10 161:11,18	evaporation 20:8	excluded 146:15	experienced 180:12	231:2,3 232:3,5,8
262:5	24:4	excuse 146:9 152:5	experiment 20:22	232:12,15,17,21
envy 90:14	evening 6:18	245:4	34:2,6	233:2,22 234:7,13
Eocene 40:20	event 4:22 26:1	executed 244:8	experimentation	234:22 235:6,7
EPA 61:6 69:2	eventually 13:20	executive 251:12	34:1	241:2,12,12,19
89:22 92:8 93:7	37:3 137:13	exercise 20:19	expertise 103:14	243:8,12,14,17
96:19 106:5	221:14 222:6	21:10 163:19	174:13	246:17,21 247:1,5
119:15 186:18	everybody 16:2	170:16 171:22	experts 112:11	250:1
248:11	110:3 111:9	189:2 190:4,7,14	226:7	facility 180:20
EPA's 68:16 71:11	218:15 260:12	190:21 247:15	explain 80:16	226:15,15,22
72:16	261:13	exercises 176:7	112:14 142:8	227:4 229:4,5
episodic 28:14	everybody's 101:6	187:3 188:7	explaining 137:21	231:9,17 232:20
equal 27:14 32:1	everyone's 16:5	189:22 190:2,3,12	explanation 101:9	233:6,6,16,19,21
44:13 85:9	evidence 25:20	195:22	exploration 59:13	234:11 235:16
equally 34:5	32:5 114:10	exert 245:5 247:7	export 47:4 107:14	236:4 246:11
equator 19:9	exactly 229:6	exerted 245:7	108:17 221:14	fact 27:14 31:5
equipment 59:8	example 18:12 29:8	exhaust 96:6	exporter 108:9	33:11 63:17 70:14
233:17	29:9 36:13 39:2	existing 93:7 119:8	exporting 108:8	80:2 115:15 116:2
equivalent 79:3,5,9	40:3 44:8 56:21	158:9 216:18	exposed 65:21,21	116:13 118:20
_242:1	67:14 69:22 73:15	254:8 256:16	express 34:20	128:16 158:19
Erie 29:10,13,14	76:14 77:3 78:20	257:6,9 259:6,16	78:19	163:3 165:11
erosive 27:6	79:1 88:18 95:15	260:17 261:17	expressed 23:18	243:18
ERW 207:1	103:21 112:10	exists 231:4	87:5	fact-based 9:7
escalators 5:5	133:11 137:7	expand 255:22	expressing 87:6	126:11
especially 101:8	145:7 185:19	257:17	expression 78:17	factor 146:7,12
112:8 140:12	211:13,15,17	expanded 51:13	extend 123:13	147:13 207:3
	l	I	I	I

,			1	
211:22 256:4	farm 99:2 161:21	fellow 10:21 107:18	finds 114:19	flawed 265:22
258:17,19,20	farmers 45:13,14	169:8	Fine 136:10,11	Fleck 1:20 89:16,17
259:3,10	45:16	felt 2:3 150:2	finger 34:7,7	94:8 119:20,21
factors 96:3 134:10	farms 116:9 165:13	fence 110:3	fingered 27:19	157:11,11 159:10
134:12 136:6	farther 17:19 243:7	FERC 103:4	finish 154:14	fleet 96:12
149:16 253:10	fascinating 5:15	216:13 220:11	finished 262:16	flights 5:19,20
255:3 258:18	109:8	221:11	fire 5:5 148:12,16	172:15
facts 61:19 103:16	fashion 74:22	fertilizer 27:11,16	first 5:13 7:14	flip 128:10 148:13
103:17	fast 13:18 14:4	44:7	26:18 42:20 43:1	150:9
faculty 47:9	27:18 93:22 149:3	fewer 152:6 168:9	43:1 54:17 60:12	floor 196:6
Fahrenheit 19:17	149:5,6 269:19	fidelity 37:8	72:6 75:11 77:2	Florida 42:2
fail 38:16 157:3	faster 17:4 61:18	field 114:17 169:19	79:18,21 84:15	flow 137:11 175:9
failed 157:2	fat-tail 114:14	188:9	88:13 99:6 104:16	199:20 203:5
failure 38:9 115:21	fatalities 139:9	FIFO 43:2	109:20 132:2	flows 26:22
157:1,2 165:16	142:14,16 146:4	fifteen 98:7	133:6 167:1 169:7	flu 103:22
194:13 207:7	164:13	fifties 265:17 266:1	178:18 179:11	flushing 202:20
failures 38:18	fatality 133:15	fifty 33:21 83:16	182:12 184:22	flux 23:6
206:7,8,8 210:12	140:19 142:1	84:1 144:1	187:22 188:14	fluxes 43:15
210:16 211:9	fatally 142:4	fight 40:1 238:15	190:22 192:3	fly 71:4
212:13	fatherless 164:8	238:16	196:18 203:2	focus 52:8 54:7
fair 83:18 110:4	fatigue 203:19	figure 37:7 68:10	214:14 225:21	56:1,19 58:13
169:16 244:20	favorite 104:19	92:16 99:14,22	228:2 236:18	65:13 66:3,13
fairly 141:19	fearful 249:14	129:11 196:11	239:13 242:6,22	78:14 88:7 97:19
243:20	fears 38:20	212:6 229:6	243:10 250:2	113:16 115:9
fairness 108:2	February 29:12	231:22 236:4	fiscal 190:1	121:21 167:18
faith 122:11	Federal 2:9 57:22	238:1 248:5 264:4	fish 144:20	201:14 210:10
fall 21:13 24:6 31:7	86:21 176:3 179:1	figured 246:1 249:6	fit 179:21	213:11 217:8
112:16 225:11	179:4 180:9	265:12	fits 169:4 225:13	248:8
226:8,9 255:8	183:22 184:16	file 68:21	five 13:11 47:14,16	focused 30:9 49:12
familiar 47:19	185:22 186:16	files 182:8,9	61:5 82:18,21	51:2,16,20,21
151:13 205:15	189:10,19,19	final 58:17 131:2	92:13 106:3 137:8	55:13 56:6,10
family 142:17	190:11	133:22 153:21	137:17 153:7,8	64:11 85:19 90:6
far 5:5 13:1,8 14:4	feed 43:22 44:1	233:11	186:7 188:18	91:2 96:7 106:1
18:21 26:16 39:7	feedback 15:12	finalize 236:1	194:18 195:6,11	120:17 177:14
39:8,16 61:22	145:16 149:2	finalized 269:6	216:12 217:6	196:15 217:21
64:5 65:3 92:9	161:4 251:9 260:6	finalizing 153:15	five-plus 89:4	232:4 240:6,20
96:13 98:5 131:16	260:6	finally 110:11	fix 78:11 113:3,18	241:16
131:19 135:18	feeding 148:11,15	207:12 215:16	120:14 174:16	focusing 48:5 167:1
140:13 147:11	feeds 57:11	finances 264:1	194:2	214:7
153:15 154:5	feel 20:17 34:9	find 5:14 43:12	fixed 80:5 86:9	FOIA 180:19
199:6,11 200:20	173:4 192:19	79:22 91:16 93:4	218:10,10 266:6	183:21 follog 24:14 20:18
202:3 204:6	267:11 fools 226.2	107:19 114:20	fixing 79:18 118:1	folks 24:14 30:18
205:18 206:16	feels 226:3	158:5 170:5,9	118:21	31:8,16,17 39:17
208:13 214:13	feet 21:2,3 36:14,22	174:14 186:4	flag 31:1 flaring 115:12	42:3,18 80:2
218:5 227:9 251:8	40:7 74:10 161:22	188:1 finding 114:3-17	flaring 115:13 flashy 104:2,3	108:17 159:11
252:8 253:19	263:14,20,20	finding 114:3,17 158:17 217:10	flatulence 48:6	166:14 180:2 197:9 216:13
259:12 261:13	264:18,20	130.17 217:10	Haturence 48:0	197:9 216:13
L	1	1	1	

				-
227:7,11 231:22	268:11	front 43:18 80:13	G	120:3,5 127:3
follow 184:2 189:4	FOSC 185:22	81:1 83:2 87:22	$\overline{\mathbf{G}}$ 2:5 4:1	128:6 129:16,18
following 84:19	fossil 13:7,9,13	182:18 211:5	gaining 76:1	131:5,10,14 132:3
180:22 212:2	43:9,10,13 44:20	213:6	GALE 2:10	132:5 135:1 136:2
follows 22:13	45:7,9 46:22	fronts 61:14	gallon 144:5	138:1,16,19
food 44:14,19,22	56:14 108:1	frozen 29:13 32:11	gallons 143:21	139:20 140:5,9,12
100:18	found 45:10 109:8	FRP 186:10	game 98:3	140:22 141:4
foot 42:11,13	176:9,11,15 177:9	FRP's 184:12	Gant 2:17 9:16	143:14 146:10
258:11,13 264:21	177:10 178:12	188:14	46:17 47:1,12,14	147:11 153:18,18
footprint 44:17	179:13 183:8,10	fuel 43:10 44:20	47:17 87:1 107:8	157:11 159:17
70:20 105:19,20	197:2 199:16	58:21 67:19	123:6,10,11,13	168:7 169:10
106:2,10 227:6	four 13:10 74:1	129:15	Gant's 103:6	201:4,6,7 204:11
force 84:6 124:1	77:8 155:11	fueling 68:11 69:14	gap 157:18 225:17	205:4,4,4 206:16
forcer 65:14	176:12,16 186:7	fuels 13:8,10,13	233:3 242:9,12	207:13 214:9
forcers 65:16	191:15 195:4	43:9,13 45:7,9	gap/no 237:14	215:19 221:6,20
Ford 202:16	244:14 251:15	107:9,14 108:1	239:17 240:11	232:5 245:3,11
forecast 41:6	258:18	full 58:20 70:18	gaps 57:21 129:15	250:1 253:9,19,21
forefront 88:10	fourteen 142:4	107:9,10,13	228:11 248:5	256:11 258:22
foremost 54:18	FPR 187:18	133:18 228:7	gaps/no 238:19	260:20 263:2
Foret 224:9 237:5	fractionation 232:7	fully 109:15 113:16	gas 1:3,16 2:18	gaseous 99:3
forever 164:15	frame 35:9,10,11	262:12 265:6	7:17 12:22 16:17	gases 15:17,18,19
foreword 195:16	110:2 138:12	fumes 146:22 147:5	18:9 19:13,22	16:12,22 18:11,22
forgive 10:6 83:4,8	192:16	fun 4:4 6:18 41:21	23:20 32:2 44:3	19:19 20:12,15
forgot 63:5	framework 122:1	functioning 38:22	46:21 47:3,4,8	33:20
form 25:1 177:1	179:21 225:11,14	functions 37:5	48:6,7,14,15	gasoline 145:8
257:12	228:5,15 229:13	41:19	49:13 50:13 51:3	gate 91:19 102:4
formal 46:19 81:17	234:21 235:17,18	fund 62:16 87:16	51:7,14,18 52:9	gather 5:6
97:2,14 226:19	240:19,21 241:18	fundamental	52:17,21 53:19	gathering 68:6
formed 224:17	frameworks 226:1	119:12 121:14	55:1,22 57:17	69:11 75:2 115:9
forms 87:17	228:3	fundamentally	58:19 59:2 60:10	115:11,15,21
formula 207:4	Francis 224:9	121:4,20 155:8	62:16 64:13 66:16	116:3,9,12 123:19
forth 36:9	237:5	265:22	67:2,3,8,9,14,16	124:5 256:10
fortunately 24:21	frankly 66:14	funded 61:8	67:16,19 68:2,3,9	gauge 6:10 41:4
41:10 126:5 178:8	105:11	funky 143:17	68:18 72:19 73:22	157:1
forty 40:20 73:7	free 29:15 111:5,11	further 6:13 8:4	74:8,10 75:12,20	gears 206:3 208:3
258:9	freezes 29:2	63:13 126:17	76:3 79:4,12 80:4	general 5:8 12:9
forty-eight 202:15	frequency 16:10	228:17 233:8	84:3 85:15 87:13	85:7 140:5 145:11
forty-two 255:9	207:1	242:19	88:9 89:12,14,17	212:14 227:22
forums 61:7 90:10	frequent 243:13,20	future 13:12,15	89:17 90:4 91:6	228:19 235:1
forward 6:13 40:18	fresh 240:18	17:7 24:8 31:22	91:11,17 95:10	247:21
88:1,4,15 90:7	friction 15:1	33:11,12 44:15	99:1 101:11,22,22	generally 121:11
92:20 106:4	Friday 197:5	45:6 97:17 98:11	102:1,17 104:15	121:16 138:8
112:19 115:8	friend 9:17 109:11	108:21 128:4	104:17 105:20,21	144:21 156:12
116:18 120:12	109:13 167:12	244:15 252:5	106:5,11 107:1,6	218:13 246:2
171:18 172:22	friendly 47:18	260:1,7,13 265:1	109:21 110:1	generation 35:1
191:10 214:13	friends 9:19 26:21	267:4	115:13,16 116:5	51:12
223:8 261:16	45:2 70:2	futuristic 45:2	116:10,19 119:21	generational 113:2
	I	I	I	1

generations 64:15	10:8 11:19,21	24:17,20,22 25:2	242:8,14,15 243:5	gradual 151:7
66:11	12:7 14:3 15:7	25:8,12,15 26:4,5	245:17 247:6,16	Graham 224:8
Geologic 10:19	16:15 18:10 24:11	26:6 28:4 30:10	249:19 250:14	237:4
geological 26:21	33:4 34:11 39:3,6	31:3,20 33:1,2,3	257:11 261:5,16	grandfathered
Georgetown 1:14	39:15,20 40:16	33:10,12 34:22	264:22 268:8,16	206:15 207:17
germane 8:9	53:14 63:12 78:13	36:7 37:12 39:5	268:17 269:5,10	grandkids 35:7
getting 14:13 27:7	81:7,11 93:3	39:22 40:2,2,18	good 4:3 6:17,18	grants 87:16
43:5 54:18 70:5	97:13 98:21 104:5	44:11,12,15,18,21	9:7 15:8 17:8	graphic 65:10
78:16 90:11 92:3	111:6 113:22	46:18 48:4 51:4,7	24:7 32:5 46:8	gravitational 21:20
105:1 112:20	114:22 130:20	56:16 57:3,14	47:17 49:2 50:16	gravity 20:16,18
176:5 193:17	132:19 143:7	70:16 73:18 88:2	52:15 53:14 58:3	21:19 112:10,15
217:15 219:2,2	148:14 150:15	88:4 89:1,4 90:6	66:16 67:9 69:2	gray 142:10 178:2
260:6 268:7 269:1	152:4,11,11	92:14,15,18 93:3	75:16 76:6 77:14	178:7
gig 40:11	154:19 162:14	95:9,15 96:1,16	82:7,9 88:18 89:2	grayer 194:5
gigantic 93:2	163:12 165:13	97:12,13 103:9	97:6 108:15 113:9	great 7:5 8:3,3,5
GIUE 190:14	167:12 168:8	106:4,19 109:6	116:2 121:13,16	29:9 47:17,19
GIUE's 190:12	169:14 171:16	110:14 113:5	122:11 127:5	55:3,9 61:15
give 6:9 11:4,15	174:4,5,11 175:10	119:17 122:5	130:13 132:16	63:20 67:22 82:21
29:9 33:17 40:2	177:5 179:9 182:3	123:1 125:22	144:4 148:6	89:18 90:21 94:5
53:15 70:17	182:18 188:20	126:7 127:7,17,20	150:21 151:21	94:9 98:17 99:21
110:15 116:22	199:20 203:12	128:9,10 130:19	154:2 156:2	101:8 103:5
118:5 126:16	205:6 206:4 208:4	131:7 132:6,21	167:21 171:12	106:21 107:3
148:20 154:8	209:1 210:4	134:18,20 137:9	172:8 180:16	110:16 111:10,12
163:10 199:3	224:11 237:18	137:10,14 138:11	186:12 193:6	117:9 120:12
222:20 223:15	238:14,15 246:2	138:12 141:10,17	204:16 207:10	125:3,12,13
231:22 249:19	251:9 252:3	143:3,16,16	208:1 209:22	126:19 154:10
251:16 252:11,17	255:19 257:20	146:21,22 147:5	211:13,15,17	173:4 182:4
254:20	258:5 265:4,5	149:13 152:6	215:5,7 217:7	194:21 198:13
given 8:18 17:4	270:2	154:12 159:3	221:10 223:8,20	222:19
29:5 63:22 78:9	goal 5:15,18 58:19 153:14 154:5,7	160:11 162:12	226:1 227:10	greater 76:1 85:11 164:10 197:21
107:22 111:15	,	166:7,17 167:5,6	228:3 230:2 235:5	
124:16 235:16 gives 57:9 84:9	155:2,9 160:6 163:9 182:21	167:9 170:16,16 171:2,14,18,22	236:1 237:11,21 238:21,22 240:15	greatest 78:15 164:17
119:2	233:9 236:12	171.2,14,18,22	243:15 244:2,10	greatly 7:2 52:18
giving 137:22 242:4	242:9 270:8	172.3,0,14,17	243.13 244.2,10 248:11 249:2,17	53:21 59:21
glacial 22:10 36:12	goals 240:3,9,12	194:1,2,7,10	251:8 266:4 267:3	greenfield 216:21
37:17 40:16	242:1	194.1,2,7,10	267:16 268:18	greenhouse 15:17
glaciers 22:10	God 163:21 164:2	199:1 201:3 202:9	269:7	15:18 16:12,17,18
glad 47:22 106:22	268:2	202:18 203:2,5	Google 76:14	18:9,11,22 19:13
215:21 270:17	goes 16:14 18:4	205:13 207:19	gorillas 106:17	19:19,22 20:11,15
global 13:2 40:14	28:9,13 29:18	208:3 210:3 212:7	gotten 35:19 92:9	23:20 33:20 50:13
43:7	33:5,5 34:12 36:8	212:9 216:14,20	government 57:22	67:2 68:18 79:4
globally 24:6 31:19	149:13 196:20	216:21 218:16	155:11 190:11	79:12
36:20 100:3	going 11:1,17,18,19	220:6 221:4 222:5	238:14	Greenland 11:21
globe 14:16	13:18,19 14:3,12	222:6,7,20 223:8	grabbed 202:12	28:9
gloves 238:16	22:4,4 23:13,15	223:15 234:4,6	gradient 204:12	grid 70:2 77:10
go 4:14 5:4 9:22	23:16 24:1,5,17	235:9 237:11	206:20	79:17 241:15
	, - ,-,-,			

