

Lighter <u>and</u> Safer Cars by Design

DRI Compatibility Study (2008)

- Modern vehicle designs generally good into fixed barriers
 - irrespective of vehicle type or material
- Safety discussion is really about vehicle compatibility
 - How much energy must be dissipated
 - How each vehicle decelerates
- Compatibility study Dynamic Research Inc. (DRI)
 - SUV in moderately severe collisions
 - Cars, other SUVs, fixed obstacles
 - 3,500 collisions, using NCAP "pulses" and NASS/CDS descriptors
 - Investigate injury index (ELU)
 - SUV lighter or larger
 - Reduce ELU

DRI Compatibility Study

Baseline: Conventional SUV with

Conventional Passenger Car and LTV

			Total ELU's		
	Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
	Rollover	175	2.23	2.48	0.53
SUV	Hit Object	420	2.54	1.74	0.81
Driver	Hit PC	1750	1.21	2.47	1.19
	Hit LTV	1155	25.97	34.02	26.27
	Subtotal	3500	31.95	40.71	28.80
OV	In PC	1750	28.00	9.70	16.79
Driver	In LTV	1155	25.99	11.28	19.59
7/1//	Subtotal	2905	53.99	20.98	36.38
	Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18

Net Benefit (%)				
Reduced	Increased			
Weight	Length			
Case SUV	Case SUV			
-11.2	76.2			
31.5	68.1			
-104.1	1.7			
-31.0	-1.2			
-27.4	9.9			
65.4	40.0			
56.6	24.6			
61.1	32.6			
28.2	24.2			

DRI Compatibility Study

20% Reduced Weight SUV (Single Vehicle) into Conventional Fleet

			Total ELU's		
	Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
	Rollover	175	2.23	2.48	0.53
SUV	Hit Object	420	2.54	1.74	0.81
Driver	Hit PC	1750	1.21	2.47	1.19
	Hit LTV	1155	25.97	34.02	26.27
7 7 7 7 7	Subtotal	3500	31.95	40.71	28.80
OV Driver	In PC In LTV	1750 1155	28.00 25.99	9.70 11.28	16.79 19.59
Diivei	Subtotal	2905	53.99	20.98	36.38
	Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18

Net Benefit (%)				
Reduced	Increased			
Weight	Length			
Case SUV	Case SUV			
-11.2	76.2			
31.5	68.1			
-104.1	1.7			
-31.0	-1.2			
-27.4	9.9			
65.4	40.0			
56.6	24.6			
61.1	32.6			
28.2	24.2			

DRI Compatibility Study

Increased Length (4.5") SUV (Single Vehicle) into Conventional Fleet

			Total ELU's		
	Crash Type	Number of Cases	Baseline Case SUV	Reduced Weight Case SUV	Increased Length Case SUV
	Rollover	175	2.23	2.48	0.53
SUV	Hit Object	420	2.54	1.74	0.81
Driver	Hit PC	1750	1.21	2.47	1.19
	Hit LTV	1155	25.97	34.02	26.27
///////////////////////////////////////	Subtotal	3500	31.95	40.71	28.80
OV	In PC	1750	28.00	9.70	16.79
Driver	In LTV	1155	25.99	11.28	19.59
	Subtotal	2905	53.99	20.98	36.38
	Overall Total	3500 SUV + 2905 OV	85.94	61.69	65.18

Net Benefit (%)				
Reduced	Increased			
Weight	Length			
Case SUV	Case SUV			
-11.2	76.2			
31.5	68.1			
-104.1	1.7			
-31.0	-1.2			
-27.4	9.9			
65.4	40.0			
56.6	24.6			
61.1	32.6			
28.2	24.2			

Lighter <u>and</u> Safer Cars by Design

DRI Compatibility Study Findings:

- Reduced mass or Length
 - Reduced fleet ELU's
- Mass (-20%)

Fleet ELU's reduced 28%

Reduced struck vehicle ECU's 61%

Some increase in Lt. vehicle ELU's

- Length (Design) (+4 inch)

Fleet ELU's reduced 24%

Reduced longer vehicle driver ECU's by 10%

Reduced struck vehicle ECU's 33%

Note: Observations are directional not absolute

Source: EDAG

STIFFNESS RELEVANCE AND STRENGTH RELEVANCE IN CRASH OF CAR BODY COMPONENTS

Official report 83440 by ika May 2010

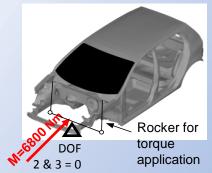
Light-weighting Potential of High-Strength Steel and Aluminum

