Measurement and Modeling of Tire Forces on a Low Coefficient Surface

April 4, 2006 by: Dr. Paul A. Grygier

Authors: M. Kamel Salaani, Gary J. Heydinger, & Paul A. Grygier SAE Paper: 2006-01-0559

Overview

Introduction Objectives Tire Model Tire Properties Results Conclusions

National Advanced Driving Simulator (NADS)

- 20 m x 20 m X-Y platform
- 330-degree yaw ring
- Hexapod mounted on 6 actuators
- 360-degree field of view
- Four full-size vehicle cabs
- Four actuators at cab "suspensions"
- Driver feels feedback on all controls

Testing Objectives:

- To develop a tire model for a slippery road to test ESC and other advanced vehicle technology studies
- Peak Coefficient of friction <0.6 to ensure ESC activation
- Speed dependent model all other tire properties are fixed
- Testing on laboratory surface (3M surface); variations in roadway micro and macro textures not accounted for
- Selected 4/32" tread depth and 0.05" of water depth, to get a peak about 0.6 at 50 mph

Testing Facility and Tires: TIRF at CALSPAN (General Dynamics)

Surface Used: 3M 80-grit-polycat sandpaper

All Tires Shaved to 4/32" Tread Depth All Tire Pressures at 34 psi

Testing Matrix

Discrete Cambering At Zero Slip Angle

- Normal loads: 40, 80, 120, 160 and 200% of reference load.
- Wet test speeds: 30, 45, 60 and 75 mph (4 tests) & Dry test speed: 30 mph (1 test)
- Inclination angles: -10, -8, -6, -4, -2, 0, 2, 4, 6, 8 and 10°

Quasi-Static Steering / Cornering

- Inclination angle: 0°
- Slip angle sweep: 0 to -20 to +20 to 0° at a rate of 3 deg/sec
- Normal loads: 40, 80, 120, 160 and 200% of reference load.
- Wet test speeds: 30, 45, 60 and 75 mph (4 tests)

Quasi-Static Braking / Driving

- Inclination angle: 0°
- Slip ratio sweep: 0 to -50% to +50% to 0 || Ramp time (0 to 50%) of 1.5 sec
- Normal loads: 40, 80, 120, 160 and 200% of reference load.
- Wet test speeds: 30, 45, 60 and 75 mph (4 tests) & Dry test speed: 30 mph (1 test)

Quasi-Static Combined Steering / Braking / Driving

Inclination angle: 0°

- Normal loads: 100% of reference load.
- Steady state slip angles: -6, -4, -2, 0, 2, 4, and 6°
- Slip ratio sweep: 0 to -50% to +50% to 0
 - Ramp time (0 to 50%) of 1.5 sec
- Wet test speeds: 30, 45, 60 and 75 mph (4 tests) & Dry test speed: 30 mph (1 test)

Tire Wet Contact Phenomena

At low speed

Water affects boundary

- conditions, lowering friction
- Difference between dry and wet surface not high
- At higher speed

Viscosity induces retardation of water displacement making a wedge of water
Difference between dry and wet forces is higher

• At a particular speed, the film covers all the contact surface: Hydroplaning fluids do not sustain shear forces comparable to direct tire contact

Tire Model

- Semi-empirical based on the brush model
- Friction peak values are fitted to polynomials in function of loads
- Lateral and longitudinal frictions are different
- Stiffnesses are polynomial functions of vertical loads
- Good predictions for combined slips (lateral and longitudinal)
- All parameters are physical parameters
- Linear interpolation between measured data at different speeds is used to model speed dependency

Tire Fundamental Physical Properties

Lateral Peak Coefficient of Friction

Longitudinal Peak Coefficient of Friction

Effective Lateral Stiffness

Inclination Angle Stiffness

Overturning Moment Inclination Angle Stiffness

Overturning Moment Stiffness

Results (Fy)

Combined

Combined

Important Differences with On-the-Road Tires/Surfaces

- Tires were shaved, aging effects is ignored (tire properties change with age and environment)
- NHTSA studies indicated the average tread depth for in-service tires is about 7/32", yet we used 4/32" to meet peak coefficient of friction target value
- Variations of tread depth, water depth, tire pressure, tire construction, surface texture, and tread patterns are not addressed
- Speed is the only variable affecting the model
- The results from the model is physically sound compares well with experimental results and can be used to validate ESC systems

Conclusions

Longitudinal and lateral force and moment data were collected

Test conditions were created such that a high coefficient of friction was generated at low speeds and a lower coefficient was generated at high speeds

Conclusions (cont.)

Tire parameters were calculated from the test data

Parameters were verified by comparing calculated forces to measured forces

Questions?

Contact: <u>Paul.Grygier@nhtsa.dot.gov</u> <u>Kamel.Salaani@nhtsa.dot.gov</u>