grief 43:11	Haig 265:8	244:11	34:14	197:19,21
grossly 98:1	Haiyan 12:15	hazardous 1:6	heating 51:10	historically 64:11
ground 43:21 48:18	half 6:12 12:18	109:22 110:8,12	heavily 238:12	225:5
73:8 90:12 212:10	16:18 191:20	110:18 129:8	heck 143:19 269:3	history 41:17 47:6
226:8	hallways 5:4	141:13,21 142:6	hell 172:20	99:8 207:7,7,22
groundwater 162:1	hand 21:12 108:5	143:7,18 146:9,9	help 49:9 55:18	246:9
group 50:20 55:16	136:3 228:15	149:15 258:20	63:11 80:14 81:2	hits 230:15
63:9 81:21 142:22	254:17	HCA 136:4,5,19,20	93:14 97:2 102:9	Hockey 22:11
222:21 223:11,21	handle 100:11	136:20 252:10,13	102:20 103:15	hold 160:18 163:13
224:2,3,18 231:11	108:22 109:1	252:14,19 254:17	105:8,12 120:7	200:9
231:20 235:20	116:14 211:22	254:18 257:13,19	125:12 144:11	holds 159:5,5
238:8,22 242:3	handling 211:10,16	257:21 263:8	180:8 183:20	hole 245:11
260:22	212:16 213:8	HCA's 135:22	200:2 208:22	holiday 213:4
group's 224:13	242:10	150:10 250:7	helped 222:11	home 5:20 6:20
233:11 236:5	hands 21:4	251:18,19 254:19	helpful 54:2 63:7	7:11 156:19 195:9
grouping 135:4	happen 13:20 17:9	264:5	236:13	266:5,18
groups 81:9 257:17	23:8,9,10,15,17	head 16:5 81:20	helping 54:3 76:4	homes 51:11 58:9
grow 32:10 36:10	24:10,21,22 25:9	headed 222:13	125:8 158:6 196:2	102:6 252:16,19
growing 13:12 17:1	25:11 26:6 33:11	244:13	239:7	261:20
17:3 32:7 218:12	33:12 60:3 110:13	heading 224:14	helps 78:1 184:13	homogenous 59:5
218:14	116:17 135:19	244:19	186:10 233:17	honest 173:22
growth 13:6,7	happened 25:4	headquarters	hemisphere 30:14	honestly 61:17
50:17 51:8 100:17	28:13 32:22 135:4	179:19	30:15	88:21
222:1	happening 13:6	hear 41:16 55:16	herbivores 99:9,17	Honorable 1:15,17
Guard 178:17	24:19 27:22 30:1	99:4 101:7 106:22	herds 99:9	6:16 83:4 87:2
186:18 189:8,16	32:13 33:13 46:6	111:19 114:13	heroic 73:5	98:14 99:19
193:1,4	46:7 53:2 54:7	115:10 117:2,2,3	hey 80:3 118:17	100:21 103:2
Guard's 193:2	55:4 67:17 171:17	117:3 137:21	127:14 149:1	104:11 106:14
guess 8:13 101:20	happens 24:21	167:18 169:11	155:14 237:3	113:9 116:22
104:4 108:2	29:17,19 30:11	198:16,16 213:13	242:8	117:4 119:17
117:13 200:8	36:4 45:19 65:20	220:2 239:9,9	high 9:12 11:6	120:18 123:3,6,7
211:16	95:21 227:5	240:1 261:3 262:7	18:16 22:5 24:1	123:9,11 125:2
guidance 235:15	happy 60:15 109:7	262:11	42:5 73:15 78:21	173:1,2 196:6
guideline 96:17	haranguing 169:12	heard 42:4 87:1	78:22 92:3 132:9	198:4,16 216:1,8
97:2	hard 73:14 76:22	97:22 106:20	138:4 150:12	220:5,8,21 222:8
guidelines 189:2,3	78:18 109:18	117:15 118:2	211:12 252:10	222:19 238:4
189:4,9	154:15 156:10	120:22 126:8,10	256:1,5 262:4	239:9 244:21
gulf 191:3 203:9	160:18	126:22 143:12	higher 27:7,8 36:21	245:2 247:11
gut 71:1	hardening 39:19	196:14,16 199:7	68:22 135:15	249:11 262:21
guts 21:7	harder 100:11	201:18 202:15,16	highest 86:7 88:13	268:4 269:17
guys 39:20 119:19	hardest 231:11	257:16,19 258:16	highly 189:14	270:9
157:7 268:2	harm 149:22	260:15,16,18	HILL 1:20	Honorable's 57:13
	152:19	hearing 117:8	hinterlands 116:11	hope 4:4 6:17 57:10
$\frac{\mathbf{H}}{\mathbf{h} + \mathbf{h} + 100.0}$	hat 93:22	hearings 174:7	hire 217:13	75:22 76:7 103:17
habit 198:8	hate 42:12	heartening 169:11	hired 40:8	110:19 126:22
habitable 19:18	haul 208:10,11	heat 20:8 23:18,19	hiring 217:19	173:4 222:8
haggle 238:18	hazard 229:22	26:4 33:15 34:4	historical 192:10	hopefully 63:10
	I		I	I

72:5 153:21,22	HVL's 144:17,17	138:7,9	import 47:4 221:12	incident 139:7,13
188:10 227:19	146:15	ill-informed 117:7	importance 8:19	142:6 148:3
235:14 236:12	hydrologic 22:16	illegal 109:20,22	35:20 50:9 63:8	152:20 202:4
hoping 63:11 92:19	hydrostatic 56:22	illustration 252:15	112:1 127:1	incidents 133:13,14
97:8 111:4	hyperbole 54:5	IM 266:12	important 14:1	133:14,19 134:9
Horizon 174:3	hyperbolic 61:20	imagine 45:1	16:21 18:1 25:7	135:3,4,6,13,19
188:16		imbedded 269:21	25:14 33:17 37:2	138:16 139:6,9
horses 99:3	<u> </u>	immediate 78:11	37:15 39:7,14	140:13,18 142:18
hose 148:12,16	ice 11:22 15:9,11	136:12,15	42:2 43:14 45:8	148:1 150:6 156:6
hospital 142:5	15:11,13 17:20	immediately 9:8	78:2 86:12 87:11	161:18
hospitalization	19:5 28:1,7,8,11	21:21	88:2 94:16 98:9	include 107:14
133:16 140:19	28:12,15,17,17,19	IMP 251:17,19,20	107:2 113:17,21	140:3 144:22
142:2	28:22 29:3,14,18	255:21 256:8	115:6 145:14	146:11 190:3
host 230:12	29:21,22 30:6,17	261:10 268:12	150:2 161:6,9,12	255:21
hot 19:9	36:5,7,10,11,16	269:12	162:19 166:6	included 161:5,14
hotel 4:6 5:7	37:6 40:19 41:10	impact 22:21,22	167:19 170:1	163:2 190:16
hour 6:12,12 63:16	65:22	30:13 67:10 98:9	199:2 206:10,14	239:6
125:16 155:11	ICF 72:22 74:6	139:13,17,17	211:4 229:19	including 32:20
hours 162:11	118:5	141:20 142:13,20	importantly 42:6	47:3 62:18 75:20
192:17,17	ICOPAR 186:19	143:5,13 144:18	81:19	189:18 209:19
house 263:20	idea 79:20 80:19	144:21 145:10,13	importation 201:12	219:16
264:18,20 267:11	103:12 113:14	146:13 147:6,8	impose 263:17	income 80:5
House-sponsored	134:4 146:18	148:4,5 200:13	impressed 27:9	incoming 16:13
87:3	148:6 156:4,14	203:19,22 211:1	impressive 26:15	183:13
housekeeping 6:4	163:1 231:22	212:18 253:20,21	improve 52:15	incorporated
huge 13:7 116:15	233:14 245:12	257:13,22 258:6,6	53:14 76:13 90:20	230:14
221:22 222:4	252:12,18 254:14	265:19	91:21 96:11	incorporating
huh 107:18	254:20	impacted 266:5	123:20 168:6	259:11 261:10
human 16:8 22:1	ideally 158:21	impactful 95:20	185:10 195:19	increase 23:19
23:14 26:9 27:14	ideas 158:13 187:7	96:13	210:3 261:7	185:16 217:8,9
43:15 44:9 107:19	233:7	impacting 54:22	improved 52:18	262:2
132:4 133:10	identification	impacts 23:7,9	57:16 187:20	increased 22:19
135:2	244:11	33:18 48:12 49:17	improvement	33:20 201:11
humans 26:14	identified 57:21	144:15 161:15	90:22 163:12	264:15
hundred 18:6	118:8 127:22	262:5	188:17 268:14	increasing 23:21
39:12,12 40:10	129:20 184:21	impermeable	improvements 76:8	32:17 91:10
83:15 103:22	186:7 191:19,21	165:14	improving 76:12	219:19
176:10,12,16	identify 127:10	implementable	91:18 185:14	increasingly
177:5 191:15	130:17 160:7	195:12	in/first 182:12	114:11
195:2,5 208:12	186:1 193:14	implemented 60:2	inadequate 115:11	incredible 49:2
243:15 266:3	226:18 227:21	178:17	incentive 118:19	83:7,7 116:4
267:12	233:17 246:21	implicate 210:15	incentives 59:9	incredibly 58:21
hundreds 41:9	identifying 129:6	implicated 212:13	inch 93:1,1 255:4	113:21
170:5,9	184:14	implication 124:11	255:10,10 258:10	independent
hurdles 246:19	ignoring 107:7	implications 24:12	258:12 263:14	219:20
hurt 163:7 193:18	III 2:5 II I 127:2 8 128:5 6	26:1 38:7	266:17	India 12:13,17,18
HVL 144:22	ILI 137:2,8 138:5,6	imply 74:3	incidences 143:11	12:22 13:8 107:12
			I	l

	1			1
107:15,20	260:11 262:6	initiatives 162:17	installed 207:15	123:16 124:4,19
Indianapolis 77:2,3	ineffective 268:20	215:6	213:15	128:18 244:16
90:13,14	inefficient 268:21	inject 45:20 46:1	instance 85:9 136:4	interesting 5:13
indicate 94:1	inequity 35:2	166:9	178:3 194:4	18:18 26:7 31:22
102:22	inertia 267:19	injured 142:5	197:20 200:19	32:22 34:14 35:8
indicator 156:11	inevitable 35:15	155:7	203:8	35:12 39:17 41:15
160:3	inevitably 87:9	injuries 139:10	instances 184:13	48:1 61:22 100:19
indicators 157:16	influence 200:10	146:4	Institute 2:21 10:22	128:16 140:17
157:16,20 158:21	influx 202:19 208:6	injury 21:8 149:22	institutions 53:20	151:18 167:14
159:18,20 162:5	inform 60:8	inland 191:4,8	insurance 13:22	interestingly 25:6
individual 168:17	information 56:10	193:10	insure 49:10,14	39:1 62:22
178:19,20 185:3,4	98:17 101:21	innate 120:1	50:1,4 58:7,20	interests 10:10
192:4	103:16,17 105:2	innovation 48:2,17	215:10 225:22	interference 213:18
individuals 128:8	151:12 153:11	innovative 77:19	228:10 229:20	213:21
180:12 190:13	159:5,9,13 163:11	inpatient 133:15	insures 86:8	intergenerational
inducing 171:4	180:22 181:3	140:19 142:2	insuring 84:3 85:3	35:2
indulge 63:19	184:7,10 195:8,9	input 57:3 128:16	107:9 194:22	interglacial 22:6
indulgence 89:6	198:1 236:19	130:18 144:3	215:8	37:14,17
172:3	267:9,16,17	148:17 199:17	intact 256:15 270:7	interim 92:15
industrial 22:20	informative 113:8	227:18 233:12	integral 20:1	intermittently
51:11 80:6	informed 59:21	235:20	integrate 195:20	128:7
industrialization	infrared 16:16	inputs 58:12	integrated 184:4,8	internal 185:7
107:21	infrastructure	inside 97:1 136:5	184:18	207:8
industrialize	24:13 26:2 38:9	insight 76:2	integrity 132:10	internally 104:20
107:21	38:15,21 48:20	insightful 47:21	136:1,16 137:1	122:17
industrialized 13:2	51:22 52:10 55:7	inspect 217:11	159:20 160:3	international 47:2
13:3	57:8,18 58:9	243:12 246:8,9,16	203:15,17,21	73:1
industries 187:22	59:14,16 68:12	inspected 243:8	205:8 209:4 211:1	interpret 231:15
industry 55:14 57:4	69:14 77:8 80:9	inspecting 156:11	212:18 214:19	interpretation 70:9
68:20 70:20 73:3	86:1,19 87:13	186:12 246:9	215:16 217:22	234:6
73:8 74:4,6 76:8	88:9 116:20 119:8	inspection 84:6	249:21 250:6	interruption 83:5,9
77:20 91:3 94:15	127:12 128:1	91:18 93:18 96:18	252:8,21 253:1	196:10
95:1,4 101:12,22	129:1,9 132:11	152:9 156:10	256:19 257:4	interstate 96:15
108:13 110:4	141:11,22 144:7	162:10,10 169:19	259:13 263:6	221:20 230:21
118:8,15 121:8,11	146:10 151:6,8	184:19 201:20	264:3,19 265:21	231:1 232:11,13
121:15 122:3	216:18 225:4,8,20	202:1,3 209:20	268:14,15	234:15 241:15
126:12 128:13	231:8 234:20	223:10 243:10,17	intend 165:8	intervals 150:13
140:2 141:2	242:11	inspections 153:5,6	intended 52:8	intrastate 221:22
156:16 157:2	infrastructures	153:7 162:9	232:13,18	intrigued 107:11
160:20 176:4	235:4	200:12 201:20	intent 238:10	introduce 81:15
188:3 215:5,13	INGAA 97:1 259:5	206:8 217:16	interaction 110:14	174:17 220:9
216:11,15 217:3	inherently 266:16	inspector 231:5	interagency 50:20	222:20
219:4,7 224:5,19	initial 137:15,17,22	inspectors 84:17,22	interest 125:16	introduced 62:12
225:5 226:7,20	224:21	85:7 88:5 184:21	131:19 134:13	introduction 63:3
227:11 235:12	Initially 134:3	186:10 188:8	232:16 257:17	82:8 251:17
245:14 247:4	initiated 190:12	206:9 208:7 227:7	interested 60:5	introductions 7:22
256:13 257:3	initiative 88:3	INSTAAR 10:21	104:22 105:5,7,14	inventory 78:4,16
				I

116:3 151:5	issue 62:6 65:7	98:14 100:22	K 1:18	170:7 173:14
176:10	82:20 83:2 99:6	103:3,4 105:7	Kate 2:13 131:12	179:1 182:1,5
inventorying 68:19	136:21 139:12	113:14 116:22	160:9	193:15 194:5
invest 56:3 80:8	142:8 144:13	127:8 152:11	keep 14:5,6,8 27:7	210:5,6 216:19
117:17 118:1	145:3 147:22	156:4 168:3	30:2 38:2 70:13	218:2 221:3
119:11	149:21 155:15	172:20 173:2	95:22 107:1	224:11 227:20
investing 77:5	156:18 165:6	175:1,6,15 176:2	108:21 120:3,5	228:14 235:18
119:7	199:12 205:11	178:14 188:15	127:3,3,21 136:22	236:14 242:7
investment 62:20	208:13 210:17	198:6 220:5,10	144:10 154:14	245:18 263:4
77:15 96:20 118:9	212:10,12,22	222:9 238:5	174:2 189:14	Kinder 70:3
123:2 124:9	213:10,16 214:11	239:20 271:2	256:14,15 259:18	kinds 112:5 167:2
investments 59:15	215:20 224:21	Jeff's 123:14 175:9	269:1	Kingdom 42:8
60:3	228:17 234:12	221:19	keeping 107:6	kinks 177:2
invite 61:1 116:7	237:2,9 239:13	Jerry 238:11	108:19,20 214:11	knew 62:6 246:12
155:20	247:19 250:5	Jersey 29:12	215:18	know 4:5 5:18,21
invited 62:8 171:7	263:1 266:8 270:7	jet 25:17 30:21	kept 138:11 144:12	8:2,16 10:2 11:13
190:10	issued 188:13 206:5	Jim 9:9,9 11:2,11	146:17 243:1	11:17,17 12:21
inviting 97:9	208:14 214:15	job 61:15 75:19	key 38:9 44:14 84:3	13:17 14:18,19
involved 8:14 11:3	issues 3:10 14:4	78:5 87:6 118:17	94:13,17 95:22	15:4,16 17:10
61:5 86:21 122:16	61:7 62:18 82:5	127:16 150:21	96:7 124:20	19:14 20:13,16,17
142:17 165:15	106:1,10 113:3	151:21 153:12	149:21 177:22	21:4,5,6,8,16 23:8
190:8 205:17	117:21 126:21	165:11 174:20	179:1,16,17	23:9,10,15,20
209:5 224:7	127:22 198:19	198:13 229:22	184:21 188:4,18	24:14 25:8 26:17
238:12 239:16	204:6 209:10	264:10	189:6 192:1,12	27:11 29:16 31:10
245:22 260:12	210:6,22 211:10	John 2:10 215:1	193:15 251:21	31:18 32:21 38:13
267:20	212:15 213:12	251:13	259:21	38:13 39:21 40:2
involvement 7:4	215:9 223:22	join 62:8 116:7	keys 61:16	42:12,18 45:4,17
involving 111:20	228:21,22 237:20	joint 1:9,13 7:16	kick 57:10 222:22	45:17,18 47:7
133:12,15 140:18	244:10 248:14	8:3 90:17 91:7	264:20	48:1 52:12,15,16
150:7 212:13	269:19 270:20	236:11 239:13	kids 35:5	53:14,14 54:15
IOI 159:21	issuing 200:18	270:15	kills 144:20	55:11 56:1,5
Iowa 99:2	item 7:19 147:21	Journal 65:12	kilometers 36:2	57:20 59:12 60:2
IPCC 23:11 38:2	153:2 173:8	journals 70:12	kind 8:16 9:3,10	61:4 62:11 63:20
41:6	198:18 216:4	JOY 2:4	10:15 35:7 61:12	64:6,8,15 65:20
iPhone 196:12	222:14	jump 21:2 139:4	62:7,9,21 85:21	65:21 70:19 71:9
iron 77:5 90:16	items 152:7 177:22	jumped 165:22	86:15 89:15 92:9	72:9,13,14 77:14
91:7 92:22 93:8	184:10,21 185:2	junk 112:4	93:21 98:12 107:7	77:19 82:2,16
151:11	209:20 214:17	Jurassic 99:12	107:12 109:16	85:2 90:7,16,16
ironic 130:9	T	jurisdiction 3:15	110:1,2 111:8	93:17 98:2 99:11
Island 2:19 9:20	$\frac{\mathbf{J}}{\mathbf{J}_{1,10,21,22}}$	222:16 241:14	112:20 116:11	99:12 100:12,15
29:11 43:4 77:1	J 1:19,21,22	245:6,7,10,16,19	120:11 122:17	100:20 103:7,20
81:19 82:11	James 2:21 10:19	jurisdictional	130:6,9 131:22	105:10 107:4
islands 32:7	January 188:16	174:9	133:5,22 134:1	108:17 109:1,9
isolation 233:19	jaw 27:13 Jeff 1:22 2:9 6:16	justice 63:22	137:13,21 145:20	113:11 117:9
isotope 33:4	7:21 8:4 11:10,15	230:19	156:13 158:6	122:21,22 123:4
isotopes 12:4	47:14 82:8 89:16	K	159:4,12 162:11	124:14 126:4
issuance 200:12	+/.14 02.0 07.10		169:4,14,15 170:4	129:10,11 130:13
	1	1	I	l