- University of Aachen ika (Germany)
 - Mid-size European Sedan
- Objective
 - Maximum auto body weight saving potential
 - Steel
 - Aluminum

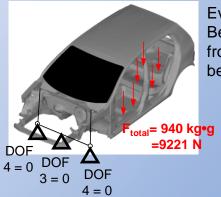
Analytical Analysis

- Objective
 - Maximum auto body weight saving potential
- Methodology
 - Model body classify components (strength or stiffness limited)
 - NVH
 - Collision performance (<u>index: intrusion</u>)
 - Optimize body components material, grade, gauge
 - High-strength steel grades (including ultra high-strength steel)
 - Aluminum alloys

26 Components for Quantitative Evaluation

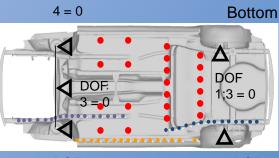


Stiffness Load Cases


Static Torsional Stiffness

Evaluation:

Torsional stiffness calculated from deflection of evaluation point on front longitudinal


Static Bending Stiffness

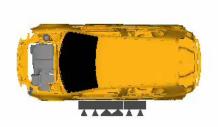
Evaluation: Bending stiffness calculated from maximum deflection of bending lines (generally sill)

DOF 2 & 3 = 0 DOF 1;3 = 0 DOF 1:2:3 = 0

DOF

DOF DOF 4 = 0 1:2:3 = 0

Red dots = Load/force application
Black dots = Deflection measured
Orange dots = Deflection measured
Blue dots = Deflection measured



Strength Load Cases

Evaluated Using European and U.S. Crash Standards

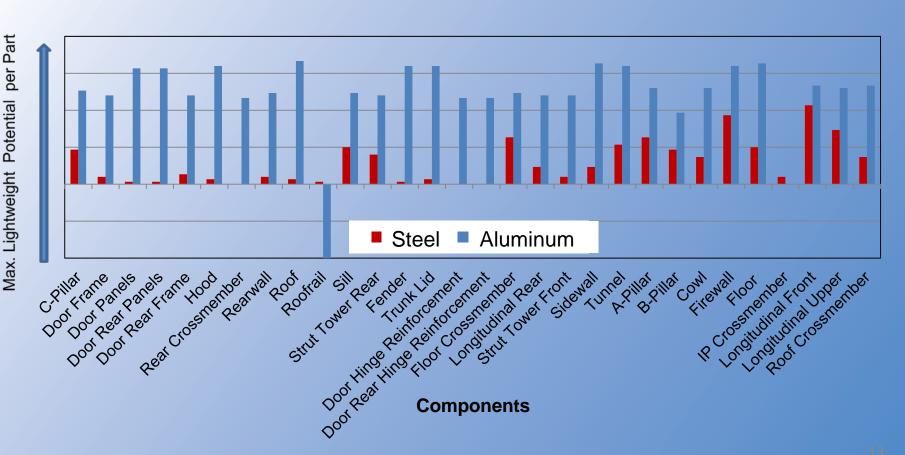
- Velocity 50 km/h
- **EEVC** moving deformable barrier

FMVSS 301 Rear Crash

- Velocity 48 km/h
- Rigid moving barrier
- 0% offset

Euro NCAP Front Crash

- Velocity 64 km/h
- **EEVC** deformable barrier
- 40% offset



Light-weighting Potential by Material

Key Findings

- NVH and Safety performance objectives <u>appear achievable</u> with reduced mass designs
- Strength not the limiting factor for a majority of body components (Mass)
- Weight reduction potential
 - High-strength steel (YS to 1,200 MPa) = ~11%
 - Aluminum (YS to 400 MPa) = ~40%

http://www.eaa.net/en/applications/automotive/studies/

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

Objectives:

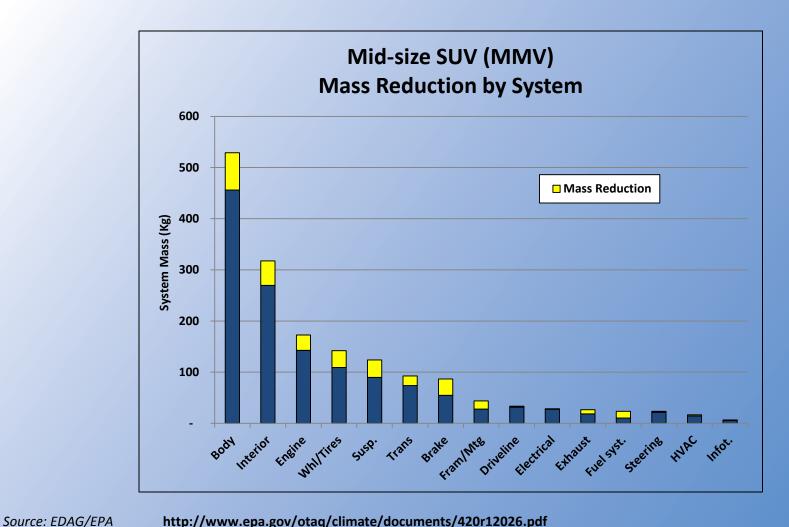
Mass Reduction – 20%

Retain: Size

Functionality

Safety (5 Star)

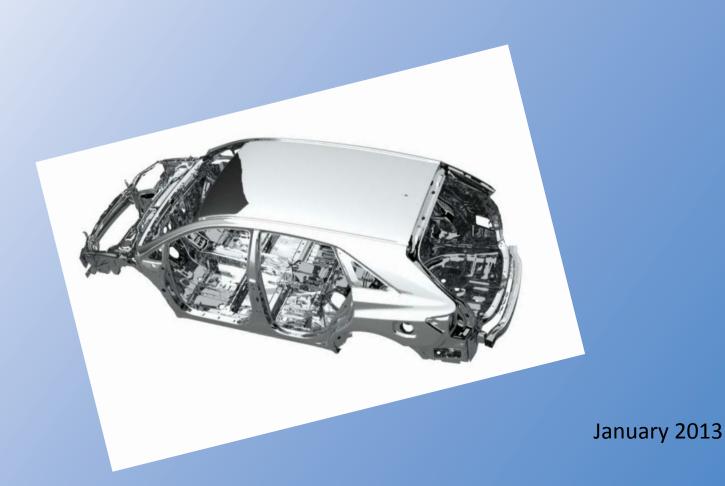
NVH


Performance

- Use proven body structure
- Cost increase < 10%
- Materials and process <u>available and practical 2017</u>

Body is Key to Vehicle Mass Reduction

"Light-Duty Vehicle Mass Reduction and Cost Analysis- Midsize Crossover Utility Vehicle"


Findings:

- Reduced mass mid-size cross-over SUV <u>appears capable</u> of meeting all design objectives size, functionality, <u>safety</u>, NVH, performance
- 18% (313 Kg) vehicle mass reduction (MMV)
 - advanced steel BIW reduction 14%
 - total body mass reduction 14%
 - aluminum closures, chassis, suspension, brakes
- Estimated cost impact: \$148 (reduction)

Source: EDAG

Mid-size SUV <u>Aluminum</u> BIW Concept Study

Mid-size SUV <u>Aluminum</u> BIW Concept Study

Objectives:

Maximum Mass Reduction – <u>Aluminum Intensive Body</u>

Retain: Size

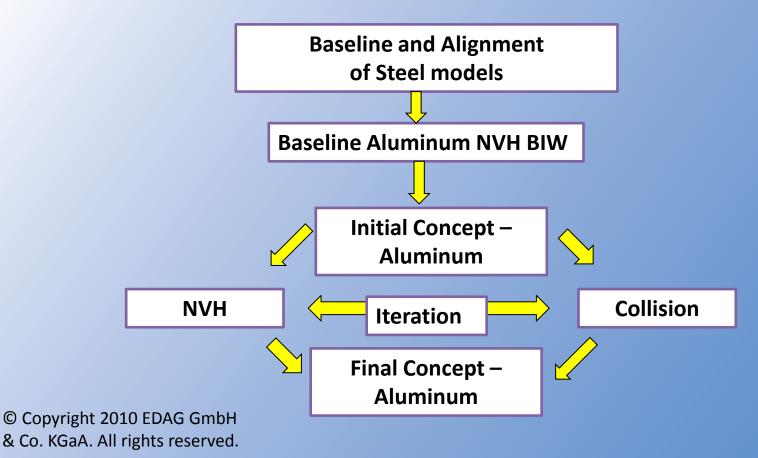
Functionality

Safety (5 Star)