			1	l	
131:9 135:10	lack 267:8	League 22:11	211:11 235:8	lifecycle 212:3	
144:2 147:14	lag 34:22	leak 56:18,20 67:7	243:6	light 107:15 129:17	
148:5,11,16	lagging 157:15	67:12,20 68:1,11	legacy 93:8 95:17	lighter 142:9	
150:10,20 151:2,7	Lake 29:10,13,14	68:16 71:9,11	206:22	lightning 142:11,18	
152:11 153:22	lakes 29:9,16,16	78:9 79:18 85:10	legal 228:22 237:16	163:17 164:9	
154:12,15 156:7	land 15:11 21:2	85:12 95:8 101:14	246:19	lights 12:19 13:4	
157:2,3,7 158:19	24:7 36:5,7,11	109:21,22 110:12	legislate 21:18	limbo 115:8	
158:21 159:2,15	37:6 49:18 99:8	118:21 138:9	Lehman 2:11 173:9	limit 7:7 108:5	
160:17 163:17,20	landfills 44:4	207:7	174:18 175:1,2	limited 78:7 105:17	
163:21 164:1	LANNY 2:2	leakage 44:2 53:11	196:18 198:15	108:18	
167:17 173:3	lap 174:19 207:1	56:4 93:16 94:19	Lehman's 172:3	Linda 1:18 2:9	
181:6 191:9 197:5	large 22:10 29:4	leakages 52:13,17	Lesniak 2:5 160:22	126:16,18 131:9	
199:5,18 200:15	37:3 44:16 51:12	53:1,8,22 54:6,17	160:22 239:21,21	131:20 132:14	
202:17 206:17	80:5 100:4 102:3	54:22 55:10,22	lessons 84:11 185:9	164:11 169:8	
207:19 209:18	102:3,13 103:1	58:18 60:11	let's 4:6 10:12 14:9	190:9 202:2 218:2	
210:1,22 213:9,16	152:22 162:5	leaking 91:7	78:10 79:19 80:20	222:16 223:19	
215:4,5,11 218:2	225:7 230:7	leaks 30:20 71:1	80:22 81:1 98:9	224:6,15 227:15	
218:17,22 219:21	largely 44:13 51:21	74:20 75:12 77:8	104:5,6 124:15	235:10 236:16	
219:22 220:1	77:6 108:1 114:16	77:13,18 78:1,4,5	146:19 168:4	239:19 247:14	
221:14 227:7,15	120:9 267:21	78:15 79:11,15	206:3 225:18	249:12	
227:18 231:6	larger 22:22 23:5	84:20 85:7,9 86:8	237:3,9 238:1	line 41:9 92:20	
232:1 238:9	92:22 107:7 135:4	87:20 90:17 92:16	249:5,8	182:18 209:5	
241:14 242:13	263:4	94:21 101:12	letter 236:6	213:15 231:7	
243:2 245:4	largest 161:17	102:1 109:22	letting 216:5	252:15 253:6	
247:18 248:1	Las 30:12	110:9,18 113:18	level 13:14 24:10	255:6,8,13	
249:7 250:17	laser 91:1 120:17	120:14 124:3	24:17 35:14,18,21	liner 165:14,15	
260:15,16 261:4	late 135:20 163:15	136:18,18 138:6	35:22 36:3,12,17	lines 38:14 115:10	
262:7 263:21	lately 201:21	149:9,15,18	36:20 37:4,10,18	115:11,15,21	
265:5 266:13	law 21:17,19	163:17	37:21 38:1,4,10	116:3,9,12 141:13	
269:1,4 270:11	112:15	leaky 90:11	38:17 39:4,5,11	143:14 186:11	
knowing 13:22	laws 21:16	lean 168:2,8 171:3	39:14,16,19 40:15	203:20 206:15,16	
16:10 78:4 112:2	lawyers 245:22	learn 78:22 168:5	40:22 41:6,22	207:13,17 208:9	
243:5 246:14	246:3,6,7,13	239:17	42:6,22 43:3 60:2	214:1 254:13	
knowledge 9:1	lay 12:17	learned 42:10	99:15,17 129:5	263:13,15,18	
known 81:17	layer 120:11	84:11 101:14	137:12 141:14	269:3 270:4	
105:11	lead 27:20 76:7,9	185:10 266:1,10	144:7 160:14,20	lining 93:4,15	
knows 220:7,11	189:8 241:8	270:17	212:8,8 219:8	linked 185:20	
Kuprewicz 2:4	leader 108:7	leave 35:5,6 197:4	262:4	liquefied 47:4	
109:12,13 166:3	leadership 55:4,14	238:10 259:7	levels 22:4 36:13	liquid 1:6,6 2:1	
196:8,8 199:15	57:13 82:19 239:7	260:17 270:6	134:7	7:18 18:21 127:4	
268:6	leading 54:13 55:13	leaves 20:9	levers 59:3	128:6 129:5,9	
L	140:7,10 149:22	leaving 108:12	library 230:7	131:5,9,14 139:11	
$\frac{L}{L 1:20,21}$	156:11 157:16	259:16	lieu 252:11	140:1,2,18,20	
L 1.20,21 L&G 221:12	158:20 159:18	led 69:16 129:18	life 19:5 51:8 99:8	141:13,18,21	
laborious 195:3	160:3	131:9 190:4	122:22 135:20,20	142:6 143:7,8,18	
labs 53:20	leads 62:16 98:5	left 12:13 136:3	210:11 211:3,8	144:16 145:3	
1405 55.20	114:13 127:2,4	150:6 181:21	212:16	146:9,14 154:3	

				2
158:20 166:11	252:17 253:5,7	159:18 161:3	157:13 187:2	219:6 223:6
168:7 169:10	254:2,8,12 255:2	163:8 170:3 174:5	227:22 229:13	229:11,13,19
196:9 201:9	255:15,22 256:3	174:11 178:11	249:14	230:10 234:19
203:20 205:3,5,21	258:3 261:7 263:1	181:16,17 184:11	loose 153:21	236:19 250:19,22
205:22 258:20	263:10 264:5,8,17	184:22 185:2	loosey-goosey	253:21 256:5,6
268:1	266:13,15 267:21	187:14 191:10	160:17	263:12,14 266:10
liquids 161:1	269:20,22 270:4	193:6 195:7	lose 21:20 65:21	267:4,19 269:1,10
167:13 239:22	locations 187:15	210:11,16 217:1	losers 42:9	270:17,18
247:14	249:4,21,22 250:3	220:22 221:5	losing 155:7	lots 20:11 98:18
list 193:9,11 228:1	251:21 252:1,11	223:3,11 231:10	loss 28:1 100:16	loud 249:14 260:16
listed 25:11 173:7	253:8,9,19 254:4	240:13,18 252:13	102:10,13,19	260:18 261:3
listening 97:15,19	254:15 255:22	254:15 255:6	117:16	Louisiana 42:11
97:20 103:6	256:7,15,18 257:5	256:12 258:3,4	losses 102:10	47:10
listing 141:22	257:11,18 259:1	259:9,11 261:21	lost 91:11 101:21	Louisville 47:11
lists 170:10 181:13	260:8 261:22	262:3 266:20	155:12	love 21:6 112:9
little 10:15 14:21	265:16	270:3	lot 6:19 7:5 9:6	low 13:14 72:16,19
16:4 20:19 28:1	logged 183:3	looked 27:21 28:20	13:17 17:14 26:11	73:16 75:15
34:9 35:13 39:4	logical 81:12	42:11 73:2 101:4	28:19 30:9,22	141:19 207:1
43:5,17,19 73:14	long 11:1 26:12	139:18 177:17	31:15,20 34:1	lower 18:17 23:1
76:22 83:13 89:11	34:19 35:9,11	192:13,18 193:2	35:2 36:15 38:7	23:18 36:14
89:13 90:17 99:7	47:6 65:14 67:6	204:15 226:10	41:15 43:10,11,22	202:14 263:15
100:6 106:20	82:3 88:21 122:7	240:8 243:7,9	44:1 45:18 47:18	lowered 212:3
118:4 137:14	129:15 145:6	251:22 259:4,20	48:14,15 51:22	lowering 211:19
141:5 148:14	148:2 154:21	looking 6:13 14:16	52:16 53:13 61:11	lucky 130:12
160:17 163:15	172:21 196:12,21	51:16 52:3,9	75:18 87:21 91:6	lunch 6:9,10
171:22 172:6,17	208:11 211:1	57:20 59:10 69:13	92:5 94:2,3,4	170:18 173:4
177:2 179:17	212:17 213:2	72:9 75:14 88:1	95:16 98:16 100:3	200:1
196:21 202:22	238:18 241:6	91:21 92:2 112:7	102:1,6 104:20,21	lurking 42:17
226:11 243:7	267:22	127:22 128:9	102:1,0 10 1.20,21	101 mig 12.17
257:5	longer 31:7 35:9	135:9 139:16,19	108:11,20 109:6	Μ
liturgy 200:8	116:11	144:15 147:14	110:7,13,14 124:5	M 1:17 2:6
live 25:13 31:8	Longhorn 205:16	153:10 154:3	124:10 126:10	Madame 11:10
111:9,10 116:13	look 11:22 18:5	158:2,3 160:10,20	130:4,16,19	198:22
164:1	35:18 41:17 42:1	172:21 177:11	132:19 134:6	magic 42:8 111:4
lived 29:15 30:19	56:17 57:15 59:14	179:7 185:13	138:20 139:5	111:15 112:7
lively 250:19	66:22 69:9 71:17	209:16 211:18	144:18,20 148:14	magnitude 73:13
256:22 257:1	88:15 90:12,14,15	214:13 216:7	153:4 154:17	80:21
lives 166:21 167:1	94:18 95:3 104:6	217:12,14,18,20	160:10 162:1	main 96:3 214:16
living 211:2 266:18	105:18 118:16	218:1,4 220:16	165:15 166:19	mains 90:16 93:1
load 220:13	127:15 128:1,22	225:3 229:9	167:18 171:16	maintain 59:20
lobby 5:6,7	129:1,2,4 130:21	242:17 246:20	173:14 174:18	132:6 149:20
local 49:19 68:8	136:22 140:18	247:8 248:14	175:16 195:7	maintained 261:9
69:12 70:1 74:20	141:1,5,15,18	252:10 255:17	207:20 208:10	maintaining 119:7
75:10,20	142:13 143:16	259:15 261:5	209:1,10,17,19	262:4
location 3:18 181:5	144:8 146:12	262:5,6	210:1 213:22	maintenance 59:17
192:18 204:2	152:3 157:15	looks 36:22 135:12	215:4,11 216:16	91:19 93:19 96:18
249:16 250:8,16	158:1,11,20	136:8 150:10	216:16,17,20	114:9,12 115:3
,	. ,			
L				

				054.5
241:4	mantra 84:14	maximum 60:10	70:17 76:9,12	254:5
major 18:7 69:16	manufacture	204:12 253:15	92:16 93:16	membership 131:8
144:21 145:3	210:18	Mayberry 2:11	measurements	memorialize 229:1
147:22 152:19	Manufacturing	129:17 130:11	43:21 53:10,11	229:3 236:5
majority 84:5 95:5	56:15	131:6 133:9	70:21 71:5,6	memory 224:13
106:9 114:15	MAOP 204:12	134:15 136:11	measures 128:17	mention 4:15 63:5
254:6 257:8	206:18 207:16	137:19 139:21	128:20,21 129:4	96:14 131:7 133:1
makers 50:1 64:3	map 77:18 79:14	140:4 147:10	130:17 132:8,17	139:4 237:12
74:14 103:15	92:13 107:11	148:10,22 149:6	143:1 154:18	245:22
making 6:11 7:15	110:17 202:11	151:4,16 153:14	156:22 160:8,10	mentioned 53:7
49:12 58:7 65:12	Mapping 184:9	154:7,11 159:17	160:13,19 162:7	54:14 61:9 141:14
84:18 86:17 87:20	185:20 187:17	198:21,22 217:7	165:10 177:18,18	145:2 146:2,14
108:11 111:12,12	maps 76:20 77:17	MC'ed 227:15	178:12 182:21	150:15 175:16
112:5 118:9	79:20 80:11 90:12	McCLAIN 2:5	261:9	176:2 178:14
123:20 193:7	90:15	167:13,13 168:20	measuring 87:19	181:22 184:3,19
231:3 232:20	Marcellus 116:8	169:2	128:18 148:7	188:15,20 189:6
270:22	202:16	Mcf 74:1	158:7,8	192:2 193:15
man 162:10	March 29:13	mean 24:3 31:9	mechanism 85:22	194:6 206:15
manage 6:1 14:2	marginal 74:5	39:15 40:14 45:13	86:15 159:7	223:20 234:12
76:11 86:14 215:8	Mark 1:18 10:5,8,9	49:15 66:22 68:3	medium 208:11	248:6
217:3 219:8	53:16 54:9 60:22	91:5 102:1 103:11	meet 179:7 221:5	mentioning 182:19
manageable 49:22	61:20,21 62:10,13	105:17 116:10	meeting 1:9,13 4:21	238:9
managed 218:19	62:21 63:4,13	134:20 138:3,15	7:17 39:2 126:1	merge 137:13
management 76:10	81:5 90:12 162:21	138:18 142:9	130:21 148:17	merged 131:22
76:13 114:1,8	Mark's 124:13	147:10,13 151:1	153:19 171:7,8,14	message 33:17
115:2 123:16	markers 213:15	152:7,8,10,17,22	171:15,18 172:21	43:14 46:4 94:13
132:10 136:2,17	market 62:19	161:16 178:5	233:10,13 236:9	messages 44:14
137:1 158:1,2,12	118:18 203:6,11	213:5	236:11,13 271:4	met 130:13 177:8
159:21 160:4	221:15	meaning 152:6	meetings 84:8	199:10 221:15
161:7,12 168:21	markets 48:21	meaningful 152:13	97:18 148:13	242:10
203:15,17,21	Marriott 1:14	167:22 168:4,13	149:1 168:6	metaphor 140:5
204:4 205:9	marrying 235:5	168:18	227:10,12,15	meter 38:4 39:6
214:20 215:14	Marshall 148:1	means 24:5 34:17	243:1	102:3,4 233:19
217:22 219:12	210:18	78:10,22 79:6	meets 188:3	metering 75:6
229:15 230:6	Massachusetts	150:21 155:3	melt 32:3 36:5	meters 28:15,15
240:22 244:5,9	77:11	229:7 236:8	40:19,19 41:11	36:14,20,21 37:19
249:22 250:6	matches 225:19	meant 115:22	melting 29:4,20	38:1 39:9 40:18
252:8,21 253:1	material 214:6	measure 19:2 76:11	31:4 33:9	40:22 41:5,22
256:19 257:4	mates 199:17	150:1 151:19,22	melts 25:3	42:6 102:5
259:13 263:6	matter 33:11 48:13	152:13 154:22	member 142:17	methane 3:3 7:20
264:4,19 268:14	86:15 125:20	155:1,19 156:9,16	169:10 189:5	11:3 12:4,6,7
268:15	142:19 158:19	158:7,8 169:3	members 1:16 2:1	16:20 17:1 22:13
mandate 250:3	172:11 213:3	measured 12:3	83:17,21 84:2	22:15,16,19,21
mandates 214:10	271:7	165:17	87:7,18 88:11	23:1,3 25:2,6
mandatory 52:19	matters 6:4 48:9	measurement	148:20 155:20	32:16,17 33:1,9
manner 170:21	50:7 156:17	10:10 11:3 55:19	169:9,12 224:5,6	43:15,15,15,20
182:18	max 255:4	56:20 62:3 70:6	226:22 237:6	44:3 48:4,9,13
				I

,				
50:6,10,12,16,21	midstream 3:14	minutes-ish 47:15	month 102:15	249:16,17,18
50:21 51:3,18	216:17 222:15,22	misinterpretation	months 101:17	NAPSR 159:11
52:4,13,16 54:22	225:2 232:4,19	150:20	175:5 183:1	narrative 150:22
55:22 58:18 60:11	233:18 235:3	mismanaged	200:22 244:14	162:14
62:2 64:5,8,18,21	241:12	172:20	moral 214:3	narratives 137:21
65:2,2,8,16,17	migrate 41:8 147:1	missed 193:19	Morgan 70:3	138:2 153:17
66:4,4,7,14,22	147:5	236:16	morning 4:3 6:17	NARUC 57:12 58:7
67:5 71:3 72:10	migrated 130:9	missing 186:5	9:15 16:4 47:17	82:17 83:13 84:2
74:7 76:5,16,18	migration 147:6	mitigate 48:12	82:7 87:2 109:15	84:2,9 86:20 87:7
76:20 85:13 86:22	mile 133:19 258:1,2	250:8 251:20	126:20 143:13	87:18 88:5,9,13
87:4 99:5,15	258:4 259:12	mix 157:21	151:15 177:19	124:21
100:7,9,13,15,17	261:22	modal 189:18	197:6	NASA 28:2
149:8	mileage 168:1	model 59:8	motherhood 200:6	nation's 88:8
method 226:19	255:7	modeling 11:21	motherless 164:7	national 9:5,12
264:9	miles 48:20 79:4,7	models 11:20	Motorcarrier	11:14 22:11 27:19
methodologies 81:2	79:8,10 98:8	197:14,15,17,18	189:19	43:8 49:4 53:20
93:4,15	135:7 138:18,20	modern 135:17	MOU 248:2	66:20 70:2 77:10
methodology 71:13	138:22 140:20,21	151:6	Mount 101:2	79:17 81:21 82:12
96:19 253:5	141:3,4,8,8	modernization	mountains 27:6,7	83:14 88:6 127:11
255:17	145:22 149:11	55:7 87:14 90:20	move 14:3 27:3,4,8	129:2,4 137:12
methods 91:10	208:12 220:15,19	124:3 132:11	38:11 81:14 92:19	141:14 144:7
93:16 159:22	milestones 250:9	modernize 93:11	110:21 112:18	168:15 179:22,22
metric 73:12	mill 219:5	173:15	115:8 116:21	184:9 185:19
133:21,22 134:2,8	million 18:2,11,13	modernizing 90:8	127:18 131:19	186:20,22 187:1,9
134:21 135:10	18:14,14,15,17	modify 257:19	143:3 149:6 167:7	187:17 188:21
147:19 160:16	22:8 34:16,19,21	molecule 17:6	168:10 203:9	189:1 190:19
163:22 167:8	39:9 40:20 41:4	moment 5:1,9	216:3 233:15	191:1
169:15,18 170:12	48:19 138:18,20	19:19 64:4 65:19	moved 63:16 176:2	natural 2:18 12:21
202:1	138:21 141:8	141:17 146:14	movie 28:1,4	23:6 27:5 28:7
metrics 3:5 26:13	266:3	148:21 150:15	moving 13:9 14:5	32:2 44:3 46:21
126:8,14 127:10	mind 30:2 38:2	154:16 216:4	20:9 120:12 149:2	47:4 48:6,7,14,15
129:7,12,14	95:22 110:2 133:2	-	151:8 157:14	49:13,18 51:3,7
133:12 134:3,5,19	137:1 146:17	money 78:8 80:4,17	183:16 203:8	51:13,18 52:9,17
135:1 141:1 146:7	mindful 63:8 81:5	108:11,13 119:11	211:18 268:10	52:21 53:19 55:1
148:13 153:16,17	244:13	122:18,21 165:15	mucking 269:21	55:22 57:17 58:19
154:2,22 156:14	minimize 49:17	268:20	mull 133:4 147:8	59:2 60:10 62:16
158:5,13 165:19	114:6 122:22	Monica 190:15	multiple 61:14	66:16 67:2,7,9,14
167:19,22 168:19	148:4	monitor 101:17	multiyear 28:22	67:15,16,19 68:2
170:2	minimum 200:16	132:10	MURK 2:12,14	68:3,9 72:19 74:8
Metro 4:7,8	mining 27:3,3	monitored 165:17	<u> </u>	75:12,20 76:3
Miami 40:3,6,8	minor 189:17,20	monitoring 10:11		84:3 85:15 87:13
Miamians 38:11	261:8	11:3 12:5 32:13	N 4:1	88:9 89:17 100:1
MICHELE 2:4	minute 39:10 68:14	62:3 76:5,16,17	N.W 1:14	100:10,17 109:21
Michigan 148:2	97:10 141:7	113:20 201:15	name 7:14 11:12	110:1 146:10
190:5,7 210:19	143:15 210:4	204:2	82:9 249:18	150:17 201:4,6,7
Microsoft 111:9	minutes 14:11,12	Moniz 52:6	names 238:9 Nonnov 2:12	205:4,4 206:16
middle 70:13 147:4	34:5 63:19 194:18	monogram 219:1	Nanney 2:12	207:13 232:5
				l

	I	I	I	
nature 27:5,9 167:4	neighborhood 39:8	non-HCA 256:20	141:22 142:10	204:5 225:7
navigate 228:13	neither 34:10	non-ILI 138:6	143:17 144:3	230:10 235:19
237:15	net 73:21 118:8,10	nonpartisan 83:20	149:10 150:6	occur 13:19 18:8
near 261:20	118:12	normal 99:16	170:7 177:21	71:1,21 96:5
near-final 177:1	NETL 71:16	normalization	198:18 209:7	135:13 184:15
near-miss 159:2	network 140:15	141:7	212:13 215:6	occurred 142:16
nearby 6:9	232:12	normalize 140:20	217:11 222:14	occurrence 135:16
nearest 263:20	neutral 9:7	normalized 133:19	243:11 245:8	occurring 52:13
nearly 85:19	never 122:19	135:6 141:3,4	249:3 252:1	53:9 54:1
176:12 177:4	153:22 219:14	145:17 149:11	257:16 260:16	occurs 135:14
necessary 267:9	266:5,18 270:11	168:1	numbers 100:5	186:3 227:8
need 13:10 14:18	new 4:20 29:11	normalizer 138:19	105:1 134:9	248:19
14:19 15:4,16	39:2 57:7 59:17	normalizers 130:2	138:22 140:11,13	ocean 24:7 28:6,18
45:11,21 46:4,5	76:4 80:9 87:12	150:4	140:14 141:19,19	30:6 31:6 34:20
65:13 81:5 93:4	87:19 91:10,13	normally 25:4	145:21 150:16	36:2,3,5,8,11,16
98:3 99:7 103:16	93:14,22 113:19	North 31:1	152:4 162:16	37:6 64:16 65:20
105:12 111:16	119:2,6 171:8	northeast 42:18	195:10	ocean's 24:17
115:8,9 116:20	182:15,15 201:4	northern 30:14,15	numerous 180:19	OCTOBER 1:11
117:9,20 118:16	208:5 210:14	note 8:11 37:15	202:18	odd 43:12 45:10,11
119:13 122:2	239:17 254:10	74:18 77:9 125:3	nut 239:14	odds 23:22
129:15 147:15	256:17 259:9,15	146:16 168:13	0	offer 59:1 87:21
157:21 159:6	261:18,19 263:18	182:6 194:11	$\frac{0}{02:64:1}$	113:13
163:8 167:9 178:4	newer 180:14,14	265:12 267:1	o'clock 172:7,9	offers 118:15
180:21 203:7,9,16	207:15	noted 185:15 195:1	O-F 3:1	office 2:18 46:22
203:20 204:7	newly 213:14	notes 98:18	0&M 202:5 203:15	56:13,15 130:15
206:4,11 207:18	news 52:15 55:2	notice 22:7 73:20	oath 112:11,16	131:13 155:12
207:21 210:10	77:14 251:8	189:11 208:20	Obama 49:11	160:9 175:18
211:21 221:6	NGL 232:6	250:11	obesity 45:14	218:5
224:22 225:3	nice 19:8 40:12	noticed 16:3 244:4	objective 136:1,7	Officer 131:13
227:6 232:9 233:1	47:18 103:21	notifications	138:15	183:22
233:4 234:17,21	137:14 144:12	208:16	objectives 48:10	Officer's 160:9
234:22 236:1,4	nicely 6:1	notify 208:21	129:20 131:20,22	offices 188:9
251:20 260:19	night 4:4,5 13:4	notifying 209:8	129.20 131.20,22	Official 2:9
261:15 267:10	nine 175:5	notion 154:22	248:12	officially 271:3
needed 56:18 57:5	nineties 191:2	novel 221:1,5	objects 104:4	oftentimes 227:5
86:11 128:1,3,4	nitrate 44:10	November 56:16	observations	Oh 123:9 206:4
174:16 176:16	nitrogen 27:11,16	153:20	109:14 166:4	220:10
181:5 209:21	nitrous 16:21 44:6	now's 98:18 270:13	208:4	oil 2:18 3:7 12:21
245:20 256:3,12	44:11 NOAA 28:2 22:18	nowadays 208:13	observed 270:19	32:2 46:21 47:2
257:17 269:4	NOAA 28:2 32:18	NPMS 186:1 NTSP 105:17	obstacle 269:6	72:20 166:13,18
needs 113:1 116:17	142:12 NOAA's 12:5	NTSB 195:17	obvious 15:10 16:6	166:21 172:5
127:14 178:6	NOAA's 12:5	number 5:12,18	18:5 207:6 218:15	173:8,13 174:5
185:22 203:12	nod 53:15	7:20 16:16 39:21	obviously 12:20	175:8,19 176:6
204:10,14 206:1 207:4 218:19	noisy 99:13 non 144:21	66:19 78:10 87:6 100:11 102:22	92:2 101:6 134:8	177:6,8 181:9 184:4 187:5 8 12
266:6 268:11	non-detectible	100:11 102:22	144:3 151:6	184:4 187:5,8,13 189:7 190:2
negative 102:19	138:9	130:17 136:8	200:11 201:11	199:7 190:2
negative 102:19	130.7	130.17 130.8	200.11 201.11	170.10 201.4,7,11
	1	1	1	

205:13,18 221:21	207:13,17	opinion 107:16	ought 24:14 155:13	overstayed 113:12
okay 6:6,7,18 38:11	operated 204:5	opportunities	158:8 161:5	overtime 115:19
39:20 43:2 46:15	225:6,8 232:22	72:14 73:2,21	162:13 244:9	overview 11:16
65:22 68:13 81:4	241:13	74:3,15 75:4	245:13	251:12,16 252:9
107:17 109:13	operating 85:4	79:13 80:22 92:20	outcome 98:5	254:3,11
110:1 111:10	162:8 176:22	93:11 98:7	223:13,14	overwhelmed
113:10 118:9,10	180:5 182:3	opportunity 49:2,8	outcomes 57:16	243:11
126:10 134:18	185:12 191:13	61:10 73:13 80:13	58:2	oxide 44:6,11
138:2,4 140:16	196:13 197:8	88:14 118:7,13	outdated 86:1,3,18	oxides 16:22
141:2,14 145:11	200:9 204:13	119:5,9 159:16	87:8	
149:7 153:3	207:22 224:1	171:4 187:7	outer 15:5 16:2,15	$\frac{P}{P}$
162:20 163:22	226:10 231:9	opposed 80:17	outfit 71:3	P 4:1
166:15 170:15	241:4,19 253:16	115:13 119:7	outfitted 76:15	p.m 172:11,12
172:13 246:14	255:5,10	opposite 30:12	outgrowth 87:11	271:7
267:7,12 270:10	operation 88:8	238:15	outlined 206:13	pace 85:20
old 21:5 28:11,15	114:9,12 115:2	option 251:1	outliner 261:20	pacing 17:22
28:17,17 91:12	200:10 230:9	orange 12:19 79:7	output 156:5 236:5	page 195:11
248:2	operational 59:8	orbit 17:18 18:1	outreach 195:15	pages 142:7 195:6
older 77:5,8,13	95:7 96:6 123:21	order 3:2 37:19	227:13	195:7 251:15
90:11 151:8	156:14,22 182:16	38:1 57:1 74:22	outset 86:9	pain 155:17
211:10	operations 44:1,1,3	108:21 116:18	outside 20:10 99:16	paleoclimatologist
OMB 251:6 260:5	44:4 229:20 232:7	184:15 205:11	130:21 136:4,20	35:17
on-scene 184:16	232:19 241:17	267:10	148:16 174:13	Pandora's 167:10
once 137:8 160:15	operator 117:17	organization 83:1,3	177:12,12 227:14	panel 8:8 9:15 10:6
185:18 192:13	121:16,17 129:2	83:14,20 181:8	263:16 267:12	46:13 97:14
243:14	148:2 152:5 153:9	organizations	overall 67:3,10	125:12 199:14,15
one's 191:4	160:13,15 190:3,7	186:18	71:22 127:5,14	199:16
ones 5:3 17:2 25:11	192:7 197:3	original 266:11	134:8 142:13	panelists 8:1
57:22 78:11 79:7	200:14 204:5	Orleans 171:8	147:8 152:21	panels 5:13
79:8 92:17 134:3	205:6 209:13	OSHA 223:5,14	257:8	panoply 74:20
140:14 151:18	215:1 218:18	224:19 225:6	overarching	paper 65:10 66:18
153:17 165:10	operator's 145:5	226:5,8,14 227:4	240:19	71:17 251:14
207:15 252:20	146:21 147:20	227:11 228:4	overflight 71:2	papers 32:20 70:11
263:16	155:8 161:14,20	229:7 232:22	overflight's 71:14	72:3
ongoing 59:16	163:1 168:18	233:6 234:11,18	overflights 71:8,19	PAR 263:13
270:20	261:17	234:21 235:6,17	overlap 225:10,18	Paradox 30:19
online 185:18	operators 96:22	236:3,7 237:16	228:10 233:3	parallel 213:20
onsite/offsite	97:3 110:16	239:4 240:3,18,19	237:15 239:17	214:1
146:16	137:16 152:7	241:7 242:21	240:11,13 249:3	parameter 166:6
onus 86:13	157:8 166:12	243:3,9,11,13	overlaps 238:19	parameters 236:2
OPA 177:8 179:20	186:5 191:22	244:12 245:5,12	248:6	pardon 78:16
181:20	200:9 203:16	246:6,11,16 247:3	overpressure 204:1	parens 127:12
open 65:20 114:18	206:10 208:8,19	247:7 248:4	overreact 166:10	parenthetically
114:18 187:22	209:7 213:10	OSHA/PSM 229:5	oversight 128:2	75:21
opening 126:20	220:1 223:2	237:22	132:13 199:4	Parish 194:18
operate 86:14 96:9	227:17 254:6	OSRO 193:3,4	200:11 209:15,22	parse 218:11
157:4,6 170:20	256:14 267:8	OST 251:5,5 260:5	223:5 248:9	part 16:21 18:1
			l	l

		-			
20:1 23:1,2 34:18	parts 18:12,13,15	129:11 132:2	155:5 179:4	105:9 119:15	
34:21 39:7 42:2	18:17 34:16 39:9	133:8,10 135:3,11	180:12	124:21 128:21,21	
52:19 69:22 80:10	67:17 182:10	138:14 139:17	period 36:13 37:17	131:8,11 133:14	
98:4 124:20	218:12 267:22	141:1,22 142:1,4	37:17 40:16 41:2	149:10 151:21	
127:12 130:9	party 138:10	142:10,13 145:18	92:15 137:5 214:3	152:8 153:12	
133:6 163:8	219:19,20	146:13 148:5	216:14	159:6 160:10,12	
168:21 177:9	pass 21:17,19	149:22 150:20	periodic 137:3	176:9 180:8	
178:13 179:10	passed 161:8	152:20 153:3,4,8	periods 17:21 22:6	181:13 186:6	
181:20 183:16	passes 15:21	155:4,5,10 156:15	22:6,10 32:5	217:1 221:4 223:6	
188:11 199:9	passion 82:19	156:19,22 160:18	37:14 142:12	223:14 224:18	
218:20 219:10	265:13	166:7 174:13	perjury 112:13	225:9 226:5,9,16	
224:2 228:3 238:1	path 195:16	177:21 193:17	permafrost 25:3	227:3,11,16 228:3	
266:11 269:21	pattern 18:6 22:14	200:7 217:21	31:4,12,13,16	232:15 235:10	
270:1	patterns 25:17	219:6,15,16 237:2	32:9,11 33:8	236:3,7,8 237:17	
Partially 109:4	Paul 2:19 9:18,19	237:4 238:10	permanent 92:1	241:14 242:11,20	
participants 73:8	9:22 81:9,15,17	239:1,15 256:6	permanently 175:4	243:8 246:7 247:3	
participate 106:5	81:20 82:1,2,10	269:11	permission 46:14	247:6,22 248:11	
190:10	88:17,18,18	people's 116:9	81:7,10 173:10	249:18 260:2	
participated 87:3	Paul's 81:18	perceive 237:9	218:8 221:10	261:12	
190:1,4,8,15	Paula 2:17 9:16,22	percent 22:3 23:5	permits 204:19	PHMSA's 165:1	
participating 105:6	46:16,19,20 47:6	23:17 45:9 67:13	person 9:8 111:8	170:1 245:16,16	
176:6 190:18	47:12,13 60:18,20	67:21 68:17 71:9	185:4 238:11	PHMSA-regulated	
participation 7:4	61:15 63:6,6 69:5	72:17 74:7,9	personal 240:20	229:4 235:6	
188:6,8 200:17	Paula's 63:10	94:19,21 96:4,5	personally 82:22	PHMSA-related	
particular 5:14	pause 10:1,12	105:19 117:15	85:2	229:9	
13:7 56:20 115:9	19:19	118:6,9,10,11,21	personnel 84:6	phone 195:9 237:17	
135:14 139:14	pay 83:18	119:3 191:16,17	perspective 48:8	phones 6:7	
160:7 201:13	payback 73:22	201:19,22 207:14	49:8 53:5 54:16	photograph 190:13	
202:15 203:19	118:8,12	207:18	58:6 96:2 105:16	phrase 168:13	
204:17 206:14	payer 110:22	percentage 117:11	109:17 121:9,18	physical 21:16	
217:17 229:12	payers 161:8	percentages 117:14	122:4,6,12 137:22	physicists 17:13	
245:7 252:18	peak 137:9	perfect 167:20	216:15 221:2,6	19:3	
particularly 7:11	peer 70:8,10,11	perfection 213:6	228:19 230:2	physics 11:19 17:15	
18:2 50:14 77:19	penalties 152:16,18	perfectly 169:4	257:2 268:9	20:14,15,18 23:16	
199:5 201:10	155:14,15	266:4	petrochemical	24:15 35:21	
206:22	penalty 152:22	perform 92:1	232:7 240:22	Piccaro 43:19	
partner 57:18	171:20	180:10	241:11,17	pick 29:10 43:4	
partnered 95:2	pending 214:18	performance 3:5	phased 41:12	167:22 168:3,10	
partnering 69:21	penny 74:10,11,13	126:8,14 127:11	phenomena 66:6	244:3	
partners 176:4	people 4:6,20,21	127:14 128:2,17	Philadelphia 203:8	picked 143:22	
186:16 189:18	5:7 10:4,13,14	128:20 152:14	philosophically	picture 12:12 42:14	
190:16 244:18	13:9 41:16 42:15	155:1 157:19	267:6,15 PHMSA 2:0 10 10	70:18 132:5	
248:16 254:1,3 256:7	61:3,18 63:7	158:15 168:18	PHMSA 2:9,10,10	pictures 12:14	
	68:21 80:12 81:13	169:16 177:17,18	2:11,11,12,12,13	190:5,6 199:22 200:2 230:18	
partnership 57:12 87:14	103:22 111:20 112:11,15 116:13	178:11 182:20,20 200:14	2:13,14,14 57:18 58:5 59:22 60:1	254:13	
partnerships 89:2	126:5 127:1	performing 146:11	84:2,14 88:5 95:1	pie 140:8 149:16	
partner sinps 07.2	120.3 127.1	Performing 140.11	04.2,14 00.3 73.1	Pic 140.0 147.10	

	_		_	_
200:6	195:21 196:19	242:2 248:11	plates 15:2	pointing 16:4 31:12
piece 59:7 145:18	197:12,15 199:14	255:1 262:9	play 84:3 246:14	31:18 32:12
197:12 233:16	203:5,18,22 204:4	places 11:21 13:6	248:1 253:18	points 206:13
242:11 263:4	204:17 205:3	22:18 25:18 70:22	267:5	208:14
264:1	206:12 207:6	122:18 167:3	played 70:4	Pole 31:1
pieces 184:6 263:5	220:15 233:18	248:7,13	players 69:21 187:5	poles 19:11
Pierson 2:6 247:13	240:7 245:9	plan 50:9 166:13	189:7	policies 50:3 88:12
247:13 248:19	248:21 250:4,13	166:13 175:8	plays 202:14,18	181:14
249:7,10	255:7 258:5,7,9	177:7,22 178:5,6	222:1	policy 46:1,5 47:3
pig 233:20	258:10,12,21	178:13 179:22	please 4:17 7:12,14	49:7 50:1 58:3
pioneer 76:4	261:18,18 263:7	182:15,22 183:6	83:4,8 98:19	64:3 74:13 103:10
pipe 77:6 87:8	264:11,19 266:17	184:15 185:1,2,21	133:2 194:2	103:13,15 104:5
90:11 91:17 92:12	pipelines 38:14	186:1,2,6,8,13	196:17 208:21	162:17 180:18
92:12,20 93:8,8	56:19 57:1 87:5	188:3 192:21	239:19	181:12 182:13
98:8 107:1,7	95:17 96:10 127:2	193:20 194:1,17	pleased 239:11	184:2 185:16
119:19 120:3,5	143:6,7,8 150:1	195:5,11 197:7	pleasure 174:17	214:16
135:13,15,16,17	161:20 184:12	198:11 199:20	222:20	political 30:22
206:22 207:1,2,2	187:16 199:8	206:2	Pliocene 41:3	35:10
207:11 210:17	201:5,5 202:10,10	planet 14:18,21	plumbing 249:1,1	politically 165:4
211:9,11,16,19,19	203:10 204:11	15:3,9,13,14,22	plus 139:10 209:7	pollution 67:3 79:5
211:22 212:11,18	207:12 208:6,10	16:1 17:13 18:4	pneumatic 73:16	79:12
213:2 216:21	208:11 213:19,19	18:21 19:9,15,17	73:17 92:3	poor 114:12
219:1 255:16	220:14 221:17	20:2,3 24:16 25:5	point 4:19 9:1	popped 213:16
261:8,19,19 262:1	247:16 253:9,20	26:7,10,14,16	11:11 16:1 17:7	popular 114:14
264:1 265:20	254:8,10 255:3,9	27:15 32:3 33:15	21:9 30:8 34:18	populated 85:10
266:4	256:16,17 257:6,9	35:15,21 36:6,10	39:20 40:1 41:8	116:6
pipeline 1:3,3,6,6	258:20,22 259:7,9	36:17 37:5 40:18	41:20 42:13 44:20	porous 40:7
1:16 2:1 7:17,18	259:15,16 260:17	41:18,18 99:10,18	45:8 49:7 50:8	pose 141:6
24:14 48:20 51:22	261:14	107:19	67:13 69:10 77:16	posed 161:2
52:22 54:16,19	pipes 86:3 88:13	planned 262:13	93:17 101:21	poses 85:11
59:14,15 81:21	91:13,13 93:2	planning 190:19	102:4 107:10	position 103:8
82:14,16 84:5	104:18 211:10	196:3	108:2 112:12	175:4
85:20 86:22 88:6	piping 230:12	plans 3:7 39:1	118:20 121:1	positive 15:12
90:3 91:22 95:18	PIR 256:17 257:12	172:5 173:9,14	122:14 123:15	102:21 168:8
95:19,21 106:16	258:11,13 259:11	176:10,11,13,14	124:7,13 125:4	possibility 56:11
127:3,4,11 128:15	263:16,19 264:6	176:16,18 178:1,8	147:18 153:22	possible 19:20
129:9 132:6	264:21 265:17	180:7,20,22	154:1 157:3	70:14 81:3 227:20
141:21 142:18	266:18 267:12	183:10,13 185:17	163:14,18 164:5	231:13 235:14
146:10,20 148:1	PIR-based 264:9	186:4 187:13,14	164:15 170:14	252:5 260:1,12
149:20 152:19	Pittsburg 56:16	187:19 189:3,7	179:2 209:11	posted 195:3
153:19 157:4,6	place 32:9 82:2	191:15,20 192:12	221:20 222:2	posting 181:11
159:14 162:8	86:16 99:13	193:22 194:15	223:16 229:2	potent 50:13
166:12 169:6	104:18,19 110:21	195:2,2,4,5	233:9 237:7 260:4	potential 86:8
175:18 182:16	114:6,8 116:6	203:15 204:10	262:13 263:3	143:13 220:19
184:9 185:19,21	130:6 165:1	plant 62:20	265:13	225:10 257:12,22
186:20 187:17	209:15 219:13	plate 220:17 plateaued 32:19	pointed 50:12 209:21	258:6 265:19
191:5 192:9	237:11,22 241:1	plateaucu 52.19	209.21	pots 34:3
L	1	1	1	·