NVH

Performance

Use proven body structure


Cost increase: TBD

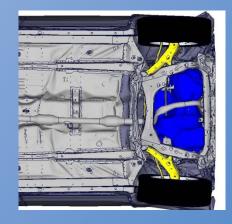
Materials and process <u>available and practical 2017</u>

AIV Body Design Process (NVH and Crash)

Mid-size SUV <u>Aluminum</u> BIW Concept Study

Study Description	Overall Torsion Mode (Hz)	Overall Lateral Bending Mode (Hz)	Rear End Match Boxing Mode (Hz)	Overall Vertical Bending Rear End Breathing Mode (Hz)	Torsion Stiffness (KN.m/rad)	Bending Stiffness (KN/m)	Test Weight BIW (Kg)
Baseline Model	54.6	34.3	32.4	41.0	1334.0	18204.5	407.7
Aluminum BIW	64.5	39.3	40.7	49.1	1469.6	19855.0	243.0
Percentage Change (%)	+18.1%	+14.6%	+25.6%	+19.8%	+10.2%	+9.1%	-40.4%

© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.

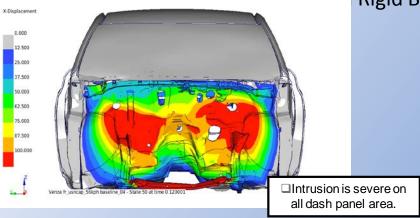

Mid-size SUV

Aluminum BIW Concept Study

Deformation Mode Comparison: Front Area @80 msec.

Mid-size SUV

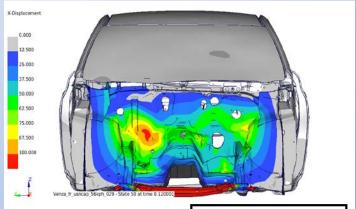
Aluminum BIW Concept Study

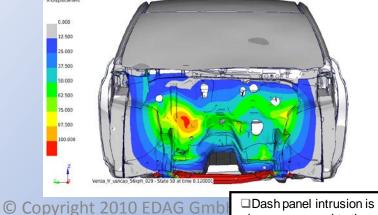

Dash Panel Intrusion Comparison

A-Pillar Deformation Comparison

Model 001 (Steel BIW)

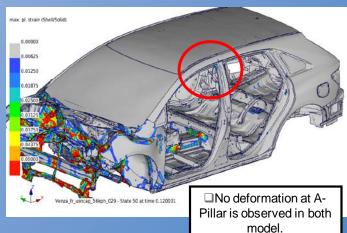
Model 001 (Steel BIW)


ENALYSS 200 25 mph Frontal Rigid Barrier (FRB) Impact (USNCAP)



0.00000 0.00625 0.01250

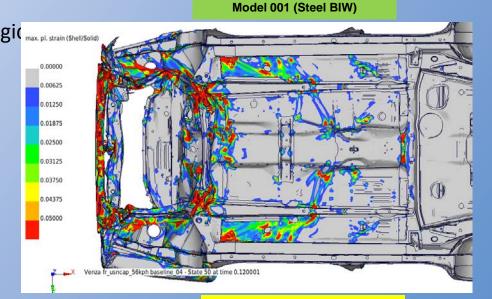
Model 029 (Aluminum BIW)


Model 029 (Aluminum BIW)

Co. KGaA. All rights reserved

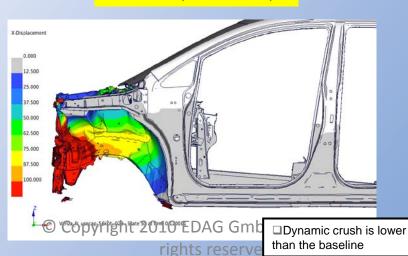
□ Dash panel intrusion is lower compared to the baseline

A L U M I N U M IN TRANSPORTATION THE ALUMINUM ASSOCIATION, INC.