· · · · · · · · · · · · · · · · · · ·				1
pound 255:5	106:21 109:15	prime 60:9 83:2	176:22 180:5,6	production 23:3
258:10,12 266:17	257:1	primer 9:3,4 47:20	182:3 185:12	27:16,16 45:19
pounds 255:11,12	presented 191:5	202:22	191:13 197:8	51:21 52:4,9
pouring 20:10	239:13	Princess 42:7	205:6 229:18	59:13 69:10 75:1
power 38:14 51:12	presenters 89:7	principles 238:19	proceed 239:20	116:5,10 120:21
62:20 214:1	98:15	249:22 256:19	proceeded 130:5	122:16 201:13
powered 12:20	presenting 10:9	259:13 261:10	251:4	productive 88:3
powerful 17:5	President 49:9,11	263:7	proceedings 7:15	130:13 268:10,22
50:10	50:19 62:14 87:2	print 136:10,11	66:20 182:5	products 201:7,10
ppm 41:1	President's 50:8	prioritizing 161:10	process 58:11 69:7	205:13,18 224:9
practical 261:6	55:5	priority 166:14	71:16 76:7 163:11	232:14 234:15
267:8	presiding 1:15	182:12	173:21,22 177:16	professor 9:21
practices 54:13	press 114:14	private 104:10	178:16,18 180:14	10:19 46:9 50:12
55:14 83:22 84:11	pressure 95:17	195:8	182:1 183:10	98:17 99:20 101:9
87:19 114:13	115:18 204:2,13	Privately 104:8	185:6 186:7	104:11
123:21 210:2	204:14 206:17,20	privilege 170:16	195:20 215:17	profile 203:18
pre-40's 135:16,16	230:11 233:14	pro's 250:22	218:19 219:8	profit 121:13
pre-emption	253:13,14,15,16	proactively 85:22	225:20 227:20,21	profitable 74:2
246:10	255:5 258:8,15	probabilities 23:12	229:19 230:12	119:5,10
pre-filing 220:17	263:15	probable 170:6,9	233:9 234:9 235:9	program 43:18
pre-Industrial	pressures 255:11	170:11	240:21 244:6	57:8,15 61:4
18:13	pressurized 115:22	probably 11:12	251:5,10 268:15	62:15 92:8 96:19
preaching 55:11	pretty 12:16 19:10	18:14 27:19 35:14	268:18	173:16,19 174:12
213:9	28:18 74:17 75:8	38:19 47:7 61:5	process-related	175:19 176:20
predicated 268:1	75:16 92:5,9	83:12 100:8	228:21	177:4 179:3
predictive 158:22	130:13 143:10	104:16 110:20	processes 27:6	183:17,18 184:4,5
predominantly	159:22 170:4	113:5,12 117:6	51:11 180:6 226:1	185:10,16 186:19
157:15	173:20 208:12	140:6 151:20	processing 68:7	189:2 198:14
preferred 254:4	228:2 237:13	155:9 189:13	69:11 75:2 221:1	203:21 204:7
preliminary 183:21	249:2	211:12 212:14	221:2 230:20	206:2
PREP 189:2,4	prevalent 212:15	213:12 214:16	232:3,6,19 241:11	programmatic
prepare 223:9	prevent 113:19	219:14 220:4	produce 49:16	120:8
prepared 28:2	117:20	254:19 255:1,3	99:15 146:7	programs 47:3
Preparedness	prevention 91:2	problem 5:11 32:22 34:15 35:8,12	150:19	85:14 86:5,11,12
189:1	93:19	· · · · · ·	produced 22:17	89:22 91:2,19
present 2:8,16	previous 177:4	38:18 77:15 80:10	44:6 76:21 118:17	93:7,12,19,20 106:6
64:19 133:1 226:10 15	previously 181:20	80:21 107:8 111:17 112:1	185:17 215:6	
236:10,15 presentation 63:20	price 67:18 primarily 22:17	117:10 118:1	producers 100:7,9 100:17 115:11	progress 6:11
64:1 103:5,7	43:16 51:20 65:17	163:4 166:8 267:7	producing 15:8	61:14,18 86:18 106:8 116:18
113:7 148:19	129:4 207:17	problematic 85:8	45:14,16	214:21 215:12
156:3 161:3	230:20 232:3,18	problems 35:5,7	product 84:4	214:21 213:12 227:9 239:12
167:15 173:12	240:4,6,20	38:21 74:16 78:12	118:17,18 120:15	270:19
196:11 239:11	primary 59:15,17	103:19 104:1,2	155:7 162:1 163:3	project 69:4 126:17
240:2	179:6,12 180:15	procedure 209:2	203:4,9,12 204:8	160:7 205:14,16
presentations 81:8	182:7 183:3	212:5	205:2,12,21,22	205:16 208:22
94:16 98:16 101:3	238:19 245:10	procedures 176:21	205.2,12,21,22	205.10 208.22 215:14
74.10 70.10 101.3	230.17 243.10		200.15 215.7,11	213.14
	•	•	•	•

·	1	1	1	
projects 61:8	providers 43:11	pumping 44:2	179:11 180:17	215:20 229:7
121:19 213:11	46:2	punctual 172:18	210:3 215:8,9,10	231:22 239:22
217:9	provides 162:18	purpose 89:20	215:14 219:5,9,12	251:11 252:9
promise 49:11	183:5 235:15	263:21	quantify 265:18	254:3,11 268:6
58:20 107:9,10,13	providing 50:17	pursuing 88:12	quarter 16:19,20	quicker 64:10,18
174:11	86:10 150:22	push 20:22 63:11	16:21 72:7	quickly 4:16 29:19
promptly 173:6	proximity 116:13	105:10 110:15	Quarterman	41:11 62:12 63:17
proof 156:5	PRR's 255:13	pushing 132:16	174:10	76:19 81:11 150:9
proper 213:8	prudently 49:15,15	169:14	question 26:10,11	quit 158:7
properly 233:1	50:5	put 4:17,18 22:2	31:22 72:21 99:6	quite 11:4 16:9
244:8	PSM 226:15 228:5	31:4 32:2 34:2,3,6	99:20,21 100:8,15	19:14 52:16 55:2
properties 231:6	229:8,13 230:14	40:5 50:15 87:20	100:19 104:15	104:12 163:18
property 146:21	231:9 232:22	91:17 95:8 97:1	108:15 109:3,12	169:11 200:5
161:14,20 163:2	233:6 234:11,18	98:19 106:19	115:12 117:6,7,13	208:7 228:5
proposal 139:15	234:21 235:17	109:17 110:2	118:13,14 123:14	242:16 269:5
140:2 145:4 146:1	240:21 241:2,5,17	114:5 119:1,6	124:5 129:13	quits 196:13
146:2 244:14	242:10 244:10,15	122:18 124:18	142:22 144:22	quote-unquote
proposals 128:8	public 2:20 21:11	142:7,21 143:1	145:15 147:19	79:11 119:9
propose 226:19	35:20 54:18 58:3	145:19 155:13	154:21 155:21	R
Proposed 250:11	59:18,19 72:6	160:11 162:15	165:18 185:11	R 4:1 57:8,15 58:12
proprietary 181:2	79:21,22 80:8	164:19 166:1	195:10 197:2	K 4:1 57:8,15 58:12 61:4 98:3 105:10
protect 132:2,4,9	82:11 84:7 101:11	170:1 209:6 212:1	216:10 217:7	117:18
155:10 165:11	109:17,18 110:22	214:5 216:22	218:9 240:16	R's 198:11
180:21 181:1,7	111:8,15 113:1	219:13 222:11	242:20 244:2,20	R&D 215:14
213:2	120:6 145:10,11	223:22 224:16	251:21	radiate 16:11
protected 151:9 155:6 252:20	147:3 154:16	230:5 244:14	questionable	radiates 16:2,3
	161:10 163:9	253:18 254:22	210:18	radiation 16:8,10
protecting 133:8,9	165:12 166:19	255:2 261:19	questions 6:22 7:8	16:13,14,16 64:6
135:2,22 138:14 143:4	169:9,9,12 181:2	266:21	10:3,13 13:21	65:4 66:2
protection 52:2,20	219:16 220:12 240:5 255:20	putting 24:18 33:9 80:3 84:13 96:16	46:10,12 60:15 81:13 88:16 97:9	radioactive 15:1
161:11 204:1				radius 257:13,22
213:1,7	257:3,16 260:11 262:3 268:9,11	115:14 123:1 245:15	98:20 129:6,10 132:20 141:6	258:6 266:6
protections 150:12	public's 181:6	245:15 puzzle 263:5	161:2 177:5,11	Railroad 189:19
protocol 70:7	221:5 268:16	puzzled 167:17	196:5 198:5	rails 191:6
proud 42:21	publically 164:20	puzzling 167:16	204:20 215:22	rain 20:10 24:5,6,8
proven 48:15 122:9	267:6		216:2 219:3	26:1 33:8
provide 14:2 83:13	publication 72:4	Q	210.2 219.5	raining 24:9
86:5 87:16 103:15	236:7	QMS 215:2 218:21	235:20 236:14	rainy 7:11
129:12 145:16	publicly 181:14	219:11	239:18 247:12	raise 24:17 59:11
150:11 161:4	publish 266:8	qualification 166:8	249:12 250:12	79:21 80:11
162:15 184:16	published 69:8,9	209:2,3 215:2	262:22 269:1	raised 21:12 99:5
193:9,11,13	70:11	qualifications	queue 46:15 89:15	123:15 219:3
193.9,11,13	publishing 189:9	204:6	queueing 97:8	raises 19:15
213:7 225:15	PUC 110:22	qualified 185:3,3	quick 8:6 9:14 11:5	Ramon 66:18 67:4
provided 186:6,8	pulling 174:20	192:4 212:6	81:8,13 113:3	67:12
187:16	pump 145:12	quality 49:5 51:8	127:18 148:14	ramped 202:6
10/110	r r 1 10112			

	_		_	-
range 43:18 71:10	269:19	realm 61:20	recruited 10:6	reflectivity 18:3
73:2 129:16	realize 46:18 49:10	reason 17:8 41:7	red 22:2 31:4 79:1	30:5
201:22	148:15 160:17	66:3,11,13 75:17	79:5 136:5,16	reflects 135:18
rapidly 25:1 30:1	241:8 260:21	80:11 108:16	252:14,15 253:6	reform 62:20
44:12 186:1	really 4:16 9:7	117:17,22 118:16	255:13	refresh 224:12
rare 110:18,19	17:14 19:17 25:7	119:10,12 155:1	redacted 195:1	refresher 223:1
rate 56:4 62:20	27:13,14,17 32:11	164:21 169:21	redactions 183:21	reg 91:19
66:8 67:12,20	32:21 35:11 38:16	194:11 254:22	184:1	regard 48:9 53:15
68:2,17 71:11	39:7,13 41:16	259:18	redefine 247:4	247:14
72:1 80:2 85:21	42:1,6,21,21,21	reasonable 6:10	redistributed 26:7	regarding 226:8
94:20 110:22	43:8,14 46:6,7	70:22 83:18 139:1	reduce 52:3 54:9	262:22
134:9 135:14	47:21 49:9 52:7	243:16	54:17 67:2 72:14	regards 199:8
142:6 145:20	61:12,21 63:11	reasons 12:15 16:6	91:11 96:10,21	259:15
161:8 164:4	68:4 69:2 82:9	18:18 30:17 43:12	97:4 98:9 106:3	region 72:1 203:10
171:22	90:6,10 92:18	64:10 65:8 108:19	reduced 73:11	regional 180:1
rates 67:7 68:11,21	93:21 95:9 98:1,2	reassessment	74:11 75:7	187:10,11 196:1
71:9 80:7 83:18	100:19 104:7	150:13	reducing 50:10,21	regions 25:3 187:10
136:3 141:5,12,18	111:18 116:20	reauthorization	51:3 55:10 58:18	193:6 227:16
243:8,10	117:15 118:2,2	147:21 174:7	60:11 64:12 67:10	registered 189:11
ratio 25:6	125:3 127:18	recall 148:12	74:20 75:12 86:22	registration 6:8
ratio's 25:8	130:4 132:16,22	168:14	reduction 3:3 7:21	regularly 105:12
re-engaged 186:16	133:4 135:1	recap 146:6 236:19	56:4 73:2 74:2,7,9	regulate 84:13 85:4
re-engagement	140:17 147:10,11	receipt 183:2	79:12 89:19 90:8	122:2,2 208:17
186:15	147:12 149:8	receiving 58:12	90:21 118:7	223:9
re-engineer 175:18	152:3,21 154:15	recognition 39:4	reductions 51:17	regulated 84:19
reach 223:16	155:18 156:2,17	recognize 164:19	85:13	176:4 187:21
248:16	157:22 160:18	178:11 182:14	reengage 175:8	188:2 226:5,16
reached 9:3,4	162:3 163:5 164:8	265:9	reengaged 186:21	231:2,7 234:19
reaches 249:1	169:17 171:20	recognized 96:19	198:14	235:7
reaching 248:15	172:16 173:3	recommend 4:9	reengagement	regulates 223:7,7
read 11:1 23:11	174:20 175:17	189:14	188:12	regulation 75:6
73:14 101:7 136:9	176:11 177:12,13	recommendation	reengagements	88:11 110:10,12
reader 141:9,16,20	179:6,14 182:3	58:15 183:1,6	188:11	118:16 209:13
162:19	183:4,17 184:13	recommendations	refer 135:12	227:3 240:10
readily 134:14	186:21 187:4,5	168:15 183:12,15	reference 230:14	249:20 252:6
186:2	189:16 190:20	214:10	referenced 143:21	259:18 262:13
reading 16:7 246:5	193:1,5 198:14	recommended 9:9	references 109:16	268:21,22
readings 71:21	207:14 208:21	reconsideration	referred 11:6 96:17	regulations 53:3
ready 222:13	209:7,8,12,13,22	235:1	referring 9:13	59:22 63:8 95:14
236:15	210:8 211:2	reconvene 125:22	refined 205:13,18	116:19 119:16
real 9:14 31:10	213:11,14 214:2	record 4:14 7:15	refineries 247:15	120:7,9 121:21
38:17 93:10 110:6	216:5,13 222:11	62:13 116:16	247:17,21 248:17	177:9,13 178:3,3
112:17 113:3	224:1 230:18	125:20 130:22	refinery 248:21	178:7 180:4
150:9 158:14	231:8,19 238:21	172:11 214:11	reflect 66:2 127:10	192:17 194:5,6
166:4 167:10	244:10 247:19	215:18 218:17	256:1	195:13 197:11
181:15 194:9	263:16 267:13	243:2 271:7	reflected 15:5,6	198:3 200:12,14
223:21 268:6	270:16	records 205:9	reflective 65:22	200:15 212:20
	I		I	I

i	1	1	1	1
227:4 229:9 240:3	153:1	repaired 138:7	88:7 128:13,14	respective 84:7
240:7,9 246:8,21	relatively 117:11	149:12	131:10 224:20	respond 148:3
246:22 248:8	228:1	repairs 87:20 92:11	represented 131:14	192:15
257:4 263:18,22	release 123:1	101:12 136:8,17	136:4,5,15	responders 181:7
regulator 127:13	139:12 146:5	136:19,22 137:4	representing 83:15	responding 219:4
127:15 128:22	161:17	137:10 150:14	101:2 119:21	response 3:7
151:19 156:16	released 25:2 50:18	160:2	represents 263:11	147:20 162:4,6
171:3 211:14	51:1 65:11	repealed 112:15	request 56:10	166:5,10,12,13,18
236:20	releases 91:6 145:5	repeatable 176:20	194:19	167:8 172:5 173:9
regulator's 58:2	145:6 146:14	repeated 115:10	requesting 189:12	173:13 175:8
157:1	161:22 162:6	repiping 216:18	requests 180:19,19	176:5,7 177:7
regulators 60:4	relevance 60:19	replace 28:17 86:1	require 180:4	180:1,2,20 181:9
77:10 83:16 87:8	relevant 66:14 67:8	86:10 87:9 91:12	183:9 193:12	185:21 186:20,22
128:12 157:9	69:21 199:19	92:11,12,21	197:22	187:9,11,12,14
159:14 171:1,2	204:7,20 206:19	207:11	required 52:19	189:1,7 191:2
226:21	209:4	replaced 86:2	58:14 168:21	193:1,7,11,18
regulatory 3:15	reliability 83:19	replacement 55:8	179:9 192:16	196:1,20 198:11
53:4 58:4 59:9	reliable 58:8 85:5	78:10 85:20 93:12	193:8	202:4 204:9 206:2
81:22 82:13 86:15	88:8	93:13 265:20	requirement 194:9	212:21
96:2 115:6 119:13	reliably 49:1	replacements 90:3	205:10	responses 161:1
128:2 132:12	relief 115:18	261:8	requirements 58:4	197:2
152:13 162:17	248:22 249:1	replacing 77:5	84:20 137:16	responsibilities
169:15 170:2	rely 89:1	86:18 88:12 93:2	177:15 179:20	180:1 242:21,22
177:15 179:7,21	remaining 95:5	266:4	188:4 214:8 250:6	243:4
188:4 222:16	236:14	replumbing 199:6	250:9 251:18,19	responsibility
225:1,14,19 226:1	remarkable 95:10	201:2 208:5	264:15	49:22 84:18 157:7
226:7 228:3,15	216:14	report 3:14 27:20	requires 65:7 95:18	responsible 45:21
245:19 247:22	remarks 8:7 61:16	38:8 93:5 102:9	research 2:21	83:17 114:15
248:13	remember 7:12	102:19,21 148:6	10:22 57:6,21	200:9 218:18
reinforce 121:4	28:20 42:16,22	155:13 165:8	58:1 60:7 69:16	responsive 221:7
reiterate 196:17	43:1,2,3 160:6	222:15 249:20	91:15 93:14	rest 160:16 270:6
related 106:10	190:22	250:5 251:2,11	reserves 48:15	restaurants 6:9
149:9,18 162:6	remind 14:7 120:20	252:6 259:20	resides 134:2	resting 212:11
188:14 199:4	206:10 208:19	260:4 262:16	resilience 14:2	restraint 104:12
200:2 201:3,16	reminder 209:9	265:4 266:8 268:8	resolved 245:14	restrooms 5:9
204:11 205:8	reminding 265:3	reportable 135:5	resource 31:3 49:3	result 35:15 46:3
208:15 210:2,11	reminds 18:19	reported 149:10	49:16 50:4	156:18 236:1
213:17 230:21	remote 56:19	165:19	resourced 219:15	242:2
232:10	remove 146:3	reporting 52:19	resources 49:13,18	resulting 54:21
relates 48:10	removed 30:1	93:7 102:18 144:4	51:7 78:14 86:10	results 55:9 70:9,9
116:19 138:15	100:9	144:6 159:2	87:16 93:17	70:10 139:7
149:8 151:4 199:5	removing 149:5	reports 23:11 68:20	105:17 108:18	152:21 158:16
relating 139:7	renewal 204:21	144:15	175:20,22 181:3	191:12 215:7
relations 89:3	repair 56:18 78:9	represent 64:3	192:6,15,20 193:1	resumed 125:21
relationship 221:11 relative 23:6 67:6	86:1 92:1,17 93:13 101:18	79:11 117:16 189:5 200:16	193:8,12 217:5,12 218:11 223:13	172:12 Ret 2:2
				retail 62:19
141:10 142:14	136:12,15	representatives	224:10 238:2	1 ctan 02:19
	1	1	1	•

	1	1	1	1
rethink 43:7	Rhode 2:19 9:20	235:4,9 238:16	110:19 122:20	safely 48:22 217:4
retreat 39:16 41:12	29:10 43:4 81:19	239:18,19 245:17	124:14 238:17	241:20
return 7:10 118:21	82:11	247:2 249:13	269:11	safer 108:22
119:3 121:20	rice 23:3 33:7	254:17 265:2	Rosenberg 2:13	safety 1:3,6 5:1
125:17	43:16	267:18 268:22	131:12	6:20 53:5 54:18
returned 173:5	Rich 100:21 101:1	rigorously 207:20	roughly 29:12	54:20 57:16 58:5
revamped 179:3	RICHARD 1:21	rise 35:14,18,22	40:13 44:13	59:18,20 60:12
revenues 86:6	2:4	38:10 39:4,5,14	round 52:6	78:11,14,19 81:21
reversal 3:10	Rick 109:11 125:5	39:19 40:22 41:6	roundtables 87:4	82:14,17 84:4,6
198:20 203:17	165:22 167:11	42:22 43:3 256:5	route 5:8 173:7	84:13,15,17 85:3
204:3 205:16,19	196:8 198:4	rises 36:4,17 38:17	251:4	85:14 86:12,14
207:10 208:2	199:15 268:4	rising 38:4 151:7	routed 251:3	87:6,7 88:6,10
reversals 199:9	rid 92:3 176:1	risk 14:2 49:21	262:17	89:20,21 90:7,20
203:2,4,14 204:21	ridiculous 220:20	85:12 86:7 88:13	RSPA 193:22 194:2	90:22 94:4,4
206:1	right 5:2,10 11:13	120:5,6 158:4	rubber 230:15	106:17 111:5
reversed 201:5	23:15 24:1 29:6	164:9,17 263:11	rude 196:10	119:14,22 120:7
203:10	32:8 36:15 37:20	264:11 265:19,21	rule 115:7 207:16	120:13 121:8,18
reversing 206:12	37:20 38:3 42:3,4	266:16	246:5 260:2,3	122:4,9 127:2,5
review 131:17	42:7,8,19 44:22	risk-based 243:18	266:12	128:15 131:13
175:18 177:22	45:12,15 52:3	risking 115:20	rulemaking 56:12	132:4,6 133:10
178:13,18,18,20	59:6,7 61:12	270:1	214:9,18,20	135:2 149:20
179:11,16 180:7	64:10,22 65:5	river 145:9	245:15 250:11	153:20 156:12
180:14,15 182:1,8	66:3 68:1,6,15	rivers 26:22	260:13 265:5	158:1,2,12 159:14
183:3,4,4,9,12	78:5 93:3 98:18	road 44:21 134:5	268:15 270:16	160:9 161:10
194:19 195:19	98:21 100:21	147:14 230:15	rulemaking's	168:16,21 169:7
233:11	105:1,3 106:9	264:14	215:18	171:2 186:21
reviewed 70:8,10	107:13 114:2,6,7	roaming 99:10	rules 112:21 214:22	193:16 195:21
70:12 176:17,19	120:9 123:3 124:5	ROBERT 1:20	264:4	199:14 222:22
180:15 182:17,22	130:11 134:15	Roberti 2:19 9:19	ruminants 100:13	223:12 229:14
191:16,21	137:20 138:1	57:14 81:10,16	run 82:1 137:7	230:6 233:16
reviewer 179:12	143:3 144:3 145:6	82:7,10 83:11	153:7 216:19	237:21 240:4,5,7
183:5,11	145:8 150:5	robust 154:2	231:2	240:20,22 244:5,6
reviewing 139:15	151:16 153:6,16	159:22 229:17	running 26:14	244:7,9 245:7
191:14	153:19 155:2	241:1 261:9	84:16 116:9	246:12 248:9,14
reviews 178:22	157:14 162:13	270:14	runoff 26:2	250:4,13 260:10
179:5,6 180:11,11	163:7,12 165:2,5	rock 212:12	runs 137:2,5,17	261:7,8 262:4
180:13 184:1	167:19 171:6	Rocky 101:2	Russia 31:14	Safety's 175:19
Revise 255:21	174:7 177:1	role 70:4 84:3 85:1	Russians 31:1	sail 42:7
revising 260:8	179:13 181:6	97:21,21 98:11		sake 156:15 240:17
revisit 175:7	187:11 188:15	187:4	S	SALERNO 2:2
revisiting 175:15	198:17 201:3	rolling 127:21	S 4:1	117:5
176:8	202:20 205:17	rolls 182:2	sad 42:10	San 148:1 210:16
revitalize 175:7	209:14 211:4	Ron 167:12,13	safe 58:8 83:19	sand 40:5
revitalized 183:16	214:17,21 215:14	168:12 244:3	84:16 85:4,16	Santa 190:15
revitalizing 175:19	216:3 219:21	RONALD 2:5	88:8 121:17 155:6	sat 122:19 227:20
Revolution 22:21	220:17 221:12	room 8:14 47:7	156:19 200:9	satellites 19:3,7
rewrite 270:1	223:17 225:14,14	61:3 106:18	229:20 230:3	SATTERTHWA
			l	l

	1	1	I	1	
2:13	screens 129:21	113:10 116:8	267:8	she'll 21:2 224:16	
save 40:4 46:12	screenshot 76:20	119:9 129:22	sensible 20:8 23:19	sheet 6:8	
105:12 122:22	script 169:8	131:4 135:15	46:1,5,5 103:10	shift 46:16 157:9	
238:2	sea 15:10 24:10,17	137:3,10,20	sensitive 143:12	160:5 206:3 208:3	
saving 74:1 166:21	28:1 30:17 35:13	142:14 145:19	181:3 193:14	shiny 104:4	
167:1	35:18,20,22 36:3	150:16 157:18	195:8	ships 31:2	
saw 92:12 130:14	36:12,13,17,20	160:14 168:10	sensors 71:3	shocked 155:4	
163:16 209:21	37:4,10,18,21	170:4,8 171:16	sent 115:17 251:14	shore 191:4	
257:19	38:1,4,10,16 39:4	172:8 183:4	separate 145:4	short 50:14 65:15	
saying 63:4 108:16	39:5,14,19 40:15	184:11 192:11	178:20	66:5 67:5 94:8	
113:4 134:18	40:22 41:5,22	208:9 210:9	separated 139:8	100:2,14 172:6	
135:18 142:19	42:6,22 43:3	211:13 212:15	separating 139:16	208:10 214:3	
155:13 169:13	seal 73:19,19	213:13,22 215:12	separation 232:6	228:1	
170:18 189:11	seam 207:3	218:22 219:18	September 206:5	shorter 94:13	
243:1 257:6 268:2	seams 207:2	229:10 230:10	series 52:6	shot 68:10	
says 152:11 175:6	second 26:20 31:14	239:12 250:18	serious 38:17	shoved 28:16	
180:21 236:21	33:16 60:22 72:7	252:3,12,14,16	133:14 143:11	show 12:14 13:3	
246:5	77:16 101:20	255:20 268:11	269:14	34:17 36:22 39:10	
scale 32:1 51:12	148:11 157:22	seeing 55:9 209:11	serve 49:8 82:12	42:14 132:7,16	
scaling 37:20	162:22 165:21	217:5	served 47:9 263:21	181:15 198:1	
scary 126:5	179:11 206:21	seen 94:14 95:8	service 3:11 4:13	211:14 226:11	
scenario 191:9	208:14	112:10 128:11	80:1 83:19 84:7	showed 90:13	
231:14 235:14	secondary 178:19	139:4 140:6	198:20 202:11	107:12 141:17	
scenarios 191:5	180:13 182:8	153:18 195:18	204:22 205:2	175:17 176:17	
226:11	183:3,5,11	200:5 201:9	261:14 270:21	211:7	
scene 185:22	seconds 173:17	202:12 208:6	serving 58:9	showing 37:7,10	
194:15,16,20	Secretary 2:17 9:17	210:8,13 211:17	set 8:7 21:6 99:7	40:13 114:11	
schedule 11:8	46:21 47:1 52:5,6	212:10 215:10	111:14 133:7	156:6 157:20	
124:2 198:17	54:11 55:16 58:15	216:11	168:4,9 173:11	shown 150:3 234:3	
249:13	Secretary's 56:9	segment 260:20	225:6,7,9,15	shows 133:17	
scheduled 168:7	section 178:6	segments 86:7	226:4,6 227:4	150:17 202:13	
scheduling 124:1	227:11 244:11	segue 60:21 173:17	229:17 239:2	211:8	
187:1 188:22	250:4	selection 210:20	241:9	shrinking 218:13	
science 26:21 47:20	sections 86:11	sell 120:4	sets 240:3,9	shut 196:22 269:16	
50:2 53:22 54:5	178:8 189:20	semblance 268:13	setting 85:10	shy 239:4	
63:21 65:12 70:8	197:10 253:20	send 148:19 153:3	164:16 247:2	side 8:11 12:12	
76:6 112:4	security 49:4,5	153:4 156:19	settles 64:15	34:12 75:2,2,3	
science-based 9:7 61:17 62:1	175:3 181:2 see 12:18 28:4,13	167:4 sending 219:6	seven 137:18 sewer 26:2 38:15	92:6 104:22 105:11 132:5	
Sciences 9:5 10:20	31:11 37:14 43:22	245:10 251:6	sewer 20.2 38.15 shale 202:14	139:11,19 140:5	
66:21	44:2,4,5 47:18	260:4	share 202.14 share 95:8	,	
scientific 70:12	60:19 66:10 71:7	senior 80:4	shape 17:22	140:12,21 141:4 141:18 145:3	
scientist 23:14	71:8 76:21,22	sense 53:1 100:10	shaping 168:17	153:18 211:18,20	
103:15	79:15 88:4 90:18	122:3 176:13	share 83:5,9,22	211:21 226:3	
scientists 30:9 70:8	94:17 95:4 98:21	177:7,20 185:12	84:11,14 125:7	261:1,3 262:4	
scope 177:12	103:21 104:12	186:21 225:17	shared 185:9	sides 32:8 109:2	
224:21	103:15 112:4	228:9 264:22	shares 155:17	110:3 112:18	
	100110 11201			110.0 112.10	

				-
signals 43:22	size 105:22 153:9	155:19	source 53:10	187:6,14 189:7
signed 87:12	sizes 255:16	soapboxes 98:1	163:13	190:2 194:17
Significance	sizing 78:5 79:16	societal 117:9,20	sources 71:14	197:6 198:10
190:20	skew 152:21	societally 155:18	114:15 164:13	204:9 206:2
significant 61:13	skid 233:20	software's 111:10	201:4	spilling 166:21
95:20 117:16	skillset 217:13,20	soil 143:9 144:16	South 14:15	spills 143:8 145:7
135:3 136:3 139:5	skip 44:8	144:18	space 15:6 16:2,15	146:20 161:13,19
139:9 145:17	skipped 206:5	solar 66:2 108:9	232:4	162:2 163:1,17
146:3 228:2	slacking 151:3	solely 232:18	spades 268:16	164:5 187:3,8
silent 195:13	slide 12:11 14:7	234:13 241:16	speak 7:13 88:14	190:19
similar 22:13	18:19 42:15	solid 226:1	89:13 269:2	spins 28:7
106:12,13 132:1	132:19 163:16	solution 93:3 98:4	speakers 10:2,3	spiral 174:21
138:15,17 178:16	164:12 188:19	112:2 237:3,10	98:20	spitballing 159:15
247:15	200:5 252:12	247:9,9	speaking 10:5	spoken 154:8
similarities 131:4	slides 37:1 127:19	solvable 209:12	40:13 82:15	spokesman 83:7
228:8	130:19 131:1	solve 74:15 112:1	special 204:18	spot 18:7 106:20
Similarly 140:8	139:14 150:10	117:9 223:21	specializes 62:17	spots 38:12,12
simple 11:19 14:6,8	199:21 255:18	237:20	specific 12:7 142:3	spring 51:1 52:7
20:14,18 23:16	258:4,7	solved 80:10	181:3 191:9	springtime 29:17
24:15 35:22	sliding 258:1,1	somebody 19:18	specifically 57:15	St 1:14
226:14	259:12 261:21	212:21	184:14 193:5	stacked 211:12
simplest 20:4	slightly 36:18	SONS 190:20,21	203:13 205:20	staff 2:8 5:4 84:9
simply 16:7 21:15	220:20 248:12	191:7,8	215:19 241:10	179:19 180:7
40:4 44:22 67:18	slogan 239:17	soon 63:10,12	247:20 248:17	184:1 185:7,8,8
78:13 102:2,11	slow 154:12	126:3 181:11	specifications	195:12 220:3
single 258:17 259:2	slowly 24:21	189:13	230:8 241:10	226:22 227:16
259:10	slows 30:21	sooner 208:21,22	specificity 79:15	staff's 188:7
sinks 28:10	small 37:2 79:11	SOP's 191:13	spectrum 59:2	staffing 183:19
sit 184:11 186:4	116:10 117:11,14	sophisticated 78:6	250:21	217:15 218:3
194:10 234:9	140:11,14 218:8	102:3,6 197:13,14	spend 39:20 51:22	stages 87:15
238:17	252:15	sorry 10:8,11 73:14	74:22 78:9 80:6	stakeholder 81:9
site 78:21 79:2	smaller 16:22	79:7 123:10	105:22 153:8	stakeholders 55:17
147:1 181:12	263:15	136:20 206:4	242:16	57:4 129:8 221:8
193:17 197:3	smart 70:18 132:10	220:8,10 264:21	spending 95:16	227:14 235:11,12
sites 32:14 70:5	165:3 238:13,17	268:3	122:21 124:9,10	260:11
siting 62:20	239:4 244:17	sort 9:8 11:15	124:16 202:3	stale 174:1
sitting 74:13	smarter 239:8	13:21 15:18 35:17	263:21	stand 20:21 199:4
situation 166:16	smartly 56:3	39:11 41:4 55:11	spent 22:9 75:17	215:21
201:16	smash 21:7	62:5 114:20	77:4 84:21 201:19	standard 96:17
six 61:6 82:18	smelly 99:13	164:14 166:6	228:5 229:8 266:2	139:6 176:21
101:17 127:10	Smith 61:4	170:12 173:15	spikes 44:5	180:5 182:2
129:7 160:7 165:9	SMS 219:11	174:18 199:19	spill 3:7 139:11	185:11 191:13
165:19 168:2	SMYS 207:14	202:22 208:10	144:19 145:11	200:16 231:15
222:14	snow 15:14 snowball 61:12	218:5 221:15	166:13,18 172:5	232:22 237:22
sixteen 69:6 sixty 18:10,14	snowball 61:12 soaked 4:7	sound 58:3 172:7 267:16	173:8,13 175:8,19 176:6 177:6,8	241:18 standards 1:3,7
189:13 208:19	soaked 4:7 soapbox 43:6	sounds 99:19 167:8	181:9 184:4,15,15	119:14 200:18
107.13 200.19	svapnus 43.0	Sounds 37.17 10/18	101.7 104.4,13,13	117.14 200.10
	1	1		1

225:7,9 226:6	steady 137:11	177:14 181:22	submitted 72:3	supports 129:14
229:18 230:7,13	steel 93:9 151:9	street 76:15	189:13	supposed 182:10
241:5,10	stellar 174:20	streets 76:17	submitters 189:3	sure 11:13 49:12
STAR 89:22 92:8	step 74:22,22 75:13	strengthening 89:3	substantial 189:15	50:15 51:13 54:12
106:5	95:3 98:3 107:18	stress 207:8 212:1	substituted 37:9	57:20 71:6 84:18
start 4:14,21 8:17	126:1,21 172:19	212:2,7,8	substituting 73:15	114:8,21 139:19
8:21 9:21 10:18	242:6,19 243:2	strict 246:5	success 89:5 111:19	155:17 163:18
12:10 14:9 61:19	247:8	strike 142:19 181:5	155:16	165:7 166:9
89:10,10 122:11	step's 269:10	strikes 142:11	successful 181:9	167:16 170:13
124:15 148:8	STEPHEN 2:10	163:18 164:9	succinct 89:8	173:6 181:8
155:22 269:21,22	stepping 109:10	strive 200:13	sudden 263:9	183:13 184:2
started 26:13 83:12	219:8	strong 108:16	Sue 89:11,11,15,16	188:3 193:7 195:7
112:20 127:21	steps 77:12 235:18	228:3	97:7,20 119:18,21	199:17 216:12
129:5,18 136:14	Steve 2:12 249:16	structure 225:19	157:10,11	222:8 225:1,13,18
138:16 149:14	249:18 262:22	230:15	suffice 68:15	231:3,12 232:20
178:11 242:6	Steven 249:16	struggle 99:22	sufficient 132:21	234:17 235:22
250:10	stewardship	106:8	sufficiently 179:15	243:16 251:8
starting 81:9	121:12 127:6	struggled 152:1	suggest 71:10	260:19,21 261:2
122:10	stick 11:18,18	stuck 114:17 115:7	suggested 118:6	263:10
state 7:14 31:17	stirs 29:22	student 20:21 21:1	suggestion 158:1	surface 20:3,6
42:17,18,20 47:10	stock 31:20	students 21:1 34:2	suite 126:14 168:18	65:22
60:2,4 69:18,18	stone 168:4,9	48:1	sulfate 15:8	surfaces 66:1
69:19 77:22 81:19	stood 103:6	studies 69:6,15	summary 251:13	surprise 98:22,22
84:5 88:9 159:14	stop 39:6 43:9 46:7	70:16 71:15 76:1	262:15	surprised 26:20
170:2 190:16	248:2 271:4	76:4 114:4	summed 224:22	90:18 156:21
191:18 218:16	storage 52:9 68:8	studiously 173:21	summer 29:5 251:3 summertime 31:6	surprising 26:9
254:3 256:6 statement 104:16	69:12 70:3 75:3	study 3:18 41:17 69:13 70:7 73:1	summerume 31:6 sun 14:20 15:3	surprisingly 229:10
Staten 77:1	211:11,15 232:8 232:10,12,17	74:6 118:5 249:16	17:17,19,20 18:20	
states 16:6 31:15	232.10,12,17 234:12,15,17	stuff 11:20 21:6	30:4	surveys 214:5 survive 28:22
83:16 84:1 85:19	storm 12:17	22:12 23:13 26:3	sun's 15:5,20,21	SUSAN 1:20
85:21 159:11	storms 25:20,22	26:5 28:11,11,12	16:13	suspect 106:11
170:5,8,19,20	story 111:19	30:22 31:21 74:19	sun-driven 14:21	240:6
171:5,17 179:10	168:11 214:4	104:9 114:21	superseded 176:15	sustainable 183:18
241:3	stove 34:3	158:7,8,12 171:16	supplied 134:14	swamps 22:18 33:7
static 134:2,4	stove 54.5 stragglers 173:6	Stursma 1:21 98:22	supplier 45:11	swing 218:8
station 102:4	straight 70:13	99:1 244:22 245:3	102:14	swiig 210.0 switch 67:1
145:13	strange 27:17	245:3 263:2,2	supply 45:9 67:8	switching 66:16
stations 75:6 91:19	strategic 39:16	269:18,18	68:2,4 74:8 75:13	67:9,15
91:20 95:6	41:12 108:19	subcommittee 3:14	75:20 76:3 102:4	synergistic 65:18
statistics 156:5	strategies 45:5	82:14 85:2 222:15	203:6	synthesis 71:17
statutory 228:13	80:15	222:21 223:22	support 109:15	synthesized 71:22
242:20,21 243:3	strategy 50:21 51:1	224:5,10 227:14	175:3 212:9 230:8	system 12:2 14:10
246:7 250:3	65:6 66:7,17 67:2	subject 109:21	231:9 232:13,19	14:13 38:19,22
stay 30:11 114:18	67:10	126:7 150:19	257:5,11 269:8	44:10 58:19 67:8
stays 64:14,16	stream 25:17 30:21	234:16	supported 230:6	68:2,4 72:15 77:4
stead 126:4	streamlined 176:20	submit 58:15 194:7	supporting 58:2	77:7,13 80:4
				,