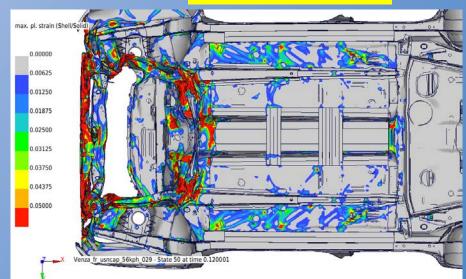

iviia-size Suv

Aluminum BIW Concept Study

Dynamic Crush


Bottom View : Plastic Strain

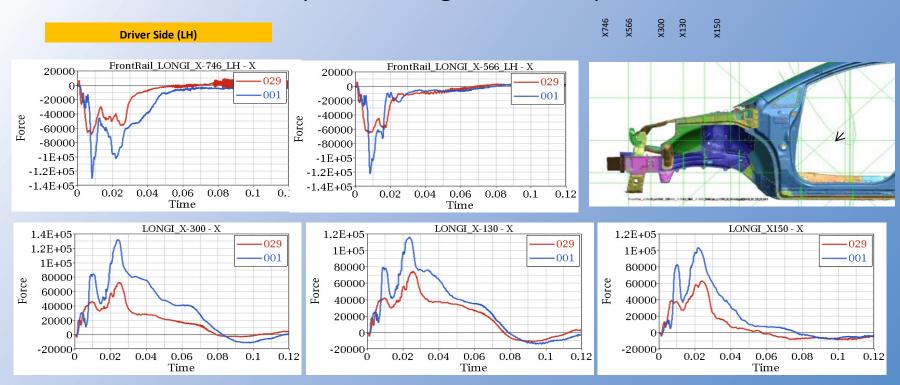
Model 001 (Steel BIW) FMVSS208 - 35mph Frontal Rigic 0.0000 12.500 23.600 337.500 62.500 67.500 100.000 Model 001 (Steel BIW) FMVSS208 - 35mph Frontal Rigic 0.00000 0.00625 0.01250 0.01275 0.003125 0.03125 0.03750 0.04375 0.05000



Model 029 (Aluminum BIW)

Venza fr_usncap_56kph baseline_04 - State 50 at time 0.120001

Model 029 (Aluminum BIW)



Mid-size SUV

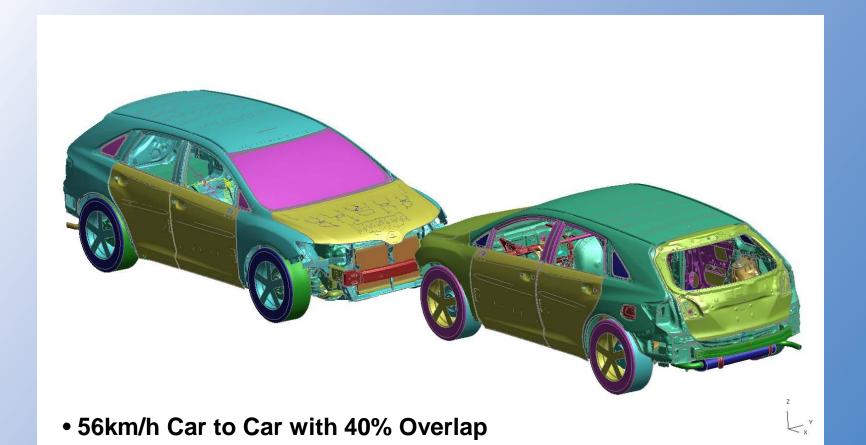
Aluminum BIW Concept Study

FMVSS208 – 35 mph Frontal Rigid Barrier Impact

© Copyright 2010 EDAG GmbH & Co. KGaA. All rights reserved.

Mid-size SUV <u>Aluminum</u> BIW Concept Study

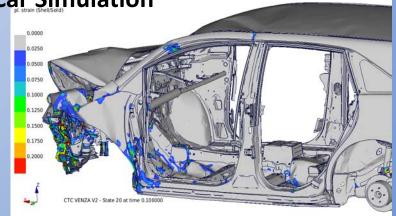
Findings:


- Aluminum intensive mid-size cross-over SUV <u>appears capable</u> of meeting all design objectives
 - size, functionality, safety, NVH, performance
- 28% (476 Kg) total vehicle mass reduction
 - aluminum BIW, closures, chassis, suspension, brakes
 - Body mass reduction 39%
- Estimated cost impact: + \$534 (\$1.12/Kg)
 - Net of secondary mass reductions