84:17 85:5,16,16	148:2,15 161:3	200:20 201:1	techniques 76:9,10	term 15:19 50:14
86:7 87:1,9,20	172:4 177:21	202:2 203:1 205:1	technological 48:17	65:14,15 66:5
92:1 94:18 95:22	181:17 196:20	207:14 218:21	technologies 56:17	67:5,6 139:6
100:10 115:17	198:18 203:20	221:20,21 229:12	72:11 73:3,6,6,9	203:14 211:1
149:12 153:10	213:3 218:8	232:1 237:17	87:19 108:7,8	212:17 213:2
155:5 156:12	228:16 230:19	244:18 265:15	113:19,20	246:22 257:14
158:12 162:8	233:12 238:15	talks 263:12	technology 60:7	terms 17:1 26:2
168:22 184:9	262:8	tank 161:21 165:13	76:16 97:21,22	27:15 62:1 66:17
185:20 187:18	taken 36:16 52:22	249:2	98:4,11 105:8,10	78:19,20 108:13
213:6 219:13	54:15 68:10	tanks 192:11 198:2	105:12 107:22	110:8 167:16
229:15 230:6	118:22 189:8	tantalized 103:9	108:9,10 111:3	219:5 224:22
240:22 243:19	222:3 226:4	tape 210:19	113:17,18 114:2,6	240:9
244:9 248:22	227:16 270:16	Targa 224:10	114:22 117:18	test 95:17 206:17
254:8 264:7	takes 33:15	target 38:2 86:6	123:17	234:21
systems 38:15 51:4	talk 10:15 12:8,8	97:3	tectonic 15:2	tested 207:20,20,22
51:18 52:17 55:1	14:3 17:7 18:18	targeted 94:15	teed 113:14	testing 56:22 57:2
55:11,22 59:20	20:21 21:7 23:13	targeting 96:20	teleconference	95:16
76:18 84:21 86:14	24:11 26:18 31:19	task 81:21 115:12	172:19	Texas 69:17 205:15
90:9 91:12 96:9	35:3,13,16 38:11	127:8	tell 32:16 42:15	thank 4:13 6:16
99:3 105:21	45:2 48:4,7 51:4	teach 20:19	77:3 122:19	7:22 8:5 11:7,9,10
106:11 114:1,8	59:19 60:22 61:7	team 53:16 54:9	142:15 144:9	46:8 47:12 60:18
115:2 123:16	63:17 66:7 68:13	95:1 127:20 128:6	152:3,4 153:5	63:6,15 81:3,4,14
157:4,6 158:2,3	89:11 92:22 98:10	128:6 129:5,18	152:5,1155:5	82:6,22 83:11
196:13 200:10	104:19 114:22	131:9,11,14,15	194:2,8 216:13	88:14 89:16 94:6
213:21 215:15	127:1,7 129:16	132:3 138:1	telling 4:21 72:18	94:7 98:12,14,15
244:5 256:10	130:3 139:5	139:20 140:1,22	138:3 262:6	98:17 101:1,4,10
	143:15 146:4,6	147:11 153:8,18	tells 52:12 153:3	103:2 106:14
T	155:4 171:18	154:3 158:20	170:13	120:19 123:2
T-A-B-L-E 3:1	203:2 240:2	159:17 186:20,22	temperature 14:17	124:22 125:2,8,12
T&Q 218:4	244:12 249:9	187:9 191:2 224:6	16:9 17:12 18:6	126:18 154:10
table 6:8 108:13	254:14 266:15	235:10 242:7,13	18:22 19:6,15	162:20 167:10,11
121:22 122:15	267:3	247:2	37:3,9,22 40:14	168:12 172:8
125:7	talked 8:10 11:2	teaming 53:18	41:7 102:7	173:2,5 175:1
tables 52:7	31:16,17 38:8	teams 127:13 128:5	temporarily 109:10	198:4,5,7,13,22
tactfully 237:12	65:9,19 90:9 91:4	128:12 131:3,8	265:8	216:1 222:9,10,18
tad 5:20	105:18 113:17	132:1 133:3	temporary 175:22	223:18 236:18
tag 127:20	126:20 131:7	139:14 166:18	180:10	238:3,7,12 239:10
take 4:7,9 5:3 8:4	133:7 205:7	169:11 180:1,2	ten 27:4,8 47:16	247:11 249:11
10:2,13 17:6 19:7	213:17 215:1,4	187:11,12 196:1	92:13 105:21	262:19,21 268:2
33:22 34:19 39:12	259:4 270:4	200:17	106:3 143:20	269:16 270:9,20
41:9 50:11 54:8	talking 60:20 62:6	teasing 154:16	161:22 266:3	270:21
60:15 62:1 66:22	63:2 64:4 67:15	technical 1:3,6	269:15	thankfully 197:8
81:11 92:14 95:3	68:4 74:16 75:8	87:17 229:18	tend 36:10 210:9	thanks 47:14 48:16
97:12,12,14	75:11 89:1 93:22	230:7 231:13	tendency 209:18	48:19 54:9 57:13
112:22 113:15	107:6 120:20	235:2	tens 140:14	60:16 63:13 82:8
119:1 123:18	126:7 134:22	technically 228:20	tent 7:5 98:19	88:17 94:11 97:5
125:10,17 142:20	144:14 174:14	technique 80:14	113:10	97:7 113:8 117:5
		-		

121:2 156:20	230:1 244:4	166:5 167:19	169:22 171:13	ties 264:15
166:2 198:15	245:13 259:19	168:6 169:16,17	188:19 196:14	tightening 75:5
238:8 239:6	260:15 261:4	170:15 171:6,17	199:2,22 206:9	time 4:21 8:1,14
249:10 265:2,10	262:2,8 264:16,20	172:16 173:22	thought-provoking	11:8 17:15 20:17
266:19	267:4	174:19 188:18	133:6	22:8,9 26:19
thermometers 16:5	think 5:14 6:3 8:19	194:21 195:18	thoughts 33:14	27:12 28:13 33:15
16:7 19:7	10:1,17 17:8 19:4	198:6 199:15	113:13 133:5	34:20 35:8,10,10
thick 28:15	19:20 23:10 24:13	210:12 216:11,12	217:1 251:16	37:11 41:1 43:6
thing 15:16 24:9,20	24:22 25:9,10,12	218:15 219:4,18	thousand 18:15	49:7 52:1 61:14
30:18 35:6 36:4	25:14,18,19 26:3	219:22 220:4	40:10 74:10	63:18 64:19 65:2
42:16 54:11 55:15	27:13 32:14 33:10	222:1,2,13 223:20	133:19 135:6	70:15 72:8 75:1
58:17 64:7,8	40:1 41:8,13 43:6	224:14,21 225:16	140:20,21 141:3,4	75:18 81:18 82:3
66:16,17 75:11	45:4,17 46:10,11	228:1,18,20	141:8 143:20	83:2 84:21 88:22
77:2 96:15 101:20	46:16 47:6,11	229:11 231:21	145:7,12,21	95:16 98:19
102:8 103:6 111:2	49:6,21 50:6 54:3	233:21 234:13	146:19 149:11	103:11 106:1,19
120:9,11,12	55:8 58:18,22	235:1,5,13 236:8	150:3,5 195:6,11	109:18 125:17
134:16 137:19	60:9,19,20 61:15	236:20,22 237:13	220:19 255:5	127:19 131:17,19
150:18 162:11	61:18 63:1 68:21	237:19 238:13,18	thousands 12:1	132:22 134:10,13
165:4 169:3	76:6 77:21 78:6	238:21 239:1,3	170:9	135:7 138:12
182:11 194:14	81:6 82:20 88:2	240:7,17,19 241:7	threat 203:18	142:11 147:20
200:19 204:16	88:19,22 92:5	241:8 242:3,13	three 13:17 14:11	148:11,20 150:18
209:14 211:17	93:10 94:13,16	244:1,2,7,17	14:12,18 17:10	154:9 162:4,6
212:19 217:10	95:13 96:1 100:19	247:10 251:7,13	30:3 41:3 76:15	166:5 167:8
219:13 221:3,3,12	101:4,19 103:1,18	260:16 264:13	81:8 111:6 114:18	171:12 173:21
244:17 265:7	104:2 105:13	265:13 266:9,10	192:11 196:16	174:8 177:21
269:20 270:12	106:7,17 108:12	267:13,15,18	216:12 217:6	178:12 183:2
things 4:16 12:19	109:16 110:18	268:18 270:2,5	244:14 251:15	191:9,18 192:16
13:18,18 14:1,1	111:19 112:17	271:4	266:2	194:8 196:19,20
14:19 15:6,10	113:1,21 115:3	think's 26:5	threshold 38:10	201:20 202:1,3
17:10,16 22:7	119:12,18,20,22	thinking 39:17	threw 14:7 131:21	214:3 216:14,22
23:15 25:10 30:3	121:1,7,11,15,21	41:13 49:13 52:1	thrilled 220:2	217:14 221:8
31:13 44:12 50:7	122:7,8,9,14,19	59:4 60:12 74:14	throes 214:19	228:6 229:8
53:6 54:16 56:8	125:4,6,15 128:9	75:18 217:2	throughput 168:1	231:16 239:12
61:11 69:3 75:14	131:11 132:3,21	thinks 239:3	throw 105:15	241:6,21 242:17
75:22 90:2,6 97:8	137:12 141:15	third 15:16 55:15	212:20 261:11	timely 182:17
97:16 104:3	143:5,14 145:16	138:10 219:19,20	throwing 262:11	times 13:11 17:5
106:21 112:6	146:18 147:7	257:10	thrown 252:1	21:11 27:4,8
114:3 120:7 124:1	148:9,20 151:3,20	thirty 17:5 85:20	264:17	95:11 111:3 153:2
133:2 137:2 139:3	152:12,13 153:13	94:22 255:4	ticket 121:14	166:10 182:14
143:2 153:13	155:16 156:4,8,10	thirty-six 255:10	tickets 150:3,5	190:22 218:5
159:1 168:3	156:12 157:10,20	thorough 152:9	156:18	TIMOTHY 2:3
169:13,19 172:19	158:16 160:16	thought 4:15 8:20	ticks 148:8	tip 68:5 74:9
172:21 179:13	161:6,6,8,11,15	9:2,4,20 20:22	tidbits 251:15	tips 11:5
181:18 182:6	162:12,13,18	34:2,6 47:21	tie 21:3,3	Titanic 28:10
199:11 202:4	163:8,12,19,22	113:7 119:18	tied 22:16 44:13	today 4:9 5:12,15
205:8 209:4	164:5,11,13,19	122:20 144:11	tier 134:21 135:1	6:13 7:12,15 8:1
212:17 218:14,21	165:1,1,21,22,22	156:2 167:14	178:18	18:12 22:4 24:19

,		1	1	
25:21 27:22 30:2	tracked 165:21	transport/storage	142:8 158:4,9	101:12,18 248:20
30:10 33:17 34:15	tracking 155:14	234:14	164:6 167:18	
35:3 36:14,19,21	trade 30:7 36:6,8	transportation 1:1	175:7 181:10	$\frac{U}{U}$
40:15 41:2 51:5	37:5 121:5 128:13	55:6 168:16	231:13 234:2	U.S 1:1 25:13 62:14
67:17 82:9,15	trading 30:5	201:10	248:16 262:7,8	105:22 193:2
87:6 88:15 94:1	traditional 264:9	transported 204:8	tsunami 220:13	202:21
104:3 107:22	traditionally 143:5	trap 112:6,16	turf 218:12	Uber 4:9
110:15 112:5	144:17,20 201:17	231:12 233:20	turn 6:14 7:21 34:4	ultimate 42:22 43:3
113:7 131:12	201:18	trapping 64:6 65:4	126:17 160:21	ultimately 58:1
132:15 169:9	tragedies 269:15	trees 32:6,10	172:22 174:21	66:9 76:7
193:16 199:3	tragic 143:10	tremendous 49:20	223:17	umbrella 241:7
211:3 224:3,13	train 63:16 195:12	92:5 220:12	turned 211:20	unaccounted
249:15 250:18	trained 178:5	trend 54:22 55:20	turns 42:5 48:14	101:21
253:4 255:9 259:8	179:18,19 180:2,3	55:21 133:17	65:1	unanimously 242:3
Todd 2:3 224:2	180:7,10	144:8,12 145:19	TV 16:3	244:7
237:5	training 178:4,7,9	152:5	twelve 127:10	unannounced
told 40:9 44:8	194:4,6	trends 129:2,3	129:7 160:8	190:12
246:19 266:22	trains 172:15	151:6 167:16	165:10,19 168:3	unchecked 39:15
ton 73:11 75:7	transcript 271:5	tried 66:21 227:21	258:11	unclear 165:8
tool 59:6 137:8	transcription 4:15	tries 16:15	twenty 17:4 21:9	uncovered 110:8
161:7,12 235:3	transfer 234:14	trigger 158:13	39:18 77:4 92:14	243:6
tools 59:3 242:2	transition 233:5	triple 220:3	173:20 174:2	undergo 212:2
265:18	234:4 236:3	tripled 22:20	190:2	underground
top 100:2 105:21	transitioned	trivial 36:2	twenty-four 176:18	38:14
120:11 133:11	233:18 234:10	true 53:9 118:20	two 29:13 34:2,3	underinvesting
134:21 135:1	translate 37:3	trust 106:17 153:20	43:12 44:12 69:4	98:2
162:1 165:9,18	240:5	169:7 199:14	83:15 88:19 89:3	underneath 40:6
190:6	translates 86:19	239:3	89:7 96:3,7	165:14 219:12
top-down 53:12	transmission 52:10	trusty 126:6	101:11 111:6	underpin 49:4 51:7
71:5	52:22 62:18 68:7	truth 43:21 73:8	113:13 114:5,18	undersized 115:16
topic 8:3,8,15,18	69:11 70:3 75:3	try 11:19 12:1 14:6	115:5 128:4	understand 12:2
10:7 113:14	89:14 94:14,18,20	20:18 27:18 47:22	145:14 148:11	14:10,12 21:15
128:17 130:2	95:4 96:9,16	63:18 64:2 69:4	149:1 150:4	70:15 71:20 80:12
199:1,18 215:3	120:22 135:2	71:21 81:10 92:18	151:18,18 155:21	80:21,22 85:8 97:3 105:4 108:4
267:3	136:2 138:17	94:12 95:9 104:7	157:12 173:17	
topics 98:10 101:7	140:9,12 151:10	106:19 126:13	178:17 183:1	111:16 112:19
199:21	214:1 230:21	129:11 157:9	188:13 190:6	113:2 141:9,16,20
total 13:11 66:9	231:7 232:14	158:20 167:7	228:9 240:3,9	166:20 184:6 193:16 198:17
76:2 270:1	250:1 253:19,22	172:17 177:5	258:10	
totally 30:12	254:6 256:11,14	225:12 226:17	type 57:5 182:22	226:20,21 227:2 234:10 244:22
touch 175:11	261:1	248:5	197:16 252:22	234:10 244:22 245:5 261:2 269:5
241:15 266:18	transmitted 117:12	trying 43:20 62:1	253:4 257:20	
touched 174:5	transparency	63:7 68:10 70:12	261:15	understandable 185:13
tough 162:9 239:14	185:17	81:5 91:15 94:1	types 53:2 131:18	understanding
tour 116:7	transparent 160:13	105:9 110:5,7	225:2 226:2 233:2	51:6 52:11 53:8
town 4:12 5:17	transparently	111:14 112:1,21	Typhoon 12:15	53:22 54:6,19
trace 231:7	165:20	122:22 140:22	typically 39:3	55.22 54.0,19
	1	1	1	1

	1	1	1	
60:6 61:17 62:2	64:2 71:4 80:14	199:21 247:22	89:21 92:7 106:6	warm 17:21 24:16
70:20,22 75:19	92:15 100:18	254:14	volunteer 62:9	28:22 32:5 34:20
105:1 109:18	103:17 115:14	vary 153:11 230:17		35:22
229:3 248:4 269:9	129:3,22 134:20	varying 231:17	W	warmed 25:5
understands 63:1	139:7,8 158:9,11	vast 95:4 99:9	W 1:20 2:2	warmer 24:2 25:16
85:6	163:11 168:13,17	106:9 232:12	wait 98:21 165:21	28:8 32:6,9 33:19
undertaking	178:16 180:6	Vegas 30:13	walk 34:5 76:19	34:10 35:15 36:5
186:13	186:1,3 195:13	vehicles 68:9,12	231:6,16 235:15	36:5,18 40:18
underway 52:14	200:5 219:19	69:13	243:5	66:5
53:7 56:13 97:1	246:22 249:21	vent 95:11	walked 163:15	warming 23:22
unfortunate 91:7	250:8 256:18	venue 84:10	want 4:19 5:15,19	31:5 34:13 66:8
unfortunately	259:2	verification 214:6	6:19,21 7:7 11:7	66:10
42:12	useful 58:2 153:11	215:17 219:20	13:17 19:2 35:16	warms 15:22 16:1
unfounding 170:4	163:20,22 164:16	versa 201:8	41:16 42:22 45:8	29:20 32:3 36:3
uniform 159:8	user 203:12	versus 53:12 90:13	50:7 51:12 56:1	36:17
Union 42:20	usually 212:20	123:1 142:6 145:5	63:18 66:11 72:19	warmth 29:6
unique 176:12	utilities 2:20 52:21	217:22 226:15	80:6 82:22 90:14	warrants 213:11
182:15 190:21	62:22 78:12 80:15	231:4,8 242:5,11	105:15 113:13	Washington 1:14
United 16:6 31:15	82:11 84:12 85:4	245:13	119:19 120:3,4,4	69:19
241:3	85:22 86:5,13	vessel 230:11	120:14,14 121:4	Washington's
units 185:21 232:6	106:12,22	vet 132:22 187:7	125:11 129:7,10	14:14
universally 114:3	utility 76:18 81:22	vice 62:13 117:5	129:11,16 142:22	wasn't 90:18 163:6
university 2:21	82:13 83:16	201:8	144:16 147:9	228:7 242:10
10:20 47:10,10	105:17,21	vicinity 147:3	154:11 157:17	250:21
69:16,17,18,19,19	utility-related	view 13:2 30:8	158:11 165:7	waste 268:19
69:20 77:22	62:17	34:18 71:22 72:12	166:9,22 193:17	wasting 223:13
unknown 207:2	V	76:15 78:3 80:7	197:17 198:13	watch 111:8 112:3
unleash 104:9	$\frac{\mathbf{v}}{\mathbf{VADM}2:2}$	108:2 121:1 235:2	217:11 218:8	watching 17:2
unprotected 151:9		235:21	219:16 220:4,20	water 16:17 29:20
unsexy 123:22	valid 242:20 243:20 validation 206:18	viewpoints 250:20	233:12 235:19,22 236:10 237:4,14	33:15,15,22 34:3
update 126:16	valuable 169:20	views 154:17	230:10 237:4,14 237:18 238:2	34:4,8,9,12,13,13
154:8 157:13	value 53:19 59:2,5	vintage 135:13,14	257:18 258.2	36:1,1,7,8,15 40:6
189:1 199:3	69:10 77:20	violated 197:10		49:19 143:10
215:20 222:21	158:14,17	violations 170:6,10	263:9 268:19,20 268:21 270:2,12	174:3 188:16
223:16 236:13	valve 233:19	170:11	wanted 7:22 14:17	waterways 144:18
249:19	valve 255.19 valves 114:17	Virginia 69:20	54:12 55:16	wave 221:13,14
updating 187:12	115:18	visiting 227:1	130:18 169:7,21	wavelength 171:1
upper 254:16	vapor 16:17	volcano 18:4	173:4 182:5,21	waves 26:4 221:18
upside 49:20	vapor 10.17 vapors 146:22	volcanos 15:7 18:7	195:19 198:7	way 6:21 7:8 32:7
upstream 122:16	vapors 140.22 variations 17:16	Volpe 180:9 185:6	238:8,12 239:5	37:4,12 50:10
216:17	varies 17:18,18	volume 139:11	243:16,22 246:2	59:12 60:11,21
urban 85:10	18:10	146:5 181:4 volumes 94:20	251:1 254:9	64:2,20 69:9 76:12 78:6 81:3
urge 20:17 116:17 USC 180:20	variety 129:3 209:3	115:16 117:11	256:14 257:7	76:12 78:6 81:3 86:4 93:5 97:11
use 4:9 5:2 13:1,7,9	255:4	volumetric 92:16	266:22 267:14	99:16 110:4,20
13:13 49:2 50:16	various 102:5	voluntarily 90:2	wants 154:20	120:8 122:7
51:10,13 60:21	127:22 137:2	voluntary 54:14	181:16 224:15	123:19 127:17,18
51.10,15 00.21		, oranicar y 57.14		123.17 127.17,10
L	-	-	-	