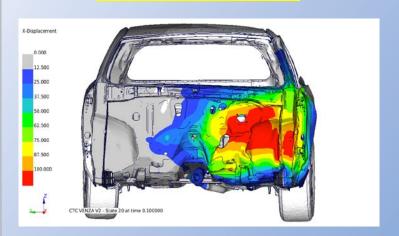
Source: EDAG

Mid-size SUV Aluminum BIW Concept Study

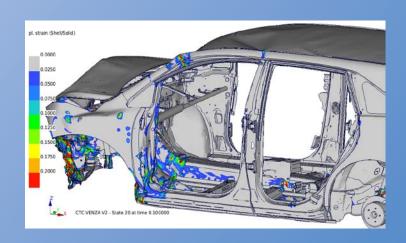
Compatibility Simulation


Dash Panel Intrusion Comparison

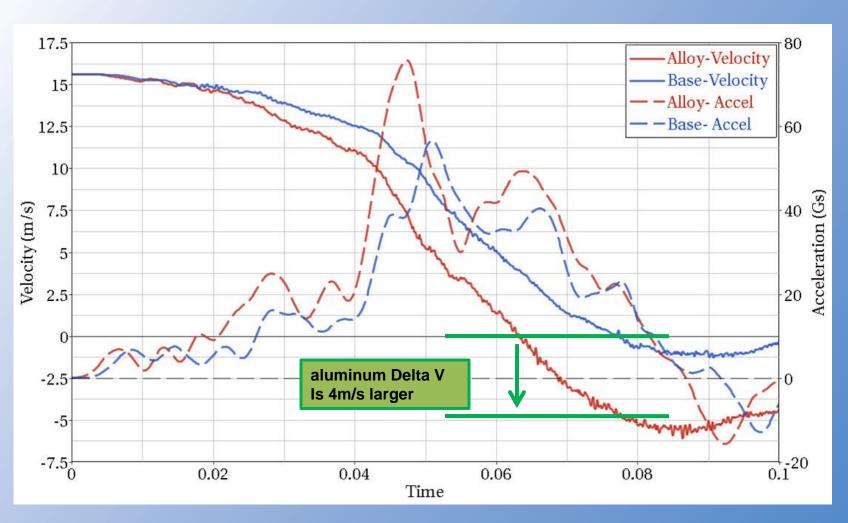
Model 001 (Steel BIW) X-Displacement -12.500 -25.000 -37.500 -50.000 -62.500 -75.000 -87.500 -100.000 CTC VENZA V2 - State 20 at time 0.100000

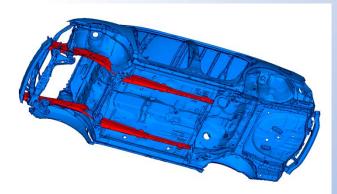

A-Pillar Deformation Comparison

Model 001 (Steel BIW)


8.0 Car to Car Simulation

Model 029 (Aluminum BIW)


Model 029 (Aluminum BIW)


Aluminum Mid-size SUV Car-to-Car Collision Simulation

Velocity & Acceleration

Aluminum Mid-size SUV Car-to-Car Collision Simulation

Max Section Forces

Front Rail

LHS

No	Base (kN)	Alloy (kN)
1	90.7	67.0
2	99.4	64.2
3	94.4	80.2
4	95.9	76.3
5	93.9	58.9
6	77.2	75.1
7	95.4	95.4
8	68.0	64.7
9	47.4	45.7

D	L	J	C
\boldsymbol{L}	ı	ı	C

No	Base (kN)	Alloy (kN)
1	19.3	19.1
2	27.2	32.4
3	26.5	41.2
4	29.1	42.1
5	32.3	40.9
6	23.7	29.8
7	48.1	55.7
8	43.6	43.3
9	37.4	36.9

Aluminum Mid-size SUV Car-to-Car Collision Simulation

Key Findings

- Safety Implications
 - Intrusions
 - AIV floor pan intrusions reduced
 - Global Velocity / Acceleration
 - AIV concept more severe deceleration
 - Potentially higher occupant loading (with the same restraints system)
- Conclusions
 - AIV Structure design changes to accommodate
 - Increased structure stiffness
 - Higher energy absorption capacity

Lighter <u>and</u> Safer Cars by Design

Conclusions:

- Vehicle design, not mass, Key to Collision Performance
- Reduced mass body structures with equal or superior collision performance appear feasible
- Potential Body mass reduction

AHSS (10-12 % reduction)

MMV Optimization (12-16 % reduction)

Steel, AHSS, Al, Mg

Aluminum (AIV) (24-28 % reduction)

Aluminum, AHSS

Mix of BIW solutions <u>likely</u>

AHSS – price critical market segment: Downsizing

MMV (body) – size-cost optimization: MODERATE downsizing

AIV (body) – size critical market segment: LIMITED downsizing