·				
130:18 131:3	79:22 80:16 90:19	249:13 252:6	143:2 146:8	width 73:12
134:11,16 140:4	91:9,10,14,17,20	255:14 260:2,4,19	151:12 160:12	Wiemer 106:16
145:6,8 148:10	91:20 92:2,15,18	262:7,16 268:12	181:12,13 202:13	WIESE 2:9 4:3 6:6
151:12 159:10	92:19 93:3 95:15	we've 5:12 6:18	wedge 73:15	8:5 46:8 47:16
160:3 163:5 168:8	96:1 97:13 100:15	8:12 46:10 57:21	WEDNESDAY	60:18 81:4 88:17
171:8 173:12,18	101:18 103:8	61:2,3 68:10 69:6	1:11	94:7,9 97:6 109:5
186:3 198:12	104:22 105:5,7,14	70:1 71:18 77:21	weeks 29:14 153:8	117:2 125:22
215:7 219:21	105:16 107:6,7	82:17 89:6 90:9	weight 21:21	126:10 148:18
221:17 223:12	108:12,12 109:6	91:3 92:8 99:9	Weimer 2:6 106:16	149:4 154:10
237:20 239:5,8	113:13 114:3,16	100:4 101:14	109:4 130:14	156:21 160:5
245:13 246:2,15	115:13,20 120:20	104:21 106:7,20	169:6,6 171:10	162:20 164:11
251:6 253:2	121:10 122:10,16	121:7 122:7,8	welcome 7:16	165:2,5 167:11
254:16 264:5,9	123:16,19 124:3,5	126:20 131:12	47:12 82:5 113:12	168:12 169:1,5
266:12 267:6	124:9,10,16,19,20	133:10 151:17	148:17 172:13	170:15 171:11
268:9	124:22 126:6	159:22 169:17	weld 209:2 212:1,2	172:13 173:10
ways 26:8 49:3,14	127:7,17 128:9	170:18 175:13	212:5	198:7 216:5 218:7
51:17 74:22 76:4	130:19 131:6	180:19 183:17	welded 207:1	221:9 238:7
91:16 92:2 129:3	132:6,16,21	184:3,18,20 185:8	welders 209:3	243:22 265:2
171:5 186:17	133:22 134:18,22	185:20 187:3,8,16	went 78:21 125:20	266:20 267:2
221:1,5 270:3	135:18 139:15	188:22 190:10,18	131:16 172:11,19	271:3
we'll 6:9,10 7:19	140:22 147:14	191:14 193:22	172:21 174:1	willingness 112:18
8:17 9:21 10:12	148:11,15 149:2,3	194:21 195:5	176:11 178:14	win 51:14
14:5 21:3,4 39:11	153:10,16 155:7	197:20 199:12	243:6 246:13	wind 29:6,21 70:11
46:16 62:6 81:6,7	156:7,11 157:5,13	201:15 208:6	271:7	108:9
81:10,12 89:10	158:2,3,4,5,17,22	209:17 210:13	weren't 15:3	winners 42:9
125:17 127:21	159:3 160:11	211:13,17 212:10	115:22 134:20	winter 28:22
130:1,3 131:18	170:22 171:2	212:11 213:16	165:8 176:13,14	wintertime 29:2,3
141:6 144:13	172:17 175:6,10	214:6,14 216:11	242:8 257:7	wiping 22:11
150:8 153:21	176:1,5 194:7	216:18 218:14	West 1:14 69:20	wisdom 107:16
154:1 167:12	195:17 198:11,17	220:14 221:10,11	western 25:12	Wish 40:10
171:14 172:4,14	200:1 201:16	224:4,7,8,18,18	wet 38:12 73:19	wobbly 145:20
173:7 198:18,18	202:3,20 203:1	224:19 225:12,13	wetter 25:19	wonder 148:18
216:3 221:19	205:12 209:10	225:15,18,21,21	whet 153:12	wondered 107:15
239:4 251:9 265:5	211:1 214:18	225:22 226:6,9,17	WHETSEL 2:14	wonderful 98:16
we're 6:11 7:6,9,12	215:12 216:20	227:9,12,13,16	6:5	98:16
14:12,20 17:2,19	217:2,10,14 218:1	228:12 229:5,11	white 2:21 9:9,16	word 117:1 123:8
17:20,21 18:21	218:3,16,21 219:2	237:13,16 244:4	9:21 10:18,19	239:2
23:21 24:18 26:14	221:13,21 222:13	247:16 255:6,9	11:9,11 28:11,21	words 23:12 42:4
26:15 30:5 35:4	222:13 224:14	258:18 260:15,18	30:6 46:9 48:3	45:12 73:22 147:3
40:2 41:12 43:20	225:3 226:3	266:1,9,10 269:14	50:12 53:7 87:3	175:9 256:4,9
44:15,18,21 49:12	227:17 228:17	270:14,19	99:21 103:5,13	257:20 258:3,9,13
50:1 51:9,19 55:9	231:20 232:1,4,9	wear 27:6	106:19 107:17	258:17 259:17
56:9,15 57:3,14	233:3,7 234:2,17	weather 4:12 7:11	109:7	260:22
57:19 58:11 59:4	235:9,11,21	14:14,15 25:15	wholesale 62:19	work 5:16 6:19 8:9
60:5,19 63:1,11	237:10 239:3	webcasting 171:15	Whoopee 31:2	10:16 19:5 38:13
70:4,5,5,12 71:15	242:4,14,15	website 134:2,4	wider 222:3	51:16 53:13,16
74:13,14 76:13	244:13,16,16	139:7 142:12	widow 164:7	55:13,19 56:14
				I

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59:12 61:22 62:4	209:17 250:16.18	181:19 190:1	0.2 256:4	18 19:2.13 21:5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-			-
			· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	v		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	,	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,		1 101:13 105:19	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				117:15 253:9,11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			254:11,19	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1,000 79:7,8,10	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				255:11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			1,440 255:11	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1,500 258:11	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				1,600 255:12	. –
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		· ·		1.0 269:12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1.2 68:17 72:17	2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1.3 68:17 72:17	2 38:2 71:9 101:14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1:00 172:7,8	252:17 253:6,11
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				1:05 172:12	254:12,19 263:19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				10 39:8 118:21	264:16,17
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8	•	100 79:10 263:19	2,000 258:10
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-			101 229:8	2,100 255:12
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,			109 3:4	2.0 214:20 268:12
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				11 118:21	269:4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	U	0		11:05 125:20	2.4 48:19
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			•	11:15 125:11,18	2.7 67:13
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			•	11:18 125:21	2:57 271:7
136:6 149:3 154:15 160:11 171:6 176:3 177:2 185:6 188:22 191:18 198:11 $224:20 228:12,17$ $231:21 232:9$ $233:4,8 235:10,11$ $252:7$ Xcel 70:2 105:16I12 192:17 I41:22 42:6 201:22 200 144:1 258:12 264:21Workload 217:3 works 12:2 14:11 14:13,14,15 267:18YXcel 70:2 105:16I2000 32:18 149:13 220:00 36:182000 32:18 149:13 2000 36:18136:6 149:3 YY-axis 150:5 yards 267:12 yawn 35:17 year 12:16 21:5 27:5,8 28:19 29:3 161:12Y2000 32:18 149:13 220:142000 32:18 149:13 220:142005 133:18 135:7 240:15,16 265:9 25:7240:15,16 265:9 265:10,11 266:22126 3:5 13 29:13138:11 141:13 144:10 149:142006 33:2 2007 28:14 142:3 201:19 209:162006 33:2 2011 150 258:13201:19 209:16 2011 36:14 149:150 0.01 94:19 96:40 0.01 94:19 96:40 164 250:152010 136:14 149:15 174:8 210:14		X	voung 28:12	1173 229:14	20 38:1 39:8 41:5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	136:6 149:3	Xcel 70:2 105:16		12 192:17	41:22 42:6 201:22
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	154:15 160:11		Z	12:03 172:11	200 144:1 258:12
183:6 188:22 Y-axis 150:5 156:1,1 121:2,5 101:0 2000 32:10 115:15 191:18 198:11 224:20 228:12,17 yards 267:12 156:1,1 216:9,9 222:17 223:18,19 220:14 231:21 232:9 yawn 35:17 240:15,16 265:9 126 3:5 138:11 141:13 235:21 248:4 27:5,8 28:19 29:3 41:7 57:10 58:13 265:10,11 266:22 13 29:13 144:10 149:14 252:7 41:7 57:10 58:13 142:21 155:3 151 9:8,13 36:21 2006 33:2 workload 217:3 72:4,7 78:9 164:6 150 258:13 201:19 209:16 133:18 136:13 102:12 127:9 133:18 136:13 164:6 16,000 220:15 2010 136:14 149:15 164:6 001 94:19 96:4 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	171:6 176:3 177:2		Zamarin 1:22	120 36:13 37:19	264:21
191.18 198.11 yards 267:12 222:17 223:18,19 222:17 223:18,19 2205 133:18 135:7 231:21 232:9 yawn 35:17 240:15,16 265:9 265:10,11 266:22 126 3:5 138:11 141:13 235:21 248:4 27:5,8 28:19 29:3 41:7 57:10 58:13 265:10,11 266:22 15 19:8,13 36:21 144:10 149:14 252:7 41:7 57:10 58:13 72:4,7 78:9 142:21 155:3 150 258:13 2006 33:2 works 12:2 14:11 102:12 127:9 133:18 136:13 164:6 150 258:13 201:19 209:16 14:13,14,15 137:11,11 152:14 0 0.01 94:19 96:4 164:250:15 174:8 210:14	185:6 188:22		94:11,11 121:2,3		2000 32:18 149:13
224.20 228.12,17 yawn 35:17 240:15,16 265:9 126 3:5 138:11 141:13 233:4,8 235:10,11 year 12:16 21:5 240:15,16 265:9 13 29:13 144:10 149:14 252:7 41:7 57:10 58:13 142:21 155:3 15 19:8,13 36:21 2006 33:2 workload 217:3 72:4,7 78:9 144:2 142:21 155:3 150 258:13 201:19 209:16 14:13,14,15 102:12 127:9 133:18 136:13 102:12 127:9 164:6 162 3:5 174:8 210:14 267:18 137:11,11 152:14 0.01 94:19 96:4 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	191:18 198:11		156:1,1 216:9,9	120,000 36:18	220:14
231.21 232.9 i <t< td=""><td>224:20 228:12,17</td><td>U C</td><td>-</td><td></td><td></td></t<>	224:20 228:12,17	U C	-		
235.4,8 255.10,11 27:5,8 28:19 29:3 27:5,8 28:19 29:3 27:5,8 28:19 29:3 2006 33:2 252:7 41:7 57:10 58:13 142:21 155:3 15 19:8,13 36:21 2006 33:2 workload 217:3 72:4,7 78:9 164:6 150 258:13 201:19 209:16 14:13,14,15 133:18 136:13 102:12 127:9 164:6 162 3:5 174:8 210:14 267:18 137:11,11 152:14 0.01 94:19 96:4 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	-	U C	240:15,16 265:9		138:11 141:13
235:21 248:4 27:5,8 28:19 29:3 zero 102:20 121:8 15 19:8,13 36:21 2006 33:2 252:7 41:7 57:10 58:13 142:21 155:3 38:1 40:15 2007 28:14 142:3 workload 217:3 72:4,7 78:9 164:6 150 258:13 201:19 209:16 102:12 127:9 133:18 136:13 102:12 127:9 164:6 16,000 220:15 2010 136:14 149:15 137:11,11 152:14 0.01 94:19 96:4 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	233:4,8 235:10,11	v	· · · · · · · · · · · · · · · · · · ·	13 29:13	
$252:7$ $72:4,7\ 78:9$ $142:21\ 155:5$ $50.1\ 40.15$ $2001\ 20.14\ 142:5$ works 12:2 14:11 $102:12\ 127:9$ $164:6$ $150\ 258:13$ $201:19\ 209:16$ $14:13,14,15$ $133:18\ 136:13$ 0 0 $164:6$ $150\ 258:13$ $2010\ 136:14\ 149:15$ $267:18$ $137:11,11\ 152:14$ $0.01\ 94:19\ 96:4$ $16t\ 250:15$ $2011\ 55:6\ 151:3$		-		,	
works 12:2 14:11 102:12 127:9 102:12 127:9 160:10 160:00 220:15 2010 136:14 149:15 14:13,14,15 133:18 136:13 0 0 162:3:5 174:8 210:14 267:18 137:11,11 152:14 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	252:7				
works 12:2 14:11 133:18 136:13 0 163:00 220:15 2010 150:11 110:15 14:13,14,15 133:18 136:13 0 162 3:5 174:8 210:14 267:18 137:11,11 152:14 0.01 94:19 96:4 16th 250:15 2011 55:6 151:3	workload 217:3	,	164:6		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	works 12:2 14:11			,	
	14:13,14,15				
	267:18				
workshop 56:16 152:15 154:13 0.08 67:20 173 3:7 250:4,10,14	workshop 56:16	152:15 154:13	0.08 67:20	173 3:7	250:4,10,14

2012 (5 21 252 12	49.02.1		
2012 66:21 250:13	48 93:1		
2013 12:16 65:11	49 177:9 180:3,20		
135:8 141:13	181:19 228:4		
144:10	233:5 234:16		
2014 1:11 190:1	235:17		
2015 190:19	5		
2050 39:3	5 36:20 144:5 256:3		
20th 171:10,11			
2100 39:6 41:7	257:18 5 (a) 250:4		
216 3:12	5(a) 250:4 50 22:17 144:5		
21st 171:10,12	50 23:17 144:5		
22 1:11 21:5	266:17		
222 3:15	500 144:2 264:20		
22nd 1:14	500,000 37:10		
238 3:16	6		
238.1 143:19	6 40:17 256:3		
24 93:1	257:18 263:14		
249 3:18	266:17		
26 180:7	6-1/2 192:17		
262 3:19	6-7 37:18		
27 29:12	60 19:16 118:9,10		
271 3:21	60838 180:21		
28 253:20	660 255:6,15		
280 18:13	263:14 264:18		
3	203.14 204.10		
	7		
3 101:14,16 173:8	7 33:2 36:20 40:17		
253:11 254:12,16	70 96:5		
255:21 263:8,19	72 207:13,18		
264:16 266:15			
3:00 5:17 6:2	8		
30 22:3 119:3	8 3:3 201:19 263:14		
201:22,22	80 40:22 45:9		
300 263:20			
33 19:16	9		
4	9,000 79:3,6,8		
4 3:2 71:9 198:18	9:00 1:14		
253:10,12 254:12	9:06 4:2		
253:10,12 234:12 254:12 254:18 255:22	90 177:8 179:20		
263:8,14 264:16	181:20 191:17		
40 74:7,9 118:6,11	94 94:21		
119:3 201:22	97 191:16		
400 18:12 34:16,18			
34:21 36:14 39:9			
41:1			
400,000 22:5			
100,000 22.3			
	I		Ι

<u>CERTIFICATE</u>

This is to certify that the foregoing transcript

In the matter of: Gas Pipeline Advisory Committee

Before: US DOT

Date: 10-22-2014

Place: Washington, D.C.

was duly recorded and accurately transcribed under my direction; further, that said transcript is a true and accurate record of the proceedings.

near A Guis 8

Court Reporter

NEAL R. GROSS

COURT REPORTERS AND TRANSCRIBERS 1323 RHODE ISLAND AVE., N.W. WASHINGTON, D.C. 20005-3701 313

Agenda

JOINT MEETING

Gas Pipeline Advisory Committee and Liquid Pipeline Advisory Committee

October 22, 2014 (9:00 am – 5:00 pm)

9:00 am	<u>Call to Order</u>	Jeff Wiese & Committee Chair
9:10	Agenda Item 1: BRIEFING: Methane Emission Reduction	Dr. James White, U-CO Paula Gant, DOE

Committee Discussion and Q&A:

10:45 Break

11:00 <u>Agenda Item 2</u>:

BRIEFING: Performance Metrics

Committee Discussion and Q&A:

11:45Agenda Item 3:
BRIEFING: Oil Spill Response Plans

Committee Discussion and Q&A:

12:15 Lunch

Alan Mayberry

Committee Chair

Mark Brownstein, EDF

Linda Daugherty

Committee Chair

David Lehman

Committee Chair

1:30	Agenda Item 4:	
	BRIEFING: Construction Issues (Reversal	
	and Conversion of Service)	Alan Mayberry
	Committee Discussion and Q&A:	Committee Chair
2:15	Agenda Item 5:(Moved to the end of Tuesday'sBRIEFING:Liquefied Natural GasCommittee Discussion and Q&A:	<mark>agenda)</mark> Alan Mayberry Ken Lee Committee Chair
	Break	
3:00	<u>Agenda Item 6</u> : BRIEFING: Sub-committee Report on Midstream Regulatory Jurisdiction	Linda Daugherty Todd Denton Chad Zamarin
	Committee Discussion and Q&A:	Committee Chair
3:45	<u>Agenda Item 7</u> : BRIEFING: Class Location Study	Steven Nanney
	Committee Discussion and Q&A:	Committee Chair
	OPEN DISCUSSION	Committee Chair
Wrap-up and Adjourn		Jeff Wiese